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AGGREGATION OF FUZZY QUASI-METRICS

TATIANA PEDRAZA, JESUS RODRIGUEZ-LOPEZ AND OSCAR VALERO

ABSTRACT. In the last years fuzzy (quasi-)metrics and indistinguishability
operators have been used as a mathematical tool in order to develop appro-
priate models useful in applied sciences as, for instance, image processing,
clustering analysis and multi-criteria decision making. The both aforesaid
similarities allow us to fuzzify the crisp notion of equivalence relation when a
certain degree of similarity can be only provided between the compared ob-
jects. However, the applicability of fuzzy (quasi-)metrics is reduced because
the difficulty of generating examples. One technique to generate new fuzzy
binary relations is based on merging a collection of them into a new one by
means of the use of a function. Inspired, in part, by the preceding fact, this
paper is devoted to study which functions allow us to merge a collection of
fuzzy (quasi-)metrics into a single one. We present a characterization of such
functions in terms of *-triangular triplets and also in terms of isotonicity and
s-supmultiplicativity, where * is a t-norm. We also show that this charac-
terization does not depend on the symmetry of the fuzzy quasi-metrics. The
same problem for stationary fuzzy (quasi-)metrics is studied and, as a conse-
quence, characterizations of those functions aggregating fuzzy preorders and
indistinguishability operators are obtained.
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1. INTRODUCTION

Nowadays, aggregation functions have become an important area of research.
The necessity of merging the information, usually represented by means of numer-
ical values, contained in a collection of pieces of information into a single one for
making decisions in applied sciences, has lead to a growing interest on studying nu-
merical functions which allow this aggregation. A sample of the importance of this
topic is given by the fact that three monographs devoted to aggregation function
theory and its applications have been published in the last years (see [3, 4, 21]).

A prototypical example where aggregation function theory has been successfully
applied and, in addition, fuzzy binary relations have shown to be particularly very
useful is provided by the so-called fuzzy databases, i.e. databases where uncertain
information can be managed [41]. In this way, one of the basic features of a database
is the retrieval of data. However, a database system may not always be able to
satisfy a query. Then it is natural that a database affords flexible queries. Thus if a
query has not an exact result in the database, then it is desirable that the querying
system gives a collection of alternative results ordered by means of a certain distance
which measures how close is a data to match the criteria under consideration [41].
Following [46], given a query of n expressions (g1, ...,¢,) each one corresponding
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to a different field, and given a data record (x1,...,x,), where ¢;,z; € X; for all
1 € {1,...,n}, then it is necessary to combine the degrees of matching of each ¢;
with respect to z; to obtain an overall degree of matching computed by the querying
system. The degree of matching of each field is usually measured by means (see for
example [5, 6]) of a fuzzy binary relation R; : X; x X; — [0,1], ¢ = 1,...,n, and
the overall degree is obtained by a fuzzy binary relation R : (IT-, X:)* — [0,1]
defined as

R((q1,---,qn), (x1,...,2,)) = F(R1(q1,21), - -, Rn(qn, Tn))

where F : [0,1]™ — [0,1] is a function which reduces n values into a unique repre-
sentative (or meaningful) one.

In the light of this fact, it seems natural to wonder whether the aggregation
process must preserve a certain property when all fuzzy binary relations R; to
be merged satisfy the same property and, thus, that the aggregated fuzzy binary
relation R also verifies the aforesaid property. This fact led to Saminger, Mesiar
and Bodenhofer to study those conditions over an aggregation function F which
preserve the x-transitivity of the fuzzy binary relations R; to be merged, where
% is a t-norm. Thus, in [46], they proved a characterization of those aggregation
functions that preserve x-transitivity in terms of domination.

In [14], a related problem was considered by Drewniak and Dudziak. Concretely,
given a finite family of fuzzy binary relations R; : X x X — [0,1],i=1,...,n,on a
fixed set X and a t-norm %, they studied under which conditions the fuzzy binary
relation R : X x X — [0, 1] given by

R(q,z) = F(R1(¢,x), ..., Rn(g,x))

is #-transitive whenever R; is also x-transitive for all ¢ € {1,...,n}.

Observe that the fuzzy binary relation R is the so-called aggregated fuzzy re-
lation in the sense of [17]. Drewniak and Dudziak did a deep study on those
conditions over F' which preserve the main properties of the fuzzy binary relations
to be merged (properties that are of great interest in multiple-criteria decision
making) (see [13, 14, 15]). Again, in the aforesaid reference, a characterization of
those aggregation functions that preserve x-transitivity in terms of domination was
provided. However, this time the operation * was considered more general than a
t-norm and the function F' is not required to be an aggregation function.

When fuzzy equivalence relations (or indistinguishability operators) are under
consideration, a characterization of those functions that merge this particular case
of x-transitive fuzzy binary relations was given by Mayor and Recasens in terms of
x-triangular triplets (see [31]). Moreover, in the particular case in which the t-norm
x is continuous and Archimedean, characterizations of those functions that allow us
to aggregate fuzzy equivalence relations were given by means of additive generators
and functions preserving generalized metrics in [39, 42].

It must be stressed that the numerical value provided by a fuzzy equivalence
relation when applied to two elements, matches up with the degree of indistin-
guishability between them. However in those cases in which the similarity degree
between the elements must be measured with respect to a positive real parameter,
fuzzy equivalence relations are not a suitable tool. In order to avoid this handicap,
the notion of fuzzy (pseudo-)metric was introduced in the literature (see, [19, 27]).
This new type of similarity measures can be interpreted in a similar way as fuzzy
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equivalence relations but in this case the obtained measures are always relative to
the parameter value.

In the light of the exposed facts a natural question appears: if {R; : i =1,...,n}
is a collection of fuzzy metrics, instead of indistinguishability operators, what are
the conditions that F' must verify in order to guarantee that R or R is a fuzzy
metric? The aim of the present paper is to answer this question. It must be
pointed out that the applicability of fuzzy metrics is reduced because the difficulty
of generating examples and, thus, the absence of them in the literature. Thus a
response to the posed question is not only interesting from the aggregation theory
viewpoint, but also by the fact that the process of aggregation would allow us the
introduction of techniques to generate new fuzzy metrics from old ones.

We observe that this problem has been addressed in the crisp framework by
several authors. In particular, for metrics it has been mainly studied by Borsik and
Dobos (see [8, 44]) and by Castineira, Pradera and Trillas (see [39, 40]). In [32]
and [38], Mayor and Valero and Mifiana and Valero obtained a characterization
of those functions which aggregate a collection of quasi-metrics into a single one
in the spirit of Borsik and Dobos (see also [30]). It should be pointed out that a
function which aggregates quasi-metrics (on products) also aggregates metrics (on
products) but the converse is not true in general (see Corollary 7, Example 8 in
[32]). Nevertheless, these two concepts coincide in the fuzzy context as we will
demonstrate.

The structure of the paper is as follows. In Section 2 we recall basic facts
about t-norms and fuzzy (quasi-)metrics providing several illustrative examples.
Section 3 is devoted to study functions which preserve a certain properties of fuzzy
binary relations. Particular attention is paid to those functions which preserve -
transitivity of fuzzy binary relations, since fuzzy (quasi-)metrics satisfy a property
near to x-transitivity. Therefore we review a few results of [14, 15, 17, 31, 46]
characterizing these functions in terms of isotonicity and *-supmultiplicativity, or in
terms of x-triangular triplets. In these papers the authors have considered different
notions of a function preserving x-transitivity of fuzzy binary relations. In order
to distinguish them we have added ”on products” or ”on sets” to these notions.
Nevertheless, we will show that there is no difference between these two concepts.
Moreover, we obtain related results that will be useful in Section 4. Among others,
we will provide a new characterization of these functions in terms of an asymmetric
version of the concept of #-triangular triplet given in [31].

Last section, Section 4, treats the main objective of the paper which is to char-
acterize those functions which aggregate a family of fuzzy (quasi-)metrics into a
single one. We stress that in contrast with the crisp case, fuzzy metric aggregation
functions (on products or on sets) are also fuzzy quasi-metric aggregation functions
(on products or on sets). We also characterize functions which aggregate stationary
fuzzy (quasi-pseudo)metrics into a single one. From this, we deduce results about
aggregation of fuzzy preorders and indistinguishability operators.

2. Fuzzy (QUASI-)METRICS

In this section we collect some basic facts about fuzzy (quasi-)metrics in the
sense of Kramosil and Michalek [24, 27]. We start recalling the concept of a trian-
gular norm as well as its associated residuum which will play a central role in our
subsequent discussions.
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Definition 2.1 ([26]). A binary operation *: [0,1] x [0,1] — [0,1] is called a tri-
angular norm or a t-norm if ([0,1],*) is an Abelian monoid with unit 1, such that
a*b < c¢xd whenever a < ¢ and b < d, with a,b, ¢, d € [0,1].

If % is also continuous we will say that it is a continuous t-norm.

Triangular norms are considered as the translation of the conjunction logic op-
erator to fuzzy logic and it is a fundamental tool in fuzzy set theory. According to
[26], the next example introduces the four basic t-norms in the literature.

Example 2.2. The following are examples of continuous t-norms:

e x Ay :=min{x,y} (minimum t-norm)
e Lxpy:=x-y (product t-norm)
e kg y:=max{zx+y—1,0} (Lukasiewicz t-norm)
in{z, ifr=1lory=1
o TxpyY = min{z,y} - if @ . oy (drastic t-norm)
0 otherwise

Remark 2.3. Given two t-norms * and x we will write * < % whenever axb < axb
for every a,b € [0,1]. Notice that for any t-norm * we have that xp < x < A.

Next we recall the residuum associated to a t-norm.

Definition 2.4 ([2, 26]). For a given t-norm x, its residuation or residuation im-
plication is the function = [0, 1] x [0,1] — [0, 1] given by

x5 y=sup{z €[0,1]: 2z < y}, for all z,y € [0, 1].

The following example introduces the residuum associated to the four basic t-
norms exposed in Example 2.2.

Example 2.5. The residuations associated with the t-norms of Example 2.2 are
given by:

A {1 ife<y
o y= ;

y ifx>y’
* if z <
ox—P>y: L ?fa:_y;
4 o ifx>y
o z Xy =min{l —z+y,1};
e ry={t HrAL
y ifx=1

Related to the residuation associated to a t-norm one can found the notion of
biresiduation.

Definition 2.6 ([42]). The biresiduation <> of a t-norm * is the map <: [0,1] x
[0,1] — [0, 1] given by

x(ﬁ)y:mjn{xﬁy,yi)x} for all z,y € X.

Example 2.7. Biresiduations of t-norms given in of Example 2.2 are

A 1 ifx=y
o Ty = : ;
xANy ifzx#y
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N
ox<*—P>y:in;
e x & y=1—|z—yl;
o 28Dy = 1 ifx;él,y;él'

x Ay otherwise

Definition 2.8 ([24]). A fuzzy quasi-pseudometric (in the sense of Kramosil and
Michalek) on a nonempty set X is a pair (M, x) such that * is a t-norm and M is a
fuzzy set in X x X x [0, +00) such that for every z,y,z € X and t,s > 0 it verifies
(FQMl) M(JJ, Y, O) =0
(FQM2) M(z,z,t) =1 for all ¢t > 0;
(FQM3) M(x,y,t) «* M(y,z,s) < M(x,z,t+ s);
(FQM4) M(z,y,-):[0,00) — [0, 1] is left-continuous.
If M also verifies
(FQM2") M(z,y,t) = M(y,x,t) =1 for all t > 0 if and only if x = y;
then (M, «) is called a fuzzy quasi-metric.
If a fuzzy quasi-(pseudo)metric (M, %) also satisfies
(FM) M(ZE, Y, t) = M(ya Z, t)
for all z,y € X and all ¢t > 0 then (M, ) is said to be a fuzzy (pseudo)metric on
X.
A fuzzy (quasi-pseudo)metric space is a triple (X, M, ) such that X is a nonempty
set and (M, *) is a fuzzy (quasi-pseudo)metric on X.

Remark 2.9. Notice that if (X, M, *) is a fuzzy quasi-pseudometric space, it is
customary to ask the t-norm * to be continuous. This condition is needed in order
to construct a topology 7a; on X by means of the fuzzy quasi-pseudometric (M, *).
Indeed, it can be easily proved that the family of sets {Bp(z,¢e,t) : z € X,e €
(0,1),t > 0} where By(x,e,t) = {y € X : M(z,y,t) > 1 — €} is a base for the
topology Tas on X [19, 24].

Nevertheless, since we will not treat with topology in this paper we have removed
the condition of continuity for the t-norm * in the previous definition.

Remark 2.10. Observe that if (X, M, ) is a fuzzy quasi-pseudometric space then
by (FQM3) the function M(z,y, ) : [0, +00) — [0, 1] is isotone for every z,y € X.
The next example provides an illustrative instance of fuzzy quasi-pseudometric.
Example 2.11 ([43, Example 3]). Given a (quasi-pseudo)metric space (X, d), let
My be the fuzzy set on X x X x [0,00) defined by
t

My(z,y,t) = ¢ t+d(z,y) )
0 ift=0

ift>0

For every t-norm *, (Mg, *) is a fuzzy (quasi-pseudo)metric on X which is called
the standard fuzzy (quasi-pseudo)metric induced by d.

A prominent type of fuzzy (quasi-pseudo)metrics are the so-called stationary
fuzzy (quasi-pseudo)metrics defined as follows.

Definition 2.12 ([24]). A fuzzy (quasi-pseudo)metric space (X, M,*) is said to
be stationary (or (M,*) is a stationary fuzzy (quasi-pseudo)metric on X) if the
function M(z,y,-) : (0,+00) — [0,1] is constant for every z,y € X.
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Following examples yield instances of stationary fuzzy (quasi-)metrics.

