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Abstract

Ad hoc networks are multi-hop wireless networks where all nodes cooperate
to maintain the network connectivity without centralised administration.
The use of this emerging technology extends from military to civilian appli-
cations. Routing protocols, which are key elements for these networks, are

in charge of establishing routes between network nodes efficiently.

Despite the interest shown by the scientific community and industry in con-
verting the first specifications of ad hoc routing protocols in functional pro-
totypes, aspects such as the resilience of these protocols remain generally
unaddressed in practice. Tackling this issue becomes critical given the in-
creasingly variety of accidental and malicious faults (attacks) that may im-
pact on the behaviour exhibited by ad hoc routing protocols. There exist
many and varied challenges in the deployment of ad hoc routing protocols,
but the meed for methods to evaluate and justify their resilience is, without
doubt, one of the most important. This lack can be addressed through the de-
liberate and controlled introduction of faults in the system. This technique,

can be useful to measure the network behaviour in adverse conditions.

The main objective of this thesis is to design and implement a framework
based on the injection of accidental and malicious faults to quantitatively
evaluate their impact in routing protocols. This framework, called RE-
FRAHN (Resilience Evaluation FRamework for Ad Hoc Networks), can be
used to (i) identify sources of problems in the deployment of ad hoc routing
protocols, (i) design fault-tolerant mechanisms that address and minimise
these problems, (iii) compare and select which is the routing protocol that
fits the best the system requirements, and finally () determine how to op-
timise the performance and robustness of the network, tuning the settings

of routing protocols, and their dependability and security complements.

By tackling this topic, this thesis aims at making a step forward to improve

the resilience aspects of ad hoc networks.






Resumen

Las redes ad hoc son redes inaldmbricas multisalto, donde los nodos co-
operan para mantener la conectividad de red. FEl uso de esta incipiente
tecnologia se extiende desde aplicaciones militares a civiles. Los protocolos
de encaminamiento, que son elementos clave para estas redes, se encargan

de establecer las rutas entre los nodos de la red eficientemente.

A pesar del interés mostrado por la comunidad cientifica e industrial en
implementar los primeros prototipos funcionales de protocolos de encami-
namiento ad hoc, aun quedan incdgnitas por resolver para mejorar su re-
siliencia. Hacer frente a estas cuestiones es critico dada la creciente varie-
dad de fallos accidentales y maliciosos (ataques) que pueden afectar al com-
portamiento exhibido por los protocolos de encaminamiento. La mecesidad
de desarrollar metodologias y herramientas para poder evaluar y justificar su
nivel de resiliencia, es sin duda, uno de los desafios mds importantes. Este
problema puede abordarse por medio de la inyeccion deliberada y controlada
de fallos en el sistema. Esta técnica permite evaluar el comportamiento de

la red en condiciones desfavorables.

El objetivo de esta tesis es diseriar e implementar un framework basado en la
inyeccion de fallos accidentales y maliciosos para evaluar cuantitativamente
el impacto de los mismos en los protocolos de encaminamiento de la red.
Este framework, llamado REFRAHN (Resilience Evaluation FRamework
for Ad Hoc Networks), puede servir para (i) identificar problemas en los
protocolos de encaminamiento ad hoc, (ii) diseriar mecanismos que sirvan
para hacerles frente, (iit) comparar y seleccionar el protocolo de encami-
namiento que mejor se ajuste a los requisitos del sistema, y (iv) optimizar
el comportamiento de la red, configurando los pardametros de los protocolos

de encaminamiento, y de sus complementos de sequridad y confiabilidad.

Abordando la presente temdtica, esta tesis pretende dar un paso adelante

en la mejora de los aspectos de resiliencia de las redes ad hoc.






Resum

Les xarxes ad hoc sén xarzes sense fils multisalt, on els nodes cooperen per
a mantenir la connectivitat de xzarxa. L’is d’aquesta incipient tecnologia
s’estén des d’aplicacions militars a civils. Els protocols d’encaminament,
que son elements clau per a aquestes xarxes, son els encarregats d’establir

les rutes entre els nodes de la xarza eficientment.

Malgrat linterés de la comunitat cientifica i industrial per la implementacio
dels primers prototips funcionals de protocols d’encaminament ad hoc, en-
cara queden incognites per resoldre per a millorar la resiliencia dels mateizos.
Fer front a aquestes qiiestions és critic donada la creizent varietat de falla-
des accidentals i maliciosos (atacs) que poden afectar el comportament ex-
hibit pels protocols d’encaminament. La necessitat de desenvolupar metodolo-
gies i eines per a poder avaluar i justificar la seua resiliéncia, és sens dubte,
un dels desafiaments més importants. Aquest problema pot abordar-se per
mitja de la injeccio deliberada i controlada de fallades en el sistema. Aque-
sta técnica permet avaluar el comportament de la zarxa en condicions de

funcionament desfavorables.

L’objectiu d’aquesta tesi és dissenyar i implementar un framework basat en
l’injeccio de fallades accidentals i malicioses per a avaluar quantitativament
el seu impacte als protocols de encaminamient de la xarza. Aquest frame-
work, anomenat REFRAHN (Resilience Evaluation FRamework for Ad Hoc
Networks), es pot utilitzar per a (i) identificar fonts de problemes en els pro-
tocols d’encaminament ad hoc, (i) dissenyar mecanismes que servisquen
per a fer front a aquests problemes, (iii) comparar i seleccionar quin és el
protocol d’encaminament que millor s’ajuste als requisits del sistema, i (iv)
optimitzar el comportament de la zarza, configurant els parametres dels pro-

tocols d’encaminament, i dels seus mecanismes de seguretat i confiabilitat.

Abordant la present tematica, aquesta tesi pretén millorar els aspectes de

resiliencia de les xarzes ad hoc.
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Chapter 1

Introduction

Roads? Where we’re going, we don’t need roads

Dr. Emmett Lathrop Brown

Entities like the European platform in embedded systems ARTEMIS [1],
state that the future is in networked embedded systems. This affirmation is
based on the principle that networked embedded systems will make possi-
ble the development of more intelligent living, work, entertainment, energy
production systems and transport environments [2]. It is estimated that
the number of networked smart objects on a planetary scale will increase
beyond 20 billion units by 2020 [3], thus promoting the emergence of a new
type of network with ubiquitous nature called Internet of Things (IoT). As
can be foreseen, no system in the future will run in isolation. IoT systems
will be composed of myriads of computers, small devices, smart sensors,
and conventional computers ranging from laptops to servers, being inter-
connected by fixed and/or wireless networks. Such systems, will constitute
an essential fabric of our society, as already witnessed by the dependence

placed on current computing systems for almost all of our life activities.



1. INTRODUCTION

Following the principles of ubiquity [4], such interactions are expected to

be spontaneous, opportunistic and infrastructureless.

Ad hoc networks are a new networking communication paradigm that can
assist IoT systems in the deployment of this type of communications. Ad
hoc networks are infrastructureless self-configuring networks that offer a
quick, easy, and low-cost solution to enable wireless multi-hop communica-
tions. This new technology emerged from military [5] and rescue mission [6]
scenarios, where the rapid deployment of survivable, efficient, and dynamic

communications is critical.

In the last years, the unique properties of ad hoc networks have attracted
the interest of companies, like TerraNet!, Motorola? (wi4 MESH), and Mer-
aki®, a company backed in part by Google, that provides low-cost Internet
access to more than 5 million clients all over the world. These companies
only exploit part of the potentials offered by ad hoc networks, since their
wireless solutions rely on a null, or limited, mobility of nodes. Currently,
more sophisticated uses of ad hoc networks are under study in virtual class-
rooms [7], Vehicular Ad hoc NETwork (VANET)s [8], and ambient intel-
ligent environments such as ambient assisted living [9]. PECES [10] and

LoCon [11] projects are two European initiatives exemplifying this trend.

Communication features exhibited by ad hoc networks greatly depend on
their internal routing protocols. These protocols are in charge of collecting
information about network nodes in order to establish routes for those will-
ing to communicate. However, although the deployment of ad hoc routing
protocols is very simple, there exist some counterparts. On one hand, the
evolutions of the interacting nodes cannot all be anticipated and controlled

a priori given the dynamic conditions of the environment, e.g. the pres-

"http://terranct.se/index.php/?option=com_content&task=view&id=47&Itemid=87
2http://motorolaradiosolutions.com /en/product_lines/motowi4/widmesh
3http://meraki.com/technology /high_performance_mesh



ence of mobility and /or interferences in the wireless communication channel
may favour the occurrence of accidental faults. On the other, the implicit
trustworthiness relationship established between neighbour nodes may be
exploited by malicious users. The occurrence of these accidental faults and
attacks in the system may dramatically affect its expected behaviour. This
thesis lies on the assumption that both accidental faults and malicious ones
(attacks) are events that can potentially have similar effects on the system.
From a high level viewpoint, they prevent systems from coping with their
specified purpose [12]. Such events may partition the network or induce
a certain traffic overhead, thus causing retransmission, inefficient routing
and impacting the quality of service provided to the upper system layers.
So, designing ad hoc routing protocols with resilience in mind, that is, with
the skills of keeping the routing service working despite this type of events

[13] is essential for their successful exploitation.

