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Abstract—Simultaneous multithreading processors are dominating the High Computing Performance market.

Among these processors, those supporting only two threads are being the most widely deployed in current systems, thus, only two
threads compete at run-time for intra-core resources. The performance of these processors can be boosted by selecting symbiotic
applications to be executed on the same core, which reduces the inter-application interference considerably. In this paper we propose
Hy-Sched, an scheduling algorithm that exploits symbiosis to make pairs of applications to be launched on the same physical core.
The proposed approach lies on the categories of the Top-Down Method for Performance Analysis. Different variants of the algorithm
are explored. Experimental results show that Hy-Sched outperforms Linux on average by 15% in the studied workloads.

Index Terms—Simultaneous Multithreading, symbiotic applications, intra-core interference.

1 INTRODUCTION

ULTITHREADED processors provide hardware support

for the concurrent execution of multiple threads on the
same core. Among these processors, simultaneous multithread-
ing (SMT) [1] is the only paradigm that allows instructions
from different threads or applications to be issued for execution
at the same time. This design feature allows to improve the
processor throughput over their single-threaded cores counter-
parts, with little extra hardware.

Because of this fact, most processor manufacturers like IBM,
Intel or AMD include SMT processors among their products,
and these throughput oriented processors are being commonly
deployed in the server segment of the market.

Commercial SMT cores support multiple (ranging from 2 to
8) threads per core. In these cores, the co-running applications
compete among them for intra-core components like the ROB,
physical registers, or instruction queues. As a consequence,
inter-application interference is introduced in the cores between
the co-running applications, which can make the performance
of individual applications to significantly drop over stand
alone execution. The inter-application interference depends on
the contending applications. To deal with this shortcoming,
some research has focused on interference-aware thread-to-
core (T2C) allocation strategies within the system scheduler.
The T2C policy is aimed to select applications showing some
symbiosis [2] between them; that is, applications that minimize
the intra-core interference thanks to the fact that they use
complementary core resources.

Some previous research has focused on cores supporting
a high number of threads (e.g., 8). These solutions [3] use
mathematical models to estimate performance of possible com-
binations of applications running on the same core, which
introduces a high complexity and overhead. Nevertheless, these
solutions do not put special focus in SMT2 processors, which
are most of the installed high-end processors and servers.
In addition, mathematical model based approaches depend
on characteristics of the running workloads and underlying
hardware (e.g., adding more DRAM would make the model to
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introduce error deviations). In contrast, in this paper we focus
on an universal approach.

In this paper we propose Hy-Sched (hyper-threading
aware), a simple and effective scheduler for SMT-2" processors.
We implemented the devised policy on an Intel Xeon E5-2620
v4. The devised policy is based on the categories discussed
in a Top-Down Method for Performance Analysis by A. Yasin
[4]. This method breaks down the execution time of a given
application into categories according to where processor stalls
rise. This allows programmers to identify possible performance
bottlenecks of their applications. For instance, a high value
in the backend-bound category may indicate that L3 or main
memory is performing poorly. Since categories identify pro-
cessor stalls in different processor components, we use them
to look for symbiosis. This paper presents two main findings: i)
performance improves when the applications co-running on the
same physical core belong to distinct categories, and ii) in case
there are many applications from the same category, couples of
applications must be made in order to balance IPC.

Hy-Sched algorithm works on the two aforementioned find-
ings. In this paper, we study four main variants of the algorithm
(though it can be applied to any set of categories), starting from
the four top-level categories, and descending to the second and
third level by splitting categories of the upper levels.

This paper makes two main contributions. We propose
a simple and low-overhead hyper-threading aware scheduler
that improves existing state-of-the-art approaches. We found
that, in order to achieve the best performance, categories from
all three levels need to be considered.

2 RELATED WORK

Some research works focused on symbiotic approaches for
generic SMT processors using simulation. In [2], Snavely and
Tullsen implemented SMT capabilities in a single-threaded
single-core model simulating the Alpha 21264. Different mul-
tithreading levels, ranging from 2 to 6 were analyzed. This
approach employs sample phases to collect inter-application
interference. In these phases, the approach permutes the sched-
ule periodically to predict the best schedule. This approach,
however, can not be applied to commercial processors since the
scheduler is based metrics not available in existing processors.

