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Abstract

Ad hoc networks are distributed networks consisting of wireless mobile nodes that can freely and

dynamically self-organize into arbitrary and temporary topologies, through the operation of routing

protocols. These networks allow people and devices to seamlessly interconnect rapidly in areas with

no pre-existing communication infrastructure and with a low cost. Many studies show that ad hoc

routing protocols are threatened by a variety of accidental and malicious faults, like neighbour satura-

tion, which may affect any kind of ad hoc network, and ambient noise, which may impact all wireless

networks in general. Therefore, developing and deploying fault tolerance strategies to mitigate the

effect of such faults is essential for the practical use of this kind of networks. However, those fault

tolerance mechanisms are usually embedded into the source code of routing protocols which causes

that i) they must be rewritten and redeployed whenever a new version of a protocol is released, and

ii) they must be completely redeveloped and adapted to new routing protocols. This master thesis

explores the feasibility of using Aspect-Oriented Programming (AOP) to develop and deploy fault tol-

erance mechanisms suitable for a whole family of routing protocols, i.e. existing and future versions

of a given protocol (OLSR in this case). Furthermore, a new methodology is proposed to extend these

mechanisms to different families of proactive protocols (OLSR, B.A.T.M.A.N and Babel) using a new

concept in AOP, the meta-aspect. The feasibility and effectiveness of the proposal is experimentally

assessed, thus establishing a new method to improve the deployment, portability, and maintainability

of fault tolerance mechanisms for ad hoc routing protocols and, therefore, the dependability of ad hoc

networks.

iii





Table of Content

Acknowledgements i

Abstract ii

1 Introduction 1

2 Ad hoc networks: background and dependability challenges 7

2.1 Routing Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Threats in ad hoc networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.1 Neighbour saturation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.2 Ambient noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.3 Dependability challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 Aspect Oriented Programming 17

3.1 Basic elements of AOP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2 AOP in ad hoc networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

v



4 Studying the neighbourgh saturation threat 23

4.1 Case study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.1.1 Pathology identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.1.2 Pathology analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.2 Mitigating the effect of the threat through fault tolerance . . . . . . . . . . . . . . . 28

4.2.1 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.2.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.2.3 The AspeCt-oriented C compilation process . . . . . . . . . . . . . . . . . . 30

4.3 Approach verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5 Addressing the ambient noise threat 37

5.0.1 Proactive Routing Protocols Under Study . . . . . . . . . . . . . . . . . . . 37

5.0.2 Link Quality Metrics in Routing Protocols . . . . . . . . . . . . . . . . . . . 38

5.1 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.1.1 Pathology identification and analysis . . . . . . . . . . . . . . . . . . . . . . 41

5.2 Fault tolerance approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.2.1 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.2.2 LARK implementation using Aspect-oriented programming . . . . . . . . . 47

5.3 Assessing Fault Tolerance Aspect Approach . . . . . . . . . . . . . . . . . . . . . . 50

vi



5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

6 Conclusions 57

7 My publications 59

vii





List of Tables

2.1 Attacks and fault-load in ad hoc networks . . . . . . . . . . . . . . . . . . . . . . . 12

4.1 Characterisation of failure modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.2 Failure modes observed (C - Crash, H - Hang) considering the fault-tolerance mecha-

nism in presence of 500 new neighbours for 10 real nodes . . . . . . . . . . . . . . . 34

4.3 Intrusiveness introduced by the fault-tolerance mechanism (FT) to temporally discard

the reception of new neighbours . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.1 Measures to characterize behaviour of the routing protocols in presence of ambient noise 42

5.2 Critical parameters for the route availability in ad hoc networks . . . . . . . . . . . . 43

ix





List of Figures

1.1 Devices integrated in an ad hoc network . . . . . . . . . . . . . . . . . . . . . . . . 2

2.1 Example basic ad hoc network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Example of events carried out by the routing protocol . . . . . . . . . . . . . . . . . 11

2.3 Example of events carried out by the routing protocol to remove link from node . . . 15

3.1 Conceptual scheme of the aspect-oriented programming paradigm . . . . . . . . . . 19

4.1 Devices used in the experimental set-up . . . . . . . . . . . . . . . . . . . . . . . . 25

4.2 Impact of Neighbour Saturation according to the number of nodes and of new links

announced . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.3 Aspect-oriented compilation stages . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.4 Percentage of survivor nodes to experimental campaigns with fault tolerance mecha-

nism enabled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.1 Link-quality-based adaptive packet replication technique . . . . . . . . . . . . . . . 44

5.2 LARK parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

xi



5.3 Resolution of a meta-tag in preprocessing phase . . . . . . . . . . . . . . . . . . . . 48

5.4 Routing overhead in proactive routing protocols . . . . . . . . . . . . . . . . . . . . 52

5.5 Route availability in proactive routing protocols . . . . . . . . . . . . . . . . . . . . 52

5.6 Effective Packet Delivery Ratio in proactive routing protocols . . . . . . . . . . . . . 53

5.7 Transformation phases of the fault tolerance meta-mechanisms and routing protocols 55

xii



Listings

3.1 Aspect code example with two advices defined . . . . . . . . . . . . . . . . . . . . 19

3.2 Main code example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.3 Console output of aspect execution . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.4 Advice trace calls of any function . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.1 Aspect to inhibit neighbour saturation . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.1 Pseudo-code LARK Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.2 Code of Aspect Fault Tolerance Mechanism . . . . . . . . . . . . . . . . . . . . . . 51

xiii





Chapter 1

Introduction

Ad hoc networks are a recent networking paradigm. They allow for the rapid creation of spontaneous,

low-cost, wireless data networks without using any pre-existing communications infrastructure. Con-

sequently, ad hoc networks enable the deployment and use of communication networks in places

where it was not possible (for geographical issues) or cost-effective (price or investment of time) to

deploy a fixed infrastructure. Future wireless networks are expected to coexist with existing wired

ones creating intelligent environments in which citizens can consume IT services naturally, for exam-

ple, without having to worry about their current location. The concept of ubiquitous computing has

evolved in recent years to a point where now it is feasible to consider the development of increasingly

intelligent spaces. Generally, this means talking about smart homes, buildings or cities. ”Little things”

around us, which is the seed for the development of a new industry that turns around the concept of

Internet of Things (IoT), that enables IoT systems to establish multi hop communications between

those devices willing to communicate in a transparent way from the user viewpoint. Illustration 1.1

represents a set of mobile devices able to integrate an ad hoc network.

This new network technology emerged from military and rescue mission application domains [1],

and today focuses the attention of researches in a variety of domains, like Mobile Ad Hoc Networks

(MANET), Wireless Mesh Network (WMN) and Wireless Sensor Network (WSN).

Other ad hoc networks are still under investigation, such as vehicular networks, commonly known

1
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Figure 1.1: Devices integrated in an ad hoc network

as Vehicular Ad hoc Networks (VANET). The challenge is therefore to ensure that all these types of

ad hoc networks offer not only a performance acceptable to its users, but also a sufficient degree of

dependability so that they can use them reliably and securely.

Ad hoc networks are formed by nodes and wireless communication links. In more detail, a node

is a device capable to transmit data coming from applications, but also related to the current state of

the network. Communication links serve as the union of two nodes who can communicate directly

between them. The set of interconnected nodes, form the ad hoc network. Each node is capable to

determine which are the best links to transmit a data flow until its destination. Routing protocols

are responsible to work in this layer to orchestrate how network nodes must collaborate to establish

communication.

Specially, if taking into account the limited wireless transmission power, computation and avail-

able memory of current devices, and despite the promising future of ad hoc networks, there are still

important challenges to address before their mass exploitation in IoT systems. Both, accidental faults

and attacks are serious threats to ad hoc networks. Today, and despite the efforts done in the com-
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munity of ad hoc networks to develop the first implementations of routing protocols, many issues

concerning their dependability and security remain unexplored, thus limiting the practical interest and

exploitation of this type of networks in real life products.

In this work, our attention goes to the exploration of two common situations in ad hoc networks

that can eventually provoke failures in nodes: the network saturation and the ambient noise problems.

The neighbourgh saturation problems appears when multiple nodes concentrates in a small geograph-

ical area. As far as nodes can freely move within a given scenario, it is possible to find zones in the

network with a high density of neighbours in any moment. This situation can be seen as a great oppor-

tunity for ad hoc networks to create multiple communication links among nodes, thus increasing the

available effective network bandwidth and decreasing existing communication. The massive exchange

of routing information between the nodes can degrade performance in nodes.

To a point where they can even fail by hanging or aborting their regular computation. In this

document we will show that surprisingly this problem exists in most recent implementations of ad hoc

routing protocols and we will propose a solution to face the type of errors derived from this particular

situation.

As far as ambient noise is concerned, this document evaluates how this phenomenon degrades the

QoS of an ad hoc network thus provoking long convergence links, and inefficient routing. As it will be

argued, the effect is similar to the one provoked by a flooding attack. In fact, ambient noise is the result

of increasingly saturated radio frequency spectrum with other types of wireless communications where

ad hoc networks operates. This obviously results in communication interferences leading to excessive

loss rates or packet delays.

As in the case of neighbourgh saturation, ambient noise and flooding attacks will be studied from

a dependability perspective, thus leading to detect which are, and where are located, dependability

bottlenecks and how can they be mitigated with new performance and battery-effective fault tolerance

mechanisms.

It is worth noting that there are several fault tolerance techniques to help ad hoc networks to

improve their mechanisms to mitigate the effects of accidental faults or malicious attacks. However,
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to date, most of them have just been tested under simulation, thus obviating the practical impairments

of such mechanisms in real implementations (e.g. memory or CPU consumption).

The reader must understand that fault tolerance mechanisms can be useful to mitigate, to some

extent the effects of fault and attacks on the network. In the practical, each fault tolerance mech-

anism is designed and implemented for a particular routing protocol. This fact leads to one of the

problems when implementing fault tolerance techniques is the wide variety of existing routing proto-

cols, which limits the portability of the implementations from one routing protocol to another. OLSR,

B.A.T.M.A.N., Babel are just an example of some of the current routing protocols that can be found in

the bibliography.

Aspect-Oriented Programming (AOP) [15] is a technology that facilitates the separation of con-

cerns. The paradigm of aspect-oriented programming has been successfully used in software engi-

neering to improve deployment of functionalities in several prototypes. However, this paradigm has

been rarely used in the design of fault tolerance mechanisms, and this is the first time it applies to

for ad hoc routing protocols. In this context the goal is to enable the portability and maintainability

of the proposed fault tolerance solutions. This is a way of easing the role of system administrator,

when integrating new components regardless of ad hoc routing protocol without worry about notions

of reliability and safety.