Public attitude towards resilience is changing, and even a small perceived
risk for applications without strong resilience requirements might damage
the reputation of the service providers. Consequently, the confident use of
ad hoc networks requires not only the provision of mechanisms which assist
ad hoc routing protocols in improving their resilience against faults, but
also the definition of methodologies and the development of tools to eval-
uate the resilience of such protocols and their mechanisms in the presence
of these faults. There exist many and varied challenges in the deployment
of ad hoc routing protocols, but the need for frameworks to evaluate and
justify their resilience is, without doubt, one of the most important. By the
time being, most initiatives in the domain of ad hoc networks, like CeNSE
[14], WiSeNts [15] or GENI [16] focus their goal in the deployment of ad
hoc networks formed by massively interconnected devices measuring and
processing data in real-time. However, such efforts will remain questionable
in practice while suitable techniques to guarantee acceptable levels of re-

silience in their implementations remain unavailable. Resilience evaluation
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can be seen as the lowest minimum denominator to improve traditional pro-
cesses of design [17], tuning [18], benchmarking (comparison and selection)

[19] and vulnerability discovery [20] of ad hoc routing protocols

To address this research gap between what is produced and what can be
evaluated it is necessary to consider the sensitivity of ad hoc routing proto-
cols to mobility and those faults they may suffer during their lifetime. To
date, some works have tackled the evaluation of ad hoc routing protocols
subjected to mobility [21]. However, despite their importance, few works
have addressed the evaluation of ad hoc networks, in general, and that of
routing protocols, in particular, in the presence of faults. More precisely,
to date, no research has systematically exploited fault injection in ad hoc
routing protocols to carry out their resilience evaluation. The difficulty to
recreate the occurrence of faults in terms of controllability, repeatability
and observability is a challenging task that has limited, so far, the achieve-
ment of this goal. Nevertheless, evaluating the impact of faults on real
implementations of routing protocols running on top of real devices is also
important to analyse the real-life aspects influencing the resilience of ad

hoc networks in practice.

According to such premises, the main goal of this thesis is creating a frame-
work to evaluate the resilience of ad hoc routing protocols. Such frame-
work, named REFRAHN (Resilience Evaluation FRamework for Ad Hoc
Networks), aims at covering an important lack in the domain of ad hoc
networks, where more practical approaches are required to evaluate the

resilience exhibited by ad hoc networks in adverse operating conditions.

On one hand, the innovative point of REFRAHN consists in defining a me-
thodology for the configuration, execution, and analysis of results issued
from experiments, where real (non-simulated) routing protocols deployed
in real devices will be subjected to the presence of accidental faults and

attacks. This methodology will be defined to facilitate not only the re-



silience assessment of ad hoc routing protocols, but also the effectiveness
verification of the fault tolerance mechanisms that can potentially exist in

protocols to mitigate the effect of faults.

On the other hand, REFRAHN will implement a portable tool to automate
the proposed methodology and show its feasibility in practice. The goal
of this tool will be providing adequate levels of experiment repeatability,
controllability and observability while minimising the level of intrusiveness

introduced in the system.

From what precedes, REFRAHN is expected to open a wide set of new
experimental possibilities that can help users to increase their knowledge

and confidence on the use of ad hoc routing protocols.
The work presented in this thesis follows the ensuing structure:

Chapter 2 introduces a brief overview of the general architecture and com-
mon design of routing protocols. Then, the different lacks existing on their

current evaluation approaches are discussed.

Chapter 3 defines the REFRAHN methodology for the evaluation of ad hoc
routing protocols in presence of faults. The stages concerning the definition,
execution and analysis of experiments supporting the occurrence of faults

at the routing level of ad hoc networks will be tacked in this chapter.

Then, Chapter 4 presents the implementation of REFRAHN, which instan-
tiates the methodology previously proposed.

The exploitation of REFRAHN is experimentally shown in Chapter 5,
where the resilience evaluation of different real (non-simulated) ad hoc rout-
ing protocols is considered the basis to support a wide variety of processes

addressed to improve the confidence of ad hoc networks.

Finally, Chapter 6 summarises the main conclusions of this thesis and iden-

tifies some open challenges for further research.






Chapter 2

Evaluation of ad hoc routing

protocols

Ad hoc networks rely on routing protocols to establish the network topology.
Currently, the degree of maturity of ad hoc routing protocol implementations
1s enough for their use in real solutions. However, although some previous
works approach the evaluation of such protocols in the absence of faults,
there is a lack of suitable methods and tools to systematise their evaluation
in the presence of the different accidental and malicious faults that can
deviate their behaviour from the expected one. This fact poses the need to

evaluate the resilience of ad hoc routing protocols against such faults.

This chapter studies the lacks that hinder the resilience evaluation of ad

hoc routing protocols in practice.



2. EVALUATION OF AD HOC ROUTING PROTOCOLS

2.1 Introduction

Ad hoc networks are an emerging paradigm in the world of telecommunica-
tions. They exploit the processing and wireless communication capabilities
of new generations of mobile devices to create spontaneous and low-cost
self-configuring networks without relying on any preexistent fixed infras-
tructure. It means that there is no infrastructure at all except the par-
ticipating mobile nodes. All or some nodes within an ad hoc network are
expected to be able to route data packets for other nodes in the network
beyond their own transmission range. This characteristic, called multi-

hopping, is the base for ad hoc networks.

Despite being originally developed for military purposes, the unique proper-
ties of ad hoc networks make them very suitable for civilian and commercial
purposes. The restrictions on the use of ad hoc networking technology seem
to be limited only by our imagination. These networks will open up new av-
enues across the full breadth of future information technologies. A diverse
set of applications exploiting the ad hoc network communication paradigm
in a number of different situations, are today a reality. Opportunistic net-
works [22] are an example of ad hoc network where nodes connectivity is
intermittent or where link performance is highly variable. In such networks,
there does not exist a complete path from source to destination for most
of the time because the network is sparse or because of nodes mobility.
In addition, the path can be highly unstable and may change or break
quickly. Therefore, in order to make communication possible in an oppor-
tunistic network, the intermediate nodes may take custody of data during
the communication blackout and forward it when the connectivity resumes.
Other examples show the interest of ad hoc networks in Wireless Sensor
Networks (WSN), which are typically used for monitoring and observing

physical phenomena [23]. These networks have also been used for deploy-
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ing communication and data networks in emergence situations, like in the
hurricane Katrina [6] crisis, in 2006. Wireless Mesh Networks (WMN) are
another interesting example of ad hoc network. They are capable of pro-
viding affordable Internet access to little or isolated populations far away
from big city centres [24]. In the future, it is expected that many other
application domains will benefit from ad hoc networks, e.g., Vehicular Ad
hoc NETworks (VANET) [25] to enhance passengers comfort and safety,
or aeronautical ad hoc networks [26] to increase the data rate of in-flight

broadband Internet access.
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Figure 2.1: Routing protocols in literature.

Regardless the heterogeneity of these applications, all of them require the
use of elements that assist network nodes in the discovery of their neigh-
bours. Ad hoc routing protocols are the backbone of ad hoc networks. They
are in charge of finding the best route from source to destination nodes in
ad hoc networks. Due to their key role, the performance and robustness
of an ad hoc network will greatly depend on that exhibited by the selected
routing protocol. This fact justifies why routing protocols are more and
more present in the current research context. Since 2000, research around

routing protocols has grown in interest. Most reputed scientific databases

9
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such as IEEE, ACM, Springer and ScienceDirect (see Figure 2.1) reflect
such trend. However, although most of this success underlies on studies
carried out using simulation approaches [27], research in more practical as-
pects is increasingly becoming more important to study the impact that
any change in the execution conditions (due to the effect of mobility or
the presence of accidental and malicious faults) may have on the expected
behaviour of ad hoc routing protocols. These impairments to provide a
confident service ask not only for solutions encompassing the design of ad
hoc routing protocols with the production of adequate fault/intrusion tol-
erance mechanisms, but also for methodologies and tools to evaluate and

guarantee the system confidence.

Traditionally, dependability has been the engineering branch devoted to
address confidence problems. It studies the ability of systems to provide
justifiably trusted services [70], and has been applied for decades, typically
as a synonym of fault tolerance. However, fault tolerance has generally
ignored the need for keeping services working in spite of continuous changes.
Changes can be planned, predictable, or totally unforeseen, but in any case
they constitute an unexpected aspect of the phenomena the systems may
have to face. These phenomena become of primary relevance when moving
to the future large, networked, evolving, ubiquitous and mobile complex
heterogeneous systems, like ad hoc networks. So, designing systems, and
specially ad hoc networks with resilience in mind [13], that is, with the
capability to remain dependable in the presence of changes, is no more a

choice but a requirement.

The importance of keeping the routing service working despite changes
leads us to tackle the notion of resilience within the domain of ad hoc
routing protocols. Yet, the main strengths of ad hoc networks may be-
come their main weaknesses when analysed from the viewpoint of resilience

given the nodes mobility and the dynamic nature of faults. An in-depth
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analysis of such practical aspects shows that hardware gets more sensitive
to manufacturing faults as the scale of components decreases. Likewise,
increasing the level of sophistication of embedded software like operating
systems or middleware leads to higher rates of design, programming, and
configuration faults. Finally, inter-nodes wireless communications are po-
tentially exposed to a wide variety of accidental and malicious faults given

the unsteadiness and openness of the wireless communication medium.