Example 2.13. Let % be a t-norm. Define M=, M : [0,1] x [0,1] x [0, +00) —
[0,1] by

. * .ft
M>(a,yt) =0 Y] >O,
0 ift=0
. * if t >0
Mﬁ(x,y,t)z Ty 1 >
0 ift=0

for all z,y € [0,1] and all ¢ > 0. Then (Mg, ) is a stationary fuzzy quasi-metric
on [0, 1] (Proposition 2.45 in [42]) and (M‘i}, ) is a stationary fuzzy metric on [0, 1]
(Proposition 2.50 in [42]).

Example 2.14 (Example 18 in [23]). Given a t-norm x, let us define M™* : [0,1] x
[0,1] x [0, 4+00) — [0,1] by

1 ifr=yandt>0
M*(z,y,t) =Caxxy ifz#yandt>0.
0 ift=0

Then (M™*, ) is a stationary fuzzy metric on [0, 1].
3. FUNCTIONS PRESERVING PROPERTIES OF FUZZY BINARY RELATIONS

In [14, 17, 31, 46], it is studied the problem of characterizing those functions
which allow us to merge transitive fuzzy binary relations into a single transitive
fuzzy binary relation. This research is important for the aim of this paper since
condition (FQM3) of a fuzzy (quasi-)metric is a certain type of transitive property.
Then we start going over some results which appear in the aforementioned refer-
ences and obtaining some new facts which will be useful in our characterization of
those functions that merge fuzzy quasi-metrics given in the next section. We start
recalling some definitions.

Definition 3.1 ([17, 42, 50]). Let X be a nonempty set and * be a t-norm. A
fuzzy binary relation on X is a map F: X x X — [0,1].

A fuzzy binary relation F is said to:

(1) satisty the reflexivity property if E(x,z) =1 for all z € X;

2) satisfy the x-transitivity property if F(z,y)*E(y, z) < E(x, z) for all x, y, z € X;

3) satisfy the symmetry property if E(x,y) = E(y,x) for all x,y € X;

4) separate points if E(z,y) = 1 implies z = y for all z,y € X

5) asymmetrically separate points if E(z,y) = E(y,x) = 1 implies = y for all
z,y € X.

Observe that property (5) is called antisymmetry in [20]. Nevertheless, we have
preferred to rename it since the term antisymmetry is normally used in the sense
of Zadeh [50].

We next consider special kinds of fuzzy binary relations which satisfy some of
the previous conditions. We must mention that there is not a unified terminology
for these fuzzy binary relations in the literature so some of them receive different
names.
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Definition 3.2. Let % be a t-norm. A fuzzy binary relation £ on a nonempty set
X is said to be:

e an *-fuzzy preorder if it is reflexive and *-transitive [29];

e an x-fuzzy partial order if it is an x-fuzzy preorder which asymmetrically
separates points [20, 29];

e an x-indistinguishability operator if it is a symmetric x-fuzzy preorder [42,

50];
e an x-equality if it is an *-indistinguishability operator which separate points
[11, 26, 42].

Remark 3.3. Notice that, since we have avoided the continuity of the t-norm in
the axiomatic of fuzzy pseudometrics, we have that stationary fuzzy pseudometrics
and indistinguishability operators are equivalent concepts. Indeed, if R is an *-
indistinguishability operator on a nonempty set X then the function Mg : X x X X
[0,4+00) — [0, 1] given by

R(z,y) ift>0

MR(xuyvt):{O lft:()a

for all z,y € X, t > 0, determines a stationary fuzzy pseudometric (Mg, *) on X.
Conversely, if (X, M, ) is a stationary fuzzy pseudometric space then the fuzzy
binary relation Ry : X x X — [0,1] given by Ry(x,y) = M(z,y,1) is an *-
indistinguishability operator on X.

In a similar way, stationary fuzzy metrics and equalities (indistinguishability op-
erators which separate points) are also equivalent. Moreover, we can also establish
an equivalence between fuzzy preorders and stationary fuzzy quasi-pseudometrics.

We refer the reader to [10, 11, 22, 25, 42, 45, 49] for a comprehensive study on
the dual relationship between metrics and indistinguishability operators (see also
[18, 36, 37] for a recent treatment of this topic).

We next recall the concept of an (infinitary) aggregation function (see [1, 21, 35]).

Let I be a set of indices. We will denote the elements of [0, 1]! by boldface letters
a and we will write a; instead of a(i) for all i € I. Furthermore, [0, 1]/ becomes a
partially ordered set endowed with the partial order < given by a < b if a; < b;
for all i € I. We will denote by 1 and 0 the elements of [0, 1]/ such that 1; = 1 and
0;=0foralliel.

Notice that if * is a t-norm, then we can define as usual an operation ! on [0, 1)1
given by (a ! b); = a; xb; for all i € I.
Definition 3.4 (cf. [1, 21, 35]). Let I be a set of indices. An I-aggregation function
is a function F : [0,1]f — [0, 1] such that:
(1) F is isotone, i. e. if @ < b then F(a) < F(b);
(2) F(0)=0and F(1)=1.

In general, we will omit the reference to the set of indices I when we consider
an [-aggregation function.

We next introduce two different notions of functions which merge a family of
fuzzy binary relations into a single one.

Definition 3.5 (cf. [17, 31, 39, 46]). Let I be a set of indices and F : [0,1]f — [0, 1]
be a function. We say that:
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o F preserves properties Py, ..., P, of fuzzy binary relations on products if
whenever {(X;, E;) : ¢ € I} is a family of nonempty sets X; endowed with
fuzzy binary relations E; satisfying all the properties Pi,..., P, for all
i €I, then Fo Eisa fuzzy binary relation on [],.; X; also satisfying all
the properties Py, ..., P, where E : (ITie; Xi)* — [0,1]7 is given by

E(a, b)z = Ei(ai, bz)
for all i € 1.}

o F preserves properties Py, ..., P, of fuzzy binary relations on sets if when-
ever {E; : i € I} is a family of fuzzy binary relations E; on a fixed nonempty
set X satisfying all the properties Pj,..., P, for all ¢ € I, then F o F is
a fuzzy binary relation on X also satisfying all the properties Py, ..., P,
where E : X2 — [0,1] is given by

E(av b)’L = El (CL, b)
for alli € I.

Remark 3.6. Let Pi,..., P, be properties of fuzzy binary relations which are
hereditary, i.e. if F is a fuzzy binary relation on X satisfying all the properties

Py, ..., P, then its restriction to any subset of X also satisfies all the properties
Py,...,P,. Notice that if F': [0,1]] — [0, 1] preserves the properties Pi,..., P,
of fuzzy binary relations on products then it preserves the properties P, ..., P,

of fuzzy binary relations on sets. In fact, let E; be a fuzzy binary relation on a
nonempty set X satisfying all the properties Py, ..., P, foralli € I. Given a,b € X
we have that B

E(CL, b)z = Ei(CL, b) = E(a, b)l
where a,b € X' anda; = a, b; =bforalli € I. Since FoE|AXA = FoF then FoF
satisfies properties P, ..., P,, where A = {x € [[,.; X : ; = =; for all 4,5 € I}.

As exposed before, in [46] those aggregation functions which preserve x-transitivity
of fuzzy binary relations on products were characterized (see also [14]). Meanwhile,
in [31] it was analyzed which functions merge a family of #-indistinguishability
operators into a single one, which provided a characterization of those functions
preserving *-transitivity of fuzzy binary relations on sets. Surprisingly, we will
prove in Proposition 3.26 that there is no difference between those functions which
preserve x-transitivity of fuzzy binary relations on products and those which pre-
serve x-transitivity of fuzzy binary relations on sets (see Definition 3.5). Moreover,
although the results of [31, 46] (see also [14, 17]) consider functions defined on finite
products, their results are also valid for infinite products, so we state them in this
level of generality.

The following concept was introduced in [46] in order to characterize aggregation
functions which preserve s-transitivity of fuzzy binary relations on products.

Definition 3.7 (cf. [46]). Let F : [0,1]f — [0,1] and G : [0,1]7 — [0,1] be two
aggregation functions. We say that F' dominates G if for all ; ; € [0,1] with ¢ € I
and j € J then

G((F((wig)ier))jer) < F(G((ig)jer))ier)-

INotice that E depends on the family {(X;, E;) : i € I}. Nevertheless, in order to not overload
the notation we haven’t specified this dependence. We will do it throughout the paper.
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Remark 3.8. Let F : [0,1]f — [0, 1] be an aggregation function and * be a t-norm,
which is also an aggregation function. Then F' dominates * whenever

F(a)* F(b) < F(ax'b)

for every a,b € [0, 1]".

Then we will say that an arbitrary function F : [0, 1]7 — [0, 1] which satisfies the
above inequality is *-supmultiplicative (the terminology comes from the classical
property of superadditivity). If F' is x-supmultiplicative for every t-norm * then it
will be called supmultiplicative.

s-supmultiplicative functions appear in different contexts. For example, isotone
functions which are (*-)supmultiplicative are called (x-)closed, see Definition 7.1 in
[16]. Moreover, if F' is *-supmultiplicative and F(1) = 1 then it is called an *-fuzzy
monoid [7].

Next we provide a few examples of *-supmultiplicative functions.

Example 3.9. Let I be a set of indices.
e Given i € I the projection function P; : [0,1] — [0, 1] given by P;(x) = x;
is #-closed for every t-norm .
e The function Inf : [0,1]f — [0,1] given by Inf(x) = inf;c; x; is *-closed for
every t-norm .

Nevertheless, the function Sup : [0,1]! — [0,1] given by Sup(z) =
sup;c @; not x-supmultiplicative for any t-norm % whenever |I| > 1 (oth-
erwise is the identity function). Indeed, let j,k € I with j # k and let
x,y € [0,1] such that x; = 0 for all ¢ € I\{j} and «; = 1 meanwhile y;, = 0
for all i € I\{k} and y,, = 1. Then Sup(z) * Sup(y) = 1 £ Sup(z *! y) = 0.

e Given a t-norm *, n € N and k € [0, 1], the function T : [0,1]" — [0,1]
given by Ty(x) = k* a1 * ... * x, is x-closed.

e Given k > 0, the function F}, : [0,1]7 — [0, 1] given by Fi(a) = [[;c; a¥ is
* p-closed.

e Let n € N and consider functions f; : [0,1] — [0,1] which are isotone
for all ¢ € {1,...,n}. Then the function F' : [0,1]" — [0, 1] given by
F(z) = N\, fi(x;) is A-closed (in fact, it is minitive [21]).

The following result characterizes aggregation functions which preserve *-transiti-
vity of fuzzy binary relations on products. It is a modification of [46, Theorem 9]
(see also [14, Theorem 10]), where the result was for aggregation functions defined
over Upen[0, 1]™ and for fuzzy binary relations defined over a predetermined set X.
Nevertheless, the same proof is valid when the aggregation function is defined over
an arbitrary product [0, 1]7 and when the universe where the fuzzy binary relations
are defined is not the same and it is not fixed beforehand. This avoids to add the

assumption |X| > 3 which appears in Theorem 9 in [46] (and in Theorem 10 in
[14]).

Theorem 3.10 (cf. [46, Theorem 9]). Let F : [0,1]! — [0,1] be an aggregation
function and x be a t-norm. Then F preserves x-transitivity of fuzzy binary relations
on products if and only if F' dominates x (F is x-supmultiplicative).

In [13, 14, 15], it is studied in depth the problem of characterizing those functions
(not necessarily aggregation functions) which preserve basic properties of fuzzy bi-
nary relations defined over the same set as reflexivity, symmetry and *-transitivity,
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where * is an operation which is not necessarily a t-norm. In particular, among
others, a version of Theorem 3.10 was obtained in this framework removing the con-
ditions F(0) = 0 and F(1) = 1, implicitly included in the definition of aggregation
function (Theorem 10 in [14]).

Recently, in [31], the problem of characterizing those functions (not necessarily
aggregation functions) which preserve reflexivity, symmetry and -transitivity of
fuzzy binary relations defined over the same set was studied, i. e. it was studied
those functions which aggregate *-indistinguishability operators into a single one.
This characterization makes use of the concept of *-triangular triplet. This notion is
an adaption to the fuzzy context of the concept of triangular triplet which allows us
to characterize metric preserving functions, i. e. those functions whose composition
with an arbitrary metric is again a metric (see [44]). In this way, a triplet (a, b, c)
whose elements belong to [0,4+00) is a triangular triplet if a < b+4+¢, b < a+c
and ¢ < a+b. If (a,b,c) only satisfies that a < b + ¢ then we say that it is an
asymmetric triangular triplet (see [32]). Notice that if (X, d) is a metric space then
(d(z,y),d(y, 2),d(x, 2)) is a triangular triplet for every z,y,z € X.

Let us recall the notion of *-triangular triplet in the sense of [31].

Definition 3.11 ([31]). Let * be a t-norm and I be a set of indices. A triplet
(a,b,c) € ([0,1]1)3 is said to be *-triangular if

a*lbjc, axlc=<b and b*cha,

ai*biSCi, ai*CiSbi and bi*CiSCLi
for every ¢ € I. If (a,b,c) is #-triangular for every t-norm x then we say that
(a,b,c) is a triangular triplet.

The following examples provide instances of *-triangular triplets.

Example 3.12. Given a t-norm *, the triplet (a, b, a ! b) is x-triangular for every
a,b € [0,1]!. Furthermore, the triplet (a,a,1) is x-triangular for every a € [0, 1]!
and every t-norm x so it is triangular.

Example 3.13. Let * be a t-norm and let E be a fuzzy binary relation on a
nonempty set X such that E is symmetric and *-transitive. Given z,y, z € X then
(E(z,y), E(y, 2), E(x, z)) is an *-triangular triplet.

Remark 3.14 ([31, Remark 1]). Let x and * be two t-norms such that * < x, i. e.
axb < axb for every a,b € [0,1]. Then every *-triangular triplet is an x-triangular
triplet. Consequently, if we denote by 7. the set of all x-triangular triplets then
Tan € Te C Tsp, for any t-norm *. If |I| = 1 it is shown in Examples 1 and 2 in [31]
that
e T, = {(a,b,c) € [0,1]* : two of the elements are equal and the other is
greater than the other two};
e 7., ={(a,b,c) € [0,1]3 : a,b, c are different from 1 or one of them is 1 and
the other two coincide}.

