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A B S T R A C T   

Plant carotenoids are essential for photosynthesis and photoprotection and provide colors in the yellow to red 
range to non-photosynthetic organs such as petals and ripe fruits. They are also the precursors of biologically 
active molecules not only in plants (including hormones and retrograde signals) but also in animals (including 
retinoids such as vitamin A). A carotenoid-rich diet has been associated with improved health and cognitive 
capacity in humans, whereas the use of carotenoids as natural pigments is widespread in the agrofood and 
cosmetic industries. The nutritional and economic relevance of carotenoids has spurred a large number of 
biotechnological strategies to enrich plant tissues with carotenoids. Most of such approaches to alter carotenoid 
contents in plants have been focused on manipulating their biosynthesis or degradation, whereas improving 
carotenoid sink capacity in plant tissues has received much less attention. Our knowledge on the molecular 
mechanisms influencing carotenoid storage in plants has substantially grown in the last years, opening new 
opportunities for carotenoid biofortification. Here we will review these advances with a particular focus on those 
creating extra room for carotenoids in plant cells either by promoting the differentiation of carotenoid- 
sequestering structures within plastids or by transferring carotenoid production to the cytosol.   

1. Introduction 

Carotenoids are isoprenoid compounds produced by all photosyn
thetic organisms (including plants, algae and cyanobacteria) as well as 
some non-photosynthetic archaea, bacteria, fungi and animals [1]. In 
plants, carotenoids can be considered as both primary (essential) and 
secondary (specialized) metabolites. Carotenoids such as lutein, beta- 
carotene, violaxanthin, and neoxanthin are required for photosyn
thesis and photoprotection [2,3]. The absence of carotenoids in plants, 
due to a genetic or chemical inhibition of the pathway, hence results in a 
non-viable albino phenotype [4–6]. Also essential is their function as 
precursors of important phytohormones regulating plant development, 
growth or stress responses, such as abscisic acid (ABA) or strigolactones 
[7,8] (Fig. 1). Carotenoids can also be considered specialized metabo
lites due to their role as communication signals between plants and their 
environment. Most carotenoids are pigments that provide distinctive 
colors to the fruits and flowers of some plants for attracting animals for 
seed dispersal and pollination [1,9]. Additionally, carotenoid cleavage 
can generate volatile compounds that contribute to the flavor of some 
flowers and fruits. These properties as natural pigments and aromas 

make carotenoids an important economic target of cosmetic and food 
industries. However, their main interest for humans is their nutritional 
and health-promoting properties. Dietary carotenoids are used as pre
cursors for the production of retinoids (including vitamin A). Addi
tionally, carotenoid-enriched diets reduce the risk of several 
degenerative diseases, including age-related macular degeneration, 
cognitive malfunctioning, cardiovascular diseases, and some types of 
cancer [1,10]. 

Due to the importance of carotenoids for human (and animal) health 
and their economic value for the industry, a large number of biotech
nological strategies have been developed to enrich plant tissues with 
carotenoids [11,12]. Carotenoid levels are the result of three interacting 
variables: (1) biosynthetic rate, (2) degradation rate and (3) storage 
capacity of the cell to accumulate and sequester them. Most biotech
nological approaches to alter carotenoid contents in plants have been 
focused on manipulating their biosynthesis or degradation by over
expressing or silencing sequences encoding exogenous or endogenous 
enzymes or their regulators [11–17]. Improving the sink capacity of 
plant cells to accumulate enhanced levels of carotenoids, however, has 
received much less attention, in part because of our limited knowledge 
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on how to manipulate this process. Here we will briefly review the 
general plant carotenoid metabolism (i.e. biosynthesis and degradation 
pathways) to provide some context but will focus on the storage 
mechanisms to then describe some recent accomplishments on creating 
new sites to produce and accumulate these health-promoting metabo
lites in plant cells. 

2. Carotenoid metabolism 

2.1. General features 

The main structural feature of carotenoids is the system of conju
gated double bonds known as the ‘polyene chain’ (Fig. 1). Carotenoids 
with a partially saturated polyene chain (such as phytoene) do not 
absorb light in the visible wavelength. However, they are rarities within 
the carotenoid family, as desaturation steps early in the biosynthetic 

pathway readily convert them to downstream products with colors in 
the visible (yellow to red) spectrum. Carotenoids can be either acyclic or 
cyclic attending to the absence or presence of end rings in their struc
ture, respectively. They are also classified as carotenes (when they only 
contain carbon and hydrogen) and xanthophylls (when they also contain 
oxygen). Carotenoids can also have trans (E) or cis (Z) isomers which can 
markedly differ in shape. Furthermore, some carotenoids form optical 
isomers due to the presence of chiral centers in their molecules [1,18]. 