Given such circumstances, it is necessary to adapt ad hoc routing protocols
to the dynamic conditions of real environment, like mobility and the occur-
rence of faults, in order to deliver the best possible service. Unfortunately,
to date, very few works have addressed the resilience evaluation in the do-
main of ad hoc networks in general, and routing protocols in particular. In
essence, the difficulty to recreate the wide amount of faults threatening ad
hoc networks in a controllable and repeatable way limits their consideration

in the evaluation.

This chapter is devoted to analyse current challenges in the evaluation of ad
hoc networks. Likewise, Section 2.2 firstly introduces basic notions about
routing protocols, whereas Section 2.3 describes the key aspects behind
the evaluation of ad hoc routing protocols. Then, the need for resilience
evaluation frameworks is discussed in Section 2.4. Section 2.5 concludes

the chapter.

2.2 Routing protocols

In ad hoc networks, nodes do not initially know the topology of their net-
work, and must acquire that knowledge by exchanging information with
their neighbour nodes. This information is used by routing protocols to

control how and when information is routed among network nodes. Ac-
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Figure 2.2: General architecture of a routing protocol.

cording to their proactiveness to exchange this information, routing pro-
tocols can be classified into reactive, if they just establish routes under
demand; proactive, if they periodically exchange routing information; or
hybrid, if they combine both previous characteristics. Depending on the
strategy considered to compute such routes, routing protocols can be ei-
ther link-state or distance vector. Link-state routing requires each node
to maintain a map of the whole network. Conversely, in distance vector
protocols, a given node only knows their 1-hop neighbours, but not the rest

of the route.

The general architecture of a routing protocol is depicted in Figure 2.2.
As can be seen, the first important thing is to establish a clear difference
between the packets generated at the applicative layer (applicative packets)
from those that are generated by the routing protocol (routing packets) in
order to keep the network nodes interconnected. Routing protocols rely
on a packet generator which is in charge of creating and sending routing

packets.

A basic element of any routing protocol is its task scheduler. It man-

ages all the internal protocol timers, which are used to periodically trigger

12



the broadcasting of control routing messages to the network (just in case
of proactive routing protocols) and the expiration of a link (in any case)
whenever the packet validity time elapsed. Valid incoming routing packets
are processed by the packet processor and stored in the internal routing
information repository of the routing manager. The content of incoming
packets and the information stored in the routing repository is different for
distance vector and link-state protocols. However, in both cases, when a
change in the state of a link is discovered (i.e, a new link has been created,
updated or removed), the route proxy reflects such change in the routing
tables of the node, which is located in the network stack, and is not part
of the routing protocol itself. The routing manager is responsible for han-
dling (searching, adding, updating and removing) routes attending to the
different situations experienced by the network. When computing a route
from a source to a given destination node, it is possible to distinguish three
different situations: (i) not finding any route, (ii) finding just one route, or
(iii) finding several available routes. Dynamic factors of the environment
like mobility or the presence of faults force the alternation of these three
basic situations in the network. Obviously the worst case consists in not
finding any route, because in such case, the communication will not be pos-
sible. Other situation may be finding one single route, but in case one node
or one link in the route fails, the communication may be compromised until
the routing protocol is able to discover an alternative route. Finally, the
best case from the communication viewpoint consists in discovering differ-
ent alternative routes. This is the most desirable case from the viewpoint
of resilience as it enables the system to use backup routes in case of faults.
In this situation, the routing decision maker will rank the different alter-
native routes aiming at selecting which is the best route and which remain
as backup routes. The traditional Ethernet philosophy of selecting a given
communication link towards a destination, among those available, with the

criterion of minimising the number of remaining hops (hop-count) is a poor
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choice in the context of ad hoc networking. Due to the actual set of features
of these networks, the quality of all wireless communication links between
nodes is not the same, which advices against the use of such a simple metric.
Since mid-00s, the use of link-quality-based solutions has been considered
fairer. Link quality is a notion that can be applied to any routing protocol
regardless its nature. It is basically computed by each node according to the
amount of routing information received from its neighbourhood: the higher
this reception rate the better. The Expected Transmission Count (ETX)
is without any doubt, the most well-known metric for characterising the
quality of a link [28]. It represents the number of expected transmissions
for a packet to be successfully received at its destination. This number
varies from one to infinity. An ETX of one indicates a perfect transmission
medium, whereas an ETX of infinity represents a non-functional link. In

practice, ETX can be defined as shown in Formula 2.1.

1
~ RPAR(i)- NRPAR(i)

ETX (i) (2.1)
Given a sampling window in link ¢, RPAR(%) is the Routing Packets Arrival
Rate seen by a node, and NRPAR(7) is the RPAR(i) seen by the neighbour
node. As a result, whenever two communication links (i, j) towards a
destination are available, the protocol selects the one providing the better

link quality.

This type of routing strategies are generally instantiated by current func-
tional implementations of ad hoc routing protocols. This is the case of
proactive routing protocols such as Optimized Link-State Routing (OLSR)
[29], Better Approach To Mobile Ad-hoc Networking (B.A.T.M.A.N) [30]
and Babel [31], or reactive ones such as Ad hoc On-Demand Distance Vec-
tor Routing (AODV) [32]. However, how to carry out their evaluation keeps

on being a challenging task given the dynamic nature of the environments
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they are deployed in.

2.3 Key aspects behind the evaluation of ad hoc

routing protocols

The quantitative evaluation of ad hoc routing protocols is essential to deter-
mine whether the risks to which ad hoc networks are exposed are acceptable
or not. To properly evaluate ad hoc routing protocols, it is necessary to pay
attention to three basic aspects that necessary influence the quality of the
results: (i) the type of platform to carry out the evaluation, which will be
addressed in Subsection 2.3.1; (ii) the recreation of the conditions affecting
ad hoc routing protocols, which will be tackled in Subsection 2.3.2; and
(iii) the properness of the set of measures selected to represent the system

behaviour, which will be analysed in Subsection 2.3.3.

2.3.1 Evaluation platforms

There exist three major strategies to address the quantitative evaluation
of ad hoc routing protocols: using models, prototypes or emulating the
network through emulation. The main goal of this subsection is studying

current evaluation strategies and determining their lacks.

2.3.1.1 Model-based evaluation

Model-based approaches are typically used because they can be deployed
in any stage of the system development, thus saving time and detecting
flaws in the system design before they are too much costly to correct. They
are based on formal techniques like classic process algebras [33], timed au-

tomata [34], model checking [35] or the use of Stochastic Activity Networks
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(SAN) [36], an extension of the Stochastic Petri Nets formalism. These
approaches are generally animated through open-source simulation tools
such as Network Simulator (NS) and Glomosim, or commercial ones such
as Opnet, as seen in works such as [35, 37, 38, 39, 40].

Simulation offers a high degree of controllability, repeatability and observ-
ability over results. During the study of ad hoc networks, typically few
parameters are varied while most remain fixed. This allows to study the
effects of certain parameters on the network performance, specially the
scalability of deployments up to thousands of nodes. Simulation studies

are very flexible and the related costs are normally low.

However, a simulation study has also its disadvantages. It is worth noting
that, regardless the simulator used, most authors emphasise the difficulty of
correctly characterising ad hoc networks due to the complexity of precisely
recreate the dynamicity and heterogeneity of the network conditions, the
mobility and resources-constrained nature of nodes, and the interaction
between regular nodes and attackers in realistic scenarios [27]. This fact
would involve building very complex models which are very costly to solve.
Consequently, most of the results obtained from these works are based on
assumptions which typically simplify in excess the behaviour of the system,
which might lead researchers to biased or wrong conclusions. For example,
simulations have been criticised for not using realistic mobility models [41]

or because of assuming unrealistic wireless medium characteristics [42].

2.3.1.2 Prototype-based evaluation

In the bibliography it is possible to find different open-source prototype-
based approaches to evaluate the performance of ad hoc networks. Most
of them are custom-built for specific projects, and are consequently non-

reusable for other experiments and purposes.
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The Ad Hoc Protocol Evaluation Testbed (APE) is used for the compara-
tive study of different ad hoc routing protocols [43]. APE uses a large space
for placing the nodes, given the effective radio range of the signal emitted
(from 50 m to 100 m in IEEE 802.11b/g). Moreover, node movement must
be reproduced manually. Mobility in APE is introduced by providing ex-
plicit movement directions to volunteers carrying laptops. This is a chore-
ographed mode of mobility management. Roofnet [44] and Floornet [45],
are other projects deployed for conducting IEEE 802.11 measurement ex-
periments to understand the nature of large-scale wireless networks. Since
these nodes are static, there is no flexibility in the creation of different

topologies.