See Figure 1 for a graphical representation of Tx, Tx,, Tey, Txp when |I] = 1.
The next result will be useful later on.

Lemma 3.15. Let a,b,c € [0,1]7 with a < b < ¢ and let * be a t-norm. Then
(a,b,c) is an *-triangular triplet if and only if b+ ¢ < a.
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FIGURE 1. (a) A-triangular triplets (b) *p-triangular triplets (c)
xp-triangular triplets (d) xp-triangular triplets

Proof. Necessity is obvious. Suppose now that b */ ¢ < a. Since @ < b < ¢ then
a*'b=<cand ax*’ c=<bso(a,b,c)is an *triangular triplet. O

Remark 3.16. Notice that a triplet (a, b, c) in [0,1]? is x-triangular if and only if
any reordering of the triplet is also x-triangular. Since [0, 1] is linearly ordered, we
can apply the above lemma to determine if a triplet in [0,1]3 is *-triangular only
by ordering the numbers.

An asymmetric version of the previous concept will be crucial in the next section
for our characterization of those functions which merge fuzzy (quasi-)metrics into
a new one.

Definition 3.17. Let * be a t-norm and I be a set of indices. A triplet (a,b,c) €
([0,1]7)? is said to be asymmetric x-triangular if a +' b < c.

If the triplet (a, b, ¢) is asymmetric *-triangular for every t-norm * then we say
that (a, b, ¢) is an asymmetric triangular triplet.

Observe that the preceding notion is an adaption to the fuzzy context of the
concept of asymmetric triangular triplet introduced in [32].
The following examples provide instances of asymmetric *-triangular triplets.

Example 3.18. For any t-norm #, (a,b,1) is always an asymmetric x-triangular
triplet for any a, b € [0, 1}! so it is an asymmetric triangular triplet. Furthermore, it
is an *-triangular triplet if and only if @ = b. This shows that for any t-norm x*, the
set of x-triangular triplets is strictly included in the set of asymmetric *-triangular
triplets.
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Example 3.19. Let (X, M, *) be a fuzzy (quasi-)metric space. Given z,y,z € X
and s,t > 0 we have that (M(x,y,t), M(y,z,s), M(x,z,t+ s)) is an asymmetric
x-triangular triplet.

Observe that this behaviour is different from the crisp case since, as we have pre-
viously observed, if (X,d) is a metric space then (d(z,y),d(y, z),d(z, 2)) is always
a triangular triplet.

Remark 3.20. Notice that (a,b,c) is a triangular (an asymmetric triangular)
triplet if and only if it is a A-triangular (an asymmetric A-triangular) triplet.

Example 3.21. Given a t-norm %, the set AT . of asymmetric x-triangular triplets
is the epigraph of the function F, : [0, 1]1 x [0, 1]f — [0, 1]! given by F.(a,b) = a*'b
for every a,b € [0,1}1, i. e.

AT, ={(a,b,¢) € ([0,1]")* :a+" b < ¢} = {(a,b,c) € ([0,1]")* : Fi(a,b) Z c}.

Therefore, when |I| =1 we can draw these sets for some usual t-norms:

FIGURE 2. (a) asymmetric A-triangular triplets (b) asymmetric
xp-triangular triplets (c) asymmetric xp-triangular triplets (d)
asymmetric *p-triangular triplets

The next notion will play a central role in our subsequent study.

Definition 3.22. Let * be a t-norm and I be a set of indices. A function F :
[0, 1]7 — [0, 1] preserves *-triangular (asymmetric x-triangular) triplets if (F(a), F(b),
F(c)) is an #-triangular (an asymmetric x-triangular) triplet whenever (a, b, ¢) so
is, where a, b, c € [0,1]".

If F preserves *-triangular (asymmetric *-triangular) triplets for every t-norm x
we will simply say that F' preserves triangular (asymmetric triangular) triplets.
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It is clear that if a function F' preserves asymmetric *-triangular triplets then it
preserves #-triangular triplets. However, in general the converse is only true for the
t-norm A (see Corollary 3.33) but not for any other t-norm as the next example
shows.

Example 3.23. Let % be a t-norm different from A. Then * is not idempotent (see
[26]) so there exists a € ]0,1[ such that @ * @ < «a. Let us consider the function
f:[0,1] — [0, 1] given by

« if0§x<%
fl@)=qa*xa ifj<z<l.
1 ifx=1

Let us check that f preserves x-triangular triplets. Let (a,b,c) be an arbitrary
triplet with all its elements different from 1. Then the triplet (f(a), f(b), f(c)) is
some of the following triplets or a permutation of them: (a * o, , @), (@ * a,a *
a,a), (@*xa,axa,ax*a), (a,a a). Notice that all these triplets are *-triangular.
Furthermore, if for example @ = 1 and (a, b, ¢) is an *-triangular triplet then b = ¢ so
(f(1), f(b), f(e)) = (1, f(), f(b)) also is an *-triangular triplet. Hence f preserves
x-triangular triplets

However, (1, %, 1) is an asymmetric *-triangular triplet but (f(1), f(3), f(3)) =
(1, a, % @) is not an asymmetric *-triangular triplet since a * o < av.

We can characterize the functions of one variable which preserve (asymmetric)
xp-triangular triplets as follows.

Proposition 3.24. Let f:[0,1] — [0, 1].

(1) f preserves *p-triangular triplets if and only if either f~*(1) = [0,1] or f~1(1) C
1}.

(2) ;[‘ greserves asymmetric *p-triangular triplets if and only if one of the following
conditions is satisfied:
@ 7710 =D
(b) F1(1) = &

(c) f~1(1) = {1} and f is isotone.

(

Proof. (1) Suppose that f preserves *p-triangular triplets. If f~1(1) # [0,1] and
f71(1) € {1} we can find a € [0,1] such that f(a) = 1 and b € [0, 1] such that
f(b) # 1. By Remark 3.14 (a, a, b) is an *p-triangular triplet so (f(a), f(a), f(b)) =
(1,1, f(b)) must be an *p-triangular triplet which is a contradiction since 1*p 1 =
1% f(b).

The converse is straightforward.

(2) Suppose that f preserves asymmetric *p-triangular triplets. In particular it
preserves *p-triangular triplets so, by (1), f~1(1) = [0,1] or f~1(1) C {1}. Suppose
that f=1(1) = {1}. Let a,b € [0,1] with a < b. Then (1,a,b) is an asymmetric *p-
triangular triplet so (f(1), f(a), f(b)) so is, i. e. f(1)*p f(a) = f(a) < f(b). Hence
f is isotone.

Conversely, if either f=1(1) = [0,1] or f~!(1) = & then f preserves asymmetric
*p-triangular triplets trivially. Suppose that f~1(1) = 1 and f is isotone. Let
(a, b, ¢) be an asymmetric x p-triangular triplet. If a # 1,b # 1 then f(a) # 1, f(b) #
1so f(a) *p f(b) =0 and (f(a), f(b), f(c)) is an asymmetric % p-triangular triplet.
Suppose that a = 1 so f(a) = 1. Since (1,b,¢) is an asymmetric *p-triangular
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triplet then b < ¢ so (f(a), f(b), f(c)) = (1, f(b), f(c)) is also an asymmetric *p-
triangular triplet due to the isotonicity of f. If b = 1 we can reason in a similar
way. ([l

Next we introduce the announced characterization, given in [31], of those func-
tions which aggregate x-indistinguishability operators, i. e. functions which com-
bine a collection of *-indistinguishability operators defined on the same set into a
single one, in terms of the preservation of *-triangular triplets.

Theorem 3.25 (Proposition 4 in [31]). Let F : [0,1]f — [0,1] be a function and
let x be a t-norm. Then F preserves reflexivity, symmetry and x-transitivity of
fuzzy binary relations on sets if and only if F(1) =1 and F preserves x-triangular
triplets.

If we pay attention on functions aggregating fuzzy binary relations which satisfy
each of the previous properties separately, we obtain the following characterizations,
including also the situation on products. In particular, we obtain a characterization
of functions which preserve x-transitivity of fuzzy binary relations in terms of the
preservation of asymmetric x-triangular triplets.

Proposition 3.26. Let F: [0,1)f — [0,1] be a function and * be a t-norm. Then:

(1) The following statements are equivalent:
(a) F preserves reflexivity of fuzzy binary relations on products;
(b) F preserves reflexivity of fuzzy binary relations on sets;
(¢) F(1) =1.
(2) F preserves symmetry of fuzzy binary relations on products and symmetry of
fuzzy binary relations on sets.
(8) The following statements are equivalent:
(a) F preserves x-transitivity of fuzzy binary relations on products (resp. -
transitivity and symmetry of fuzzy binary relations on products);
(b) F preserves x-transitivity of fuzzy binary relations on sets (resp. x-transitivity
and symmetry of fuzzy binary relations on sets);
(¢) F preserves asymmetric x-triangular triplets (resp. *-triangular triplets).

Proof. (1) and (2) are extremely easy so they are omitted.

Let us check (3). That (a) implies (b) is obvious by Remark 3.6. To prove
(b)=(c), let (a,b,c) be an asymmetric *-triangular triplet. Let us consider a set
X = {x,y} with two different elements and the x-transitive fuzzy binary relations
E; : X% = [0,1] given by E;(z,y) = a;, Ei(y,z) = b; and E;(x,z) = E;(y,y) = ¢;
for all i € I. Then {F; : i € I'} is a family of *-transitive fuzzy binary relations on
X. By assumption F o F is an *-transitive fuzzy binary relation on X so

FoE(a,y) « F o E(y,2) < F o B(x,x)

F((Ei(z,y))icr) * F(Ei(y,v))ier) < F((Ei(z,2))ier)
F(a)« F(b) < F(c).

Hence (F(a), F(b), F(c)) is an asymmetric #-triangular triplet.

In case that F' preserves #-transitivity and symmetry of fuzzy binary relations on
sets, let us consider an #-triangular triplet (a, b, ¢). Define a set X = {x,y, 2} with
three different elements and the *-transitive and symmetric fuzzy binary relations
E; on X given by E;(z,x) = E;i(y,y) = Ei(z,2) = 1, Ei(z,y) = Ei(y,z) = a;,
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Ei(y,z) = Ei(z,y) = b; and F;(x, z) = F;(z,2) = ¢; for all i € I. The proof to con-
clude that (F(a), F(b), F(c)) is an #-triangular triplet follows as in the asymmetric
case.

Let us prove (c) = (a). Let {(X;, E;) : i € I} be a family of nonempty sets X;
endowed with #-transitive fuzzy binary relations E; for all ¢ € I. Let us check that
F o E is an xtransitive fuzzy binary relation on [[,.; X; (if E; is also symmetric
for all i € I, then F o E is symmetric by (2)). Let @, y, z € [L;c; Xi. Since Ej is *-
transitive (resp. #-transitive and symmetric) then (E;(x;,y;), Ei(y;, 2i), Ei(x:, 2;))
is an asymmetric *-triangular triplet (resp. s*-triangular triplet) for every i € I.
Consequently, (a,b,c) is an asymmetric *-triangular triplet (resp. #-triangular
triplet) where a; = E;(x;,y,), bi = Fi(y;,2:), ¢i = Ei(x;,z;) for all ¢ € I. By
assumption (F(a), F(b), F(c)) is also an asymmetric *-triangular triplet (resp. *-
triangular triplet) so

F(a)« F(b) < F(e)
F((Ei(zi, y;))ier) * F((Ei(y;, zi))ier) < F((Ei(2i, 2i))ier)
FoE(x,y)* FoE(y,z) < FoE(z,z)

IN

so F o E is #-transitive. O

Remark 3.27. Observe that the equivalence between (b) and (c) in (1) as well as
(2), were proved in [13] when I has finite cardinality.

In the light of the preceding result, it is natural to wonder whether there exists
a property of fuzzy binary relations which is preserved on sets by a function but
not on products. The next result gives the answer.

Proposition 3.28. Let F : [0,1]1 — [0,1] be a function.

(1) F preserves the property of separating points of fuzzy binary relations on prod-
ucts if and only if F~1(1) C {1}.

(2) F preserves the property of separating points of fuzzy binary relations on sets
if and only if F~1(1) C ;e {a €[0,1) : a; =1}

Proof. (1) Suppose that F' preserves the property of separating points of fuzzy
binary relations on products. Suppose also that there exists an element a € [0, 1]7,
a # 1 such that F(a) = 1. Let us define Iy = {i € I :a; =1} and L ={i € I :
a; # 1} which is nonempty. Let us consider two different elements z,y and define

ey ifien
’ {z,y} ifiely’

If i € I define the symmetric fuzzy binary relation E; on X; as E;(z,z) = 1 =
a; meanwhile if ¢ € I, define the symmetric fuzzy binary relation E; on X; as
Ei(z,z) = Ei(y,y) = 1 and E;(z,y) = E;i(y,x) = a;. It is clear that {(X;, E;) :
1 € I} is a family of sets endowed with symmetric fuzzy binary relations which
separate points. Hence, by hypothesis, F' o Eisa symmetric fuzzy binary relation
on [[;c; Xi which also separates points. Let us consider z,t € [],.; X; such that

z; =x foralli € I and
P x lf’LEIl
Yy ifiely

el
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Since I is nonempty then z # t. Nevertheless
FoE(z,t) = F(Bi(zi,t:))ier) = F(a) = 1

so FoE does not separate points, which is a contradiction. Therefore F~(1) C {1}.

The converse is obvious.