1. 2 supported threads
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Some works [3] have focused on the highly-threaded IBM
POWERS. As in [2], this approach predicts the best performing
schedule. To this end, a mathematical predictor having as input
IBM performance counters estimates the performance of each
application with every possible co-runner. In contrast, our ap-
proach does not perform any estimate and no prediction is made
for the pairs of applications to be launched together but pairs
are made only based on the categories the applications belong
to. An improvement of this work to support more efficiently a
higher multithreading level is presented in [5].

In [6] a simple and effective approach is presented. Feliu
et al. show that, by evenly distributing L1 D-Cache accesses,
significant performance gains can be achieved in an Intel Xeon
E5645. Like ours, this approach performs on Intel processors
with similar performance counters, thus we will compare our
approach to this one.

3 BACKGROUND

The Top-Down Method for Performance Analysis proposes a
Counters’ Architecture consisting of basic performance coun-
ters that allow identifying performance bottlenecks. The key
idea is to apply a high-level approach that avoids the high
learning curve of microarchitectural details.

To identify performance bottlenecks of an application at
run-time, the analysis is done at the issue stage, at issue slot
granularity. The top level includes four main categories, each
one identifying a different source of performance loss. Below
we summarize these categories.

Backend category accounts for issue slots in which no
instruction is issued due to a backend event. For instance, due
to a D-Cache miss blocking the ROB head, causing this struc-
ture to fill up and preventing instructions from being issued.
This category splits into two categories in the second level:
memory bound and core bound. The former refers to memory
events that cause the processor to stall, while the latter refers
to issue stalls that raise mainly due to structural hazards in
the arithmetic functional units. The memory bound category
in turn splits into new subcategories in the third level that
identify the contribution of each cache level and main memory
to performance drops.

Frontend category accounts for issue slots in which no
instruction was issued due to a frontend event. For instance,
a I-Cache miss that caused that the frontend was not able to
deliver instructions to the execution pipeline.

Bad speculation category accounts for those issue slots
wasted due to mispeculations (e.g., mispredicted branches).
Finally, retiring category refers to instructions issued that were
successfully executed and committed.

In summary, the top level consists of four categories, each
one splits in subcategories in the second level, and similarly,
each of them in new subcategories in the third level. Consider-
ing the categories of the third level, this method accounts for 23
categories in [4]. However, due to implementation constraints
we consider up to 18 categories. We would like to emphasize
that the main aim in [4] is to help software developers ana-
lyze performance bottlenecks. As opposite, this work uses the
proposed categories to help improve scheduling performance.

4 LOOKING FOR SYMBIOSIS: FUNDAMENTALS

Looking into the performance counters used in the Top-Down
Method [4] to categorize applications in Intel processors, we
found that most of the used hardware events are closely related
to those used by Feliu et al. in [3] in the design of a scheduler
for symbiotic applications in IBM processors.
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Fig. 1: Workload categorization example.

In [3], these events were used in a mathematical model
implemented in the scheduler to predict the performance of
any combination of applications. The number of predictions of
the scheduler, and therefore its overhead in time, exponentially
grows with the number of applications in the workload.

Motivated by the large set of common hardware events used
in both approaches, this paper pursues to design a simple, low-
overhead symbiotic scheduler. To this end, in this paper we first
analyze if there exists potential symbiosis among applications
belonging to the same or distinct categories.

4.1 Static Approach

The first step to study symbiosis is to define the categories to be
considered, and then, look for performance counters to measure
the fraction of time each application elapses in each category.