2.3.1.3 Emulation-based evaluation

Emulators are typically used to form a virtual dynamic topology among
nodes. They can be subdivided into Physical (PHY) and Media Access
Control (MAC) layer emulators. In physical layer ones, all network layers
except the physical layer are implemented in a real system. PHY layer
emulators mangle the radio signal emitted by the wireless interfaces of the
nodes to mimic the effects that radio waves would experience in a real-
world setup. One possibility to do this is to attenuate the emitted signal
as shown in [46]. Here, signals are fed with cables into programmable
Radio Frequency (RF) attenuators. The Open Access Research Testbed
for Next-Generation Wireless Networks (ORBIT), developed at Rutgers
University [47], is a shared testbed that works in that way. ORBIT is a
large indoor radio grid of nodes. Each node is static, and thereby it is
easy to connect them to a central node using a wired interface making
management functionalities easier and reliable. The mobility of each node
in ORBIT is emulated through a separate mobility server, that transfers

the state of a mobile node from one node in the grid to another. The
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topology generation is another problem due to the static nature of the grid.
Similarly, the Carnegie Mellon University Wireless Emulator (CMUWE) is
a tool defined to be shared by multiple users, that supports real devices,
applications, and MAC and PHY layers on a network-wide scale while
maintaining experimental control and repeatability [48]. The disadvantage
of this emulator is the mandatory use of custom devices which use a Field
Programmable Gate Array (FPGA) to emulate the communication channel,

which limits its portability.

In a MAC layer emulator, all network layers except the MAC and PHY
layers are implemented in a real system. MAC layer emulators simply de-
termine the nodes that should receive a given packet: if a node is emulated
to be within radio range of another node, a filtering approach allows the
exchange of packets between them, if nodes are out of reach, such packets
are dropped. The filtering approach can be centralised or distributed. In a
centralised system all nodes send their packets to a central controller which,
in runtime, determines the nodes that should receive the packets [49]. Nev-
ertheless, this type of approaches may induce a high level of intrusiveness
in the final measures. In decentralised approaches, each node applies its
own rules to determine its visibility with the rest of nodes of the network.
This is the case of open-source approaches such as Castadiva [50] and Mo-
biEmu [51], or the shared testbed Seawind [52]. By dynamically adding
and removing filter rules, the emulator can also create scenarios with node

movement.

2.3.1.4 Summary

Model-based proposals provide a high degree of control, abstraction, flex-
ibility and scalability to study different types of network in a repeatable

way. However, its most important disadvantage is the limited applicability
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of results to the real world. Most of the results obtained from these works,
are based on assumptions which typically simplify in excess the behaviour
of the system, which might lead researchers to biased or wrong conclusions.
Conversely, the highest degree of applicability and therefore transferability
of results, is given in the case of prototype or testbeds. However, ex-
periments are typically difficult to repeat given the complexity of actual
deployments and the unsteadiness of the wireless communication medium.
Furthermore, the cost from the viewpoint of the use of real hardware and
the manpower required, limits the scalability of the approach. Emulation
is a hybrid approach comprised of both real and virtual parts represent-
ing a trade-off between prototype-based and model-based proposals. The
advantage of emulation environments over real world experiments is the
possibility of scaling to larger scenarios with a minor effort. However, the
degree of realism in emulation strongly depends on which components or
actions of the system are real or virtualised (devices, mobility, network in-
terfaces, etc). Table 2.1 summarises the different evaluation alternatives

referred in this section.

2.3.2 Recreating the environment characteristics

Recreating as faithfully as possible the features of the environment under
which ad hoc networks typically operate, is a key aspect to justify the cred-
ibility of results derived from the evaluation of ad hoc routing protocols.
More precisely, the dynamic features of such environments require consid-
ering in the evaluation definition aspects such as the mobility of nodes,
and the presence of internal or external threats related to the nature of the
wireless medium, the limited resources of devices and the absence of a fixed
infrastructure, that may lead to the occurrence of faults in ad hoc routing

protocols.
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Table 2.1: Comparative of reviewed platforms.
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NS [54] X >1000 | X Free
Glomosim [55] | X >1000 | X Free
CMUWE [48] X PCs® X |7 X Free, but permission required
ORBIT [47] X PCs X | 400 X ¥ Free, but permission required
Castadiva [50] X PCs, routers | X | <50 X Free
Seawind [52] X PCs <50 X Free, but permission required
MobiEmu [51] X PCs X | <50 X Free
Roofnet [44] X | Routers X | 24 Free
Floornet [45] X | PCs, routers | X | 37 Free
APE [43] X | Laptops 40 X Free

*A FPGA is required
®Only grid-based topologies are supported

It is worth noting that most of the platforms reviewed in Table 2.1 take
mobility into account. However, none of them considers the occurrence
of faults despite their importance during the execution of experiments in
the evaluation process. This fact is mainly motivated by the difficulty to
recreate the presence of faults in systems in a controllable and repeatable
way [56].

2.3.3 Measures considered during evaluation

The measures considered during evaluation are expected to numerically

express the behaviour of target routing protocols.

Table 2.2 reports a systematic review of what measures are typically used
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in papers addressing the evaluation of ad hoc routing protocols. Results
show that the performance of ad hoc routing protocols is typically char-
acterised through measures reporting the throughput, delay, routing over-
head, packet delivery ratio or jitter exhibited by the network. Surprisingly,
none of the reviewed papers proposed the use of resilience-related measure
to evaluate the impact of faults. This fact is intimately related to the

absence of faults during the experiments execution.

Table 2.2: Measures considered by reviewed papers.

Measures

Paper reference
Routing overhead
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Delay
Jitter

»|| Packet loss

o
s
>
>

o
=)
>
>

w
[*9)
s
| <

ks

o
w
il il
ikl
ikl

X
66 X
X X
X
X X

[ Total [ 12 (66%) | 9 (50%) | 6 (33%) | 10 (55%) [ 3 (16%) ]

| <

X
68 X
X

Following section addresses both the absence of faults during the experi-

ment execution and the lack of resilience measures in the traditional per-
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formance evaluation of ad hoc routing protocols. The goal tackling this
challenge is proposing the basis towards a resilience evaluation framework

for ad hoc routing protocols.

2.4 Towards a resilience evaluation framework for

ad hoc routing protocols

The present thesis promotes the interest of enriching current evaluation
processes in ad hoc routing protocols with resilience aspects. Given the
characteristics of the evaluation approaches previously analysed in Section
2.3.1, emulation seems a suitable technique to define a resilience evaluation
framework given the interesting combination of experiment repeatability
with the deployment on real devices. However, beyond this choice, how
to cope with the introduction of the fault in the routing protocol and how
to practically retrieve the necessary resilience measures from experimental
environments, are essential issues (still requiring further research) that will
be tackled in this thesis.

On one hand, the deliberate introduction of faults in the system in a repeat-
able and controllable way (fault injection) could be very useful to cover the
former question. On the other, selecting a suitable set of measures which

takes into account the viewpoint of resilience, addresses the second one.

2.4.1 The benefits of fault injection

The statistically low activation of faults in routing protocols in particular,
makes very difficult (or at least very costly) to observe deviations in their
expected behaviour. Fault injection is a well-known technique that can be

useful to speed up the occurrence of faults throughout the deliberate intro-
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duction of fault models in the system [71]. Thus reducing the required time

to experimentally evaluate the system behaviour under adverse conditions.

This approach, introduced by Avizienis in 70s [72], enables researchers and
industrials not only to characterise the system in the presence of faults,
but also the effectiveness of the detection and fault-tolerance capabilities

(if any), showing the potential resilience bottlenecks of the system.

Many works have applied fault injection in the last four decades to eval-
uate the dependability and security of systems in domains ranging from
databases [73] to operating systems [74]. Even some standards [75] em-
phasise the need for fault injection for certification specially in the case of
critical systems. The key of fault injection [56] is on clearly defining the
characteristics of the faults introduced in the system, or faultload, accord-
ing to (i) what faults to inject, which involves specifying the type of fault
that will be activated in the system, (ii) how to inject them, which defines
the process to introduce the fault in the system, (iii) where to inject them,
which delimits the component targeted by the fault, (iv) when to inject
them, thus determining the injection trigger, that can be time-driven if
the fault injection is time-dependent, or event-driven, if the activation of
the fault depends on the occurrence of any internal or external event, and
finally (v) the duration of the fault, that can be generally permanent or

transient, if it persists or not in time.

As previously stated, the first step towards the definition of a faultload,
is specifying the set of faults to be injected. However, selecting a repre-
sentative of faults in the domain of ad hoc routing protocols is not easy
given the wide variety of both accidental and malicious faults that threaten
their expected behaviour. Unlike traditional wired networks, ad hoc net-
works must face the openness and the unsteadiness of the wireless medium.
Furthermore, most nodes in ad hoc networks have resources limitations in

terms of processing, storage and energy consumption capabilities. This, in
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addition to mobility, makes that ad hoc networks in general, cannot af-
ford a centralised infrastructure to protect their communications like in a

traditional network.

Some faults, like variable signal interferences, or fading, are inherited from
traditional wireless networks while others, such as power consumption or
topological changes, are acquired given the unique properties of ad hoc net-
works. In any case, these faults can be classified according to the network or
node feature they take benefit from [76, 77]: resource limitations, wireless

nature of communications, mobility and the absence of infrastructure.

2.4.1.1 Faults related to resources limitations

In most cases, nodes are wireless embedded devices manufactured using
high scales of integration. Nodes’ hardware must face hostile environmental
conditions, like corrosion, strokes or fires, that can produce an irreparable
physical damage [35] in devices. This is something inherent to outdoor
wireless networks providing monitoring and controlling capabilities such as
Wireless Sensor Network (WSN)s. In such context of use, nodes may stop
working without previous notification, thus leading the whole system to fail

if some critical sensor or control data are lost.