2.2. Biosynthetic pathway 

Plants synthesize carotenoids in plastids from the isoprenoid pre
cursors isopentenyl diphosphate (IPP) and dimethylallyl diphosphate 
(DMAPP), derived from the methylerythritol 4-phosphate (MEP) 
pathway [1,15,19]. Three IPP and one DMAPP molecules are condensed 
by geranylgeranyl diphosphate (GGPP) synthase to form GGPP, which is 

Fig. 1. Carotenoid biosynthesis and strategies to engineer new storage sites in plant cells. The endogenous plant carotenoid pathway is located in plastids and fed by 
precursors synthesized by the MEP pathway, whose flux is mainly controlled by DXS. The first and main rate-determining enzyme of the carotenoid pathway is PSY. 
Carotenes and xanthophylls produced by this pathway are boxed in orange and yellow, respectively. Extra room for their accumulation can be engineered by 
promoting the differentiation of carotenoid-sequestering structures within plastids (hence becoming chromoplasts) or by transferring carotenoid production to the 
cytosol using the indicated bacterial enzymes (in red) and precursors produced by the MVA pathway, whose flux is mainly controlled by HMGR. Processes and 
proteins influencing chromoplast differentiation are represented. Regardless the subcellular production site, storage of carotenoids is influenced by their physico
chemical properties, including their aggregation state or the interaction with proteins, sugars and lipids (e.g. esterification). (For interpretation of the references to 
color in this figure legend, the reader is referred to the web version of this article.) 
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the common precursor of carotenoids and other photosynthesis-related 
plastidial isoprenoids such as chlorophylls, plastoquinone, phylloqui
nones, and tocopherols, but also of the plant hormones gibberellins 
[6,20,21] (Fig. 1). The first reaction specific of the plant carotenoid 
pathway is the condensation of two molecules of GGPP for the synthesis 
of the non-colored carotenoid 15-cis-phytoene, catalyzed by the enzyme 
phytoene synthase (PSY). This is considered a bottleneck reaction and a 
major control step of the metabolic flux to carotenoids [15,22]. Different 
enzymes catalyze the sequential desaturation and isomerization re
actions that convert 15-cis-phytoene into the red-colored all-trans lyco
pene [1,16]. Formation of β- or/and ε-ionone rings in the ends of the 
linear lycopene molecule represents a branch point of the pathway, 
leading to either α-carotene (β,ε branch) or β-carotene (β,β branch) [16]. 
Hydroxylation and epoxidation of the rings in these carotenes results in 
different types of xanthophylls, such as lutein from α-carotene or zeax
anthin, violaxanthin and neoxanthin from β-carotene (Fig. 1). 

2.3. Breakdown pathways 

The electron-rich polyene backbone of carotenoids makes them very 
susceptible to oxidative breakdown. Carotenoid degradation can be 
mediated by carotenoid cleavage dioxygenases (CCDs) that catalyze the 
oxidative breakdown of carbon–carbon double bonds in different loca
tions of the polyene backbone to produce carotenoid cleavage products 
(CCPs) containing carbonyl groups (aldehyde or ketone groups) in the 
cleaving ends. While carotenoid levels are negatively correlated with the 
activity of these enzymes in some plants and tissues, CCD-independent 
degradation can be a main contributor to carotenoid loss in other 
cases [23–25]. For example, lipoxygenases (LOXs) that oxidize poly
unsaturated fatty acids can produce hyperperoxides that cause the 
degradation (i.e. cooxidation) of carotenoids [26,27]. Carotenoids can 
also be oxidized non-enzymatically by reactive oxygen species (ROS) 
produced after photooxidative stress [28]. The CCPs resulting from 
either CCD activity or non-enzymatic oxidation are typically referred to 
as apocarotenoids. Many of them have signaling roles as pigments and 
flavors, and some have been shown to function as hormones and defense 
compounds [8,29]. The role of many other apocarotenoids, however, 
remains unknown. 

3. Carotenoid storage 

3.1. Physical-chemical considerations 

Carotenoids can be found in plant tissues either free or associated 
with other molecules (proteins, fatty acids or sugars). They can also form 
aggregates as a result of weak and reversible bonding by hydrogen 
bonds, van der Waals interactions, dipole forces and the hydrophobic 
effects of hydrophobic molecules, their polar groups and the surround
ing solvent [30–32]. With only some exceptions (e.g. carotenoids 
harboring carboxylic groups such as bixin and azafrin), free carotenoids 
are hydrophobic compounds usually found in lipid-rich environments. 
Carotenes are typically more lipophilic than xanthophylls [18]. The 
conjugated double bonds in their polyene chain causes rigidity of the 
carotenoid molecules. While cis isomers have an angular shape and are 
less susceptible to aggregation, those in all-trans configuration typically 
exhibit a rod-like shape (Fig. 1). Besides solubility, these differences 
influence the ability of carotenoids to fit into cellular structures or to 
interact with enzymes and other proteins, eventually impacting their 
bioaccessibility (i.e. the amount of carotenoid released from the food 
matrix during digestion and made available for absorption) and 
bioavailability (i.e. the fraction that is actually absorbed by our bodies 
and available for biological use). 