The Top-Down method proposes three levels, opening a
wide design space. We can study symbiosis considering all
the categories of a given level (first, second, or third), or use
a hybrid multilevel approach, taking categories from two or
even three distinct levels. As example, Figure 1 presents the
execution time? of 14 SPEC CPU applications. The results
correspond to a multilevel approach that considers three top-
level categories (i.e., retiring, frontend, bad speculation), and splits
the backend top-level category in its second level categories
(i.e. memory bound and core bound). In addition, the IPC is also
plotted to show that it is strongly related with the retiring
category.

We tag each application according to the category that
dominates its execution time to explore potential symbiosis.
For instance, the first three applications bwaves_r, imagick_r, and
x264_r are tagged as retiring applications, and the next three
cactusBSSN_r, mcf, and milc as backend applications.

To this end, two main studies have been performed looking
for symbiosis. In the first study, we analyze the behavior of
pairs of applications running on the same core (i.e., only one
core is considered). We measure the performance of the pairs of
applications, exploring all possible combinations. Performance
has been evaluated in terms of system throughput (STP) [7],
also called individual speedup. We found that most perfor-
mance drops appear in pairs belonging to the same category.
This was expected since they tend to use the same resources
(e.g., caches or arithmetic units), and consequently, they rise
structural hazards in these resources.

In the second study, we analyzed how the results of the
previous study could be used to improve performance when ex-
ecuting applications in more than one core. To provide insights
in this direction, we considered four applications launched in
two physical cores (i.e., four logical cores). The experimental
results of the previous single-core study were used to select
(off-line) symbiotic pairs (i.e., those couples achieving the best

2. See Section 6 for experimental framework details
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performance) and pin them to cores. Applications, however,
were forced to remain in the same core for the entire execution.
We refer to this approach as Static since applications are not
allowed to move to another core.

The results of the second study have been compared to
the Linux native scheduler Ubuntu 16.04.1 LTS. For illustrative
purposes, we consider only the four top-level categories. Table
1 shows the STP results for three four-benchmark mixes. Each
mix consists of four applications (two instances of two different
benchmarks). There are only two options to pin the bench-
marks: executing two different benchmarks on the same core
(combined) or the two instances of the same benchmark on the
same core (same). The column ph. core refers to the physical core
where benchmarks are initially pinned to. It can be observed
that in all cases Static performs worse when two instances of
the same application (row mix with suffix s, same) are pinned
to the same physical core. Remember that Static does not allow
applications to move since they are forced to remain in the same
core across the entire execution. In contrast, this rule does not
apply to Linux. In this case, Linux is able to launch applications
in any of the 2 cores in hyper-threading mode, so it is allowed to
dynamically move applications between cores each execution
quantum. The order of benchmarks in each row of Table 1
indicates the order in which the Linux scheduler initially reads
them. For instance, in mix1-c benchmarks are read in the order
mcf, calculix, mcf, calculix.

This simple example illustrates two main downsides of
Linux OS. First, the reading order can significantly affect the
Linux’s performance. Therefore, a weakness we found in Linux
OS is that its performance does not only depend on the appli-
cations to be scheduled, but on the order in which the sched-
uler reads them. Second, despite Linux migrates applications
between cores, its performance is below the best performance
of that pair (i.e., combined) achieved by Static. For instance,
mix2-c outperforms Linux by around 4.6%. These results take
special relevance due to the simplicity of Static approach where
benchmarks are not allowed to move to other cores.

This example has illustrated two main cases. Mix1 and mix2
contain two benchmarks from different categories (e.g., mcf and
calculix in mix1 belong to backend and retiring categories (see
Figure 1). Performance improves when launching two bench-
marks of different categories. However, in mix3 both bench-
marks belong to the same category. In this case, performance
improves because when launching two distinct benchmarks on
the same core. Even though they belong to the same category,
we balance the overall IPC among the physical cores. A more
refined criteria diving in the use of all the core resources could
be used to provide further details about this behavior; however
we found, as experimental results will show, that IPC works
well for symbiosis.

4.2 Findings

This section summarizes the key findings that define the criteria
used by the dynamic scheduler to choose pairs of applications
to be pinned to the same core.