In addition, nodes used on ad hoc networks in general, and particularly,
those used on WSN, are characterised by their limited (computational)
resources. They implement tiny processors (with limited computation ca-
pabilities), short-duration batteries (which limit the nodes lifetime) and
low-transmission-rated communication technologies (limiting the channel
throughput). Consequently, any non-predicted peak in the service demand
(like an environmental event leading to the processing and exchange of a
big quantity of sensoring data) may exhaust the local resources of nodes or

congest the network [78]. This situation can be also artificially generated
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by malicious users that can saturate the wireless communication medium
with a storm of (valid and/or invalid) messages just to keep nodes busy
(flooding attack), wasting their available resources [79]. An alternative ap-
proach, typically derived from an extremely high density of nodes, may
collapse the sending and reception capabilities of ad hoc routing protocols
due to the massive information exchanged and processed, thus leading to a
neighbours saturation. In all these cases, the presented faults can result in
a reduction of the available bandwidth, and can even extenuate the battery
of some nodes (battery extenuation) [80], thus leading them to switch off,

consequently reducing the amount of alternative routes in the network.

2.4.1.2 Faults derived from the nature of the wireless commu-

nication medium

Ad hoc networks can be deployed in a wide variety of environments (both
indoors and outdoors). However, signal quality depends on a number of dif-
ferent aspects, like (i) the physical characteristics (temperature, pressure,
humidity, etc.) of the environment (the air in case of superficial networks,
the water in case of subaquatic networks), (ii) the distance between the
sender and the receiver nodes and (iii) the signal power. Accordingly, the
signal can suffer from attenuation due to a decrease in the intensity of the
electromagnetic energy at the receiver (e.g., due to long distance between
nodes) [81], multifading [82] caused by reflection and diffraction phenom-
ena, or signal fluctuation at the transmission borderline [83]. These faults
may complicate the successful reception of the signal, thus not correctly
reflecting whether communication between two nodes is possible or not,

which may lead to an increment in the packet loss.

Since the wireless medium is simultaneously shared by multiple network de-

vices, communications are susceptible to suffer interferences from (i) ambi-
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ent noise [84] caused by signal overlapping due to communications located
in adjacent channels (e.g., IEEE 802.11 only has three non-overlapping
channels) or meteorological effects (like the solar radiation, which is spe-
cially important in networks deployed in aircrafts or space shuttles); (ii)
other protocols or heterogeneous devices (like Bluetooth or microwave ovens)
which inhibit the signal, denoted as jamming attack [85] in case of being
malicious; and (iii) nodes from the same network, that can prevent other
nodes from sending or receiving packets (exposed node problem) [86], thus

increasing the rate of corrupted packets by interferences.

Finally, the wireless medium used by ad hoc networks is an open medium
where anyone can listen the private communications of others without their
permission. This makes the channel vulnerable to traffic analysis attacks
[87], and cryptanalysis [88]. These attacks, apart from being difficult to
detect given their difficult traceability, could be used to launch more so-

phisticated attacks.

2.4.1.3 Faults boosted by the mobility of nodes

Some types of networks, specially Mobile Ad hoc NETworks (MANET)s
are characterised by the mobility of their nodes. But what may become an
opportunity from the viewpoint of the user to consume a service everywhere,
typically involves frequent changes of the network topology. Indeed a wrong
nodes distribution [89] or a wrong routing protocol configuration [61] could
boost this problem. For instance, if a routing protocol is configured to
refresh the topology every 30 seconds, and a given node left the network 15
seconds ago, the network nodes have been using an expired link that does
not exist anymore for 15 seconds. The same effect can be derived from nodes
that accidentally replay the sequence number of routing packets. Mobility

can be seen as a vehicle to propagate erroneous messages to other parts of
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the network in case of disseminating faked or expired information about
nodes and links. Attackers could benefit from this fact through replay [79],
sybil [77] and tampering attacks [90]. This fact makes network links more
unsteady, which leads to network partitions, specially at high speeds. In
these cases (e.g., in vehicular networks), the Doppler shift [25] increases
such adverse effects due to the relative speeds of the transmitter and the

receiver nodes.

2.4.1.4 Challenges behind to the absence of infrastructure

Unlike traditional wireless networks, ad hoc networks do not usually rely
on any fixed infrastructure. Instead, nodes must rely on each other to
keep the network connected. Comnsequently, attackers may take benefit
from this vulnerability. For example, the sink hole attack [91] forces the
intrusion of a malicious node in an established route between two nodes
by sending faked messages. Once intruded in the route, all the traffic will
be forwarded through the malicious node. Thus, the attacker will be not
only able to intercept but also insert messages between two victim nodes.
This type of attack is used as a platform to launch a wide variety of attacks
requiring a route intrusion, like black hole [92], grey hole (also referred to
as selective forwarding) [93] or jellyfish attacks [91]. Apart from altering
the topology, these faults can create a fictitious state of congestion and

blockade of communications.

2.4.1.5 Summary

Table 2.3 lists the wide amount of faults that threaten the correct behaviour
of routing protocols in ad hoc networks according to the network or node
feature they take benefit from. Some of them are accidental while others

are malicious. In any case, most of them have a transient nature given the
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dynamic features of ad hoc network deployments. Obviously, these faults
are not the only ones, but they are enough in number and importance to
justify the need of evaluating ad hoc routing protocols from the perspective

of their resilience.

Table 2.3: Accidental and malicious faults affecting the routing layer of ad
hoc networks.

lNetwork characteristic [Main faults identified ‘

Resources limitations Physical damage, peak in service demand, flooding at-
tack, neighbours saturation, battery extenuation
Wireless communication medium | Signal attenuation, multifading, ambient noise, jamming
attack, exposed node, traffic analysis, cryptanalysis
Mobility of nodes Wrong nodes distribution, wrong routing protocol con-
figuration, sequence number replay, replay attack, sybil
attack, tampering attack, Doppler shift

Absence of infrastructure Sink hole, black hole, selective forwarding attack, jellyfish
attack

Figure 2.3 summarises the characteristics of such faults and the effect they
may induce in the network. In this way, faults such as physical damage
and battery extenuation, which affect the device lifetime, may lead the
network to suffer a node fall. A node fall happens when a node stops
communicating with their neighbours in a sudden way or without previous
notification. Faults such as Doppler shift, multifading, signal attenuation,
exposed node, ambient noise and jamming attack, that typically affect the
PHY and MAC layers of the network, may create signal problems where the
wireless medium (e.g., the air) is subjected to different physic phenomena
or interferences that alter the wave transmissions. Other faults affecting
the routing Internet Protocol (IP) layer, such as wrong nodes distribution,
wrong routing protocol configuration, sybil attack, sink hole attack, replay
attack and sequence number replay may forge or forward fictitious (non-
real) routing messages, thus promoting a topology alteration that may lead

network nodes to suffer from inefficient routing or isolation clustering ef-
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fects. Alternatively, faults such as neighbours saturation, tampering attack,
peak in the service demand, black hole attack, selective forwarding, flooding
attack and jellyfish attack, affect both the routing and the service layer.
These faults are characterised by creating a communication blockade ef-
fect that alters the expected integrity, delay or packet delivery of the data
flows exchanged between a given pair of nodes. Finally, faults exploiting
traffic analysis and cryptanalysis through the eavesdropping of frames and
packets, may intercept and analyse sensitive information from the MAC,
routing (IP) and service layers for a different (malicious) purpose they were

conceived to.

The effects of such faults can be propagated along the network and lead to
the activation of other faults. For example, a node falling or the occurrence
of problems with the radio signal, may lead to a topology alteration, finally

manifesting as a communication blockade between network nodes.

2.4.2 Usefulness of resilience measures

Current evaluation processes, as shown in Table 2.2, typically rely on
quality-of-service (performance-related) measures like delay, packet loss or
jitter to characterise the behaviour of the system. However, the special
nature of ad hoc routing protocols requires additional measures to evaluate
the impact of faults on the system resources or the system capability to

fight against service degradation or denial.

Research in the field of resilience evaluation [13], highlights the importance
of also characterising the recoverability of a system through its ability to
detect, diagnose, repair, and restore the normal behaviour of the system.
For instance, in case of suffering malicious attacks, the component with
the lowest and more accurate detection and diagnosis times could be able

to react faster and, thus, limit the effect of these faults in the system.
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Figure 2.3: Faults characterised by their nature and effect on the network.
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Likewise, low repair and restoration times are interesting to reduce the

system downtime.

Generally, resilience measures can be characterised according to the follow-
ing attributes [94]:

o Awailability, that gathers those measures related to the readiness of

the service, e.g., link availability, route availability, etc.

o Reliability, that gathers those measures addressed at measuring the
continuity of the service, e.g., Mean Time To Failure (MTTF), Mean
Time Between Failures (MTBF), etc.

o (Confidentiality, that represents the degree to ensure that an unau-
thorized user will not be able to understand protected information in
the system. Some examples that measure the confidentiality are the

access controllability [75] or data encryption [75].

e [Integrity, that gathers those measures that represent the absence of

improper system alterations, e.g., link integrity, data integrity, etc.

o Maintainability, that gathers those measures related to the ability of
the system to undergo modifications and repairs, e.g., Mean Time To
Repair (MTTR), etc.

Considering resilience measures may complement traditional evaluation, for
example, by assisting evaluators to select the more robust ad hoc routing

protocol for a given system.