Plant carotenoids can also be found associated to proteins (e.g., in 
photosynthetic complexes) or conjugated with sugar (e.g., glucose) or 
lipid (e.g. fatty acids) moieties (Fig. 1). Carotenoid glycosylation is most 
frequent in microorganisms as a natural mechanism to increase their 

hydrophilicity [33]. Glycosylated carotenoids appear to play important 
roles in maintaining cell wall structure and stabilizing thylakoid mem
branes in cyanobacteria [34]. In plants, the best known examples are 
crocins and picrocrocin, water-soluble glycosylated apocarotenoids that 
contribute to the color and taste of the saffron (Crocus sativus) spice. 
They are produced from precursors resulting from the cleavage of 
zeaxanthin by a specific plastid-localized CCD enzyme (CCD2) that leave 
the plastid to be eventually glycosylated by identified glycosyl
transferases and then imported into vacuoles by specific ABC trans
porters [35–38]. While glycosylation increases water solubility and 
decreases reactivity, compartmentalization into vacuoles allows for 
long-term storage and higher stability [36]. Glycosylation of 
xanthophyll-derived apocarotenoids also occurs in fruits and leaves of 
several plant species, presumably as a compensatory mechanism for 
increased carotenoid flux [35,39–41]. 

The most frequent type of plant carotenoid modification is esterifi
cation with fatty acids [1,18]. Because the acylation reaction must 
necessarily be performed over a hydroxyl group, only hydroxy- 
xanthophylls may become acyl esters. They are ubiquitous in foods of 
plant origin [42]. The ripening of many fruits is actually associated with 
the esterification of xanthophylls, supporting the conclusion that ester
ification is important to increase the carotenoid accumulation capacity 
of plant cells. While association with sugars makes carotenoids more 
water-soluble, esterification of xanthophylls renders them more lipo
philic and promotes their sequestration in subplastidial structures [43]. 
The increase in the liposolubility compared to free xanthophylls likely 
improves the integration of esterified xanthophylls into membrane 
structures such as plastoglobules, which eventually results in higher 
stability and enhanced bioavailability [1,44]. Spatial configurations, 
however, prevent them from accumulating in standard bilayer mem
branes to appreciable amounts. As to the enzymes involved in xantho
phyll esterification, recent works have identified several esterases or 
acyl transferases. XANTHOPHYLL ESTERASE (XES) enzymes with a 
conserved α/β hydrolase fold and acyltransferase domains have been 
identified in several plant species [45–48]. In tomato, the XES homolog 
PALE YELLOW PETAL 1 (PYP1) has been demonstrated to be required 
for the esterification of violaxanthin and neoxanthin and for carotenoid 
sequestration in petals [45]. A member of a different family, the GDSL 
esterase/lipase XANTHOPHYLL ACYL-TRANSFERASE (XAT) from 
wheat (Triticum aestivum), catalyzes the esterification of lutein but it can 
also use other xanthophylls as substrates [49]. It remains to be tested 
whether these genes can be used as biotechnological tools to improve 
the deposition, stability and bioavailability of xanthophylls. 

3.2. Plastid types 

Plant carotenoids are not only produced but also stored in plastids. 
While carotenoids are fairly sensitive to oxidation or isomerization by 
light and temperature when tissues are disrupted, they are relatively 
stable in their natural environment (i.e., inside plastids). In fact, the 
storage of carotenoids is heavily influenced by the presence of appro
priate subplastidial structures that sequester them and promote their 
accumulation. Plastids are ubiquitous in plant cells, organs and species, 
but there are different types and they can fluctuate from one type to 
another depending on the developmental program and environmental 
factors [50,51]. Carotenoids are only absent in proplastids [52,53], 
which are undifferentiated plastids found in meristematic, reproductive 
and dedifferentiated tissues. They act as progenitors for all the other 
types of plastids [17,50]. 

Etioplasts are plastids that only occur in tissues that are not exposed 
to light (i.e., in seedlings that germinate in darkness). They develop 
when proplastids cannot be differentiated into chloroplasts. Etioplasts 
accumulate low amounts of carotenoids as well as the chlorophyll pre
cursor protochlorophyllide in special structures called prolamellar 
bodies (PLBs) [54,55]. Carotenoids produced in etioplasts (such as 
violaxanthin and lutein) facilitate the transition to photosynthetic 
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development when they differentiate into chloroplasts during de- 
etiolation [56,57]. Carotenoid levels increase to protect plastids from 
photooxidative damage as protochlorophyllide is converted into chlo
rophylls and PLBs into thylakoids during the etioplast-to-chloroplast 
differentiation process [9,58]. 