In summary, the ambitions of this research are twofold. On the one hand, it pursuits the design

and provision of practical mechanisms for tolerating situations that ad hoc networks may face in their

everyday use. Since performing a complete analysis of all the known threats affecting to this family

of networks is unfeasible, our attention will go to two basic and common potential problems: network

Saturation and ambient noise. On the other hand, the portability and reuse of the fault tolerance

mechanisms finally proposed will be improved through the use of AOP, a design and implementation

approach used in the domain of highly modular software.

The outline for the remainder of the this master’s thesis is as follows. Chapter 2 describes the

current state of research related to the ad hoc networks, their problems and already existing fault

tolerance mechanisms. Chapter 3 introduces the concept of aspect-oriented programming paradigm,

as a way to implement fault tolerance mechanisms. Chapter 4 and 5 present the study and treatment
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of the two problems previously mentioned. Finally, Chapter 6 discuses the main conclusions from this

work.





Chapter 2

Ad hoc networks: background and

dependability challenges

This chapter provides an overall view of what is an ad hoc network and it enumerates, among most

common and well-known threats (i.e. accidental and malicious faults) affecting their nominal be-

haviour, the ones considered for this research.

Ad hoc networks are infrastructureless self-configuring networks that offer a quick, easy, and low-

cost solution to provide multi-hop communication networks. The origin of these networks is based in

the growing reliance of our society on mobile computing, which motivates the increasing interest of

incorporating new networking capabilities into modern devices. Ad hoc networks enable the seamless

creation of spontaneous data networks without the need of any pre-existing communication infras-

tructure. As an example, data flows between nodes intercommunicating in an ad hoc network appears

in figure 2.1. Although current ad hoc networks typically offer lower performance and dependability

than their wired counterparts, consumers living off-the-grid are increasingly demanding access to the

same types of services and quality access than those living in suburban areas. This is the main reason

leading why ad hoc networks, and their capabilities to easily and rapidly deploy low cost networks,

have to arouse the interest of industry. Currently, companies like Meraki (http://meraki.com) and

7
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TerraNet (http://terranet.se), have focused their efforts in providing low-cost internet access, without

dependency on base stations, antenna towers or other legacy hardware.

Omnipresent wireless technologies like (IEEE 802.11) Wi-Fi, have facilitated that ad hoc have

become practically feasible. Today most wireless devices, such as laptops, smartphones, tablets, and

even wireless routers, access points and other more specific gadgets, support the IEEE 802.11 com-

munication standard. This situation easies the obtention of low-cost material for the deployment of ad

hoc and spreads possibility of ad hoc creation anywhere.

Routing protocols are cornerstones of ad hoc networks. They are responsible for the efficient

creation of multi-hop wireless communication routes among distant nodes. Previously to the study of

the different threats affecting the nominal behaviour of routing protocols, next subsection establishes

the behavioural and structural model of an ad hoc routing protocol that will be considered allthrough

the rest of this document.

2.1 Routing Protocols

Routing protocols are basic bricks for ad hoc networks. Routing protocols orchestrates how network

nodes must collaborate to create communication. They provide mechanisms for discovering, estab-

lishing and maintaining communication links among neighbour nodes in an ad hoc network.

The network is created through the exchange of control routing packets that are broadcasted by

each network node to know topology state. Control routing packets are used by routing protocols to

i) control how information is routed among network nodes, and ii) guarantee communication despite

mobility or failure of nodes. In order to promote the dissemination of routing information, nodes must

cooperate and rely on each other to provide routing services.

To allow the creation of communication links between any two network nodes, nodes can function

both as end-hosts within each nodes radio range, and as intermediate routers for other network nodes

far apart. Due to their key role, the performance and robustness of an ad hoc network will greatly

depend on that exhibited by the selected routing protocol.
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2

such as attenuation, fading or interferences and devices may fail, which may result in communication

accidental faults. Given this context, the routing protocols used in ordinary wired networks are not

well suited for this kind of dynamic (and also faulty) environment, and it is necessary to rely in a new

generation of routing protocols designed to cope with the existing routing problems.

Ad hoc routing protocols are in charge of finding a short and optimized route from source to desti-

nation nodes. In ad hoc networks, nodes do not initially know the topology of their network, and must

gain that knowledge by exchanging information with their neighbour nodes. This information is used

by routing protocols to i) control how information is routed among network nodes, and ii) guarantee

communication despite mobility or failure of nodes. In order to promote dissemination of routing

information, nodes must cooperate and rely on each other to provide routing services. To allow the

creation of communication links between any two network nodes, nodes can function both as end-

hosts within each node’s radio range, and as intermediate routers for other network nodes far apart. A

link is a one-hop connection between two nodes. A set of links enabling the communication between

a source and a destination defines a (multi-hop) route. Applications running inside network nodes

communicate among them through data flows, i.e. by exchanging different types of data packets. In

practice, these data flows multiplex the use of existing routes. Figure 1.1 depicts such notions. Due

to their key role, the performance and robustness of an ad hoc network will greatly depend on that

exhibited by the selected routing protocol.

Figure 1.1. Ad hoc model.

Despite being originally developed for military purposes, the unique properties of ad hoc networks

make them very suitable for civilian and commercial purposes. A diverse set of applications exploit-

Figure 2.1: Example basic ad hoc network

Depending on the strategy considered to compute such routes, routing protocols can be link-state

or distance vector. Link-state routing requires each node to maintain at least a partial topology map

of the whole network. Conversely, in distance vector protocols, a given node only knows their 1-hop

neighbours, but not the rest of the route.

According to their proactiveness, routing protocols can establish network routes following a re-

active or a proactive approach. Reactive routing protocols find a route on demand by flooding the

network with Route Request packets. This second type of protocols are typically used in application

domains where battery of nodes must be preserved as much as possible, like sensor networks. Con-

versely, proactive routing protocols maintain fresh lists of destinations and their routes by periodically

distributing routing tables using the so-called hello and topology control packets. These protocols are

those more widely used in the industry due to the higher communication bandwidths they provide and

their intrinsic ability to cope with topology changes derived from mobility of nodes. As a result, this

document will place the spotlight on proactive routing protocols. Despite the big number of existing

proactive proposals for routing information in ad hoc networks, few of them has been really imple-

mented, and are ready to run, in a real device. Among them, OLSR, B.A.T.M.A.N. and Babel are the

most well-known ones. For the sake of making this document more readable, all the necessary details

relating to the different protocols under study will be introduced in the following chapters, when the

information is really necessary for the understanding of each formulated proposal.
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Let us however introduce here a general view of the internal architecture of a proactive ad hoc

protocol (see Figure 2.2). As can be seen, the first important thing is to establish a clear difference

between the packets generated at the applicative layer (applicative packets) from those that are gen-

erated by the routing protocol (routing packets) in order to keep the network nodes interconnected.

Proactive routing protocols rely on a packet generator which is in charge of periodically creating and

sending routing packets.

A core element of any proactive routing protocol is its routing manager. It is the responsible for

handling (search, add, update and remove) existing and new routes attending to the different situations

of the network. When computing a route from a source to a given destination node, it is possible to

distinguish three different situations. Obviously the worst case consists in not finding any route, in

such case, the communication will not be possible. Other situation may be finding one single route,

but in case one node in the route fails, the communication will be compromised. Finally, the best

case consists in discovering different alternative routes. In this situation, the routing decision maker

will rank the different alternative routes aiming at selecting which is the best option, and which ones

remain as backup routes in case the best one fails.

The task scheduler manages all the internal protocol timers, which are used to periodically trig-

ger the broadcasting of control routing messages to the network and the expiration of a link. Valid

incoming routing packets containing routing information are processed and stored by the packet pro-

cessor in the protocol internal routing information repository. The content of incoming packets and

the information stored in the routing repository is different in distance vector and link state protocols.

However, in both cases, when a change in the state of a link is discovered (i.e, a new link has been

created, updated or removed), the route proxy reflects such change in the routing tables of the node,

which are located in the network stack which is not part of the routing protocol.

Once introduced the concept of proactive routing protocol in a general way, let the document

explore the threats to the nominal behaviour of this type of protocols that are considered, among all

the existing ones, in the present research.
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Figure 2.2: Example of events carried out by the routing protocol

2.2 Threats in ad hoc networks

Although the wireless nature of ad hoc communications promotes the mobility of nodes, and de-

spite ad hoc routing protocols are specifically designed to handle mobility, a number of well-known

problems still remains without a solution. Most of the research efforts so far, have been focused on

improving the security of protocols using cryptographic primitives addressed to preserve the integrity

of communications. Improvements achieved in this direction, have obviated accidental problems that

can also negatively impact their resilience.

The main strengths of ad hoc networks may also become their main weaknesses when facing

perturbations, like ambient noise, signal attenuation, neighbour saturation or flooding attacks, among

others. Such perturbations may distort routing information, partition the network, induce a certain

traffic overload, or even cause retransmissions or inefficient routing. As a result, the confident use of

these networks strongly relies in our ability to produce and evaluate dependable and secure ad hoc

routing protocols.

Among all the aforementioned threats in table 2.1, ambient noise is a common problem to all wire-

less networks, while neighbour saturation is particular to ad hoc networks. At the same time coping

with these faults is basic for any ad hoc routing protocol since they are issue from accidental situations
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Table 2.1: Attacks and fault-load in ad hoc networks
Signal attenua-
tion

The signal quality depends on different aspects like the distance between nodes and the signal
power. As our testbed emulates the location of the nodes, the effect of an increasing distance
among nodes of Network B is emulated by inducing a random packet loss of 3% in every
network node for the duration of experiments, thanks to the netem tool

Ambient noise Since the wireless medium is simultaneously shared by multiple devices, communications are
susceptible to suffer interferences from ambient noise. In this case, a packet corruption rate of
5% for every network node emulates the ambient noise

Battery extenu-
ation

Ad hoc networks nodes, and especially those used on Wireless Sensor Networks (WSN), are
characterised by their limited resources. They integrate short-duration batteries which limit to
some extent the nodes lifetime. This problem can be emulated by disabling the nodes wireless
interface card (NIC). In this case study, malicious node is switched off for the whole duration
of the experiment

Traffic peak Non-predicted peaks in the service demand may exhaust the local resources of nodes and result
in network congestions. This fault is injected by increasing the packet sending rate of a source
node up to 18 Mbps (the saturation point of the network) for the first 60 seconds of experimen-
tation. This emulates the case where 90 users (in Network A) and 9 users (in Network B) share
the same route to exchange data

Tampering
attack

This attack violates the principle of data integrity by modifying the content of certain packets
(workload packets in our case). As most intrusion-based attacks, it first requires a successful
sink hole attack (locate a target data flow and exchange faked routing messages with victim
nodes to intrude the route). After that, the payload of incoming target packets is changed before
relaying them to their destination.