(2) Suppose now that F' preserves the property of separating points of fuzzy
binary relations on sets. If we could find a € [0, 1] such that F(a) =1 but a; # 1
for all ¢ € I, let us consider a set X = {z,y} with two different elements and the
symmetric fuzzy binary relations E; on X given by FE;(z,z) = E;(y,y) = 1 and
Ei(z,y) = Ei(y,z) = a; for all i € I. Then {E; : i € I} is a family of symmetric
fuzzy binary relations on X which separate points. By assumption, F' o E is a
symmetric fuzzy binary relation on X which separates points but F o E(z,y) =
F((Ei(z,y))icr) = F(a) =1 which is a contradiction since x # y. Therefore, there
must exists ¢ € I such that a; = 1.

Conversely, let X be a set and let {F; : ¢ € I} be a family of fuzzy binary
relations on X which separate points. Let z,y € X such that F o E(z,y) =
F((Ei(z,y))icr) = 1. By hypothesis there exists j € I such that F;(z,y) = 1.
Since E; separates points then z = y. Hence F o E separates points. (Il

Remark 3.29. Notice that (1) implies (2) in the above proposition but the converse
is not true in general (if |I| = 1 then (2) implies (1)). You can consider the function
F :[0,1] x [0,1] — [0,1] given by F(z,y) = max{z,y}. Even more, it can be easy
to construct a function F' which preserves the property of separating points of
fuzzy binary relations on sets and F(1) # 1. For example, you can consider F :
[0,1] x [0,1] — [0, 1] given by F(1,0) =1 and F(x,y) = 0 whenever (z,y) # (1,0).

As pointed out before, in [46] it is proved a characterization of those aggregation
functions which preserve x-transitivity of fuzzy binary relations on products (see
Theorem 3.10) in terms of domination of *. On its part, Proposition 3.26 charac-
terizes functions preserving the same property in terms of *-triangular triplets but
without assuming any property on the function. Nevertheless, this induces to think
that there must be a relationship between the property of preserving (asymmetric)
x-triangular triplets and the property of domination. We discuss it in the following.

Proposition 3.30 (cf. Proposition 7 in [31]). Let F :[0,1]f — [0,1] be a function
and * be a t-norm. FEach of the following statements implies its successor:

(1) F preserves asymmetric x-triangular triplets;
(2) F preserves x-triangular triplets;
(3) F dominates *, i. e. F is x-supmultiplicative.

If F' is isotone then all the above statements are equivalent.

Proof. (1) = (2). This is straightforward.

(2) = (3). Let a,b € [0,1]!. Then (a, b, a *' b) is an *-triangular triplet. Hence
(F(a), F(b), F(a ' b)) so that is, i.e. F(a)* F(b) < F(a ! b). Then F is *-
supmultiplicative.

Suppose that F is isotone. Let us prove (3) = (1). Let (a, b, ¢) be an asymmetric
x—triangular triplet, i.e. ax! b < ¢. By assumption, F(a)* F(b) < F(a*!b). Since
F is isotone then F(a) * F(b) < F(a *! b) < F(c) so (F(a),F(b),F(c)) is an
asymmetric x—triangular triplet. (I
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Remark 3.31. As a consequence of Proposition 3.26 and the previous result, we
deduce that Theorem 3.10 remains true if we remove the assumptions F(0) = 0
and F(1) =1 as it was first proved in Theorem 10 in [14] when |I| is finite.

Notice that none of the converse of the implications of Proposition 3.30 are true
in general. A counterexample for (2)=- (1) is given in Example 3.23. Next example
shows that in general, (3) does not imply (2) for any t-norm different from A.

Example 3.32. Let * be a t-norm different from A so there exists a € ]0,1[ such
that o * @ < a. Let us consider the function f : [0,1] — [0, 1] given by

f(x)_{l f0<z<a

0 fa<a<l’

It is easy to check that f is x-supmultiplicative. In fact, given a,b € [0,1] if a > «
or b > « then f(a)* f(b) =0 < f(axb). If a,b are less than or equal to a then
axb<axa<aso fla)xf(b)=1x1=1= f(axb).

Nevertheless, (a, a, 1) is an *-triangular triplet but (f(«), f(a), f(1)) = (1,1,0)
is not.

Although we have just shown that the statements of Proposition 3.30 are not
equivalent in general, when one considers the t-norm A we can prove that a function
F preserves A-triangular triplets if and only if it preserves asymmetric A-triangular
triplets.

Corollary 3.33. Let F : [0,1] — [0,1] be a function. The following statements
are equivalent:

(1) F preserves asymmetric A-triangular triplets;
(2) F preserves A-triangular triplets;
(3) F is isotone and A-supmultiplicative (N-closed).

If |I| =1 then A-supmultiplicativity can be removed.

Proof. By Proposition 3.30 we only have to show that if F' preserves A-triangular
triplets then it is isotone. Let a,b € [0,1]/ with @ < b. Then (a,a,b) is a A-
triangular triplet so (F(a), F(a), F (b)) so is, i. e. F(a) A F(a) = F(a) < F(b) so
F is isotone.

If I| =1 and if F' is isotone then F(a Ab) = F(a) A F(b) for all a,b € [0,1].
Hence F' is A-supmultiplicative. O

Remark 3.34. Although isotonicity implies A-supmultiplicativity if |I| = 1, this
is not true in general. To show this, consider the function F : [0,1]*> — [0,1]
given by F(z,y) = = -y. It is clear that F is isotone. Nevertheless, it is not A-

supmultiplicative. Indeed, take for example (%, 1), (3, 3) € [0,1]%. Then

F5.5)NF(3,5) =5 £ F((5:3) AN (5, 9) = F(z.5) = 5
Notice that the above result holds due to the fact that t-norm A is the only

idempotent t-norm [26] (see Example 3.23 for a counterexample). Nevertheless, we
can also obtain the following result for an arbitrary t-norm.

Corollary 3.35. Let F : [0,1]1 — [0,1] such that F~1(1) # @ and let * be a
t-norm. Then F preserves asymmetric x-triangular triplets if and only if it is *-
closed.
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Proof. From Proposition 3.30 we only need to show that if F' preserves asymmetric
*-triangular triplets then it is isotone. Let x € [0,1]! such that F(x) = 1. Given
a,b € [0,1]! verifying @ < b then (a,z,b) is an asymmetric *—triangular triplet so
(F(a), F(x), F(b)) also is. Hence F(a) * F(x) = F(a) < F(b) and, therefore, F is
isotone. ]

The previous result is not true if we replace “asymmetric *-triangular triplets”
by “s-triangular triplets” (see Example 3.23). Furthermore, next example, which
is a slight modification of Example 3.23, shows that the assumption F~1(1) # & is
crucial in the previous corollary.

Example 3.36 (cf. Example 3.23). Let * be a t-norm different from A so there
exists @ € ]0,1[ such that a % o < . Let us consider the function f : [0,1] — [0, 1]

given by
« fo<z<i
f(x) = 1 2.
a*a 1f§§x§1

We can easily check that (f(a), f(b), f(c)) is x-triangular for every arbitrary
triplet (a,b,c). Therefore f preserves asymmetric *-triangular triplets. However,
since a * a < «, f is not isotone.

Remark 3.37. For the sake of clarity, we summarize the results obtained about
the preservation of *-transitivity. Let F : [0,1]! — [0,1] be a function and * be a
t-norm. Consider the following statements:

(1) F preserves *-transitivity of fuzzy binary relations on products;

(2) F preserves #-transitivity of fuzzy binary relations on sets;

(3) F preserves asymmetric *-triangular triplets;

(4) F preserves *-triangular triplets;

(5) F preserves x-transitivity and symmetry of fuzzy binary relations on products;
(6) F preserves *-transitivity and symmetry of fuzzy binary relations on sets;

(7) F dominates x (F' is -supmultiplicative).

From Proposition 3.26 we have that (1),(2),(3) are equivalent. Moreover, if
F~1(1) # @, by Corollary 3.35, these three statements are equivalent to “F is *-
closed”. Furthermore, (3) implies (4) which in turn is equivalent to (5) and (6).
Besides, (6) implies (7) by Proposition 3.30. But if F is isotone, we have that all
the previous statements are equivalent.

4. AGGREGATION OF FUZZY QUASI-METRICS

Let f:]0,+00) — [0,400) be a function. Given a metric space (X, d) we could
wonder when f od is also a metric. Although this problem goes back to a paper of
Wilson in 1936, and several results about it are scattered in the literature, Dobo§
gathered together all of them in a booklet [44] including fundamental results due
to him and his collaborators [8]. This problem can be generalized by studying
those functions which merge several metrics into a single one [44]. We observe that
functions which aggregate metrics have been applied to image segmentation [12].

All this theory was extended to quasi-metrics in [32], which differs from the sym-
metric one as we will next see. In this section, we focus our efforts on studying this
question in the fuzzy context. As observed before, in [31, 46] it is given a character-
ization of those functions which preserve transitivity of fuzzy binary relations. Let
us recall that condition (FQM3) of a fuzzy quasi-metric is near to transitivity of
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fuzzy binary relations. Hence, these characterizations will play an important role
in our subsequent study.

We first recall some important facts about metric and quasi-metric aggregation
functions on products.

Definition 4.1 ([8, 32, 44]). Given a set of indices I, a function f : [0, +o00)! —
[0,400) is called a (quasi-)metric aggregation function on products if whenever
(Xi,d;) is a (quasi-)metric space for all ¢ € I, then the function df = f o dis a
X; where d : (ITicr Xi)* = [0, +00) is given by

(quasi-)metric on [],c;

(A, y))i = di(x1,v:)
foralliec I, x,y e[, X

The next result provides sufficient conditions which make that a function aggre-
gates metrics.

Theorem 4.2 ([44]). If f : [0,4+00)! — [0,+00) is isotone, subadditive and
f~1(0) = {0} then it is a metric aggregation function on products.

However, the converse of the above proposition is not true in general [44, Ex-
ample 4] although it can be easily checked that every metric aggregation function
on products is subadditive. The following result characterizes metric aggregation
functions on products.

Theorem 4.3 ([8]). Let f :[0,4+00)! — [0,+00). Then f is a metric aggregation
function on products if and only if the following assertions hold:

o [7H0)={0};

o [ preserves triangular triplets.

The following characterization of quasi-metric aggregation functions on products
was obtained in [32].

Theorem 4.4 ([32]). Let f : [0,+00)! — [0,+0c0). The following statements are
equivalent:

(1) f is a quasi-metric aggregation function on products;
(2) £71(0) = {0} and f preserves asymmetric triangular triplets;
(3) £71(0) = {0}, f is subadditive and isotone.

Remark 4.5. Notice that every quasi-metric aggregation function on products is
a metric aggregation function on products. Nevertheless the converse is not true in
general (see Example 8 in [32]).

Now we focus our attention on the same problem but in the fuzzy context.
Notice that the concept of a (quasi-)metric aggregation function on products f :
[0, +00)! — [0, +00) means that if {(X;,d;) : i € I} is a family of (quasi-)metric
spaces then we can obtain a (quasi-)metric on the product [, ; X;. We could also
wonder what happens if X; = X for all i € I and we try to construct a metric on
X by means of f (we refer the reader to [33, 38] for a fuller treatment of this case).
Then, for our discussion in the fuzzy context, we will consider two different notions
of fuzzy (quasi-)metric aggregation functions.

Definition 4.6. A function F : [0,1)! — [0,1] is said to be:



20

T. PEDRAZA, J. RODRIGUEZ-LOPEZ AND O. VALERO

a fuzzy (quasi-)metric aggregation function on products if whenever x is a t-
norm and {(X;, M;, ) : i € I'}is a family of fuzzy (quasi-)metric spaces then
(F o M, ) is a fuzzy (quasi-)metric on [],.; X; where M : (]],.; Xi)? X

[0, +00) — [0, 1] is given by

i€l i€l

(M(ilt, Y, t))i = Mi(xia Yi, t)
for every @,y € [[;c; X; and t > 0.
If F only satisfies the above condition for a fixed t-norm * then it is said
to be an *-fuzzy (quasi-)metric aggregation function on products.
a fuzzy (quasi-)metric aggregation function on sets if whenever x is a t-norm
and {(M;,*) : i € I'} is a family of fuzzy (quasi-)metrics on the same set X
then (F o M, *) is a fuzzy (quasi-)metric on X where M : X2 x [0, +00) —
[0, 1] is given by

(M(Ia yvt))i = Mi(xvya t)

for every z,y € X and t > 0.
If F only satisfies the above condition for a fixed t-norm * then it is said
to be an *-fuzzy (quasi-)metric aggregation function on sets.

Remark 4.7. Tt is clear that if F : [0,1]f — [0,1] is a fuzzy (quasi-)metric aggrega-
tion function on products then it is a fuzzy (quasi-)metric aggregation function on
sets. Moreover, if |I| = 1 then the two concepts coincide. In this case, if (X, M, )
is a fuzzy (quasi-)metric space then (F o M, %) is a fuzzy (quasi-)metric on X and
we will say that F is a fuzzy (quasi-)metric preserving function.

Nevertheless, in general, if [I| > 1 then the concepts of fuzzy (quasi-)metric
aggregation function on products and fuzzy (quasi-)metric aggregation function on
sets are different as the next example shows.

Example 4.8.

if P; : [0,1] — [0, 1] denotes the i-th projection as in Example 3.9, then P;
is a fuzzy (quasi-)metric aggregation function on sets but not on products
(it is immediate to check that F' o M does not verify (FQM?2’) for every
family of fuzzy metrics).

if % is a t-norm and F; : [0,1]" — [0,1] is given by Fi(a1,...,a,) = a1 *
... % ay then F, is a fuzzy (quasi-)metric aggregation function on products;
The function f : [0,1] — [0, 1] given by

max{k,x if x
f(x):{oa{’ : if:cig

where k € (0,1) is a fuzzy metric preserving function (Proposition 3.2 in

[47]).
The function f : [0,1] — [0, 1] given by
kE+x
foy={rs1 TEEO
0 ifx=0

where k > 0, is an xp-fuzzy metric preserving function (cf. Example 15 in
[23] and Proposition 3.3 in [47]).
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Notice that one of the requirements of the characterization of a (quasi-)metric
aggregation function f is f~1(0) = {0}. As we will see, in the fuzzy context, this
requirement will be replaced by certain conditions on the core, that we next define.