Chloroplasts are photosynthetic plastids that are found in all green 
tissues. Chloroplasts accumulate high levels of carotenoids, with lutein 
and β-carotene being the most abundant ones (45% and 25–30% of the 
total, respectively) followed by violaxanthin and neoxanthin (10–15% 
each) in most plants [15]. These carotenoids are often associated with 
proteins in different complexes of the photosynthetic apparatus [2,3]. 
Xanthophylls are primarily found in the light-harvesting complexes, 
whereas β-carotene is usually located in both photosystems and the 
cytochrome b6f complex. Despite their high carotenoid content, 
chloroplast-containing tissues are green due to the presence of chloro
phylls. Carotenoids and chlorophylls are actually maintained in a tightly 
controlled proportion to ensure correct functioning of the photosyn
thetic machinery. Carotenoids function as accessory light-harvesting 
pigments and contribute to the assembly, stabilization, and repair of 
the photosynthetic apparatus [2,3,59]. Another essential function of 
carotenoids in chloroplasts is photoprotection against photooxidative 
damage. Carotenoids prevent the formation of ROS in high light con
ditions via two complementary mechanisms: by dissipating excess en
ergy as heat (through a mechanism called as non-photochemical 
quenching) and by quenching excited triplet chlorophyll and singlet 
oxygen (hence promoting free radical detoxification) [2,3,58,60,61]. 
Chloroplasts carotenoids can also be found in the envelope membranes, 
which are considered as major production site as most carotenoid 
biosynthetic enzymes are located there [15,62]. They are also present at 
low levels in plastoglobules, which are lipid bodies associated to thy
lakoids that may function as metabolite trafficking structures to trans
port carotenoids and other plastidial isoprenoids from their synthesis to 
their destination sites [17]. A hydrophobic ligand-binding domain 
protein named chloroplast Sec14-like 1 (CPSFL1), which binds carot
enoids and occurs in both soluble and membrane-bound forms, has been 
recently proposed as another potential intraplastidial transporter [63]. 

Developmental and environmental cues can promote the trans
formation of chloroplasts into other plastid types. For example, natural 
or dark-induced senescence transforms chloroplasts into gerontoplasts. 
Typically, gerontoplasts harbor disaggregated thylakoids and huge 
plastoglobules that accumulate carotenoids and their degradation 
products [50,64]. During senescence, the chlorophylls/carotenoids ratio 
decreases due to chlorophyll degradation and carotenoid retention, and 
leaves turn to typical yellow and orange autumn colors [65]. In many 
fleshy fruits, chloroplasts differentiate into carotenoid- 
overaccumulating plastids called chromoplasts. Chromoplasts, which 
can also derive from other plastid types such as leucoplasts or amylo
plasts, are non-photosynthetic plastids specialized in the production and 
sequestering of carotenoids that provide color to organs such as fruits, 
flowers and storage roots [17,53,65–67]. In contrast to chloroplasts, the 
carotenoid composition of chromoplasts is very diverse. This composi
tion often determines the storage structures that different types of 
chromoplasts develop to accommodate massive amounts of carotenoids 
[17,53,65,68]. 

3.3. Specialized storage structures 

Chromoplast carotenoids can be stored in membrane systems, in 
plastoglobules, in lipoprotein complexes forming fibrils, or as crystals. 
These storage structures define the type of chromoplast, which can be 
classified as membranous, globular, fibrillar, or crystalline 
[17,53,65,68]. Chromoplasts harboring different carotenoid-bearing 
structures (i.e., chromoplasts of different types) can be found in 
different tissues of a single plant but also within the same organ 
[65,69,70]. Globular chromoplasts, found in saffron stigmas, mango, or 
citrus fruit, are enriched in plastoglobules. [70–72]. Besides 

carotenoids, plastoglobules may accumulate tocopherols [73], phyllo
quinone [74] and plastoquinone [75,76]. Plastoglobule morphology is 
very variable depending on the nature of polar lipids and proteins that 
compose them, but also on the content of carotenoids and their esteri
fication. For example, tomato fruit chromoplasts show globular plasto
globules [77]) whereas fibrillar chromoplasts are characteristic of 
pepper fruit [78]. Membranous chromoplasts display concentrical multi- 
layer membranes derived from a proliferation of the inner envelope 
membrane, where carotenoids are accumulated. They were reported in 
Narcissus (daffodil) flowers [79] and the orange curd of Or mutants of 
cauliflower [80]. Crystalline chromoplasts are abundant in tomato fruit 
and carrot root, where lycopene and β-carotene crystals, respectively, 
are encased in a bilayer of lipids [70,81]. This heterogeneity of types and 
structures illustrates the huge versatility of plastids to accumulate any 
kind of carotenoid, making chromoplasts the best-known machinery for 
carotenoid production and storage in plants. Indeed, promoting the 
differentiation of chromoplasts appears as a useful strategy for carot
enoid biofortification as it improves both production and sink capacity 
[12,17,44,82]. Control of chromoplast differentiation has been a hot 
topic for decades, but the underlying mechanisms have only recently 
began to be unveiled [51,53,65,66,83,84]. In the next section we will 
review some of the processes impacting chromoplasts differentiation 
and the results of their manipulation for carotenoid biofortification. 