Replay attack The attacker overhears the network traffic to (i) capture and (ii) reproduce these packets when
they have already expired. In our case, routing protocols packets will be captured during the
whole experimentation time, and will be replayed 30 seconds later (partially supported by tcpre-
play, http://tcpreplay.synfin.net). This behaviour makes difficult the maintenance of legitimate
routes.

Selective for-
warding attack

This attack can only take place after a successful sink hole attack. After that, the malicious node
drops all those packets belonging to a target data flow.

Jellyfish attack This attack requires a successful sink hole attack. After that, the malicious node delays all data
packets for 2 seconds.

Flooding attack Nodes must overhear all messages in their radio range to determine whether they are the ad-
dressee. As a result, an attacker can saturate the medium with broadcasting storm just to keep
nodes busy, consuming their resources and preventing communication. In our case, the attacker
will send 18 Mbps of broadcast traffic (the saturation point of the network) during all the exper-
imentation.

Neighbours sat-
uration

Routing protocols store the topology information in internal routing tables, which grow pro-
portionally to the amount of links stored. In this way, large routing tables may result difficult
to manage. This problem is emulated by sending a burst of fake routing packets announcing
400 new links between nodes, at the beginning of the experimentation, in the radio range of
malicious node.

Sequence num-
ber replay

Nodes may start sending routing protocols packets without updating its identification sequence
number. This fault is emulated, in our case, by manipulating the generation of packet sequence
numbers in malicious node, for the duration of the experiments.
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that any ad hoc network may face during its lifetime. In other words, the absence of consideration of

these basic threat may limit the usefulness of any ad hoc routing protocol in practice. This why our

purpose in the present research is limited to the consideration of neighbour saturation and ambient

noise.

Let’s explain in more detail which are these threats.

2.2.1 Neighbour saturation

Considering redundant candidate nodes to automatically and transparently replace any intermediate

node in case of a failure improves the dependability of ad hoc networks, since network availability

increases as the number of communication links does. Consequently, the high density of nodes in

the network is typically a very welcome situation for the network. Additionally, as many studies

conclude, increasing the number of nodes reduces the number of hops between source and destination

nodes [12], which can potentially improve the performance of the network.

However, as far as the network connectivity depends on the continuous exchange of routing pack-

ets, an extremely high density of nodes could overflow the nodes’ capacity to manage a massive recep-

tion of information and may be the source of important interferences affecting the available network

bandwidth, thus defying the capacity of network nodes for managing such avalanche of information

[13].

Neighbour saturation is a well-known problem rarely addressed in practice, probably due to the

difficulties to recreate the conditions of this problem in current test-beds. As far as nodes can freely

move within a given scenario, it is possible to find zones in the network with a high density of neigh-

bours in any moment. Some previous works have addressed this problem, particularly in the field

of sensor networks, which are specially sensitive to the extenuation of resources [20]. Regardless

whether originated accidentally (due to a wrong distribution of nodes) or maliciously (if an attacker

exploits a propitious situation to deploy packet flooding attacks), it could (i) increase the resources

consumption of nodes (CPU, memory, battery, etc), and (ii) the packet loss and delay of communica-

tions, thus resulting counter-productive to the network behaviour.
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Some previous works have addressed this problem, particularly in the field of sensor networks,

which are specially sensitive to the extenuation of resources [20]. Nevertheless, apart from the fact

that most studies are based on simulation, they limit their scope to the analysis of reactive routing

protocols which establish routes on demand, like AODV [4]. To date, to the best of the authors’

knowledge, no study has been oriented towards studying the effect of neighbour saturation on real

routing protocols executed by real devices.

The real question is to what extent this situation can degrade the dependability of a proactive ad

hoc routing protocol. In case of a significant degradation level, a second question must be addressed.

It refers to how to cope with this issue, i.e. which type of fault tolerance mechanisms will be more

suitable and how should it be deployed on the actual implementation of the protocol. These are the

concrete issues that will be addressed in the third chapter of this document.

2.2.2 Ambient noise

On the last decades, wireless communications have gained importance in our daily life. As the number

of wireless networks increases, the environment that these networks share becomes increasingly satu-

rated with signals from a wide variety of sources. As a result, an increasing number of transmissions

interact and interfere with one another and cause unforeseen problems for communication protocols.

This phenomena is typically known in the bibliography as background traffic or ambient noise [9].

The existence of ambient noise, and its negative effect in wireless mesh networks, is something

indisputable. Since the industrial, scientific and medical (ISM) radio bands are unlicensed, many

different types of equipment may use (cordless phones, cell phones or radio-frequency-based remote

controllers typically supporting e.g. the IEEE 802.11x and the IEEE 802.15.x standards) or generate

noise (e.g., microwave ovens and other electrical devices) in these frequencies, either accidentally or

deliberately, that may end up increasing the amount of lost or dropped packets. Such packet dropping

originated by ambient noise is one of the problems that might lead wireless networks in general, and ad

hoc networks in particular, to suffer from link removals. This event is the most critical from the view-

point of network connectivity. Link removal becomes potentially probable if the links maintained by

the routing protocol stop being updated. This typically happens when there is any persistent problem
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Figure 2.3: Example of events carried out by the routing protocol to remove link from node

affecting the reception of routing packets, for instance ambient noise, thus causing the link lifetime

expiration (see Figure 2.3). Unfortunately, this effect may increase the risk of network partitioning

specially if there is just one single route available between source and destination, consequently iso-

lating certain regions of the network.

To face the ambient noise threat, keeping links active when link quality starts to degrade is a major

goal to avoid topology control disable links affectted. Since link quality is basically computed by each

node according to the amount of routing information received from its neighbourhood: the higher this

reception rate the better.

The reaction speed exhibited by the routing protocols against noise is also an aspect that must

be attentively studied. Overly agile protocol reactions may lead to route flapping [18] and must be

avoided. In fact, they may increase the network overhead by flooding the route repair control mes-

sages without gaining much throughput. One possible way to counter this effect is to use flap damping.

The goal is to limit the global impact of unstable routes by temporarily suppressing routes with rapid

changes over short time periods. However this technique may cause persistent oscillation in the net-

work due to the adverse interactions between flap damping and route convergence [8]. On the other

hand, if the reaction of the protocol against noise is too slow it may entail the loss of existing com-

munication links in the network. The main consequence is the activation of the self-configuration

capabilities provided by the routing protocols to establish new communication routes among affected

nodes. When many links result affected, the convergence time increases, which reduces the network

stability and availability [7]. Shorter convergence time also means smaller resource usage. It is thus

suitable to keep communication links alive as long as possible in case of ambient noise.

As far as ambient noise is concerned, the challenging questions addressed in this research are:

how to cope with ambient noise in order to mitigate its impact on routing protocols, and how to
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design and implement the necessary mechanisms to enable their reuse in multiple and diverse protocols

implementations.

2.2.3 Dependability challenges

Beyond the particular threats covered by our research, it must be noted that one of the biggest chal-

lenges in the design and implementation of fault tolerance mechanisms, is the promotion of their

automatic reuse in different target components reuse. Typically, in ad hoc routing protocol context,

mechanisms are usually implemented to be applied in a specific protocol which creates a dependency

of the implementation to the protocol. The abstraction of the parts of a mechanism allows achiev-

ing the separation between functional protocol mechanisms (those specifying how the protocol must

behave) from non-functional ones (introducing fault tolerance in the protocol). Separation of con-

cerns allows the reuse and portability of a mechanism in different ad hoc protocols and facilitates the

maintainability and deployment of the implementation.

Although the benefits of portability and reusability of fault tolerance seems quite intuitive and

understandable, the need of automation in the deployment of related mechanisms is not so obvious.

Basically, the idea is to avoid the intervention of developers with limited dependability skills in the

design and implementation of fault tolerance mechanisms. This asks for a clear separation of concerns

and requires the provision of means to automate the deployment, and adapt the implementation, of

fault tolerance mechanisms to the particular features of each particular target, in our case protocol.

In next chapter, aspect oriented programming is defined as a paradigm for supporting the deploy-

ment, maintainability and implementation of fault tolerance mechanisms. This fundamental technol-

ogy for our work has no relation with ad hoc networking and this is why it is introduced in a separated

chapter, despite the fact that it is part of the background required for understanding the contributions

included in the reported investigation.
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Aspect Oriented Programming

Aspect-Oriented Programming (AOP) is a paradigm that promotes a separation in the design and im-

plementation of non-functional and functional mechanisms, thus enabling the reuse of non-functional

mechanisms (aspects) on different solutions through the separation of concerns [15]. The paradigm of

aspect-oriented programming has been widely used in software engineering to improve deployment

of functionality in several prototypes [11].

Aspect oriented programming enables modularization of crosscutting concern, concern separation

in imperative programs, creation of highly customizable software, enhance development of software

product lines. Main functionality is maintainability of external mechanisms, from the time external

mechanisms remain separate of main code.

AOP has been implemented to several programming languages, specially those applying the no-

tion of ”class” like Java, with AspectJ or C++, with AspectC++. Their capability to create templates

and inherit functionalities eases the application of AOP. However, despite not considering the notion of

”class”, languages (like C), can also benefit from the application of this paradigm. AspectJ is a simple

and practical extension of aspect oriented programming in Java language to resolve the cross-cutting

between classes and aspects. The C programmming language has several available implementations:

17
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AspectC++ 1, XWeaver project 2, FeatureC++ 3, AspectC 4, AspeCt-oriented C 5, Apiscere 6,...

3.1 Basic elements of AOP

In AOP appears four important definitions: advices, pointcut,joinpoint and weaver. Instead of writing

the code for a mechanism as part of the target program functions, it can be written as independent

code segments called advices. Along with an advice, a pointcut is declared stating when in the target

program the advice code should be executed. An accessible point during the target program execution

where advices can be inserted is known as a joinpoint. The process of combining advices with the

target program sources is called weaving and is done by a compiler known as the AOP language

weaver. When an advice is inserted, the weaver handles the connection between the advice and the

target program. Obviously, the target program source conditions the AOP language compiler, that

must be written in the same language. It must be noted that despite the generic presentation of all

the above concepts, the specification of advices, the level of expressiveness of joinpoints, and the way

they are weaved to programs, vary from one programming language to another and from one AOP

compiler to another. An example of previous four elements are described in 3.1 illustration.

Listing 3.2 contains a simple example of the application of AOP in code written in C language. To

show the functionality of aspects, there are two simple advices written in listing 3.1 inside the aspect

code. Advice 1 contains a piece of code executed before int main() function. Advice 2 contains a

piece of code similar to the previous, but this piece is executed after int main(). The aspect with

the two advices, is weaved with the code in the compile time. Output of the execution of main code

weaved with the aspect appears in listing 3.3.