Definition 4.9. Let I be a set of indices. The core of a function F : [0,1]f — [0, 1]
is the set F~1(1).

Observe that the core has played an important role in the preservation of the
property of separating points under an aggregation process of fuzzy relations (see
Proposition 3.28).

From now on, for a given x € [0, 1]}, we will set I, ;= {i € [ : x; = 1}.

We next introduce several conditions on the core that will be crucial in our study.

Definition 4.10. Let F : [0,1]f — [0, 1] be a function such that F~1(1) # &. Then
we say that:

e F has trivial core if F~1(1) = {1}.

e The core of F' is included in a unitary face if there exists ¢ € I such that
F~Y1) C{x € [0,1])} : z; = 1}, that is Necr-11) l= # 2.

e The core of F is countably included in a unitary face if for a given {a, :
n € N} C F~1(1) there exists i € I such that (z,); = 1 for all n € N, that
is N, en Lo, # 9.

e The core of F is finitely included in a unitary face if for a given {x1,...,x,} C
F~1(1) there exists i € I such that (z,,); = 1 for all m € {1,...,n}, that
sy Ia,, # 9.

e The core of F' is pairwise included in a unitary face if for any ¢,y € F~1(1)
there exists ¢ € I such that x; =y, =1, that is [, N I, # @.

e The core of F is included in the unitary boundary if F~*(1) C ;e {z €
[0,1)F : @; = 1}, that is I, # @ for every & € F~1(1).

Obviously, every of the above concepts imply its successor and if [I| = 1 all of
them are equal. Nevertheless, if |[I| > 1 we can find examples showing that all these
notions are different.

Example 4.11.
o A function whose core is included in a unitary face but it is not trivial.
Let us consider P; : [0,1)f — [0,1], the i-th projection where i € I and
|I| > 1. Then P, ' (1) = {x € [0,1]1 : 2; = 1} # {1}.
e A function whose core is countably included in a unitary face but it is not

included in a unitary face.
Let I with |[I| > Ng. Let F : [0,1]! — [0,1] given by

F(w):{1 if (i € Ty # 1} <N

0 otherwise

Let us show that the core of F' is countably included in a unitary face,
i e if {w, : n € N} C F1(1) then N,y le, # @. Otherwise I =
IN\NNpen Tz, = Upen I\ Iz, but since F(x,) = 1 then [I\I,, | < ¥ for all
n € Nso |I| = |U,en I \Iz, | < Ro which is a contradiction since || > Ro.

We next check that the core of F' is not included in a unitary face. Given
i € I let us consider a; € [0,1]! such that (a;); = 0if j =4 and (a;); =1
if i # j for all j € I. Then {a; : i € I} C F~Y(1) and ,;o; la, = @ s0
Naeer11) o = -

icl
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e A function whose core is finitely included in a unitary face but it is not
countably included in a unitary face.
We only have to take I with |I| = Xg and define F : [0,1]] — [0, 1] as

Flz) = 1 if|{iel:ax; #1}| is finite
)10 otherwise '

Arguing similarly as in the previous example, it can be proved that the core
of F is finitely included in a unitary face but it is not countably included
in a unitary face.

e A function whose core is pairwise included in a unitary face but it is not
finitely included in a unitary face.
Let us consider F : [0,1]% — [0,1] given by

1 fe=y=lory=z=1lorz=2z=1
0 otherwise

F(Iayvz)_{

It is obvious that the core of F' is pairwise included in a unitary face.
Nevertheless, 1(1,1,0)N(1,0,1)"(0,1,1) = 9 so the core is not finitely included
in a unitary face.

o A function whose core is included in the unitary boundary but it is not
pairwise included in a unitary face.
Let us consider F : [0,1]? — [0,1] given by

Fla,y) = 1 ifx=1lory=1
Y= 0 otherwise '

Obviously the core of F is included in the unitary boundary but, for in-
stance, I(1,0) N I(o,1) = @ so the core is not pairwise included in a unitary
face.

However, if we restrict the cardinality of I or we impose conditions on the func-
tion F', some of the above definitions coincide.

Proposition 4.12. Let I be a set of indices and F : [0,1]1 — [0,1] be a function.

(1) If |I] is countable, then the core of F is included in a unitary face if and only
if it is countably included in a unitary face.

(2) If |I] is finite, then the core of F is countably included in a unitary face if and
only if it is finitely included in a unitary face (which is equivalent to that the
core is included in a unitary face).

(3) If |I| =1 then all the concepts of Definition 4.10 coincide for F.

(4) If F is x-supmultiplicative then the core of F is finitely included in a unitary
face if and only if the core of F is included in the unitary boundary.

Proof.

(1) We only prove the sufficiency since necessity is obvious. Suppose that we
cannot find j € I with F~1(1) C {z € [0,1]! : &; = 1}. Then for each
Jj € I there exists € F~!(1) such that (#7); # 1. Hence {a/ : j € I} C
F~1(1) is a countable set but for every i € I we have that (x?); # 1 which
contradicts our assumption.

(2) As above we only prove the sufficiency. Let {z,, : n € N} C F~1(1). Since

n

the core of F' is finitely included in a unitary face then I, :== (" _; I, # @
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for all n € N. Then I, is nonempty, finite and I,11 C I, for all n € N.
Hence N, cn In = Npen lz, # @ so the core of F is countably included in
a unitary face.

(3) This is trivial.

(4) We only have to prove the sufficiency. Suppose that the core of F' is included
in the unitary boundary and let {x1,...,z,} C F~!(1). Since F is *-
supmultiplicative then F(xy ' ...+l x,) > F(xy) *...% F(x,) = 1% ... %
1=1sox «...«l &, € F~1(1). By assumption I, . ., # @. Since
Iyt wie, =\ _; Iz, we conclude that the core of F is finitely included
in a unitary face.

O

Remark 4.13. Observe that from the proof of (4) we can also deduce that if F is
x-supmultiplicative then the core of F' is an abelian semigroup with the operation
*.

Definition 4.14 ([21, 35]). Let I be a set of indices. A function F' : [0,1]! — [0, 1
is said to be left-continuous if whenever (z,), is nondecreasing sequence in [0, 1)1
converging to = € [0,1]! in the product topology then (F(z,)), converges to F(z).

We next characterize the fuzzy quasi-metric aggregation functions on products.
Surprisingly they are the same than the fuzzy metric aggregation functions on
products and, in addition, these functions turn to be aggregation functions, i. e.
isotone functions verifying that F'(0) = 0 and F(1) =1 (see Definition 3.4).

Theorem 4.15. Let F : [0,1]f — [0,1] be a function and * be a t-norm. The

following statements are equivalent:

(1) F is a (x-)fuzzy quasi-metric aggregation function on products;

(2) F is a (x-)fuzzy metric aggregation function on products;

(3) F is an aggregation function, (x-)supmultiplicative, left-continuous and F has
trivial core;

(4) F(0) = 0, F is left-continuous with trivial core and F preserves asymmetric
(x- )triangular triplets.

Proof. (1)= (2). This is obvious.

(2)= (3). We first check that F' is an aggregation function. We begin proving
that F is isotone. Let a,b € [0,1]7 such that @ < b. Let us consider X = {c,d}
a set with two different elements and for every ¢ € I, let us define a fuzzy metric
(N, %) on X as

0 ift=0

1 ifr=yandt >0

0 ifryand0<t<1.
a; ifrxFyandl<t<?2
by ifx£yand2<t

Ni('rvyat) =

Then {(X,N;, %) : i € I} is a family of fuzzy metric spaces so (F o N,%) is a

fuzzy metric on X7. Consequently, if we fix &,y € X! then F o N(x,y,-) is an
increasing function. In particular, if we choose ¢,d € X' such that ¢; = ¢ and
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d; = d for every i € I, we have that

FoN(e,d,2) < FoN(cd,3)
F((Ni(ci,di,2))icr) < F((Ni(ci,di, 3))ier)
Fla) < F(b).

Therefore, F' is isotone.

We check now that F(0) = 0 and F has trivial core, i. e. F~1(1) = {1}. Let
(X, M, *) be an arbitrary fuzzy metric space, x € X and ¢t > 0. Considering the
family of fuzzy metric spaces {(X;, M;, *) : i € I} where (X;, M;,*) = (X, M, %) for

all i € I, we have that (F o M, %) is a fuzzy metric on X! so given & € X! with

x; =z forallie Tandt > 0thenl=FoM/(x,x,t) = F(M(z,z,t))icr) = F(1).
Furthermore, 0 = Fo M(m, x,0) = F(0). Suppose that we can find a € [0, 1]7 such
that F(a) = 1 but a # 1. Consider the family of fuzzy metric spaces {(X;, M;, *) :
i € I} where X; = [0,1] and (M;,*) = (M*, %) is the fuzzy metric of Example
2.14. Then (F o M*, ) is a fuzzy metric on [0,1]f, but given ¢t > 0 we have that
FoM*"(1,a,t) = F(M*(1,a4,t))icr) = F(a) = 1. Therefore a = 1 by (FQM2’).
This contradicts our assumption, so F' is an aggregation function with trivial core.

We next prove that F' is left-continuous. Let us consider a sequence (&, )nen
in [0,1]7 such that t, < ¢, for all n € N. We also denote by s the supremum
of this sequence. Then (t,i)nen = ((t5)i)nen converges to s; for all ¢ € I. Let
X = {a,b} be a set with two different elements. Then given i € I, define M; :
X x X x[0,400) = [0,1] as

0 ift=0
1 fe=y,t>0
0 ifx;éy,()<t§%

. 1 1
th' 1fx7éy’1_n_+l<t§1_n_+2
S; ifx#£y,t>1

Mi(xayvt) =

It is easy to check that (X, M;, ) is a fuzzy metric space for all ¢ € I. Then
(F o M, %) is a fuzzy metric on X! associated with the family of fuzzy metric

spaces {(X,M;,*) : i € I}. Consequently F o M(a,b,-) is left-continuous where

a; = a and b; = b for all i € I. Hence (F o M(a,b,1 — %H))neN converges to
Fo M(a, b,1), but

FoM (a, b1— n—li-Q) =F ((Mi (a,b, - i 2))@) = F((tni)icr) = F(ty)

for every n € N and

FoM(a,b,1) = F((M;(a,b,1))icr) = F((si)ics) = F(s).

Consequently F' is left-continuous.

Let us check that F is x-supmultiplicative. Let a,b € [0,1]!. Define I} = {i €
I:ai;é1,b1-751},]2z{iEI:ai;é1,bi:1},I3={i€I:ai:1,bi751},
I, ={i €1:a; =>b; =1}. Following a similar idea to the proof of Theorem 9 in
[46], let us consider a fixed set X = {1, 22,23} with three different elements and
a fuzzy metric (M;, *) on X given by
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o ific Il then

0 ift=0

1 ife=y,t>0
M;(z,y,t) = M;(y,x,t) =< a; ifx=x1,y=a2,t>0;

b; ifx=x9,y=23,t>0

a; * b; ifI:Ihy:I:;,t>O

o ific IQ then

0 ift=0
ifx=y,t>0
a; ife=x1,y=m2,t>0

M; Z, ,t =M; ,:Z?,t = ;
i(7,y,t) i(y ) aixa; ifx=x0,y=1a3 0<t<1

1 ife=xy, y=x3,t>1
a; ife=x1,y=x3,t>0
e if ; € I3 then
0 ift=0
1 ife=y,t>0
b, xb; fr=x,y=22,0<t<1
Mi(z,y,t) = Mi(y, ) = { 170 L0 TV T IR A 0=
1 fe=x1,y=m9,t>1
b; ifx=a, y=w3,t>0
b; ife=x1,y=x3,t>0

oifi€I4then

ift=0

ife#y 0<t<1
ifey t>1 '
fe=y,t>0

Mi(xvyat) = Ml(yaxat) =

_ = O O

Then {(X,M;,) : i € I'} is a family of fuzzy metric spaces. Hence F o M is a
fuzzy metric on X. Let us define @1, 2, x3 € X! such that (z;); = x; for all j € T
and ¢ = 1,2,3. Then we have that

(FoM)(xz1,22,2) % (FoM)(xs,x3,2) < Fo M(ml,w3,4)
F((Mi(z1,22,2))ier) x F((M;(22,23,2))icr) < F((Mi(21,25,4))icr)
F(a)* F(b) < F(a+'b)

and, thus, F' is x-supmultiplicative.

(3) = (4) This is a direct consequence of Corollary 3.35.

(4) = (1) Let {(X;, M;,*) :i € I} be a family of fuzzy quasi-metric spaces. Let
us check that (F o M, *) is a fuzzy quasi-metric on J],.; X;.

Since F is an aggregation function then Fo M (z,y,0) = F((M;(z;,y;,0))icr) =
F(0) = 0 for every x,y € [[;c; Xi so (FQM1) holds. Moreover, if ¢ > 0 then
FoM(z,x,t) = F(My(zi,2i,1))ier) = F(1) = 1 for all & € [[,; Xi. On the

other hand, given x,y € [[,o; X, if Fo M(m,y,t) = FoM(y,z,t) =1 for all
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t > 0 then F((M;(x;,y;,t))icr) = F((M;(y;,xi,t))icr) = 1 for all ¢ > 0. Since F
has trivial core we have that for every i € I, M;(x;,y,,t) = M;(y;, z;,t) = 1 for all
t>0sox;, =y, foralliel, i e. x=1y. Thus (FQM2’) holds.