4. Chromoplast differentiation 

4.1. Protein import 

Chromoplastogenesis is a complex process that requires an active 
production of carotenoids and hence catalytically active enzymes, but 
also other proteins required to reshape plastid ultrastructure in order to 
accommodate the newly made carotenoids. Building a chromoplast 
therefore implies major proteome changes [83,85–89]. The plastid 
genome only harbors about 100 genes, but its expression activity in 
chromoplasts appears to be maintained mainly to sustain the expression 
of only one of them, accD, which is involved in fatty acid metabolism 
[90]. The vast majority of the proteins required for chromoplastogenesis 
are hence encoded by nuclear genes, synthesized in the cytosol and then 
imported into plastids [51,91]. Most of these proteins are imported by 
translocons at the outer and inner chloroplast envelope known as TOC 
and TIC, respectively. In particular, the TOC machinery exists in mul
tiple forms (i.e. with different protein import receptor isoforms) and it 
plays critical roles in precursor protein recognition. In A. thaliana, a 
plant that does not naturally differentiate chromoplasts, a reconfigura
tion of the protein import machinery takes place during the etioplast-to- 
chloroplast and chloroplast-to-gerontoplast transitions. This process is 
facilitated by selectively targeting TOC complexes for ubiquitination 
and degradation by the outer envelope-localized E3 ligase SP1 (SUP
PRESSOR OF ppi1) [92]. The tomato homologues SP1 and SP1-like2 
(SPL2) have been recently shown to also have an important role in the 
chloroplast-to-chromoplast transition [93] (Fig. 1). During tomato fruit 
ripening, the chloroplasts of mature green fruit lose their chlorophyll 
and gradually transform into chromoplasts that accumulate large 
amounts of the red carotenoid lycopene and the orange carotenoid 
β-carotene, the main precursor of vitamin A. Overexpression of SP1 
promotes the chloroplast-to-chromoplast transformation, likely by 
accelerating the reconfiguration of the protein import machinery [93]. 
Interestingly, increased SP1 levels also impacted other ripening- 
associated processes such as fruit softening and metabolic changes, 
suggesting that improving chromoplast differentiation might speed up 
the whole ripening process. In agreement, knockdown of SP1 or SPL2 
was found to delay chromoplast differentiation and fruit ripening [93]. 
The TIC machinery, which mediates the translocation of preproteins 
through the inner envelope membrane, also contains different compo
nents and isoforms. Their possible involvement in the differential import 
of specific subsets of precursor proteins into chromoplasts or any other 
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plastid type remains unclear [51]. 

4.2. Protein quality control 

Following import, the transit peptide of nuclear-encoded plastidial 
proteins is cleaved by specific proteases and the mature proteins are 
folded, assembled into complexes and/or delivered to their subplastidial 
destination site by complex networks of plastidial chaperones. Chaper
ones and proteases also form the protein quality control (PQC) system 
that ensures stabilization, refolding, or degradation of mature proteins 
that lose their native conformation, become irreversibly damaged and/ 
or need to be removed [94]. Plastid PQC components include several 
groups of prokaryotic-like chaperones such as Cpn60, Hsp70 and 
Hsp100 as well as small heat shock proteins and proteases (including 
Clp, Lon, Deg, and FstH). Most of our current knowledge of these com
ponents comes from studies in chloroplast-bearing model systems, but 
genetic manipulation of some of them in tomato and other crops has 
been recently shown to alter their carotenoid contents and to impact 
chromoplast differentiation. 

Plastidial chaperones are up-regulated during natural chromoplast 
differentiation, presumably to deal with proteome changes and protein 
folding stress [87,88,94,95]. The small heat shock protein Hsp21 has 
been one of the first chaperones functionally associated to chromoplast 
differentiation [16,44,95–98]. Overexpression of Hsp21 in tomato 
showed a dual role, protecting photosystem II against oxidative stress in 
leaves (i.e. chloroplasts) and promoting the conversion of chloroplasts to 
chromoplasts during tomato fruit ripening [44,95]. How Hsp21 con
tributes to chromoplast differentiation is unknown. Small heat shock 
proteins such as Hsp21 provide fast protection against stress-induced 
protein aggregation in cooperation with Hsp70 and Hsp100 chaper
ones. Interestingly, plastidial isoforms of Hsp70 and Hsp100 (ClpB3) are 
also up-regulated during tomato fruit ripening and promote proper 
folding and hence enzymatic activity of deoxyxylulose 5-phosphate 
synthase (DXS), the first and main rate-determining enzyme of the 
MEP pathway [94,99–101] (Fig. 1). Overexpression of Hsp70 in tomato, 
however, led to increased levels of fruit carotenoids without altering 
chromoplast ultrastructure [94]. 