Mix Ph. Core 0 Ph. Core 1 Static | Linux
mix1-c mcf , calculix mcf , calculix 2.836 2.670
mix1-s mcf, mcf calculix, calculix 2.628 2.825
mix2-c cam4_r, hmmer cam4_r, hmmer 2.817 2.757
mix2-s cam4_r, cam4_r hmmer, hmmer 2.574 2.694
mix3-c imagick_r, calculix imagick_r, calculix | 2.676 2.566
mix3-s | imagick_r, imagick_r calculix, calculix 2.460 2.627

TABLE 1: STP results of four four-benchmaks mixes, where c
and s suffixes refer to combined and same, respectively.

Algorithm 1 Hy-Sched Algorithm: STEP 3 MAIN LOOP

1: while apps_list not empty do # CRITERION 1

2:  Take category from the application-tail

3:  while walk apps_list from current position to head do
4 if category][tail appl.] # category[current appl.] then
5: Remove applications from apps_list
6
7
8

Allocate the pair to a physical core
end if
end while

end while
10: while v_apps not empty do # CRITERION 2
11:  Take applications from tail and head to make a pair
12:  Remove applications from apps_list list
13:  Allocate the pair to a physical core
14: end while

Combine categories. We found that, in general, minor or no
performance gains are achieved when combining two applica-
tions of the same category, thus performance improves when
two benchmarks from different categories are launched in the
same physical core.

Balance IPC. When there is a high percentage of applica-
tions of the same category, then the combine categories criterion
cannot be applied. In this case, the balance IPC criterion will be
used instead. For instance, sort applications in ascending order
of IPC, and choose applications from both ends (e.g., first and
last, second and next-to-last, and so on) to make pairs.

5 HY-SCHED DYNAMIC ALGORITHM

This section discusses the implementation of the proposed ap-
proach. So far we have focused on simple scenarios to illustrate
the main rules that the scheduler will apply at run-time regard-
less of the number of cores. The studied scenarios, however,
introduce over-conservative performance results since three
main constraints were considered: i) the application belonged
to the same category through the entire execution that consisted
of a wide set of execution quanta, ii) applications were not
allowed to move to other cores, and iii) only top level categories
were considered by Static. This section introduces Hy-Sched, a
dynamic symbiotic oriented approach which addresses all three
performance constraints. Our proposal checks the category of
each application at the end of each quantum (e.g., 500ms) and,
based on the categories identifies, makes the new pairs for the
next execution quantum.

Hy-Sched consists of three main steps that applies, at run-
time, at the end of each quantum. In the first step, performance
counters are read, and this data is used to calculate the neces-
sary metrics (e.g., IPC) and obtain the dominant category. In
the second step, applications for each category are sorted in
ascending IPC order. In the third step depicted in Algorithm
1, applications’ pairs are made starting from the first core,
and applying the two main criteria discussed in Section 4.2.
This step consists of two loops. In the first loop, applications
belonging to different categories are paired, and then, the
second loop makes couples of applications belonging to the
same category applying the balance IPC criterion.

Hy-Sched works regardless of the number of categories.
This paper analyzes four main variants of Hy-Sched: i) TopL:
considers only the four top-level categories; ii) TopB2L: starting
with the previous variant, it replaces the top-level backend
category by its second level categories: core bound and memory
bound (it has 5 categories); iii) TopB2M3L: 9 categories are
included starting with the previous variant, it replaces the
memory bound category by its third level categories (i.e. store
bound, L1 bound, L2 bound, ext. memory bound); and iv) All-3L:
this variant considers 18 categories.
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Fig. 2: STP improvement of the studied algorithms.
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6 PERFORMANCE EVALUATION

Experiments have been conducted in a machine with an In-
tel Xeon E5-2620 v4 processor with 8 SMT cores running at
2.20GHz. Each core has private 8 way-32KB L1 caches and
a 8 way-256KB L2 cache. There is a 20 way-20MB L3 cache,
and 1.5TB DDR4 main memory. To conduct the experiments,
we have developed a framework that executes the application
mixes, reads the performance counters and reports these values.
We built a library based on Linux Perf [8] to read performance
counters, which allows to monitor all the Intel PMU events
available to the Broadwell architecture.