Moreover, given x,y,z € Hiel X; and t,s > 0 we have that M;(x;,y,,t) *
Mi(y;, zi,8) < Mi(z;, zi,t+s) foralli € I,i. e. ((M;(xi,y;,t))ier, (Mi(y;, Zi, 8))icr,
(M;(x;, zi,t + 8))icr) is an asymmetric *-triangular triplet. Then, by assumption,
(F((Ml(mla Yi t))iGI)v F((Ml(ym Ziy S))iGI)a F((Ml(mla zi,t + S))ZGI)) is an asym-
metric *-triangular triplet so

F((Mi(2i,y;,1))ier) * F(Mi(y;, 26, 5))ier) < F((Mi(i, 23, + 5))ier)

and, thus, (FQM3) holds for F o M.
Finally, (FQM4) is clear since F is left-continuous and M;(z,y,-) is left-conti-
nuous and isotone for every z,y € X and every i € I. O

Remark 4.16. The above result shows that, in contrast with the crisp case, fuzzy
metric aggregation functions on products coincides with fuzzy quasi-metric aggre-
gation functions on products.

We also observe that aggregation functions with trivial core are called in [34]
aggregation functions which have no unit multipliers.

Example 4.17.

e Given a set of indices I, the function Inf : [0,1]! — [0, 1] given by Inf(z) =
inf;es x; is a left-continuous (*-)supmultiplicative aggregation function with
trivial core for every t-norm . Then it is a fuzzy (quasi-)metric aggregation
function on products.

e Given a t-norm * and n € N, the function Fy : [0,1]™ — [0, 1] given by
Fi(a1,...,an) = a1 *...*ay is a left-continuous (x-)supmultiplicative ag-
gregation function with trivial core. So its is an -fuzzy (quasi-)metric
aggregation function on products.

e The function F : [0,1] — [0,1] given by F(z) = /z is a continuous *p-
supmultiplicative aggregation function with trivial core. Consequently, it
is an *p-fuzzy (quasi-)metric preserving function.

e The function F : [0,1] — [0,1] given by F(x) = 22 is a continuous #i-
supmultiplicative aggregation function with trivial core. Hence it is an
«1,-fuzzy (quasi-)metric preserving function.

The following result shows that there is a huge quantity of functions which are
N-fuzzy (quasi-)metric preserving.

Corollary 4.18. Let F : [0,1] — [0,1] be a function. Then F is a N—fuzzy
(quasi-)metric preserving function if and only if F is an aggregation function, left-
continuous and F' has trivial core.

Proof. This follows from Theorem 4.15 and Corollary 3.33. O

Next we give a characterization of fuzzy (quasi-)metric aggregation functions on
sets.

Theorem 4.19. Let F : [0,1]f — [0,1] be a function and * be a t-norm. The
following statements are equivalent:

(1) F is a (x-)fuzzy quasi-metric aggregation function on sets;
(2) F is a (x-)fuzzy metric aggregation function on sets;
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(3) F is an aggregation function, (x-)supmultiplicative, left-continuous and the core
of F' is countably included in a unitary face;

(4) F(0) =0, F(1) = 1, F is left-continuous, the core of F is countably included
in a unitary face and F preserves asymmetric (x-)triangular triplets.

Proof. (1) = (2). This is clear.

(2) = (3). Everything follows with a simple adaptation of the proof of Theorem
4.15 except for proving that the core of F' is countably included in a unitary face.
Assume, for the sake of contradiction, that we can find a sequence {x,, : n € N} C
F~1(1) such that for any i € I we could find n; € N such that (z,,); # 1. Let
us consider a set X = {a, b} with two different elements and for each i € I define
M;: X x X x[0,+00) — [0,1] as

0 ift=0

1 if e =y, t>0
Mi(z,y,1) = Lo

(1) ifx £y t>1

Notice that (X, M;,«) is a fuzzy metric space for all ¢ € I. We only show that
(FQM2’) holds since the other conditions follow trivially. If M;(x,y,t) = 1 for
all £ > 0 then z = y. Otherwise, we can suppose that * = a and y = b so
M;(a,b,t) =1 for all ¢ > 0. Nevertheless, this is impossible because M;(a, b, n%) =
(1)i % ... % (Tp,+1); £ 1 since (xp,); # 1 (recall that for any t-norm, a xb = 1 if
and only if a = b =1).

By assumption, (F o M, x) is a fuzzy metric on X. However, given t > 0 and
since F' is (*-)supmultiplicative we have that

FoM(a,b,t) = F((Mi(a,b,t)ic1)) = F(x1 ' ...%T xpy1) > F(x1) % ... % F(Tpyi1)
=1*x...x1=1

for some n € NU {0}. Since a # b this contradicts (FQM2’).

(3) = (4). This is a direct consequence of Corollary 3.35.

(4) = (1). This is similar to (4)= (1) of Theorem 4.15 and the only difference
is with proving condition (FQM2’). Let {(X, M;,*) : i € I} be a family of fuzzy
quasi-metric spaces. Let z,y € X such that Fo M(x,y,t) = F o M(y,z,t) = 1
for all t > 0. By Corollary 3.35 F' is x-supmultiplicative. Hence we have that
1 =1%x1=F(M(z,y,t) x F(M(y,x,t)) < F(M(z,y,t) ! M(y,z,t)) for all
t >0, s0 F((M;(z,y,t))icr * (M;(y,x,t))icr) = 1. Define x,, = (M;(x,y, %))iel w1
(M;(y, 2, 1))icr. Then {x, : n € N} C F~1(1). By assumption there exists i € I
such that (z,); = 1 for all n € N, i. e. M;(z,y, L) * M;(z,y,L) = 1 for all
n € N. Hence M;(z,y, L) = Mi(z,y,2) = 1 for all n € N. Since M;(z,y,-) and
M;(y, z,-) are increasing we deduce that M;(z,y,t) = M;(y,z,t) =1 for all ¢ > 0.
Consequently, 2 = y since (M;, %) is a fuzzy quasi-metric. (]

From the previous theorems we can obtain the following result which can be
easily proved independently (see Remark 4.7).

Corollary 4.20. Let F : [0,1)f — [0,1] be a function and x be a t-norm. If F is
a (x-)fuzzy (quasi-)metric aggregation function on products then it is a (x-)fuzzy
(quasi-)metric aggregation function on sets.

Moreover, if |I| =1 then the converse is also true.
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As already observed, the converse of the previous corollary is not true in general
(see Example 4.8).

In case that we treat with (x-)fuzzy (quasi-)pseudometric aggregation functions,
there is no difference if they are considered on products or on sets as the next result
shows.

Theorem 4.21. Let F : [0,1]f — [0,1] be a function and * be a t-norm. The
following statements are equivalent:

(1) F is a (x-)fuzzy quasi-pseudometric aggregation function on products;

(2) F is a (x-)fuzzy pseudometric aggregation function on products;

(8) F is a (x-)fuzzy quasi-pseudometric aggregation function on sets;

(4) F is a (x-)fuzzy pseudometric aggregation function on sets;

(5) F is an aggregation function, (x-)supmultiplicative and left-continuous;

(6) F(0) =0, F(1) =1, F is left-continuous and F preserves asymmetric (x-)triangular
triplets.

Proof. (1)=(2), (1)= (3), (2)= (4) and (3) = (4) are obvious. (4) = (5) is similar
to the proof of (2) = (3) in Theorem 4.19 but in this case we cannot prove that
the core of F' is countably included in a unitary face. (5) = (6) is a consequence of
Corollary 3.35. (6) = (1) follows as implication (4)=(1) of Theorem 4.15 but since
in this case we only need to prove (FQM2), it is not necessary that F has trivial
core. 0

Next we discuss the case in which F only aggregates stationary fuzzy (quasi-)metrics,
in the sense of Definition 4.6.

Theorem 4.22. Let F : [0,1]f — [0,1] be a function and * be a t-norm. The
following statements are equivalent:

(1) F is a (x-)stationary fuzzy quasi-metric aggregation function on products;
(2) F is an aggregation function, (x-)supmultiplicative and F has trivial core;
(3) F(0) =0, F has trivial core and F preserves asymmetric (x-)triangular triplets.

Proof. (1) = (2). That F(0) =0 and F~!(1) = {1} follows as in Theorem 4.15.

Let a,b € [0,1] such that @ < b. Given a t-norm #, let us consider the family
of stationary fuzzy quasi-metric spaces {([0,1], M;,*) : i € I} where (M;,*) =
(M~ %) is the stationary fuzzy quasi-metric of Example 2.13. Then (F o M, %) is
also a fuzzy quasi-metric on [0, 1]7 so for any ¢, s > 0 we have that

FoM(1,a,t)«FoM(a,b,s) < FoM(1,b,t+s)
F((M7(1,bi.t+9))ier)

F((M™(1,a,t))ier) * F(M ™ (as, bi, 8))ier)
F((1 5 ai)ier) * F((a; = bi)ier) < F((1 5 b;)ier)
F(a) = F(a)« F(1) < F(b).

Whence we obtain that F' is isotone.
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Next we show that F is (x-)supmultiplicative. If a, b € [0, 1)! are arbitrary, then
FoM(1,a,t)«FoM(a,ax"bs)<FoM(1,ax'bt+s)
F((15 ai)ier) * F((a; = a; xby)ier) < F((1 5 a;  b;)ier)
F(a)* F((a; > a; xb;)ic;) < F(a ' b)
F(a)* F(b) < F(a) * F((a; = a; *b;)icr) < F(a ' b)

where in the last implication we have used that F is isotone and b; < (a; — a; *b;)
for all i € I. Hence F' is (x-)supmultiplicative.

(2) = (3). This is a direct consequence of Corollary 3.35.

(3) = (1). This is similar to the proof provided in Theorem 4.15 for (4) = (1),
except that in this case left-continuity is trivial. ([

It seems natural to wonder what is the relationship between (x-)stationary fuzzy
quasi-metric aggregation function on products and (x-)fuzzy quasi-metric aggrega-
tion function on products. In view of Theorems 4.19 and 4.22, it is clear that every
(#-)fuzzy quasi-metric aggregation function on products is always a (x-)stationary
fuzzy quasi-metric aggregation function on products. Next example brings to light
that the converse is not true.

Example 4.23. Let us consider the function f : [0,1] — [0, 1] given by

0 fo<z<l
ﬂ@_{l fo=1

It is obvious that f is an aggregation function with trivial core and f preserves
asymmetric triangular triplets. Consequently, by Theorem 4.22, f is a stationary
fuzzy quasi-metric aggregation function on products. Nevertheless, it is not left-
continuous. Indeed the sequence (1 — 1),cn converges to 1 but (f(1 — 2))pen =
(0)nen does not converge to f(1) = 1. Hence, by Theorem 4.15, f is not a fuzzy
quasi-metric aggregation function on products.

Next we address the case in which F' only aggregates, in the sense of Definition
4.6, stationary fuzzy metrics.

Theorem 4.24. Let F : [0,1) — [0,1] be a function and * be a t-norm. The
following statements are equivalent:

(1) F is a (x-)stationary fuzzy metric aggregation function on products;
(2) F(0) =0, F has trivial core and preserves (x-)triangular triplets.

Proof. (1) = (2). That F(0) =0 and F~!(1) = {1} follows as in Theorem 4.15.

Let * be a t-norm and (a, b, ¢) be an *-triangular triplet. Let us consider I =
{’L'Ellai#1,bi#1,Ci7é1},IQZ{Z'EI:CM:1,bi:Ci§£1},13:{i€I:bi:
l,ai:ci;él},L;:{iGI:ci:1,ai:bi7£1}andI5:{i€I:ai:bi:ci:
1}. Notice that I = U_, I (see Remark 3.14). Let us consider a set with three
distinct elements X = {x1,z2,23} and let us define

X ifiel
{zo, 3} ifiel
{1, 20} ifielzuly
{z1} itiels

X, =
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Given i € I, we also define M/ : X x X x [0,4+00) — [0, 1] as follows
0 ift=0
ifx=y,t>0
M(x,y,t) = M!(y,x,t) = a; ifox=x1,y=m2t>0.
b, ifx=uw,y=u23,t>0

—_

¢, ifx=z,y=w3,t>0

Given i € I define M; as the restriction of M/ to X;. Then {(X;, M;,«) :i € I}
is a family of stationary fuzzy metric spaces. By assumption, (J],c; Xs, F o M, *)

is also a stationary fuzzy metric space. Let us define x,y,z € [[,c; X; as
&1 ifie HUI3UILUI; ) ifieUulbUI3Uly
Ty = e ) i P
Zo ifi € I xr1 if ¢ € Iy

rxy ifielj Ul
zi=qxy ifi1€els
ry ifielyUls

For any t, s > 0, it is straightforward to check that M;(x;,y,,t) = a;, M;(y,;, z:, s) =
b; and M;(x;, z;,t + s) = ¢; for all i € I. Hence

Since (FOM, *) is stationary, you can prove in a similar way that F'(b)«F(c) < F(a)
and F(¢)xF(a) < F(b) only by permuting «, y and z. Consequently (F(a), F(b), F(c))
is an *-triangular triplet.

(2) = (1). This is straightforward. O

Observe that every (x-)stationary fuzzy quasi-metric aggregation function on
products is always a (x-)stationary fuzzy metric aggregation function on products.
However, the next example illustrates that (x-)stationary fuzzy metric aggregation
functions on products are not necessarily isotone and, thus, they are not necessarily
(*-)stationary fuzzy quasi-metric aggregation functions on products.

Example 4.25. Let * be a t-norm different from A. Since * is not idempotent there
exists « €]0, 1] such that a*a < a. Moreover, if * has zero divisors, i.e. there exist
a,b €]0,1[ such that a*b = 0 but @ # 0 and b # 0, then we can choose a €]0, 1]
verifying a x o = 0. In any case, consider the function f : [0,1] — [0, 1] given by

0 ifx=0

a ifo<r<i
fx) = 1 2.

a*a 1f§§x<1

1 fz=1

Let us check that f preserves x-triangular triplets. Let (a,b,¢) be an arbitrary
x-triangular triplet with all its elements different from 1 and 0. Then the triplet
(f(a), f(b), f(c)) is some of the following triplets or a permutation of them: (« *
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a,a, ), (axa,axa,a), (@xa,axa,axa), (o, a,«). Notice that all these triplets
are x-triangular.

On the other hand, suppose that some of the elements of the x-triangular triplet
(a,b,c) is 1, let’s say a = 1. Then b = ¢ so (f(1), f(b), f(c)) = (1, f(b), f(b)) also is
an *-triangular triplet.