2.4.3 Discussion

To date, the evaluation of ad hoc routing protocols has been generally

limited to performance aspects while non-functional aspects like resilience
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surprisingly remains in the background. The introduction of faults in the
system, technique known as fault injection, as well as the consideration
of resilience measures could result useful to evaluate the ability of routing
protocols to keep on providing the routing service despite the activation of
faults. However, how to handle the introduction of faults in the environ-
ment of ad hoc networks, determining which resilience measures should be
considered, and how to obtain them requires further research. These issues
will be addressed in the rest of this thesis.

2.5 Conclusions

This chapter has presented the wide amount of faults that may threaten
the expected behaviour of routing protocols in ad hoc networks during their
deployment lifetime. The dynamic nature of faults require the provision of
tools and techniques that enable academia and industry to evaluate the
resilience of ad hoc routing protocols. However, currently, there is a lack

of practical approaches to carry out this goal.

Next chapters address these research gaps and propose a novel resilience
evaluation framework called REFRAHN (Resilience Evaluation FRame-
work for Ad Hoc Networks). Such framework will follow the principles of
emulation, an evaluation approach encompassing the benefits from simula-
tion and real prototypes, to experimentally evaluate the impact of faults
in ad hoc routing protocols. More concretely, Chapter 3 will define the
methodology of such framework. The REFRAHN methodology will be
essentially divided in three basic stages: the identification and configura-
tion of the various elements that concern the evaluation of ad hoc routing
protocols, the underlying procedure to carry out the injection of accidentl
fault and attacks during the experimentation, and finally, the retrieval of

experimental measurements, their computation and the final provision of
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performance and resilience measures. The following chapter of this thesis

will address each one of these parts.
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Chapter 3

A novel methodology to
evaluate the resilience of ad

hoc routing protocols

The presence of changes in ad hoc networks due to nodes mobility, or be-
cause of the occurrence of unexpected faults that evolve along time may
compromise the basic mission of the ad hoc routing protocols: routing. So,
addressing the resilience evaluation of such protocols is essential. Resilience
evaluation is a well-specified procedure that enables researchers to evaluate

the ability of the system to continue providing a service despite changes.

Chapter 2 showed the impairments that limit the resilience evaluation of
ad hoc routing protocols in practice. These research gaps can be covered
through the definition and implementation of REFRAHN, a novel unified
framework that defines a methodology and implements a tool to support the
experimental resilience evaluation of ad hoc routing protocols. This chapter
presents the principles of the REFRAHN methodology.
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3.1 Introduction

Ad hoc networks are expected to be the basis to interconnect future ecosys-
tems of devices based on the notion of Internet of Things (IoT). However,
as previously stated in Chapter 2, their main strengths may become their
weaknesses when studied from the viewpoint of resilience. The occurrence
of faults in ad hoc networks, and more concretely in ad hoc routing proto-
cols, that are critical elements for such networks, may dramatically degrade

the service provided by the upper layers of the network.

To date, most of the efforts done in the community of ad hoc networks
concerning such issue have been focused on simulation studies proposing
novel approaches to fight against the effects of such faults. However, despite
their interest, the challenge is not only in proposing new fault tolerance
mechanisms to face such impairments, but in providing methodologies and

tools to evaluate their resilience.

The resilience evaluation of ad hoc routing protocols is essential to study
how the dynamic features of ad hoc networks may affect their dependabil-
ity. This aspect is very important to estimate how good (or bad) a given
routing protocol or fault tolerance complement adapts to changes in the
environment. Likewise, resilience evaluation could be very useful to assess
the risk of subjecting (new or existing) fault tolerance mechanisms to the

presence of known faults they were designed (or not) against.

Resilience evaluation is the lowest minimum denominator to support a va-
riety of processes that are indispensable to analyse and improve the con-
fidence of ad hoc routing protocols and their fault tolerance complements
along their life-cycle. For example, results obtained from resilience eva-
luation could be used to discover and correct flaws in the behaviour of

routing protocols and their fault tolerance complements at the design and
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prototyping stages [20]. Once implemented, the comparative selection of
components in presence of changes (resilience benchmarking) [19] is a pro-
cess that uses the evaluation to decide which, among the existing routing
protocols or fault tolerance complements, matches the best the system qual-
ity requirements. After that, resilience evaluation plays an important role
to determine the impact on the system behaviour when tuning the param-
eterisation of routing protocols or their fault tolerance complements [18].
Finally, in case the behaviour of the system is not satisfactory enough, the
resilience evaluation may guide the design of new routing and fault toler-

ance strategies [17] that increase the level of confidence of the network.

Unfortunately, despite the advantages of resilience evaluation to support
such processes, recreating the required dynamic characteristics of ad hoc
networks and their routing protocol is particularly hard. This task involves
studying the evolution of mobile nodes along time as well as the faulty
conditions of the environment. Specifically, it is necessary to define the
experimentation in such a way it is controllable and observable, as far as

possible, so that results can be comparable and repeatable.

To address this goal, this thesis presents an unified framework called RE-
FRAHN (Resilience Evaluation FRamework for Ad Hoc Networks) that, on
one hand, defines an experimental methodology to evaluate the resilience
of real ad hoc routing protocols executed in real devices and, on the other,
implements a tool to exploit the benefits of resilience evaluation to sup-
port processes such as the resilience benchmarking, tuning, vulnerability

discovery and design of ad hoc routing protocols.

More concretely, the rest of this chapter will introduce the REFRAHN me-
thodology, while Chapter 4 will focus on the REFRAHN implementation.

With respect to the definition of the proposed methodology, it is woth

noting that ensuring an adequate level of controllability, repeatability and
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observability of experiments is one of the major issues threatening the suc-
cess of resilience evaluation in practice. Controllability denotes the ability
to move a system around in its entire configuration space using only certain
admissible manipulations. Repeatability is the variation in measurements
taken by a single person or instrument on the same item and under the
same conditions. Finally, observability defines how well internal states of a

system can be inferred by knowledge of its external outputs.

This problem is specially critical in case of considering mobile networks,
where the larger the physical distance among the nodes, the more tedious
and time-consuming the task of setting up a multi-hop topology is. On one
hand, several research projects, like APE at Uppsala University [83], have
reported experiences of setting up a multi-hop wireless testbed spending
a significant amount of time and work using volunteers to carry mobile
devices in an orchestrated manner. However, this approach may affect the
controllability and observability of the experimentation process. On the
other hand, the radio range of wireless nodes operating in the 2.4 GHz
band and using off-the-shelf IEEE 802.11b/g wireless Network Interface
Card (NIC)s may vary dramatically (from 50 m to 100 m) due to ambient
faults like multi-path interference, noise in the channel, etc. Thus impacting

on the repeatability of experiments.

Consequently, to tackle such experimental approach, we rely on emulation.
It enables researchers to use a testbed composed of real devices whereas the
visibility of nodes is virtualised through software packet filtering, which, as
stated in Section 2.4, is much more cheaper than using hardware attenua-
tors. This trade-off eases the study of real ad hoc networks while avoiding
the problem of deploying and controlling a large number of actual mobile

nodes within a wide area.

The REFRAHN methodology copes with these impairments through the

definition of three basic stages. First, it is mandatory to understand which
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parameters bound the variability of results in the evaluation of ad hoc rout-
ing protocols. Then, it is necessary to address the experimental procedure
to carry out the evaluation of the ad hoc routing protocols in the presence
of faults. Finally, it is essential to define how to transform obtained mea-
surements into resilience measures that can be analysed and interpreted by

final users.

The rest of this section is focused on explaining such stages. More con-
cretely, Section 3.2 defines the experiments configuration, Section 3.3 in-
troduces the experiments execution and Section 3.4 addresses the analysis

of results. Finally Section 3.5 concludes the chapter.

3.2 Experiments configuration

This section presents how to configure the resilience evaluation of ad hoc
routing protocols and which elements are required from a practical experi-
mental viewpoint. All the parameters that characterise the experimentation
must be precisely determined prior to the experiments execution. As pre-
viously stated, recreating the environment characteristics and selecting a
proper set of measures that reflects such characteristics is essential for the
quality of evaluation results. Likely, our methodology divides such sensitive
parameters into four categories: (i) the network profile, which configures all
the parameters related to the network deployment; (ii) the ezecution profile,
that animates the network deployment with realistic work- and faultloads;
(iii) the measures definition to quantify the behaviour of the system in
presence of such elements; and (iv) the campaign configuration, to delimits

the statistical representativeness of the experimental execution.

The flow of the experiments configuration is synthesised in Figure 3.1.
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Network profile definition
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Figure 3.1: Flow of the experiments configuration.

3.2.1 Network profile definition

The network profile is in charge of accurately defining the network under
study, its characteristics and deployment. This groups the following basic

parameters.

The topology determines the relative position and initial distribution of the
nodes within a delimited area. The network size is determined by the num-
ber of nodes it comprises. The area bounds the physical space where the
nodes are confined for the duration of the experimentation. Finally, thanks
to the mobility pattern (like Manhattan [21], random way point [95] or
walking [96] models) and the node speed, it is possible to compute the tra-
jectory followed by network nodes. Another parameter of prime importance
is the routing protocol to be considered, its particular implementation and

version. The selected protocol will greatly influence the resulting measures.

3.2.2 Execution profile

The execution profile, defined in terms of the workload and the faultload,

encompasses the experimental operating conditions under which the evalu-
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ation will be performed.