The chaperone most directly related to the induction of chromoplast 
differentiation is Orange (OR) (Fig. 1). Different OR versions were found 
to cause carotenoid overaccumulation in orange cultivars of cauliflower 
[102,103] and melon [104,105]. Transgene-mediated overexpression of 
OR has been demonstrated to induce carotenoid accumulation by pro
moting chromoplast differentiation in other crops [106–110]. The 
chaperone activity of OR ensures proper activity and prevent degrada
tion of PSY, the enzyme catalyzing the first committed and main rate- 
determining step of the carotenoid pathway [111–113] (Fig. 1). How
ever, OR appears to impact carotenoid accumulation and chromoplast 
differentiation by additional mechanisms. Recent results indicate that 
OR can physically interact with several components of the TIC ma
chinery, including Tic40, and Tic110 [114]. OR reduces the turnover 
rate of Tic40, interferes with the interaction between Tic40 and Tic110, 
and reduces the binding of pre-proteins to Tic110 for translocation and 
processing. These results suggest that OR plays a role in protein import 
[114]. Additionally, OR proteins harboring the “golden SNP” respon
sible for the dark orange color of some melon cultivars (referred to as 
OR-His) prevent conversion of β-carotene into downstream products and 
promote the differentiation of membranous chromoplasts when over
expressed in tomato fruit tissues and dark-grown Arabidopsis calli 
[94,104,105,109,115,116]. OR-His has recently been reported to also 
restrict chromoplast number by interacting with ARC3 (ACCUMULA
TION AND REPLICATION OF CHLOROPLASTS 3) to interfere with its 
binding with PARC6 (PARALOG OF ARC6) [114]. Both ARC3 and 
PARC6 are key regulators of plastid division, suggesting an additional 
role of OR-His in regulating chromoplast number besides promoting 
carotenoid biosynthesis and chromoplast biogenesis. Interestingly, 
increasing chromoplast number and size has been shown to cause higher 

metabolic sink strength and improve total carotenoid levels in ripe fruits 
from several tomato high pigment mutants [13,51]. OR-His over
expression did not alter number or ultrastructure of chloroplasts 
[109,114,115]. However, direct interaction of Arabidopsis OR with the 
transcription factor TCP14 (TEOSINTE BRANCHED1/CYCLOIDEA/ 
PROLIFERATING CELL FACTOR 14) in the nucleus represses its trans
activation activity and eventually represses etioplast-to-chloroplast 
transition during seedling deetiolation [117]. Recent reviews are 
available with additional, comprehensive information on these and 
other potential roles of OR [13,17,118,119]. 

Regarding proteases, the Clp protease complex has been demon
strated to control the levels of DXS, PSY, and other enzymes involved in 
carotenoid biosynthesis [99,113,120–122]. The Clp proteolytic complex 
is the main machinery for protein degradation in plastids, removing 
proteins that are not properly folded and hampering the formation of 
toxic protein aggregates [100,123]. Two different and separated do
mains constitute the Clp complex: a proteolytic core consisting in two 
rings formed by ClpP and ClpR subunits and a chaperone ring formed by 
ClpC and ClpD subunits that unfolds the substrates for delivery into the 
proteolytic chamber [121,123]. Higher levels of carotenoid biosynthetic 
enzymes (but not their transcripts) have been observed in Arabidopsis 
mutants and tobacco transgenic lines defective in subunits of the Clp 
catalytic core (such as ClpR1) or the chaperone ring (such as ClpC1), 
suggesting that these enzymes are direct targets of the protease 
[99,113,120,122]. The levels of carotenoids in the leaves of these lines, 
however, were not increased as defective Clp protease function also 
impacts chloroplast development and hence alters carotenoid deposition 
sites. Repression of Clp protease activity by down-regulation of ClpR1 
gene expression specifically in tomato fruit also led to increased levels of 
DXS and PSY proteins (but not transcripts) in chromoplasts [101]. Most 
interestingly, ClpR1-defective tomato fruit showed increased expression 
of genes encoding plastidial chaperones, similar to that observed in Clp 
protease-deficient Arabidopsis mutants [100,101]. It was proposed that 
this might be a compensatory mechanism to mitigate protein folding 
stress resulting from defective turnover. The expression of OR-encoding 
genes was also induced in ClpR1-defective fruits, which showed phe
notypes associated with OR overexpression such as the development of 
membranous chromoplasts enriched in β-carotene [94,101,109]. 
Together, chaperones such as OR and proteases such as Clp appear to be 
closely connected to ensure proper chromoplast differentiation (Fig. 1). 

4.3. Structural proteins 

Fibrillins and other proteins associated to carotenoid-sequestering 
structures such as fibrils and plastoglobules have been linked to the 
differentiation of fruit chromoplasts [43,77,78,124]. In particular, the 
fibrillin FBN1 is a major component of the pepper fruit chromoplast fi
brils, forming a protein shell surrounding a layer of polar lipids and a 
central core of carotenoids [78]. These fibrils are self-assembled struc
tures that likely contribute to prevent toxic effects associated to high 
carotenoid levels while protecting the degradation of their carotenoid 
content. Related structural proteins associated with chromoplast dif
ferentiation and carotenoid accumulation include the chromoplast- 
specific carotenoid-associated protein (CHRC) and chromoplast pro
tein D (CHRD) [125–127]. Transgene-mediated overexpression of some 
of these proteins was shown to alter carotenoid levels in tomato fruit, 
often through changes in chromoplast development [77,128,129]. The 
potential of manipulating structural proteins for carotenoid bio
fortification, however, remains poorly explored. 