Finally, let us suppose that some of a, b, ¢ is 0, for example a = 0. Then b*xc = 0.
We distinguish two cases:

e b =0or ¢c =0 Without loss of generality suppose that b = 0. Then
(f(a), f(b), f(e)) = (0,0, f(c)) which is also an *-triangular triplet;
e b # 0 and ¢ # 0. * has zero divisors so a * a = 0. Furthermore, since
bxc=0then b# 1,c# 1, so it is clear that f(b)* f(c) < axa=0= f(0).
Hence (0, f(b), f(c)) is an *-triangular triplet.
Consequently, f preserves x-triangular triplets.

Since f(0) = 0 and f~1(1) = {1} then, by Theorem 4.24, f is an *-stationary
fuzzy metric aggregation function on products. However, f is not isotone. Hence
Theorem 4.22 guarantees that f is not an *-stationary fuzzy quasi-metric aggrega-
tion function on products.

Next we give a characterization of (x-)stationary fuzzy quasi-metric aggregation
functions on sets.

Theorem 4.26. Let F : [0,1) — [0,1] be a function and * be a t-norm. The
following statements are equivalent:

(1) F is a (x-)stationary fuzzy quasi-metric aggregation function on sets;

(2) F is an aggregation function, (x-)supmultiplicative and its core is pairwise in-
cluded in a unitary face;

(3) F(0) =0, F(1) =1, the core of F is pairwise included in a unitary face and
F preserves asymmetric (x-)triangular triplets.

Proof. (1) = (3). Let {(X, M;, ) : i € I} be an arbitrary family of stationary fuzzy
quasi-metric spaces. Since (F o M, %) is a fuzzy quasi-metric on X then for each
x € X and each t > 0 we have that 1 = FoM (z,z,t) = F((M;(z,z,t))ier) = F(1).
Furthermore, 0 = F o M (z,z,0) = F(0).

Now let us prove that the core of F' is pairwise included in a unitary face.
Suppose that F(a) = F(b) = 1 but I NI, = &. Then consider a set X = {xo,yo}
with two different elements and the family of stationary fuzzy quasi-metric spaces
{(X, M;,*) : i € I} where M; is defined as
1 ife=y,t>0

0 if = ) = ) t 0
N S
b, ifx=yy,y=w0,t>0
0 ift=0
Notice that we cannot find ¢ € I such that a; = b; = 1 so (M;,*) verifies the
condition (FQM?2’) for all ¢ € I. By assumption, (F o M, ) is a fuzzy quasi-metric
on X. Nevertheless,

Fo M($07y07t) = F((Mi(xf)ayf)ut))ief) = F(a) =1

and
F o M (yo,o0,t) = F((M;(yo, v0,t))ier) = F'(b) = 1
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for all ¢ > 0 so, since (F o M, x) verifies (FQM?2’), we have that zy = yo which is
a contradiction. Hence, I NIy # &, i. e. the core of F is pairwise included in a
unitary face.

Let (a,b,c) be an asymmetric (x-)triangular triplet. Let us consider X =
{x1,22,23} a set with three different elements and * a t-norm. For each i € I,
the stationary fuzzy quasi-metric (M;, *) on X is defined by

1 ifx=y,t>0

a; ifx=z,y=u9,t>0
Mi(z,y,t) =< b; ifx=2x0,y=23,t>0.

¢, ifx=z,y=u3,t>0

0 otherwise

By assumption, (F o M, ) is a stationary fuzzy quasi-metric on X. Therefore,
for any t,s > 0 we have that

FoM(xy,29,t) % FoM(x9,23,8) < FoM(x1,23,t+5)
F((Mi(z1, 2, 1))icr) * F((Mi(22, 23, 8))icr) < F((Mi(z1, 23,1 + 5))icr)
F(a)*x F(b) < F(c)

so (F(a), F(b), F(c)) is an asymmetric (*-)triangular triplet.

(3) = (1). Let {(X, M;,*) : i € I} be a family of stationary fuzzy quasi-metric
spaces. We must show that (F o M, x) is a stationary fuzzy quasi-metric on X. It
is obvious that F o M (x,y,0) = 0 and F o M(x,z,t) = 1 for all ,y € X and for
all ¢ > 0 since F(1) = 1 and F(0) = 0. Let z,y € X such that F o M(z,y,t) =
FoM((y,z,t) =1 for all t > 0. Since the core of F is pairwise included in a unitary
face we can find ¢ € I such that M;(z,y,t) = M;(y,x,t) =1 for all t > 0 (since M;
is stationary). Then x = y.

Let us consider now z,y,z € X and t,s > 0. Since (M;,*) is a fuzzy quasi-
metric then M;(z,y,t) * M;(y,z,8) < M;(z,z,t + s). So (a,b,c) is an asym-
metric x-triangular triplet where a = (M;(x,y,t))icr, b = (M;(y, 2, 8))icr and ¢
= (M;(x, z,t + 8))icr. By assumption (F(a), F(b),F(c)) = (F((M;(x,y,t))icr),
F((M;(y,z,9))icr), F(M;(x,z,t + $))icr)) is also an asymmetric (x-)triangular
triplet. Hence

FoM(x,y,t)* FoM(y,z,s) < FoM(x,z,t+s).
It is clear that F'o M (x,y,-) is left-continuous for all z,y € X since F o M (z,y, ) :
(0,+00) — [0,1] is constant. Moreover (F o M, x) is stationary since (M;,*) is
stationary for all ¢ € [.

(2) & (3). It is a direct consequence of Corollary 3.35. O

Remark 4.27. Note that if F satisfies the conditions of Theorem 4.26 then, by
Proposition 4.12, the core of F is also finitely included in a unitary face since F' is
(*-)supmultiplicative.

In the following we give a characterization of (x-)stationary fuzzy metric aggre-
gation functions on sets.
Theorem 4.28. Let F : [0,1]f — [0,1] be a function and * be a t-norm. The
following statements are equivalent:

(1) F is a (x-)stationary fuzzy metric aggregation function on sets;
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(2) F(0) =0, F(1) = 1, the core of F is included in the unitary boundary and
if (a,b,c) is a (x-)triangular triplet on [0,1]1 such that its elements verify
that all their coordinates are not equal to 1, then (F(a), F(b), F(c)) is also a
(x- )triangular triplet.

Proof. (1) = (2). The facts that F(0) = 0 and F(1) = 1 can be proved as in
Theorem 4.26. That the core of F' is included in the unitary boundary can be
proved by an easy modification of the proof that the core of F' is pairwise included
in a unitary face in Theorem 4.26.

Let (a,b,c) be a (*-)triangular triplet on [0, 1] such that none of the elements
of the triplet (a, b, ¢) has a coordinate equal to 1. Consider a set X = {x1,x2,x3}
with three different elements and the stationary fuzzy metrics (M;, ) on X given
by

0 ift=0
ifx=y,t>0
Mi(z,y,t) = M;(y,z,t) =< a; ifx=x1,y=mx0,t>0.
b, ifz=xz,y=23,t>0
¢, ifx=x,y=z3,t>0
By assumption (F o M, ) is a stationary fuzzy metric on X. Therefore for any
t,s >0
FoM(xy,x9,t) %« F o M(xe,x5,8) < FoM(x1,23,t+ 3)
F((Mi(z1,z2,t))ier) * F((M;(22, 3, 5))ier)
F(a)* F(b)

((Mi(xl, 3, t+ S))igj)
(¢)-
If we permute 1, x2, 3 we deduce that (F(a), F'(b), F(c)) is a (x-)triangular triplet.
(2) = (1). Let {(X, M;,*) : i € I} be a family of stationary fuzzy metric spaces.
Everything is similar to the proof of (3) = (1) in Theorem 4.26 except for proving
(FQM3). Now let us consider z,y, z € X and ¢, s > 0. Since (M;, ) is a fuzzy metric
for all ¢ € T then it satisfies (FQM3). So (a,b,c) is an *-triangular triplet where
a = (M;(x,y,t))icr, b = (M;(y, 2,8))icr and ¢ = (M;(z, z,t + s))icr. If none of
the elements of the triplet (a, b, ¢) has a coordinate equal to 1, then by hypothesis
(F(a),F(b),F(c)) = (FoM(z,y,t),FoM(y,z,s),FoM(z,z1t+s)) is also an
x-triangular triplet. It follows that

FoM(x,y,t)* FoM(y,z,s) < FoM(x,z,t+s).

If some of the coordinates is equal to 1, let us suppose without loss of generality that
we can find ¢ € I such that a; =1, i. e. M;(z,y,t) = 1. Since (M;, *) is stationary
then it follows by (FQM2’) that @ = y. Therefore @ = 1 and b = ¢. Hence
(F(a),F(b),F(c)) = (1, F(b), F(b)) is also an #-triangular triplet. Consequently,
we conclude that F' o M satisfies (FQM3). O

<F
<F

Clearly every (x-)stationary fuzzy quasi-metric aggregation function on sets is
also a (x-)stationary fuzzy metric aggregation function on sets. However, the con-
verse is not true as shows the example below. Indeed, we provide an *-stationary
fuzzy metric aggregation function on sets which does not preserve every *-triangular
triplet.

Example 4.29. Let * be a t-norm different from A. Since * is not idempotent there
exists a €]0, 1] such that a* a < a. Moreover, if * has zero divisors, i.e. there exist
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a,b €]0,1[ such that a b = 0 but @ # 0 and b # 0, then we can choose a €]0, 1]
verifying o x & = 0. In any case, let us consider the function F : [0,1]? — [0,1]
given by
1 ifx=1lory=1
F(z,y) =40 ifz=00ry=0.
o otherwise

Let us check that F' is an x-stationary fuzzy metric aggregation function on sets. It
is obvious that F'(0,0) = 0, F((1,1) = 1 and the core of F' is included in the unitary
boundary.

Now, let us consider an #-triangular triplet (a,b,c) in [0,1]? such that all the
coordinates of a, b, c are different from 1. Let us check that (F(a), F(b), F(c)) is
also an x-triangular triplet.

If all the coordinates of a, b, c are also different from 0 then (F'(a), F'(b), F(c)) =
(, a, ) which obviously is an *-triangular triplet. So let us suppose that some coor-
dinate of a, b, ¢ is 0, for example, a; = 0. Since (a;, by, ¢1) is an x-triangular triplet
then by*cy; = 0. If by =0 or ¢; = 0 then (F(a), F(b), F(c)) is (0,0, «), (0,0,0) or a
permutation of these triplets which are x-triangular. If b; # 0 and ¢; # 0 then * has
zero divisors so a * a = 0. Since (F(a), F(b), F(c)) is (0,0,0), (0,0, «), (0, a, ) or
a permutation of these triplets, we conclude that (F'(a), F(b), F(c)) is s-triangular
in any case.

Therefore, by Theorem 4.28, F' is an x-stationary fuzzy metric aggregation func-
tion on sets.

However, F' does not preserve every *-triangular triplet. For example, if a =
(1,3),b=(3,1) and ¢ = (3, 3) then (a, b, ¢) is an *-triangular triplet. Nonetheless
(F(a), F(b), F(c)) = (1,1,«) is not x-triangular because 1 x1 =1 £ a.

We also notice that the core of F' is not pairwise included in a unitary face and,
thus, by Theorem 4.26 it is not an (x-)stationary fuzzy quasi-metric aggregation
function on sets.

Example 4.25 also shows that there exist x-stationary fuzzy metric aggregation
functions on sets which are not isotone.

Observe that in the light of Theorems 4.22 and 4.26, (x-)stationary fuzzy quasi-
metric aggregation functions on products and (x-)stationary fuzzy quasi-metric
aggregation functions on sets are different. Nonetheless, functions which aggregate
(*-)stationary fuzzy quasi-pseudometrics on products are the same that functions
which aggregate (x-)stationary fuzzy quasi-pseudometrics on sets as we next prove.

Theorem 4.30. Let F : [0,1) — [0,1] be a function and * be a t-norm. The
following statements are equivalent:

(1) F is a (x-)stationary fuzzy quasi-pseudometric aggregation function on pro-
ducts;

(2) F is a (x-)stationary fuzzy quasi-pseudometric aggregation function on sets;

(3) F is an aggregation function and (*-)supmultiplicative;

(4) F(0) =0, F(1) =1 and F preserves asymmetric (x-)triangular triplets.

Proof. Tt is obvious that (1) = (2). The implication (2) = (3) follows as the
implication (1) = (3) in Theorem 4.26 (and using Corollary 3.35), except that we
cannot obtain that the core of F' is pairwise included in a unitary face. We only
can prove that F'(1) = 1.
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(3) = (4) follows from Corollary 3.35.
(4) = (1) is similar to the proof (3) = (1) of Theorem 4.22 except that in this
case we only need the hypothesis F(1) = 1 instead of F has trivial core. ([

Stationary fuzzy metric aggregation functions are different depending if they are
considered on products or on sets (see Theorems 4.24 and 4.28). In case that we
treat with stationary fuzzy pseudometrics, there is no difference as the next result
shows.

Theorem 4.31. Let F : [0,1) — [0,1] be a function and * be a t-norm. The
following statements are equivalent:

(1) F is a (x-)stationary fuzzy pseudometric aggregation function on products;
(2) F is a (x-)stationary fuzzy pseudometric aggregation function on sets;
(3) F(0) =0, F(1) =1 and F preserves (x-)triangular triplets.

Proof. (1) = (2) is immediate.

(2) = (3) is similar to (1)= (2) in Theorem 4.28 but under the current hypothesis
it is not true in general that the core of F' is included in the unitary boundary.
Nevertheless, notice that in this case, if we consider an arbitrary *-triangular triplet
(with coordinates that can be 1) the fuzzy sets M; constructed in that implication
are in this case fuzzy pseudometrics.