A basic example of aspect oriented programming is tracing specific calls of a function in execution

1http://www.aspectc.org/
2http://www.pnp-software.com/XWeaver/
3http://wwwiti.cs.uni-magdeburg.de/iti db/fcc/
4http://www.cs.ubc.ca/labs/spl/projects/aspectc.html
5https://sites.google.com/a/gapp.msrg.utoronto.ca/aspectc/
6http://mcis.polymtl.ca/ bram/aspicere/index.html
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Figure 3.1: Conceptual scheme of the aspect-oriented programming paradigm

1 /* Advice 1 */
2 before(): execution(int main()) {
3 printf("Hello ");
4 }
5

6 /* Advice 2 */
7 after(): execution(int main()) {
8 printf(" from AOP example ! \n ");
9 }

Listing 3.1: Aspect code example with two advices defined

1 int main() {
2 printf("world");
3 }

Listing 3.2: Main code example

1 Hello world from AOP example !

Listing 3.3: Console output of aspect execution
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1 before(): call($ $(...)) {
2 printf("Calling a function \n ");
3 }

Listing 3.4: Advice trace calls of any function

time. Declaring an advice of the aspect consists printing message with desired information and point-

cut is set up before target function is called. A collection of messages will be printed when application

executes. After execution, processing information collected improves knowledge about behaviour ap-

plication, as a different way to debug an application when a problem appear. Advice to trace any call

is exhibited in listing 3.4. With the character ”$” is possible to match any type identifier or any con-

tinuous length string and basic example of listing 3.4 can be improved to display useful information,

for instance, caller function name of the function of the matched joinpoint, string representation of the

function return type, source file name of the matched joinpoint,...

Sometimes it is necessary to log information of critical operations, for example, in a banking ap-

plication, transfer money. Instead to modify validated code (security considerations) of transfer money

operation, a simple aspect can log information after transfer money operation executes successfully.

This aspect consists in print function to write simple message in a log file, without override original

code of transfer money operation.

3.2 AOP in ad hoc networks

Despite being rarely considered, the use of AOP in ad hoc networks opens a door to ease the design and

improve the maintainability of the fault tolerance mechanisms of ad hoc routing protocols. However,

there is still much work to be done in this subject. Cuppens investigates in paper [6] about using

aspect-oriented programming to study availability issues in proactive routing protocols of mobile ad-

hoc networks (MANET). However, studying the practical impairments behind this theorist approach

could be interesting to complement this interesting research.

The present master’s thesis makes a step forward to address not only the design of fault tolerance

mechanisms based on AOP, but also its implementation and the issues in terms of intrusiveness that
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limit, to date, their use in real implementations of ad hoc routing protocols.

In next chapter, we introduce our first mechanism to mitigate concrete problem in ad hoc networks,

neighbour saturation. OLSR is sensitive to be affected by this pathology, so we will explain in more

detail how the problem affects to this routing protocol. An AOP approach will be used to design and

implement this mechanism.

Chapter 5 studies the effects of ambient noise in proactive ad hoc routing protocols, and how

to mitigate them generically. In a more sophisticated level, generic fault tolerance mechanism is

designed and implemented with aspect-oriented programming to be able to deploy in several ad hoc

routing protocols.





Chapter 4

Studying the neighbourgh saturation

threat

The previous chapters have established that our interest goes to proactive routing protocols and the use

of aspect oriented programming, from now on AOP, in order to develop mechanisms able to tolerate

the various fault that may threat the nominal behaviour of such protocols. As already mentioned, our

goal is two-fold. On one hand, we will show how to develop a fault tolerance mechanisms suitable for

use in a family of routing protocols. On the other hand, we will introduce a methodology to enlarge

the spectrum of application of the approach to different types of proactive protocols.

The variety of the problems that can support the illustration of the use of AOP for fault tolerance

in ad hoc networks is very large, as already describe in Chapter 2. But, for the sake of conciseness, our

purpose in the present research will be limited to the problems of neighbour saturation and ambient

noise.

More precisely, this chapter defines an aspect suitable to mitigate the negative effects that situa-

tions of neighbour saturation can have over a family of proactive routing protocols. The selected target

is the one with the largest open source community in the world, named OLSR.

The chapter structures as follows. Section 4.1 introduces the main characteristics of OLSR and

23
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the experimental setup deployed for the study of its behaviour in situations of big neighbour densities.

This study is carried out in subsection 4.1.2 where the pathology exhibited by the various versions of

the protocol under study is taken into consideration. Then, section 4.2 designs and implements a fault

tolerance aspect suitable to cope with the identified pathology. Finally, section 4.3 assesses the level

of effectiveness of the aspect once deployed over the various implementations of the various OLSR

versions under study and section 4.4 presents conclusions.

4.1 Case study

Optimized Link State Routing (OLSR) [23] is the most well-known link state protocol and one of

the most widely-used proactive routing protocols nowadays. OLSR employs an optimised flooding

mechanism, where only special nodes called Multi-Point Relay (MPR) are responsible for broadcast-

ing the routing information along the network. Although the initial specification of OLSR (RFC 3626)

established route computation using hop-count as metric, current specification OLSRv2 promote the

use of link quality extensions, like ETX.

Let us imagine an actual scenario similar to those that can be found in smart museums [2], where

the problem of neighbour saturation may happen. Visitors’ audio guides or mobile devices integrate

an ad hoc network to receive information related to the piece of the exhibition they are looking at. In

such cases, the high concentration of nodes in a particular area, far from being a benefit, may result

counter-productive for the network behaviour.

The popular implementation of OLSR, olsrd (available at http://www.olsr.org), was considered as

the experimental routing protocol target, concretely last steady version v.0.6.0 from 2010. For four

years, this protocol has been developed by the currently most active and widest world-wide open-

source community in the domain of ad hoc networking. As far as it is written in C language, it

supports today a large number of devices (smartphones, laptops and tiny devices, such as low-cost

WIFI routers).
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Figure 4.1: Devices used in the experimental set-up

To execute olsrd in our experimental set-up, we considered regular nodes implemented by HP 530

laptops with a processor of 1.6GHz and 512MB of RAM running Ubuntu 7.10 OS. Ilustration 4.1

shows devices used in our experimental set-up.

To illustrate this problem, we created a simple ad hoc network increasing the amount of real

nodes in the same radio range (up to 10 nodes). Furthermore the massive appearance of new nodes

in the network was emulated by externally announcing a large number of new links. As previously

commented, ad hoc routing protocols are designed to support networks with a large number of nodes

and links. According to our experiments, network nodes collapse when reaching a number of 100

neighbours. Why is this happening? This issue will be explained in the rest of this section.

4.1.1 Pathology identification

At first sight, it seems obvious that the problem could be exclusively related to the massive announce-

ment of new links but, some more experimentation, showed that there were more things to analyse. In

order to determine the precise behaviour of the protocol in presence of neighbour saturation, a simple

experiment with just one node was performed. The announcement of new links in the network was

carried out by an auxiliary node executing a modified version of olsrd where the default function of

sending packets was altered to send a massive amount of routing packets. As finally all the routing

packets are exchanged through the wireless medium, in practice, emulating the presence of a huge
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Table 4.1: Characterisation of failure modes

Failure mode
Routing process Routing capabilities
under execution enabled (watchdog

(olsrd process running) timer running)
Normal behaviour Yes Yes

Hang Yes No
Crash No No

amount of neighbours via one single node is the same that having a huge amount of real neighbours

announcing themselves. This assumption is possible considering that our abstraction level is located

at the routing layer, above the MAC one. Surprisingly, the node was not affected at all by the packet

sent and continued its normal operation without any problem. After analysing the traffic generated

among nodes using the tcpdump utility, we could determine that it was not the announcement of new

nodes what directly caused the instability of the routing protocol, but the ulterior massive exchange of

these links among neighbour nodes.

The effect induced by a high density of neighbour in the vicinity of a given node can be charac-

terised by its failure mode. It is possible to distinguish three different failure modes: normal behaviour,

hang or crash. Typically, hang mode can be identified because despite the protocol remains operat-

ing, its communication capabilities to send and receive routing packets has been disabled persistently.

Conversely, crash mode directly involves stopping the protocol execution. Table 4.1 summarises con-

sidered failure modes.

In order to identify the occurrence of previous failure modes, different probes have been introduced

in the system. Concretely, to monitor whether the process associated to the routing protocol is alive,

the top tool has been used. Furthermore, an olsrd’s plugin called watchdog has been instantiated to

determine when the protocol hangs. In essence, this plugin periodically saves the system timestamp

while the protocol works properly. So, by comparing the last watchdog timestamp with the current

system timestamp, it is possible to determine whether olsrd hanged during the experimentation, and

when.
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Figure 4.2: Impact of Neighbour Saturation according to the number of nodes and of new links an-
nounced

4.1.2 Pathology analysis

Once the failure modes defined and how to identify them in practice, different experimental campaigns

were configured to study the impact of neighbour saturation in more detail. More than 200 experiments

were executed considering 3 rates of massive exchange of routing links (100, 300, 500 new nodes),

representing the advertisement of new nodes in the neighbourhood.

The results obtained are shown in Figure 4.2. Increasing the number of announced new links from

100 to 300 caused olsrd to crash in 60% of the experiments with just 4 nodes in the vicinity, whereas

announcing 500 new links just collapsed the network and increased the percentage of hangs. So, it

can be observed that networks with an increasing number of nodes are very likely to cause stability

problems in the protocol, which may result in either hang or crash, depending on the density of nodes

in the same neighbourhood. So, not only the size of the network is important, but the density of nodes

in the same neighbourhood is critical. Experiments performed in a worst-case scenario consisting in

a neighbourhood of 10 legitimate nodes with an increasing number of announced links, showed that

protocol hangs begin to appear just by announcing 50 new links. Experimentation carried out with a

more recent version of olsrd (v.0.6.1) was additionally considered obtaining similar results.

Although the origin and the effect of the problem is determined, the error propagation mechanism

that leads to those particular failure modes remains unexplored. To increase our understanding of this

error mechanism, experiments were repeated using the ddd debugging tool. After this process, the

critical section where the fault (the massive announcement of neighbours) becomes a failure (either

crash or hang) could be determined within the source code. Given the link-state nature of OLSR, olsrd,
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builds a full map of the connectivity to the network, showing how nodes are connected. Indeed, after

analysing the obtained traces, the problem was tracked down to the management of the neighbours

table when it is big enough (olsr {lookup, delete, insert} neighbour table functions). The official

olsrd bug tracker does not list this problem, and it is today an issue to be corrected.

4.2 Mitigating the effect of the threat through fault tolerance

This section presents the approach used to inhibit neighbour saturation. In the first, the approach

proposed is explained in a high level and afterwards its implementation is introduced with the details

of integration of the mechanism as an aspect, to be deployed in both versions of olsrd.