4.4. Engineered carotenoid production 

It was generally reported that enhanced production of carotenoids 
was necessary and sufficient to promote the differentiation of chromo
plasts in tissues that are naturally prone to accumulate carotenoids. For 
example, activating metabolic flux towards the carotenoid pathway, e.g. 
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through upregulation of plant PSY or plastid-targeted versions of bac
terial phytoene synthase (known as crtB), stimulated the development of 
chromoplasts in carrot roots or tomato fruits [81,130]. The same strat
egy was found to produce chromoplast-like plastids in dark-grown calli 
and roots from Arabidopsis, a plant species that does not naturally 
develop chromoplasts [25,81,131,132]. By contrast, chromoplast dif
ferentiation could not be triggered in leaves until recently [84,133]. 
Delivering the Pantoea ananatis (previously called Erwinia uredovora) 
crtB enzyme to leaf chloroplasts led to the differentiation of 
chromoplast-like plastids in all plants tested, despite this is something 
that only a few species do in nature [84]. The crtB-expressing leaf sec
tions accumulated 2-fold more carotenoids than control sections of the 
same leaf [84]. Following a crtB-mediated massive production of phy
toene, photosynthesis was impaired and chloroplasts eventually trans
formed their thylakoids and grana into highly packed membrane stacks 
with a concomitant proliferation of plastoglobules. The newly created 
membrane structures likely contribute to reaching high carotenoid 
levels by accommodating increasing amounts of these lipophilic pig
ments (hence preventing their degradation) but also by stimulating the 
activity of endogenous carotenoid biosynthetic enzymes, many of which 
are membrane-associated [15]. The transcriptomic and protein profiles 
of the newly formed plastids also resembled those of typical chromo
plasts. This synthetic system (Fig. 1) has allowed to propose a two-step 
model for chloroplast-to-chromoplast transformation that also applies to 
natural systems. In the first step of the proposed model [84], chloro
plasts must be preconditioned by lowering their photosynthetic capac
ity. This step is not necessary for non-photosynthetic plastids or 
chloroplasts with low photosynthetic competence (such as those of 
green fruits). In the second step, increased production of carotenoids is 
all that it takes for chromoplasts to differentiate in a process that in
volves a massive reprogramming of nuclear gene expression and ultra
structural changes but does not require OR activity [84]. 

Differentiation of chloroplasts into chromoplasts with disordered 
membrane systems and proliferated plastoglobules has also been re
ported when a full transplastomic pathway for the production of the 
non-plant carotenoid astaxanthin was introduced in tobacco leaves 
[133]. It is proposed that engineered accumulation of high levels of 
carotenoids normally absent from chloroplasts (such as astaxanthin or 
crtB-produced phytoene) likely alters the properties of thylakoids and 
grana membranes and interferes with the photosynthetic machinery, 
hence preconditioning chloroplasts to become chromoplasts as carot
enoids are produced. In nature, developmental cues are likely respon
sible for making chloroplasts competent (first step) and for upregulating 
the expression of carotenoid biosynthetic genes (second step). A corol
lary of this model is that the plant PSY enzymes cannot produce enough 
phytoene by themselves in leaf chloroplasts to disrupt photosynthesis 
and hence allow chromoplastogenesis to proceed, suggesting that they 
are under strict regulatory controls that prevent a too high activity 
(likely because it would be detrimental for photosynthesis). Such regu
latory controls appear to be more relaxed in green fruits and non- 
photosynthetic organs such as roots or calli, allowing the differentia
tion of chromoplasts when PSY activity increases either by upregulating 
the expression of genes encoding this enzyme or its positive regulators 
such as OR [22,81,94,109,111,130,132,134,135]. Non-plant crtB is 
most likely free of such regulatory control and produces very high levels 
of phytoene in chloroplasts, explaining why OR is not required for crtB- 
dependent chromoplastogenesis in leaves [84]. The identification of 
specific signals triggering and sustaining the different stages of the crtB- 
mediated chromoplast differentiation process, the genes and molecules 
that respond to phytoene accumulation, and the identification of the 
regulatory mechanisms that control endogenous PSY activity in chlo
roplasts await further investigation. 