(3) = (1) is like implication (2) = (1) in Theorem 4.24 except that in this case
we only need the hypothesis F(1) = 1 instead of F has trivial core. O

Finally, as a consequence of the results that we have already obtained for func-
tions which aggregate different types of stationary fuzzy quasi-pseudometrics, we
can characterize functions which aggregate well-known types of fuzzy binary re-
lations. As previously observed in Remark 3.3, there exist equivalences between
subfamilies of stationary fuzzy quasi-pseudometrics and subfamilies of fuzzy binary
relations. These relationships are summarized in the following:

stationary fuzzy quasi-pseudometric
stationary fuzzy quasi-metric
stationary fuzzy pseudometric
stationary fuzzy metric

fuzzy preorder
fuzzy partial order
indistinguishability operator
equality

IR IR

Corollary 4.32. Let F : [0,1) — [0,1] be a function and * be a t-norm. The
following statements are equivalent:

(1) F is a (x-)fuzzy preorder aggregation function on products;

(2) F is a (x-)fuzzy preorder aggregation function on sets;

(8) F(1) =1 and F is (x-)supmultiplicative and isotone;

(4) F(1) =1 and F preserves asymmetric (x-)triangular triplets.

Proof. We can prove this result proceeding as in Theorem 4.30 except that in this
case it is not necessary that F(0) = 0. O

Corollary 4.33. Let F : [0,1]F — [0,1] be a function and * be a t-norm. The
following statements are equivalent:

(1) F is a (x-)fuzzy partial order aggregation function on products;

(2) F has trivial core and F is (x-)supmultiplicative and isotone;

(3) F has trivial core and F preserves asymmetric (x-)triangular triplets.
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Proof. Everything is similar to the proof of Theorem 4.22 but in this case the
condition F'(0) = 0 can be avoided. O

Corollary 4.34. Let F : [0,1) — [0,1] be a function and * be a t-norm. The

following statements are equivalent:

(1) F is a (x-)fuzzy partial order aggregation function on sets;

(2) F(1) = 1, the core of F is pairwise included in a unitary face and F is
(x- )supmultiplicative and isotone;

(3) F(1) =1, the core of F is pairwise included in a unitary face and F preserves
asymmetric (x-)triangular triplets.

Proof. It can be proved as Theorem 4.26 but in this case the condition F'(0) = 0 is
unnecessary. O

Corollary 4.35 (see Theorem 3.25). Let F : [0,1]f — [0,1] be a function and * be
a t-norm. The following statements are equivalent:

(1) F is a (x-)indistinguishability operator aggregation function on products;

(2) F is a (x-)indistinguishability operator aggregation function on sets;

(3) F(1) =1 and F preserves (x-)triangular triplets.

Proof. We can prove this result proceeding as in Theorem 4.31 except that in this
case it is not necessary that F(0) = 0. O

Corollary 4.36. Let F : [0,1) — [0,1] be a function and * be a t-norm. The
following statements are equivalent:

(1) F is a (x-)equality aggregation function on products;

(2) F has trivial core and F preserves (x-)triangular triplets.

Proof. We can prove this result proceeding as in Theorem 4.24 except that in this
case it is not necessary the condition F'(0) = 0. O

Corollary 4.37. Let F : [0,1]F — [0,1] be a function and * be a t-norm. The

following statements are equivalent:

(1) F is a (x-)equality aggregation function on sets;

(2) F(1) = 1, the core of F is included in the unitary boundary and if (a,b,c)
is a (x-)triangular triplet on [0,1)1 such that its elements verify that all their
coordinates are not equal to 1, then (F(a), F(b), F(c)) is also a (x-)triangular

triplet.
Proof. Everything is similar to the proof of Theorem 4.28 but in this case the
condition F(0) = 0 is unnecessary. O
ACKNOWLEDGMENTS

J. Rodriguez-Lépez and O. Valero acknowledge financial support from FEDER /Mi-
nisterio de Ciencia, Innovacién y Universidades-Agencia Estatal de Investigacién
Proyecto PGC2018-095709-B-C21. This work is also partially supported by Pro-
grama Operatiu FEDER 2014-2020 de les Illes Balears, by project PROCOE/4/2017
(Direccié General d’Innovacié i Recerca, Govern de les Illes Balears) and by projects
ROBINS and BUGWRIGHT2. These two latest projects have received funding
from the European Union’s Horizon 2020 research and innovation programme un-
der grant agreements No 779776 and No 871260, respectively. This publication



AGGREGATION OF FUZZY QUASI-METRICS 37

reflects only the authors views and the European Union is not liable for any use
that may be made of the information contained therein.

The authors thank the anonymous referees who provided useful and detailed

comments on the manuscript.

REFERENCES

[1] J. C. R. Alcantud, A. Z. Khameneh and A. Kilicman, Aggregation of infinite chains of

intuitionistic fuzzy sets and their application to choices with temporal intuitionistic fuzzy
information, Inform. Sci. 514 (2020), 106-117.

[2] M. Baczynski and B. Jayaram, Fuzzy implications, Studies in Fuzziness and Soft Computing,

(3

vol. 231, Springer, 2008.

| G. Beliakov, H. Bustince and T. Calvo, A practical guide to averaging functions, Studies in

Fuzziness and Soft Computing, Springer, 2016.

[4] G. Beliakov, A. Pradera and T. Calvo, Aggregation functions: a guide for practitioners,

[5

Studies in Fuzziness and Soft Computing, Springer, 2007.

| R. Belohlavek and V. Vychodil, Codd’s relational model from the point of view of fuzzy logic,

J. Logic Comput. 21 (2011), no. 5, 851-862.

[6] U. Bodenhofer and J. Kiing, Enriching vague queries by fuzzy orderings, Proceedings 2nd.

Int. Conf. in Fuzzy Logic and Technology (EUSFLAT 2001), 2001, pp. 360-364.

[7] D. Boixader and J. Recasens, On the relationship between fuzzy subgroups and indistinguisha-

bility operators, Fuzzy Sets Syst. 373 (2019), 149-163.

| J. Borsik and J. Dobos, On a product of metric spaces, Math. Slovaca 31 (1981), no. 1,

193-205

[9] B. De Baets and R. Mesiar, T-partitions, Fuzzy Sets Syst. 97 (1998), 211-223.
[10] B. De Baets and R. Mesiar, Pseudo-metrics and T-equivalences, J. Fuzzy Math. 5 (1997),

471-481.

[11] B. De Baets and R. Mesiar, Metrics and T-equalities, J. Math. Anal. Appl. 267 (2002)

531-547.

[12] M. Deli¢, L. Nedovi¢ and E. Pap, Eztended power-based aggregation of distance functions

and application in image segmentation, Inform. Sci. 494 (2019), 155-173.

[13] J. Drewniak and U. Dudziak, Aggregation in classes of fuzzy relations, Stud. Math. 5 (2006),

33-43.

[14] J. Drewniak and U. Dudziak, Preservation of properties of fuzzy relations during aggregation

processes, Kybernetika 43 (2007), 115-132.

[15] U. Dudziak, Preservation of t-norm and t-conorm based properties of fuzzy relations during

aggregation process, Proc. of 8th Conference of the European Society for Fuzzy Logic and
Technology (EUSFLAT 2013), 2013, pp. 376-383.

[16] P. Eklund, J. Gutiérrez-Garcia, U. Hohle and J. Kortelainen, Semigroups in complete lattices.

Quantales, modules and related topics, Springer, 2018.

[17] J. Fodor and M. Roubens, Fuzzy preference modelling and multicriteria decision support,

Kluwer, 1994.

[18] P. Fuster-Parra, J. Martin, J.-J. Mifiana and O. Valero, A study on the relationship between

relazed metrics and indistinguishability operators, Soft Computing 23 (2019), 6785-6795.

[19] A. George and P. Veeramani, On some results in fuzzy metric spaces, Fuzzy Sets Syst. 64

(1994), no. 3, 395-399.

[20] G. Gerla, Representation theorems for fuzzy orders and quasi-metrics, Soft Computing 8

(2004), 571-58.

[21] M. Grabisch, J.-L. Marichal, R. Mesiar and E. Pap, Aggregation functions, Encyclopedia of

Mathematics and its Applications, vol. 127, Cambridge University Press, 2009.

[22] S. Gottwald, On t-norms which are related to distances of fuzzy sets, BUSEFAL 50 (1992),

25-30.

[23] V. Gregori, S. Morillas and A. Sapena, Examples of fuzzy metrics and applications, Fuzzy

Sets Syst. 170 (2011), 95-111.

[24] V. Gregori and S. Romaguera, On fuzzy quasi-metric spaces, Appl. Gen. Topol. 5 (2004),

no. 1, 129-136.

[25] U. Hohle, Fuzzy equalities and indistinguishability, Proc. of EUFIT’93, Vol. 1, 1993 pp. 358—

363.



38

T. PEDRAZA, J. RODRIGUEZ-LOPEZ AND O. VALERO

[26] E. P. Klement, R. Mesiar and E. Pap, Triangular norms, Kluwer, 2000.
[27] 1. Kramosil and J. Michalek, Fuzzy metric and statistical metric spaces, Kybernetica 11

(1975), 326-334.

[28] F. Klawonn and R. Kruse, From fuzzy sets to indistinguishability and back, Proc. of the First

ICSC International Symposium on Fuzzy Logic (ISFL’95), 1995, pp. A57-A59.

[29] H. Lai and D. Zhang, Fuzzy preorder and fuzzy topology, Fuzzy Sets Syst. 157 (2006), 1865—

1885.

[30] S. Massanet and O. Valero, On the aggregation of metric structures: the extended quasi-

metric case, Int. J. Comput. Int. Sys. 6 (2013), 115-126.

[31] G. Mayor and J. Recasens, Preserving T-transitivity, Artificial Intelligence Reserach and

Development, vol. 288, 2016, pp. 79-87.

[32] G. Mayor and O. Valero, Aggregation of asymmetric distances in Computer Science, Inform.

Sci. 180 (2010), 803-812.

[33] G. Mayor and O. Valero, Metric aggregation functions revised, Eur. J. Combin. 80 (2019),

390-400.

[34] R. Mesiar and A. Kolesdrova, Construction of fuzzy implication functions based on F-chains,

in: New trends in aggregation theory, vol. 981, eds. R. Halas and M. Gagolewski and R.
Mesiar, Springer, pp. 315-326.

[35] R. Mesiar and E. Pap, Aggregation of infinite sequences, Inform. Sci. 178 (2008), 3557-3564.
[36] J.-J. Minana and O. Valero, On indistinguishability operators, fuzzy metrics and modular

metrics, Axioms 2017, 6, 34.

[37] J.-J. Mifiana and O. Valero, A duality relationship between fuzzy metrics and metrics, Int.

J. Gen. Syst. 47 (2018), no. 6, 593-612.

[38] J.-J. Mifiana and O. Valero, Characterizing quasi-metric aggregation functions, Int. J. Gen.

Syst. 48 (2019), no. 8, 890-909.

[39] A.Pradera, E. Trillas and E. Castifieria, On the aggregation of some classes of fuzzy relations,

in: Technologies for constructing intelligent systems, B. Bouchon-Meunier, J. Gutierrez, L.
Magdalena and R. Yager (eds), Springer-Verlag, pp. 125-147, 2002.

[40] A. Pradera and E. Trillas, A note of pseudometrics aggregation, Int. J. Gen. Syst. 31 (2002),

no. 1, 41-51.

[41] F. E. Petry and P. Bosc, Fuzzy databases: principles and applications, Kluwer Academic

Publishers, 1996.

[42] J. Recasens, Indistinguishability operators. Modelling fuzzy equalities and fuzzy equivalence

relations, Springer-Verlag Berlin Heidelberg, 2010.

[43] J. Rodriguez-Lépez, S. Romaguera and J. M. Sénchoz—Alvarez, The Hausdorff fuzzy quasi-

metric, Fuzzy Sets Syst. 161 (2010), no. 8, 1078-1096.

[44] J. Dobos, Metric preserving functions, Stroffek, Kosice, 1998.
[45] S. Ovchinnikov, Representation of transitive fuzzy relations, Aspects of Vageness, H. Skala,

S. Termini and E. Trillas (eds), Springer-Verlag, pp. 105-118, 1984.

[46] S. Saminger, R. Mesiar and U. Bodenhofer, Domination of aggregation operators and preser-

vation of transitivity, Internat. J. Uncertain. Fuzziness Knowledge-Based Systems 10 (2002),
11-35.

[47] A. Sapena, A contribution to the study of fuzzy metric spaces, Appl. Gen. Topol. 2 (2001),

no. 1, 63-75.

[48] B. Schweizer and A. Sklar, Statistical metric spaces, Pacific J. Math. 10 (1960), 314-334.
[49] L. Valverde, On the structure of F-indistinguishability operators, Fuzzy Set. Syst. 17 (1985),

313-328.

[50] L. Zadeh, Similarity relations and fuzzy orderings, Inform. Sci. 1 (1971), 177-200.

(T. Pedraza) INSTITUTO UNIVERSITARIO DE MATEMATICA PURA Y APLICADA, UNIVERSITAT

POLITECNICA DE VALENCIA, CAMINO DE VERA $/N, 46022 VALENCIA, SPAIN

Email address: tapedraz@mat.upv.es

(J. Rodriguez-Lépez) INSTITUTO UNIVERSITARIO DE MATEMATICA PURA Y APLICADA, UNIVER-

SITAT POLITECNICA DE VALENCIA, CAMINO DE VERA S/N, 46022 VALENCIA, SPAIN

Email address: jrlopez@mat.upv.es



AGGREGATION OF FUZZY QUASI-METRICS 39

(O. Valero) DEPARTAMENT DE CIENCIES MATEMATIQUES I INFORMATICA, UNIVERSITAT DE LES
ILLES BALEARS, CTRA. DE VALLDEMOSSA KM. 7.5, 07122 PALMA, SPAIN., INSTITUT D’ INVESTIGACIO
SANITARIA ILLES BALEARS (IDISBA), CTRA. DE VALLDEMOSSA, 79, 07120 PALMA, SPAIN.

Email address: o.valero@uib.es