3.2.2.1 Workload

The representativeness of results obtained throughout the proposed evalu-
ation process will depend, among other things, on the selection of a work-
load that matches, as much as possible, the real operation conditions of
the final system. The workload describes the applicative traffic exchanged
among nodes. Data flows are generated by the applications used by source
and destination nodes. Real applications are preferred to increase the rep-
resentativeness of results. Some example of useful applications to study
particular behaviours are Voice over IP (VoIP) conferences, instant messag-
ing or peer-to peer file exchanging. However, the use of synthetic workloads
could be also interesting to study data flows from a generic viewpoint. The
bitrate of synthetic workloads can be constant or variable. Conversely to
real workloads, synthetic ones offer a higher level or controllability because
their execution does not depend on external events (e.g., interactions with
end user). In any case, the proposed methodology supports both types
of workloads to increase the representativeness of results, on one hand, or

recreating specific scenarios under controlled conditions on the other.

3.2.2.2 Faultload

The faultload defines the adverse conditions the system will face during the
evaluation. One of the major issues along these years of research concerns
the representativeness of injected faults [97]. In other words, the faultload
should include those faults that are actually experienced during the system
lifetime in order to obtain realistic evaluation results. If the injected faults
are not representative, then the usefulness of the evaluation process can be

compromised. This means that carefully selecting the proper fault types
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(what to inject) is very important.

The proposed faultload takes into account a wide set of well-known faults

that affect the behaviour of routing protocols in ad hoc networks. Such

types of faults, that were introduced in Section 2.4.1, are detailed below:

F1.

F2.

F3.

F4.

F5.

Signal attenuation [98]: The signal quality depends on factors such
as the distance between the nodes and the signal power. This irreme-
diably creates signal problems that lead to an increment of the packet

loss rate.

Ambient noise [98]: Since the wireless medium is simultaneously
shared by multiple devices, communications are susceptible to suf-
fer signal problems caused by interferences that increase the rate of

corrupted packets.

Battery extenuation [98]: Ad hoc network nodes, and especially
those used on Wireless Sensor Networks (WSN), are characterised
by their limited resources. They integrate short-duration batteries
which limit to some extent the nodes lifetime. The activity of nodes
can exhaust their batteries, thus leading the node to switch off and
consequently impacting all the routes involving the participation of

such node.

Traffic peak [77]: Non-predicted peaks in the service demand may
lead network nodes to suffer a communication blockade that exhausts

the local resources of nodes and congests the network for a while.

Sink hole attack [77]: The sink hole is an attack launched by a
malicious node to intrude a communication route. Their effects cause
a malicious topology alteration that benefit the attacker to execute

other attacks.
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Fé6.

F7.

F8.

F9.

F10.

F11.

F12.

Tampering attack [99]: This attack violates the principle of data
integrity by modifying the content of packets exchanged between a
given pair of nodes. This attack leads to a communication blockade
where legitimate packets addressed to destination nodes are substi-

tuted by maliciously altered ones.

Replay attack [77]: The attacker overhears the network traffic to (i)
capture and (ii) reproduce routing packets when they have already
expired. The effects of this attack may lead to the creation of fictitious

links, thus inducing an undesired topology alteration in the network.

Selective forwarding attack [99]: This attack drops all those pack-
ets belonging to a target data flow. Its consequences are a communi-
cation blockade for those data flows affected by the attack.

Jellyfish attack [91]: This attack delays all data packets belonging
to a target data flow. Consequently, all the data flows subjected to

this attack can be affected by a communication blockade.

Flooding attack [77): Nodes must overhear all messages in their
radio range to determine whether they are the addressee. As a result,
an attacker can saturate the medium with broadcasting storms just to
keep nodes busy, totally consuming their resources and consequently

causing a communication blockade in affected neighbour nodes.

Neighbours saturation [77]: Routing protocols store the topology
information in internal routing tables, which grow proportionally to
the amount of links stored. In this way, large routing tables may result
difficult to manage. Consequently, the sending and receiving capabil-

ities of nodes may be affected, creating a communication blockade.

Sequence number replay [77]: Nodes may start sending routing

protocols packets without updating its identification sequence num-
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ber. In case routing protocols are not protected to cope with this
situation, this misbehaviour may lead to create fictitious topology

alterations.

Some of these faults such as signal attenuation, ambient noise, battery ez-
tenuation, traffic peak are generic (protocol independent) while some other
must be instantiated according to the particular nature of each routing
protocol (protocol dependent), like sink hole attack, replay attack, tam-
pering attack, selective forwarding attack, jellyfish attack, flooding attack,

neighbour saturation and sequence number replay.

3.2.3 Measures definition

The set of measures proposed in this methodology characterises different
features of routing protocols such as the performance, the resources con-
sumption and the resilience. The goal is providing the evaluator different

criteria to assess the behaviour of ad hoc routing protocols.

The subset of performance measures considered is derived from Table 2.2,
which summarises the measures typically used in the evaluation of ad hoc
networks. Thus, the three most widely-used measures considered by this
study were taken into account: packet delivery ratio, defined as the per-
centage of applicative packets correctly delivered; packet loss, which is the
complement of the packet delivery ratio; and delay, which is defined as the
time elapsed since a given packet is sent by a source node until its reception

by the destination node.

Considering the use of measures which assist evaluators to estimate the
impact of mobility or the occurrence of faults on the resources consump-
tion, is very important. At this point, it is proposed the use of energy

consumption, which is specially critical in isolated environments, such as
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WSN. Such measure computes the energy wasted by nodes when using
their wireless NIC.

Finally, the analysis carried out in Section 2.3.3 revealed the lack of specific
resilience measures in the domain of ad hoc networks. However, although a
wide set of generic resilience measures can be found in the bibliography [94],
it is necessary to adapt them to the necessities of ad hoc routing protocols.
The subset of resilience measures considered in this methodology is a first
step towards this goal. Such subset is formed by measures such as the
route availability, defined as the percentage of time a communication route
established between a source and a destination node is ready to be used;
packet integrity, which computes the percentage of packets whose content
was legitimately received; threat exposure, which defines the percentage of
time a communication route coexists with the presence of a fault; and fault
effectiveness, that computes the percentage of time such fault is successfully

activated.

Table 3.1 summarises the purpose, formula and interpretation of the differ-

ent measures considered in our experimental methodology.

3.2.4 Configuration of the experimental campaign

The proposed resilience evaluation approach consists in the practical ex-
ecution of experiments. Such experiments can be grouped in experimen-
tal campaigns. Several parameters define the configuration of experimen-
tal campaigns: the warm-up time required for the establishment of initial
routes between network nodes, the duration of the experiments, and the
number of repetitions determining the proper amount of experiments that
should be performed. Given the particular nature of each network deploy-
ment, determining the value assigned to these parameters is a choice that,

to date, is not supported by any standardisation body. Generally, this de-
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Table 3.1: Selected measures.

Performance [ Description [ Formula Interpretation
Packet delivery ratio (%) |% of packets that arrived % - 100 The higher the better
from source to destination in
a communication route.
Packet loss (%) % of packets that were lost % - 100 The lower the better

in a communication route.

delay of received packet

Zrocoived packets The lower the better

Delay (ms) Avg. time required by a
packet to get from source to

destination.

‘ Resources consumption

Description ‘ Formula ‘ Interpretation

Energy consumption (J) Energy consumed by alFE = ESending +E0'uerhea7*ing -+ | The lower the better
node’s NIC that takes part EReceiv'ing
in a communication route.

Resilience ‘ Description ‘ Formula ‘ Interpretation ‘
Route availability (%) % of ti;netthle) targst route % - 100 The higher the better
was ready to be used.
Packet integrity (%) % of Packets received at des- #non—j;rt:;:ierschidetzackets - 100 | The higher the better
tination whose content (or
payload) was not illegiti-
mately altered.
Threat exposure (%) % of time the communica- #S;Céx;heeriiilel:t lsuarc;tli\i)a;ed - 100 The lower the better
tion route was exposed to
any fault.
Fault effectiveness (%) % of the threat exposure gscc. the Taull fs activated 100 The lower the better

. . #sec. the fault is launched
time the fault succeeded on

impacting the network be-
haviour.

cision is taken empirically by evaluators, and despite its importance, the
value of such parameters is not always found in evaluation reports. The du-
ration of the experiments typically ranges from 60 seconds [62] to 24 hours
[101], while previous works rarely take into account the warm-up time when
considering the evaluation of routing protocols. However, not considering
this time may result unfair when comparing routing protocols from differ-
ent families, specially in experiments with short duration, as results will be
biased due to the different behaviour experienced since steady operation is
reduced. The number of repetitions ranges from 1 [61] to 50 [39], depend-
ing, in most cases on the standard deviation of the population sample of
results. At this point, it is worth noting how results, even obtained from

the same evaluation platform, are subjected to a wide variability due to,
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among other factors, the range of hours when the experimentation was per-
formed, or the amount of users accessing to the evaluation platform (in case

of shared testbeds). This is a factor hindering the comparison of results.

In case it is not feasible to perform the required number of experiments, due
to its huge number or its long duration, we recommend that the number of
experiments performed should be bounded by the manpower involved and

the time available for experimentation.