Taking everything into account, the compilation process of an aspect is explained in the last point

of the section. The aspect compiler tool is explained to understand the weaving process of main source

code of the routing protocol and the designed aspect.

4.2.1 Design

The design of a fault-tolerance aspect to temporally limit the number of new neighbours requires a

mechanism able to act when incoming routing packets are received in a node. If a node has reached

its limit of neighbours stored, it will avoid processing any announcement of new neighbours in the

network, discarding these routing protocol packets.

Instead of modifying the source code of routing protocols in versions affected by the problem,

aspect-oriented programming has been elected as a suitable paradigm programming to face this prob-

lem. The aspect designed will have the ability to inhibit the problem in any version of the protocol.

Without using aspect-oriented programming, the mechanism should have been written in each function

of the code affected of each version of olsrd, and future changes in the mechanism should be modified

in all files affected. AOP solves this extra-costs in the implementation, improving development and

deployment costs of the mechanism.
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1 /* Advice to count the number of links in the links table */
2 after: call(void set_loss_link_multiplier(...)
3 if(strcmp("add_link_entry", this->funcName) == 0){
4 links_counter++;
5 }
6 if(strcmp("remove_link_entry", this->funcName) == 0){
7 links_counter--;
8 }
9

10 /* Advice to temporally discard the reception of new neighbours */
11 ssize_t around(): call(ssize_t olsr_recvfrom(...))
12 if(strcmp("olsr_input", this->funcName) == 0){
13 if(links_counter < LIMIT){
14 return proceed();
15 }else{
16 return 0;
17 }
18 }

Listing 4.1: Aspect to inhibit neighbour saturation

The main responsibility of the aspect is control incoming routing protocol packets and the amount

of links managed in the routing table. The aspect will contain two advices with different objectives.

In the first advice, it is necessary to define a counter which dynamically increases and decreases as

long as the number of links in the links table is modified. Then it will be necessary a second advice

to limit the number of links in the links table, which is the actual flaw in the code we want to correct.

The aspect will try to prevent from nodes of the ad hoc network entering into saturation state. Aspect

will be weaved in the main source code with the aspect-oriented tool introduced later in the subsection

4.2.3.

4.2.2 Implementation

With respect to the first advice, the joinpoint where the links list is modified for the first time in-

volves the invocation of the “set loss link multiplier” function. If this call is made by the “add link-

entry” function, the links counter is increased in one unit. Otherwise, in case it is called by the

“remove link entry” function, the counter will be decremented in one unit. Listing 4.1 illustrates the

code of this advice to count the current number of links of olsrd.

With respect to the second advice, we set the reception of OLSR packets as the join-point (using
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the function named “olsr recvfrom”). This is the point where olsrd processes incoming data from the

network interface card. One link always refers to one particular neighbour, so in practice, we consider

the notions of neighbours and links as equivalent. In this way, if limiting the reception of routing

protocol packets advertising new neighbours through the definition of a threshold value (LIMIT), the

routing protocol packets responsible for overloading the system will be discarded and consequently

not parsed. Thus, the problem caused by the saturation in the links reception could be mitigated. The

code of this advice is detailed in listing 4.1.

As far as LIMIT may vary with respect to the node’s capability to manage new nieghbours, it is

important not to fix its value. Conversely, it should be a parameter depending on the instantiation of

the routing protocol. In addition, it is worth noting that this mechanism does not prevent the routing

protocol from updating those links previously established.

4.2.3 The AspeCt-oriented C compilation process

AspeCt-oriented C [14] is a aspect-oriented software development focused in C programming lan-

guage. This project is conducted by the Middleware Systems Research Group at the University of

Toronto. AspeCt-oriented C (ACC) ships with a set of compiler tools, particularly an aspect-oriented

programming weaver which produces ANSI-C code with aspect files and ANSI-C source code.

ACC is an perfect tool to develop aspects in C programming language, due to its simple but

powerful aspect syntax and compatibility of generated code with GCC. ACC has been proved to

support aspect-oriented language designs for other languages, to evidence its robustness to support

aspect-oriented programming. Because most of routing protocols in ad hoc networks are written in C

programming language, ACC is a good choice to develop aspects to enhance capabilities of routing

protocols.

Aspect weaver is a fundamental key in aspect oriented programming to do intersection advice

code in main code. Each programming language dispose several aspect weaver to aspect compilation.

Semantic of advices, joinpoints and pointcuts are restricted to each aspect weaver, despite aspect

oriented programming semantic is very similar in most weavers.
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Weaving process can be resumed in parsing advice code, semantic checking of advice and join

point matching in main target code. Aspect code and main code processing phase ends when weaving

process generates source code ready to compile. For example, source code generated is capable to be

compiled with gcc. The process to weave the aspect implemented and source code of olsrd routing

protocol is described in illustration 4.3. First, source code of olsrd and aspect are preprocessed with

GCC compiler. After this stage, source code is ready to be weaved with aspect-oriented tool ACC. In

the second stage, source code files of main code (olsrd routing protocol) are selected if they contain

the pointcuts declared in advices. Selected source code files are weaved with the aspect file, to include

the aspect in the correct place of the code. Finally, weaved source code files and remaining source

code of routing protocol are compiled with GCC compiler to generate resilient version of olsrd binary.

4.3 Approach verification

In order to assess the effectiveness of the developed aspect for tolerating saturation problems, the

aspect is automatically deployed by the Aspect-C weaver on the implementation of different versions

of the protocols under study, OLSR. As in the pathology analysis scenario, some fault injections

experiments are carried out in order to check the level of improvement issued from the use of the

produced aspect. This section reports on the results obtained.

This subsection is devoted to analyse which is the proper value of LIMIT for the particular test-bed

considered in this chapter. Consequently, the conclusions obtained are limited to the nodes considered

in such deployment.

In order to assess the behaviour of the proposed fault-tolerance aspect, more than 580 experiments

were executed considering the following factors: two versions of olsrd (v.0.6.0 and v.0.6.1), four

values for LIMIT (50, 100, 200 and 300 neighbours) and six network deployments (1, 2, 4, 6, 8 and 10

nodes). Each combination of factors was repeated 8 times to enhance the statistical significance. As

the announcement of 500 new links resulted the worst experimental case, this same value was selected

to ease the comparison of results.
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Table 4.2: Failure modes observed (C - Crash, H - Hang) considering the fault-tolerance mechanism
in presence of 500 new neighbours for 10 real nodes

olsrd version
LIMIT

300 200 100 50
H C H C H C H C

v.0.6.0+FT 21% 59% 29% 46% 8% 16% 2% 1%
v.0.6.1+FT 18% 54% 7% 47% 5% 9% 0% 0%

Figure 4.4 illustrates the evolution of the percentage of successful experiments when considering

previous thresholds. Despite not showing identical values, what is worth mentioning is that both olsrd

versions (v.0.6.0 and v.0.6.1) present similar trends, which is interesting to validate the behaviour

of our fault-tolerance mechanism. As seen, the minimum value to totally mitigate the impact of

neighbour saturation is limited to 50 nodes.

Table 4.2 shows the complementary percentage of experiments which finished in hang or crash.

As can be observed the percentage of hangs and crashes for LIMIT=50 is negligible. However, beyond

this value, the percentage of correct experiments decreases as fast as the amount of hangs and crashes

increases. Indeed, when limiting the nodes filter to 100 new links (LIMIT=100), the percentage of

correct experiments correctly finished decreases around 70% in the worst case of considering a neigh-

bourhood of 10 legitimate nodes. Finally, considering limits higher than 200 links becomes practically

infeasible as far as they obtain values which are comparable to those obtained with the default version

of olsrd (not considering the presence of the fault-tolerance mechanism in both version v.0.6.0 and

v.0.6.1).

As results from Table 4.3 show, the binary size resulting from applying the aspect version of the

fault-tolerance mechanism, increments less than 6% with respect to the default versions of olsrd, which

is practically negligible. During runtime and considering normal conditions of density of nodes, the

increment of CPU consumption is null in both the default versions of olsrd and those where the fault-

tolerance mechanism has been introduced. It means that our mechanism has no cost in terms of CPU

when its activation is not required. When the density of nodes increases through the announcement of

a massive amount of links, the default versions of olsrd strongly increment the CPU consumed when

facing a high density of nodes. Conversely, fault-tolerant versions of olsrd automatically trigger the
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Table 4.3: Intrusiveness introduced by the fault-tolerance mechanism (FT) to temporally discard the
reception of new neighbours

olsrd version Binary CPU when there is a CPU when there is a ve-
size normal density of nodes ry high density of nodes

v.0.6.0 968 KB 1% 35%
v.0.6.0+FT 1028 KB 1% 1%
v.0.6.1 1008 KB 1% 30%
v.0.6.1+FT 1028 KB 1% 1%

links filtering when detecting such an increment.

4.4 Discussion

Despite the simplicity of the aspect-oriented approach adopted, the preliminary results shown are

promising and consolidate our idea of using aspect oriented programming to enhance dependability

of ad hoc routing protocols. However, the applicability of AOP in the domain of ad hoc networks

goes beyond the mechanism deployed in this approach and opens a wide spectrum of possibilities,

for example, to dynamically track the behaviour of routing protocols and propose countermeasures in

case of detecting an anomalous behaviour.

Fault tolerance approach to temporally limit the number of new neighbours is implemented and

deployed specifically to two versions of olsrd. If current pathology affects more routing protocols,

mechanism will be implemented and deployed in a specific way for each routing protocol. Imple-

menting specific mechanisms can lead to complications and useless waste of time. If a pathology

affects to considerable amount of routings protocols, specific aspect implementation of fault tolerance

mechanism is not a efficient solution.

Given these implementation dependencies that limit the application of one fault tolerance mech-

anism from one routing protocol to another, we ambition at defining a generic aspect, referred to as

meta-aspect from now on, to ease the deployment of fault tolerance mechanisms regardless the instan-

tiation particularities of the routing protocol targeted. The idea of meta-aspects, that goes beyond the

classical application of the AOP paradigm will be illustrated in next chapter.
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Addressing the ambient noise threat

Ambient noise is one of the most common problems impacting the behaviour of ad hoc routing pro-

tocols. To face this problem the goal of this chapter is twofold. On one hand, the present chapter

designs a best-effort adaptive fault tolerance mechanism to mitigate the effects of this ambient noise.

On the other, this fault tolerance mechanism is implemented using a meta-aspect approach, that goes

beyond the traditional use of AOP to enable the deployment of the mechanism in any proactive routing

protocol regardless its implementation.