Experiments were carried out with mixes consisting of 8
applications, randomly picked from the SPEC CPU2006 and
SPEC CPU2017 benchmark suites. During the mix execution,
each individual application commits the same number of in-
structions that it commits when running alone for 60s (120
500ms quanta). When executing Hy-Sched, 25 hardware events
are read in each quantum in a multiplexed way in order to
keep the overhead low. The execution of the mix ends when the
slowest executing application finishes. If an application finishes
earlier, it is relaunched, but only the data collected at the end
of the first execution are considered in the results.

6.1 Performance Results

This section evaluates the performance of Hy-Sched variants
compared to Linux and the L1-aware [6].

Figure 2 shows the STP improvements of the studied ap-
proaches over the Linux scheduler. It can be observed that,
in general, for the studied TopL, TopB2L, and TopB2M3L, the
higher the number of categories of the algorithm the higher
the throughput benefits, since more symbiosis is exploited.
An interesting observation is that the TopB2M3L with only
9 categories reaches similar performance to All-3L. On aver-
age, TopB2M3L reaches performance improvements by 14%,
reaching by 20% in some workloads. On the other hand, it
can be observed that Ll-aware poorly outperforms Linux in
those workloads (3 out of 13) workloads where the L1 is not
the major performance bottleneck, reaching on average half the
performance improvements of TopB2M3L.

We looked into the reasons that explain the high disparity
in performance among the studied variants. We found that
categories are not uniformly distributed at run-time but the
Backend Bound category clearly dominates while other cate-
gories like Bad Speculation or Frontend Bound rarely appear.

As example, each cell (category i, category j) in Table 2 shows
the percentage of pairs made across the execution time includ-
ing an application from category i and another from category
j. Results correspond to TopB2M3L when running workload
wk10. Those categories having all their cells in the row and
column less than 0.5% have not been included. Note that only
Retiring and Backend Bound behaviors are exhibited. This
the common trend, and although we found Bad Speculation

Stores B.
0.68%
0.68%
0.00%

Core B.
4.05%
29.75%

TOTAL row
8.78%
62.86%
0.68%
18.25%
9.46%
100.00%

Category
Retiring
Core Bound
Stores Bound
L1 Bound
Ext. Memory
TOTAL column

Ext. Memory L1
2.70% 1.35%
21.62% | 10.81%
0.00% 0.68%
17.57% 0.68%
9.46%
51.35%

Retiring
0.00%

13.52% 1.36% | 33.80% 0.00%

TABLE 2: Categories of the two applications of the couples
made (in %) in wk10.

behavior in very few workloads, its percentage is below 7%.
Retiring behavior is shown by only one application of the
pair in 8.78% (see retiring row) of the pairs made; and all the
remaining cases exhibit Backend Bound subcategories (Store
Bound, L1 Bound and Ext. Memory). This fact explains why
descending only to the second level of the Backend Bound
category results in minor performance benefits compared to the
top-level Hy-Sched variant, as shown in Figure 2.

Effects of more categories. We found that the retiring cate-
gory fraction increases with the two approaches introducing
more categories “finer granularity”, which explains why these
approaches are the best performing ones. On the other hand,
we also found that only including over 9 categories (e.g.,
TopB2M3L or All-3L) results in a high number of category
changes (around 40% of the execution quanta).

7 CONCLUSIONS

This paper has proposed Hy-Sched, a low-overhead sched-
uler that exploits symbiosis in 2-SMT processors. We have
shown that the categories identified in [4] behave by design as
symbiotic among them. Results, have shown that most of the
symbiosis can be highly exploited by using only 9 categories.
Experimental results show that Hy-Sched outperforms Linux
on average by 15% across the studied workloads, doubling the
performance improvements reached by the state-of-the-art L1-
aware approach. Hy-Sched has been implemented in an Intel
processor, but it can be applied to any SMT-2 processor.
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