5. Extraplastidial storage 

While the activity of crtB in plastids can lead to the differentiation of 

chromoplasts, its combination with other bacterial enzymes in the 
cytosol has been shown to successfully produce carotenoids in extrap
lastidial locations [136,137]. Isoprenoid precursors IPP and DMAPP are 
produced in the cytosol by the activity of the mevalonic acid (MVA) 
pathway and then used for the production of sterols and other iso
prenoids derived from farnesyl diphosphate (FPP). MVA-derived IPP 
and DMAPP can be used to produce GGPP using the P. ananatis crtE gene, 
encoding GGPP synthase, and then diverted to the production of the red 
carotenoid lycopene using the bacterial genes crtB and crtI (Fig. 1). 
Plastid-targeted versions of these microbial enzymes have been exten
sively used for plant carotenoid biotechnology, generating biofortified 
products such as Golden Rice [138,139]. Virus-mediated expression of 
crtE, crtB and crtI was successful to produce lycopene in the cytosol of 
tobacco (Nicotiana tabacum) cells, even though the extraplastidial 
accumulation of this pigment achieved was relatively modest (about 
10% of the total leaf carotenoid content) and unstable [137]. The de
livery of constructs by agroinfiltration together with other improve
ments resulted in much higher and more stable carotenoid titers in 
N. benthamiana leaves [136]. Specifically, the upregulation of the MVA 
pathway flux using a deregulated version of the hydroxymethylglutaryl- 
CoA reductase (HMGR) (Fig. 1) led to an increased supply of carotenoid 
precursors, whereas the use of a crtB protein with a blocked N-terminus 
ensured cytosolic localization of this phytoene-producing enzyme [84]. 
Interestingly, the extraplastidial phytoene that accumulated in these 
leaves showed an improved bioaccessibility compared to plastidial 
phytoene [136], suggesting a differential association to membranes or 
lipidic structures. Lycopene accumulated to levels similar to those found 
in ripe tomatoes and formed crystals of similar physical-chemical 
properties as those formed in fruit chromoplasts. The extraplastidial 
accumulation of these carotenoids prevented direct interference with 
photosynthesis, even though a likely secondary cell damage-associated 
effect did cause photosynthesis to slow down [136]. Attempts to 
improve extraplastidial carotenoid storage by enhancing the develop
ment of endomembrane structures and lipid bodies were not successful. 

6. Future perspectives 

Our knowledge on the molecular mechanisms influencing carotenoid 
sink strength in plants has substantially grown in the last years, opening 
new opportunities to create carotenoid-enriched plants with high 
nutritional values and profitable for agrofood, pharmaceutic and 
cosmetic industries. The use of different OR versions to promote chro
moplast differentiation in non-leaf systems, the crtB-mediated induction 
of chromoplastogenesis in plant leaves, or the use of synthetic pathways 
to stably accumulate carotenoids in extraplastidial locations represent 
startling advances. Combination of different approaches, including push 
(i.e. promote biosynthesis, even in different cellular locations) and pull 
(i.e. improve sink capacity and storage) strategies or even different pull 
strategies (e.g. triggering chromoplast differentiation and xanthophyll 
esterification) remains to reveal all its potential. An often overlooked 
but yet important point that should be kept in mind when targeting 
biofortification is bioavailability. As an example, widely diverse 
bioavailability values are obtained for β-carotene in leaves (where it is 
mostly associated with photosynthetic complexes), carrots (where it 
forms crystals) or Golden Rice (where it is stored in lipid droplets) 
[140–142]. Improving storage of carotenoids in membrane environ
ments or promoting esterification will likely lead to higher 
bioavailability. 

Current genome editing technologies should target the genes iden
tified to date in different plant systems to provide solutions to the 
challenge of creating new carotenoid-biofortified varieties with minimal 
interference at the genetic level. However, it is important to take into 
account that one of the main lessons that we have learned is that 
different organs or plant species often show specific mechanism regu
lating carotenoid biosynthesis, storage and degradation [1,9,44]. The 
integration of published data related to carotenoids in different plant 
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species should contribute to obtain transversal conclusions about what 
genes, proteins, metabolites or processes are directly connected to ca
rotenoids, generating not particular but general answers for plants. 
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[61] Ramel F, Birtic S, Cuiné S, Triantaphylidès C, Ravanat JL, Havaux M. Chemical 
quenching of singlet oxygen by carotenoids in plants. Plant Physiol. 2012;158: 
1267–78. https://doi.org/10.1104/pp.111.182394. 

[62] Joyard J, Ferro M, Masselon C, Seigneurin-Berny D, Salvi D, Garin J, et al. 
Chloroplast proteomics and the compartmentation of plastidial isoprenoid 
biosynthetic pathways. Mol. Plant 2009;2:1154–80. https://doi.org/10.1093/ 
mp/ssp088. 

[63] García-Cerdán JG, Schmid EM, Takeuchi T, Mcrae I, Mcdonald KL, 
Yordduangjun N, et al. Chloroplast Sec14-like 1 (CPSFL1) is essential for normal 
chloroplast development and affects carotenoid accumulation in 
Chlamydomonas. Proc. Natl. Acad. Sci. U. S. A. 2020;117:12452–63. https://doi. 
org/10.1073/pnas.1916948117. 

[64] Mulisch M, Krupinska K. Ultrastructural analysese of senescence associated 
dismantling of chloroplasts revisited. In: Briswal B, Krupinska K, Biswal UC, 
editors. Plast. Dev. Leaves Dur. Growth Senescence; 2013. p. 307–35. https://doi. 
org/10.1007/978-94-007-5724-0. 

[65] Egea I, Barsan C, Bian W, Purgatto E, Latché A, Chervin C, et al. Chromoplast 
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