Thanks to the use of such meta-aspects we will be able to cope with the second goal of this re-

search: showing the feasibility of using AOP to develop FT aspects applicable to different types of

proactive routing protocols.

5.0.1 Proactive Routing Protocols Under Study

Proactive routing protocols in ad hoc networks are responsible for determining the optimal route

among network nodes. To determine optimal routes, proactive routing protocols exchanges routing

packets periodically among nodes to create and maintain the topology. These routing packets are

divided in packets to discover nodes in 1-hop (hello packets) and packets to propagate routing infor-
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mation beyond 1-hop neighbours (control packets)

Three state-of-the-art proactive routing protocols have been selected as targets to study ambient

noise problem. Their names are Optimized Link State Routing (OLSR), the Better Approach To

Mobile Ad hoc Networking (B.A.T.M.A.N) and Babel.

OLSR was described in section 4.1 of the previous chapter. Nevertheless, it is interesting to

describe the current specification OLSRv2 promote the use of link quality extensions, like ETX. The

initial specification of OLSR (RFC 3626) established route computation using hop-count as metric.

B.A.T.M.A.N [17] is a novel proactive distance-vector routing protocol. For each node, B.A.T.M.A.N

periodically sends out broadcast messages to inform neighbours of its existence. This process is re-

peated until the routing information reaches all network nodes. For each link the routing packets

arrival rate is advertised so that neighbour nodes can determine the link quality. B.A.T.M.A.N uses

the TQ metric to estimate the quality of network links.

Babel (RFC 6126) [5] is the most recent protocol under consideration. It is a distance-vector

routing protocol that has two main characteristics to optimise its relay mechanism. On one hand, it

uses history-sensitive route selection to minimise the impact of route flaps. In such a way, the route

selection favours the previously established path rather than alternating between two routes. On the

other hand, it forces a request for routing information each time it detects a link failure from one of its

preferred neighbours. This is a best-effort mechanism to reduce the convergence time of the network.

Like OLSR, Babel uses ETX as a metric of quality for network links.

5.0.2 Link Quality Metrics in Routing Protocols

The traditional Ethernet philosophy of selecting a given communication link towards a destination,

among those available, with the criterion of minimising the number of remaining hops (hop-count) is

a poor choice. Due to noise, the quality of all communication links between mesh nodes is not the

same, which advices against the use of such a simple metric.

Since mid-00s, the notion of link quality is basically computed by each node according to the
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amount of routing information received from its neighbourhood: the higher this reception rate the

better.

The Expected Transmission Count (ETX) is without any doubt, the most well-known metric for

characterising the quality of a link [16]. It reflects the number of expected transmissions of a packet

to be received without error at its destination. This number varies from one to infinity. An ETX of one

indicates a perfect transmission medium, whereas an ETX of infinity represents a non-functional link.

In practice, ETX can be defined as ETX(i) = (1/(RPAR(i) ∗ NRPAR(i)). Given a sampling

window in link i, RPAR(i) is the Routing Packets Arrival Rate seen by a node, and NRPAR(i)

is the RPAR(i) seen by the neighbour node. An alternative quality metric is proposed in [17] and

it is called Transmission Quality (TQ). This second metric shares the same principles established by

ETX but it is computed in another way. In essence, receivers calculate the number of routing packets

received against those expected following the expression: TQ(i) = (RPAR(i) ∗ NRPAR(i) ∗

p(i))/(MAX LQ2). In the expression RPAR(i) and NRPAR(i) have the same meaning than in

ETX, and MAX LQ is a constant which bounds the ideal maximum quality. The term p(i) refers to

the penalty that is applied to unidirectional links, to promote those that are bidirectional. The higher

the TQ, the better. In table 5.1 appears a brief description of previous measures.

For the sake of simplicity, the rest of this chapter will denote the quality of a link i as lqi and it

will be always interpreted as the higher the lqi the better. Under such assumption lqi should be viewed

as 1/ETX .

As a result, whenever two communication links towards a destination i and j are available, the

protocol selects the one providing the better link quality. From this viewpoint, and since such link

quality metrics are periodically recomputed, one can say that presented approaches adapt to variations

of quality derived from ambient noise. However such capacity is not enough to keep communication

links alive whenever such noise persist along the time or it is very high.
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5.1 Experimental setup

The previous protocols introduced are integrated within a real experimental test-bed. After that, these

routing protocols are assessed to show consequences of ambient noise and particular set of parameters

involved. Such parameters will be finally analyzed to determine the fault tolerance algorithm.

Before subjecting the commented routing protocols to the presence of ambient noise, it is neces-

sary to characterize it in practice. Thanks to this experimentation, we could distinguish three different

levels of ambient noise: a high ambient noise coinciding with the workday involving a packet loss

ranging from 35% to 50%, a moderate one matching with the lunch breaks from 5% to 35% and a low

one from 0% to 5% at night. Despite not being so frequent, the range from 50% to 100% typically rep-

resenting additional external perturbations like malicious attacks from signal inhibitors or accidental

faults like interferences from microwave ovens, completes this model.

As ambient noise is eventually manifested in terms of packet loss [19], the emulation of ambient

noise through packet loss is a possible solution to recreate the exact conditions of noise in an ex-

perimental environment. Thus, it is possible to enhance the repeatability and reproducibility of the

experimentation, and the accuracy of the results provided. So, the use of tools such as netem 1 for the

injection of a given rate of packet loss in the network has been required.

The implementation targets considered for our experimentation are last steady open-source ver-

sions of the routing protocols previously described in Section II-C. Accordingly, well-known imple-

mentations of OLSR (olsrd v.0.6.0 2), Babel (babeld v.1.1.1 3) and B.A.T.M.A.N (batmand v.0.3.2 4)

have been taken into account.

The testbed used to carry out our experimentation has been explained before in section 4.2, and in

this case study experiments are executed with the same setup. To carry out our experiments and assess

the robustness of routing protocols against ambient noise threat, same network deployment as in the

chapter 4 was considered.

1http://www.linuxfoundation.org/collaborate/workgroups/networking/netem
2www.olsrd.org
3www.pps.jussieu.fr/jch/software/babel/
4www.open-mesh.org
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This experimental setup takes into consideration the two basic types of routes, route A-B with

alternative and route A-C without alternative paths. In the first case, the criterion to switch from one

route to another is always changing the old best route by the new best one from the set of available

alternative routes. The study of this case has been simplified by considering just two alternative

routes, which is the minimum number of routes to perform a route switch. Thus, route A-B can be

established through nodes xi and yi respectively. However, it is worth noting that the ambient noise

may not be neither constant in time nor homogeneous in space. Given the unavoidable presence of

physical obstacles like walls or other objects, the studied routing protocols usually find the best route

from A to B (and vice-versa) through xi nodes most of the times, rather than through yi nodes.

An UDP constant bit-rate data flow of 200 Kbps was established from source A to destination

B to compute the Effective Packet Delivery Ratio (EPDR) of the route. As previous works indicate

[21], the Effective Packet Delivery Ration (EPDR) is one of the measures that better represents the

impact of ambient noise in the network behaviour. The EPDR for a given route r is expressed as the

percentage of applicative packets received from the total sent.

In order to limit the influence of real ambient noise in our results, our experimentation was carried

out at night, assuming an acceptable intrusiveness of 0% to 5% of real (non-emulated) packet loss for

wireless networks. In summary, 600 experiments of 300s each divided in two experimental campaigns

(one per type of experiment) were executed.

5.1.1 Pathology identification and analysis

In the experiments, the EPDR decreases proportionally with the amount of ambient noise introduced.

The case representing the ideal EPDR loss should involve an identical decrement with respect to the

ambient noise introduced. Any case where the EPDR decreases faster than ambient noise introduced,

necessarily involves the presence of any additional effect impacting on the EPDR.

The results of previous experiments are not casual. After analysing the code in detail, we observe

that behind the name of different variables and constants (always consistent with their respective spec-

ification), there are three common parameters characterising the behaviour of proactive routing pro-
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Effective Packet Delivery
Ratio (EPDR)

Percentage of applicative packets received from the total
sent

T Default period to send a routing packet advertising a
given link

Twindow Validity time determining the temporal window after
which the protocol decides whether discarding a link or
not

Minimum Quality Threshold
(MQT)

Minimum acceptable quality before flushing a link

Table 5.1: Measures to characterize behaviour of the routing protocols in presence of ambient noise

tocols against ambient noise. Table 5.2 identifies them and state their default values. T, is the default

period to send a routing packet advertising a given link, and Twindow is the validity time determining

the temporal window after which the protocol decides whether discarding a link or not. Basically, the

use of these two time-related parameters is located within the task scheduler module already presented

in figure 2.2. The Minimum Quality Threshold (MQT) defines the minimum acceptable quality before

flushing a link. This quality-based parameter is used within the routing manager to decide about the

feasibility of a given link. Table 5.1 shows previous measures used to characterize the behaviour of

routing protocols in presence of ambient noise.

After analysing the targeted routing protocols, the conditions that must be satisfied to purge a link

have been ordered from the most reactive to the most conservative as follows: olsrd and babeld require

(i) the expiration of the Twindow or (ii) achieving the MQT. Conversely, batmand only requires the

expiration of Twindow before removing the link. Surprisingly, the notion of MQT is never taken

into consideration in batmand. Unlike babeld and olsrd, the link quality is only updated in batmand

when getting new information through incoming routing packets, and as it cannot be 0, batmand must

consider the MQT is not necessary. Let us now focus on T. If we additionally normalise T in the

different configurations shown in Table 5.2 with respect to 1 sec. to compare their relative Twindow,

we observe that olsrd only can send 6 packets to update the validity time of the link, whereas babeld

admits up to 15 packets, and batmand has 200 new opportunities.
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Table 5.2: Critical parameters for the route availability in ad hoc networks
Protocol implementation Twindow (s) T (s) MQT (%)
olsrd v.0.6.0 30 5 10
batmand v.0.3.2 200 1 none
babeld v.1.1.1 60 4 0

5.2 Fault tolerance approach

This section faces the problem of ambient noise in proactive routing protocols proposing a generic

adaptive strategy which enables the routing protocol to replicate the routing packets only when am-

bient noise is detected. Replication is a well-known technique in the domain of fault tolerance. The

use of packet replication in this chapter is devoted to ensure the reception of the routing information

even when the presence of a high level of ambient noise disturbs the communication between nodes.

So, this approach can be useful in environments affected by ambient noise when links are in risk of

disappearing or it is necessary to speed up the convergence time.

5.2.1 Design

This technique is based on the principles of T, Twindow and MQT previously identified in the last

section. The algorithm proposed in this section is applied from the default configuration of the routing

protocols. Regarding their regular behaviour, routing protocols send packets every T seconds and

passively wait the time defined by Twindow to remove a link in case it is necessary. Our technique

consists not in waiting passively the expiration of Twindow, but in analysing the trend for such link

quality, and predicting its value in Twindow in order to react (in time) against a possible link removal.

In essence, the point of our proposal can be easily understood through the graphic in Figure 5.1.

If applying basic algebraic notions, given two points A (x2, y2) and B (x1, y1) in cartesian axis, it is

possible to determine the equation of the linear function as Formula 5.1 shows.

y − y1 = m(x− x1) | m =
y2 − y1
x2 − x1

(5.1)
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IEEE/IFIP International Conference on Dependable Systems and Networks (DSN 2012) 

LARK algorithm: Replication management 
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!  Nodes (re-)compute the quality of their links each T 
!  Estimate an evolution factor (m) from current (lqi) and previous (lqi-1) link qualities 
!  Use such factor to forecast the link quality at time Ti+Twindow (call it lqi+Twindow

) 
!  If (lqi+Twindow is lower than MQT) then increase the replication level (R) in a factor δ  

else if (R greater than 0) decrease the replication level (R) in a factor δ 
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Figure 5.1: Link-quality-based adaptive packet replication technique
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!  Nodes (re-)compute the quality of each one of their links each T 
!  A link is lost whenever 

–  Its quality (lq) is less than the minimum quality threshold (MQT) accepted by the protocol 
–  Despite the link quality, no routing message is received during a period Twindow 
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(timeout expired) 
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Figure 5.2: LARK parameters

If replacing points A and B by (ti, lqi) and (ti−1, lqi−1) where ti represents the current time (T)

and lqi is its respective link quality and ti−1, lqi−1 represent the last information but in last T, we

would obtain Formula 5.2.

lq(ti+Twindow) = m · Twindow + lqi | m =
lqi − lqi−1

ti − ti−1
(5.2)

According to Formula 5.2, it is possible to predict the link quality lqi+Twindow for a given time

ti+Twindow according to the trend pointed by lqi and lqi−1. Thus, in case this estimation is underneath

the MQT, the activation of the link-quality based packet replication is triggered.
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To avoid the loss of links and its effects on the network, a Link-quality-based Adaptive Replication

of pacKets (LARK) algorithm is proposed. The main key features of the algorithm is the replication

and the adaptation. Routing message replication may mitigate the impact of noise on link quality.

Level of noise varies along the time, for this reason level of replication is adequate to the level of

ambient noise. Tuning the level of replication has to be done dynamically when the routing protocol

is in a running state, depending of the future prevision calculated with LARK algorithm.

To continue with previous work with aspect-oriented programming in the preceding chapter,

LARK algorithm will be implemented using AOP. This paradigm will help to deploy a unique fault

tolerance mechanism in any routing protocol, maintaining the same implementation.

Our technique is included within the routing manager module of the routing protocol (see Figure

2.2). Listing 5.1 shows the pseudo-code that has been implemented in C language the fault tolerance

mechanism. The algorithm is included is generic for any routing protocol. However, there are parts

of the algorithm, for example, send replicas call which depends of each routing protocol. These

generic parts are encapsulated to improve maintainability of the external parts of the algorithm and

this concept will be introduced in next subsection.

The real conditions of the network in practice impose limiting the amount of replicas to Nmax.

If considering a very severe ambient noise, the fact of sending more and more replicas will only

contribute to increase, even more the effect of ambient noise. The value of Nmax has been empiri-

cally computed for our deployment in order not to exceed the overhead obtained when applying the

batmand-like configuration beyond 150%.

As previously stated, batmand presented certain limitation like the absence of a MQT. However,

given the genericity of our approach, nothing impairs assigning a MQT = 0 to batmand in our

algorithm, or to any other proactive routing protocol which does not consider its use. Our technique

is applied before the moment of sending a routing packet every time T. Then, the algorithm proposed

must obtain the value of lqi and lqi−1. The value of lqi can be easily obtained from the current

state of the routing manager module. However, not all the protocols consider storing the previous

state. Accordingly, the algorithm must store lqi to provide lqi−1 in the next iteration of T. Also the

algorithm must store amount of replicas calculated previously for this link, l.nReplicasi−1 and the
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1 Nmax=...
2 /* every time a new routing packet is forged */
3 for each 1-hop Link l announced in the packet you send
4 /* obtain the value of the variables needed */
5 load l.lq[i]
6 load l.lq[i-1]
7 load l.nReplicas[i-1]
8 load l.t[i]
9 load l.t[i-1]

10 /*deduce future link quality*/
11 m=(lq[i]-lq[i-1])/(t[i]-t[i-1])
12 lq[i]+Twindow=m*Twindow+lq[i]
13 /* determine the number of replicas to send */
14 if (lq[i]+Twindow <= MQT) then
15 if (l.nReplicas[i] < Nmax) then l.nReplicas[i]++
16 else
17 if (l.nReplicas[i] > 0) then l.nReplicas[i]--
18 /* save the variables for the next iteration */
19 store l.lq[i]
20 store l.nReplicas[i]
21 /* update the worst case of replicas to send */
22 if(l.nReplicas[i] > replicasToSend)
23 replicasToSend = l.nReplicas[i]
24 /* send the replicas required [0,limit] */
25 send(replicasToSend,routingPacket)

Listing 5.1: Pseudo-code LARK Algorithm
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timestamp of previous amount replicas calculated, load l.ti−1. Actual timestamp is saved in load l.ti

to use in deduction of future link quality. Cost of storing previous values is negligible in terms of

memory footprint even for the tiny devices considered in our experimentation.

The next step involves computing lqi+Twindow is calculated through the expression in Formula

5.2. In case this value is underneath MQT, the value of nReplicas indicating the number of replicated

packets that will be sent in T, is progressively increased only if its current value is lower than Nmax.

Otherwise, in case the link has overcome from the risk of disappearing, the number of replicas is

progressively reduced up to 0, thus restoring the default behaviour of the protocol. The value of

nReplicas is also stored to increase or decrease it in the following iteration, depending on the state of

the link.

Number of replicated packets corresponds to the highest number of nReplicas for each 1-hop

link announced in the packet which will be sent. Only in the case of nReplicasi is higher than

replicasToSend previous value, value stored in replicasToSend will be updated. After loop go

over into all 1-hop links announced in the packet, the packet will be replicated the number of times

indicated in replicasToSend.

In any case, all the replicated packets send the same information, so, any packet already received

will be discarded. Our goal thus is not sending new packets with further information, but increasing the

probability of broadcasting the same information at least once. As all the protocols natively implement

the mechanism to discard replicas, no additional strategy has been required to be introduced in our

algorithm in the reception of packets.

Given the simplicity of the operations considered, and the time elapsed between the iterations, the

overhead introduced in the protocol in terms of CPU is also negligible (less than 1%).

5.2.2 LARK implementation using Aspect-oriented programming

Algorithm has to be executed when routing protocol packet is sent from the routing protocol manager

code (Figure 2.2). These points in the source code are the joinpoint of the aspect which will contain
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REPLICATE_PACKET+
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net_outbuffer_push(…)+

send_udp_packet(…)+
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Figure 5.3: Resolution of a meta-tag in preprocessing phase

LARK algorithm implementation. Each routing protocol needs specific joinpoint, however the aspect

cannot contain dependent parts for each routing protocol. To solve this problem, dependent parts of

the aspect, for example the joinpoint, are encapsulated in meta-tags to create out meta-aspect.

A meta-tag is a declaration of code which each routing protocol has to define. The meta-tags are

resolved in preprocessing phase with the own header files for the fault tolerance mechanism. Without

using the concept of meta-tag, a simple aspect has to be modified in the specific lines which depend of

the implementation of the target routing protocol. Thanks to the concept of meta-tag, dependent parts

of the aspect are encapsulated, which improves the cost of implementation, facilitates deployment in

any routing protocol and it will reduce efforts in the maintainability. A example of meta-tag is parsing

packet to get list 1-hop neighbours, which code of this meta-tag is different for each routing protocol.

In figure 5.3 appears a example of meta-tag of the replication action which is resolved for each of the

three proactive routing protocols (OLSR, B.A.T.M.A.N and Babel).

A meta-aspect is an aspect which contains meta-tags in its code, in order to be generic and be

deployed in any system. In our case study, the meta-aspect allows deploy the fault tolerance mecha-

nism in any proactive routing protocol with a single implementation of the code. LARK algorithm is

encapsulated as a fault tolerance mechanism inside the meta-aspect.

Each routing protocol is responsible of the definitions of the meta-tags. Separation of the meta-

tags of routing protocol layer from LARK algorithm, creates a different concept in the implementation

of fault tolerance mechanisms. Experts in fault tolerance mechanisms can design new techniques and

algorithms regardless the integration in a particular routing protocol. Deployment and development of

new fault tolerance mechanisms in routing protocols is easy goal with the generic implementations.

Using meta-aspects, experts in routing protocols have to integrate fault tolerance mechanisms in a
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particular routing protocol filling the meta-tags with the specific code of target routing protocol.

LARK algorithm integration inside the aspect

As introduced in last subsection, the meta-aspect is activated when a routing protocol packet after it

is sent. If the packet contains a list of sender 1-hop neighbours list, the packet will be processed.

LARK algorithm is integrated inside the advice of the meta-aspect. At the beginning of the meta-

aspect, the joinpoint commences using meta-tags to encapsulate specific parts of the source code of

each routing protocol. After the joinpoint, the advice starts with the initialization of the variables. Vari-

ables dependent of each routing protocol are encapsulated into INITIALIZE SPECIFIFC VARIA-

BLES meta-tag.

Advice code needs to parse the data of the packet to access to their fields easily, depending of each

routing protocol. Verification of the parsed is necessary to ensure packet data is valid and it has not

been affected by any error.

The main information of the packet is in its list of neighours achievable in 1 hop. In the GO OVER -

NEIGH 1 HOP PACKET LIST meta-tag, advice go over this list and in each iteration, information

about link quality and address of the neighbour is pulled.

In addition with the list of 1 hop neighbours of each packet, there is one more list. The link quality

list is used in the advice, which contains information of the 1 hop neighbours of the node. Link quality

list is updated with neighours information of the packet, for example, adding new neigbour in the list.

Timestamp, address, number of replicas and link quality of each neighbour announced in the packet,

is stored in the link quality list. Timestamp remember the last time link quality of the neighbour was

updated. Neighbour address identifies each node when the advice go over the list. Finally, number of

replicas keeps the track of number of replicas necessary in the LARK algorithm.

With the reference to the information of a neighbour from the packet, it is searched in our link

quality list. If the address of neighbour packet matches with the address of the neighbour stored in the

link quality, it is the moment to predict the future link quality with LARK algorithm. If the future link
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quality is lower than Minimum Quality Threshold (MQT), number of replicas is incremented. In the

contrary case, future link quality predicted is higher than MQT, number of replicas is decremented.

Actual information of the link quality is saved in the list, beside the timestamp information. At last, the

replicas to send value indicates the worst number of replicas to each neighbour of the packet

list. If the neighbour has not been found in the link quality list, it will be added at the last of the list.

When future link quality has been predicted for all neighbours of the packet, the packet is repli-

cated replicas to send times. When ad hoc network is stable, the most likely scenario is no

replication of the routing protocol packets because future link quality of the neighbours exceed the

Minimum Quality Threshold. In the listing 5.2 appears the code of the meta-aspect with LARK algo-

rithmm integrated within it.

5.3 Assessing Fault Tolerance Aspect Approach

New version of the routing protocol with LARK algorithm integrated with the aspect, have been

assessed with the same experiments as mentioned in the section 5.1. Default version of the routing

protocol are evaluated with the versions with LARK aspect integrated to distinguish the improvements

in terms of routing overhead, route availability and Effective Packet Delivery Ratio.

Additional experimental campaigns were required to show the effectiveness of the algorithm pro-

posed. Concretely, let us first analyse the Figure 5.4, which represents the routing overhead introduced

by the routing protocols implementing the LARK algorithm. Basically, when applying our technique,

all the routing protocols balance their overhead to adapt their behaviour in a context-aware way.

In the first case (see Figure 5.4b), no additional routing packet is sent, so the intrusiveness intro-

duced in the network is null. Conversely, when the ambient noise increases and the routing protocol

requires a major effort to maintain their routes, it is allowed to increment the amount of routing infor-

mation sent. Unlike the regular behaviour of the routing protocols considered, what is constant using

our technique is not the rate of routing packets sent, but the rate of received ones. The goal thus, is

maintaining the routing capability as longer as possible, even with a severe amount of ambient noise.
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1 after(ARGUMENTS_POINTCUT): call(RETURN_TYPE_POINTCUT FUNCTION_POINTCUT(
ARGUMENTS_TYPE_POINTCUT)) && args(ARGUMENTS_NAME_POINTCUT) {

2 int timestamp = 0; float lq = 0.0;
3 char neigh_addr[ADDR_STR_LEN];
4 int replicas_to_send = 0; int i = 0; int found = 0;
5 double m = 0; double future = 0;
6 INITIALIZE_SPECIFIFC_VARIABLES
7 PARSE_DATA_ROUTING_PROTOCOL_PACKET
8 if(VERIFICATION_DATA_ROUTING_PROTOCOL_PACKET == 0) {
9 GO_OVER_NEIGH_1_HOP_PACKET_LIST {

10 strcpy(neigh_addr, GET_ADDRESS_NEIGH_PACKET_LIST);
11 lq = GET_LQ_NEIGH_PACKET_LIST;
12 GO_OVER_NEIGHBOUR_LQ_LIST {
13 if(strcmp(LQ_NEIGH_ADDR, neigh_addr) == 0) {
14 found = 1;
15 timestamp = get_timestamp();
16 if(LQ_NEIGH_TIMESTAMP != timestamp) {
17 m = (lq - LQ_NEIGH_LQ_PRE)/(timestamp - LQ_NEIGH_TIMESTAMP);
18 future = (m * T_WINDOW) + lq;
19 if(future <= MQT) {
20 if(LQ_NEIGH_NREPLICAS < N_MAX_REPLICAS) {
21 LQ_NEIGH_NREPLICAS_INCREMENT }
22 }else{
23 if(LQ_NEIGH_NREPLICAS > 0){
24 LQ_NEIGH_NREPLICAS_DECREMENT }
25 }
26 LQ_NEIGH_LQ_PRE = lq;
27 LQ_NEIGH_TIMESTAMP = get_timestamp();
28 if(LQ_NEIGH_NREPLICAS > replicas_to_send){
29 replicas_to_send = LQ_NEIGH_NREPLICAS; }
30 }
31 break;
32 }
33 }
34 if(found == 0) {
35 ADD_NEIGH_PACKET_LIST_TO_LQ_TABLE }
36 for(i=0; i < replicas_to_send; i++) {
37 REPLICATE_PACKET }
38 }
39 }
40 }

Listing 5.2: Code of Aspect Fault Tolerance Mechanism
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Rou$ng'informa$on'sent' Rou$ng'informa$on'received'

Default version of protocols Protocols with LARK 

Figure 5.4: Routing overhead in proactive routing protocols

olsrd babeld batmand 

Default version of protocols Protocols with LARK 

Figure 5.5: Route availability in proactive routing protocols
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olsrd babeld batmand 

Default version of protocols Protocols with LARK 

Figure 5.6: Effective Packet Delivery Ratio in proactive routing protocols

If comparing the new results with the previous overhead involving the packets sent, all the pro-

tocols reduce the amount of packets sent up to around 70% packet loss caused by ambient noise. In

this condition of extreme necessity for the links survival, the routing protocols using our technique

are forced even to increase the overhead introduced in the default configuration. Indeed, olsrd, babeld

and batmand increment 13%, 15% and 150% in this point. However, the major difference is that now,

the RA increases in these conditions. Beyond this ambient noise rate, the routing packets received

decrease given the practical bound imposed by Nmax to limit the packet replication indefinitely.

If taking these results in mind when comparing the route availability obtained when applying our

technique, with those provided previously in Figure 5.5 (without LARK algorithm), the benefits of

our technique can be observed.

Additionally, it is worth noting that thanks to this technique batmand speeds up its converge time,

and consequently increments its route availability with respect to its default configuration from 5%

to 10%. Results are very similar for olsrd and babeld (less than 3% of difference), but taking into

account that the overhead introduced has been widely reduced for the ranges of breaks and workday

(more than 150% in all the cases), where the protocols will operate most of the time.

All these improvements are observed in terms of the EPDR in Figure 5.6, thus enhancing the
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general behaviour of the ad hoc networks with respect to the regular behaviour of the protocol.

5.4 Conclusion

Contribution provided in this chapter goes in the direction of improving the network converge time

resulting from a high level of ambient noise, while reducing the cost of routing overhead. As discussed

before, route availability increment with rates of ambient noise lower than 70%.

Although results have been obtained from OLSR, Babel and B.A.T.M.A.N, a number of conclu-

sions can be generalised and applied to any type of proactive routing protocol deploying meta-aspect

with Link-quality-based Adaptative Replication of pacKets algorithm (LARK).

Firstly, LARK algorithm is a novel strategy to fight against ambient noise, proposed as a comple-

ment to the existing solutions. Concretely, its novelty is on promoting the dynamic adaptiveness of the

routing protocol to the network environment to determine the optimum amount of routing information

that must be exchanged among nodes in a given moment.

Secondly, major contribution of this chapter is reengineering the proposed link-quality-based repli-

cation algorithm as an meta-aspect. The meta-aspect has the potential of improving its portability to

other different proactive routing protocols. Aspect-orientation has already showed its value in other

contexts of use, including embedded systems. However, the complexity of redeploying our algo-

rithm using AOP is something that has been achieved successfully. Aspect-oriented programming has

demonstrated its enormous capacity in design and implementation of new fault tolerance mechanisms.

In the figure 5.7 represents our proposal in the design of generic aspects, the meta-aspects. The

design phase of fault tolerance meta-mechanisms is done manually adapting the code of the fault

tolerance mechanisms. A meta-mechanism is included into the meta-aspect is able to be instantiated

for any routing protocol automatically. After preprocess the meta-mechanism with routing protocol

and weaving the files, it is possible to continue instantiating more meta-mechanisms in the routing

protocol, to resolve problems of the routing protocol. Finally, source files generated in previous phases

are compiled to obtain the routing protocol resilient version. Designers of fault tolerance do not have
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rou$ng'protocols'

FT'mechanisms'

FT'meta4mechanisms'
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protocol'
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rou$ng'protocol'
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Figure 5.7: Transformation phases of the fault tolerance meta-mechanisms and routing protocols

to concern in the routing protocols where the mechanisms will be applied. When the fault tolerance

mechanism is designed, it is included into a meta-aspect to represent the meta-mechanism ready to

be instantiated. Our approximation goes beyond of the application of a mechanism to mitigate the

specific problem of ambient noise, our approximation has been designed transform the manner to

design, implement and deploy fault tolerance mechanisms.





Chapter 6

Conclusions

At first of the work, we have encountered with the limitations in the deployment of the fault tolerance

mechanisms in the routing protocols. Firstly, each fault tolerance mechanism has to be implemented

specifically for a routing protocol. The cost of reusing a mechanism in multiple routing protocols is

considerable, even more maintaing code of a mechanism in multiple version of it in the protocols.

This leads to an enormous efforts and a consumption of time if changes are necessary in the imple-

mentations. Furthermore, the problem of specific implementations to enhance a system and problems

reusing the implementation, appears in other areas of engineering.

In previous chapters, 4 and applicability of aspect-oriented programming has been introduced to

improve dependability of ad hoc routing protocols. Since a modest problem where the potential of

aspect-oriented programming has been exhibited, a serious pathology has been mitigated in a elegant

manner following the same programming paradigm, without any limitation of proactive routing pro-

tocols. Aspect-oriented programming remains a paradigm rarely used in fault tolerance in ad hoc

networks, but this master thesis shows an interesting way to continue making progress in the area.

AOP benefits portability and maintainability of the fault tolerance mechanisms code integrated into

aspects. However, in the work of the adaptation of the two fault tolerance mechanisms into aspects,

we have been located the real potential of aspect-oriented programming to enhance resilience in ad

hoc networks.
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In this work, we demonstrated the limitation of the fault tolerance mechanisms for a specific

routing protocol vanishes with the use of meta-mechanisms integrated into the meta-aspects. The

newfangled meta-aspects has been proposed as efficient manner to implement and deploy a fault tol-

erance mechanism in multiple real proactive routing protocols. Separation of the concerns between

fault tolerance experts and routing protocol designers has been achieved. Meta-tags are the key in the

separation of concerns, and they are filled by routing protocol experts depending peculiarities of the

proactive routing protocols. Advantages as for example, ease of deployment, design, development and

maintainability, are attributes that have been enhanced throughout this work.

Future work is related in the development of fault tolerance mechanisms under the notion of meta-

aspects, achieving the generic meta-mechanisms. This new concept can be applied in the design of

new mechanisms as the encryption in the communications of the ad hoc routing protocols. As well

still remaining mechanisms which can be reused protocols of different nature (proactive vs. reactive).

Evaluation of performance of resilient versions of routing protocols in new kinds of devices also still

pending.

Actually, the use of genericity in the mechanisms to be integrated in different systems, is goal that

cover many fields in the engineering which can be resolved with the concepts of the aspect-oriented

programming.
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