3.3 Experiments execution

One key element when tackling the experiments execution is the exper-
imentation platform, as it strongly conditions practical aspects, like the
experimental portability, scalability, controllability, observability, repeata-

bility and intrusiveness, to successfully deploy the evaluation process.

3.3.1 Proposed architecture

As can be seen in Figure 3.2, the proposed architecture of REFRAHN con-
sists of two different networks. The first one, the wireless (data) network, is
the ad hoc network used by nodes to exchange information and constitutes
the experimental network where real routing protocol targets will be de-
ployed. Network nodes can play the role of either common or fault injector
nodes (injector nodes from now on). The former send and forward traffic
to other network nodes, whereas the latter are responsible for recreating
the occurrence of faults in the network. The second network, the wired
(control) network, connects all nodes with a special one, the experiment
controller. This node is in charge of configuring all the network nodes and
controlling the experimentation. It is to note the flexibility offered by the

proposed architecture. Since nodes mobility is emulated, the experimental
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Wireless (Data) Network
3))\»
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Network [ Wireless interface Network [~ Wireless interface
Node Routing protocol Node Routing protocol
Experiment Controller Workload | Faultload | Network Workload | Faultload | Network
Manager | Manager | Monitor Manager | Manager | Monitor
Experimental Profile
network profile| Node Measurements Node M easurements
Manager Collector Manager Collector
faultload T T ¥ T
workload I Wired interface I I Wired interface I
L Experiment |Wired \

Manager |interface -
/ Wired (Control) Network

Measure
Repository

Figure 3.2: General resilience evaluation architecture.

platform may accommodate network nodes physically close. In this way,
real ad hoc networks can be easily used for experimentation, since nodes be-
have as if they were moving around the designated area despite being static
and receiving all the traffic generated by the rest of nodes. A laboratory
desktop, may for instance, host more than 15 real devices. This experi-
mental alternative enables the evaluator to considering a bigger number of
nodes. This option can be really useful when addressing the typical logistic
spatial limitations of research laboratories. Furthermore the fact of consid-
ering real nodes supporting available communication technologies and real
routing protocol implementations eases the portability of the evaluation

platform.

To carry out the fault injection process we need specific instruments and
tools to inject the faults and monitor their effects. Figure 3.3 shows the

interactions between REFRAHN’s fault injector and its required tools. The
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fault injector will used injector nodes to recreate the occurrence of faults
during the experimentation. Once the faultload manager receives the fault-
load specification to be injected, it instruments the fault injector module
to deploy the adequate actions in the right order. Essentially, the fault
injector module is prepared to carry out a set of generic basic actions that
can be applied at the routing level. Such a list, introduced in Figure 3.3,
represents the union between the sets of actions proposed in previous works
[66, 102, 103]. These actions involve (i) sniffing and storing packets from the
wireless medium, (ii) processing stored information, (iii) creating packets,
(iv) sending packets, (v) relaying packets, (vi) introducing a given lapse
of time between one packet and the following, (vii) altering the content
of legitimate packets or (viii) deleting packets. The combination of these
basic actions can result into more complex faults. Additionally, the fault

injection monitor can trace the faulty activity for the subsequent analysis.

Faultload

i i
Faultload —| Capturing |())
<—

manager —>| Analysing |(ii)
[ Conering ]
Fault injector %_> Modifying | (iv)
executer -

—[_ Sending |()
—{ Forwarding | (V)
Fault injection R - (vii)

monitor Delaying

- [omoving ] i

Figure 3.3: Conceptual diagram of the fault injector.
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3.3.2 Experimental procedure

Once our architecture defined, the experimental evaluation can be per-

formed as Figure 3.4 states.

| Experiment start-up

Golden run No (Fault injection phase)

phase?

|

. Faultload
Workload execution .
execution
Network activity Faulty activity
monitoring monitoring

Experiment
duration elapsed?

Yes

Repeat while more experiments are required

Traces storage

Figure 3.4: Flow of the experiments execution.

During the experiment start-up, each experiment presents an initial set-
up time, required to reset the original state of the system, followed by a
warm-up time, devoted to lead the targeted routing protocol to a stable
state. Via the control network, the experiment controller configures each
network node to play its assigned role. Common nodes are programmed
to generate network traffic according to the selected workload, whereas
injector nodes are in charge of introducing faults in the system according
to the defined faultload. Alternatively, nodes are deployed according to the
previously computed initial topology of the network. The experiment start-
up requires synchronising the clock in all the network nodes to improve the

accuracy of the evaluation process.
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3.3.3 Golden run execution

After this, the baseline phase, known as golden run in the dependability
domain [104], starts. It consists of a number of successive experiments in
which the system executes the selected workload, in absence of faults, while
the nodes activity is monitored. The experiment controller sets-up a num-
ber of probes in each node to monitor its activity during experimentation.
Basically, these probes collect information about the amount and type of
packets exchanged and the timestamp they were received and forwarded,

and the energy consumed by each packet.

3.3.4 Fault injection execution

The fault injection phase corresponds to the execution of the workload
in the presence of the faultload to evaluate the impact of faults on the
system behaviour. Its execution is identical to the golden run phase, but
introducing the fault into the system at a particular location at a given
time. The procedure, the injection point, the trigger and the duration of

each considered fault are aspects that must be specified.

3.3.4.1 F1: Signal attenuation

e Injection procedure: As our methodology emulates the location of
the nodes, the effect of increasing or decreasing the distance among
nodes is recreated through packet loss. Previous works using physical
attenuators such as [105], similarly obtain a degradation in the packet
loss when emulating an increment in the distance between a given pair

of nodes.
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e Injection point: The packet loss is applied over the routing and
applicative packets received by the NIC of every node participating

in the experiment campaign, to recreate the worst possible case.

e Injection trigger: The fault is activated from the beginning until

the end of the experiment.

e Fault duration: Although generally considered transient, this fault
is bounded by the experiment duration given its activation in every

network node.

3.3.4.2 F2: Ambient noise

e Injection procedure: The interferences created in the wireless medium

are emulated through packet corruption [98].

e Injection point: A packet corruption rate is applied over the routing
and applicative packets received by the NIC of every node participat-

ing in the experiment campaign to recreate the worst possible case.

e Injection trigger: The fault is activated from the beginning until

the end of the experiment.

e Fault duration: Although generally considered transient, this fault
is bounded by the experiment duration given its activation in every

network node.

3.3.4.3 F3: Battery extenuation

e Injection procedure: This fault can be emulated by disabling the
packet receiving and sending capabilities of injector node [98]. Af-

fected nodes will be seen as fallen nodes by their neighbours.
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e Injection point: The fault disables the functions at the victim

node’s wireless NIC.

e Injection trigger: The fault is activated from the beginning until

the end of the experiment.

e Fault duration: The fault, typically permanent, is bounded by the

experiment duration.

3.3.4.4 F4: Traffic peak

e Injection procedure: This fault is injected by increasing the packet
sending rate of a injector node up to the saturation point of the net-
work (e.g., around 18 Mbps in IEEE 802.11g). This model emulates
the case where tens of users share the same route to exchange data
[77].

e Injection point: The fault, launched by an injector node, degrades
the behaviour of all the nodes that are in the same radio range during

the packet emission.

e Injection trigger: The fault activation is scheduled by the evalua-

tor. By default, it is launched at the experiment beginning.

e Fault duration: The nature of a traffic peak is transitory. So this
fault has been defined to affect a limited percentage of the experiment

time, generally delimited by the evaluator.

3.3.4.5 F5: Sink hole attack

e Injection procedure: The sink hole attack is recreated through the

exchange of routing packets between common and injector node [77].
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The injector node responsible for playing the role of the attacker must

create routing packets their neighbours are able to understand.

e Injection point: The fault is launched by an injector node. First,
the injector node (M) must dynamically locate a proper data flow to
identify victim nodes (A, B and C). Then, the malicious node tries to
replace the position of one legitimate node (B) in the route. Likely, it
announces itself as a suitable node so that neighbour nodes (A and C)

take it into account to establish a new route, as Figure 3.5 illustrates.

e Injection trigger: This attack is triggered when the injector node
and the victim nodes that are forwarding a target data traffic flow

are in the same radio range.

e Fault duration: This fault is generally transient given the mobility,

and the connection and disconnection of nodes.

Intrusion point

source Lo N destination

node » { N node

malicious
node

Figure 3.5: Intrusion point for sink hole attacks.

3.3.4.6 F6: Tampering attack

e Injection procedure: The recreation of tampering attacks requires

first the execution of a sink hole attack [99]. Then, the original data
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flow between a target pair of nodes is altered.

e Injection point: The payload of incoming target applicative packets

is modified before relaying again them towards their destination.

e Injection trigger: This attack is triggered as soon as the sink hole

succeeds.

e Fault duration: The duration of this attack depends on the injector
node skills to keep the sink hole alive as far as possible, but it is

generally transient.

3.3.4.7 FT7: Replay attack

e Injection procedure: The injector node playing the role of replay
attacker is in charge of capturing routing packets from one zone of

the network and reproducing them in a different one [77].

e Injection point: Captured routing protocol packets will be broad-
casted by the injector node, thus affecting the topology map of all the

nodes that were in the same radio range during the packet replay.

e Injection trigger: The injector node will capture routing protocol
packets during the whole experimentation time. In parallel, such
packets will be replayed after a fixed period of time determined by

the evaluator.

e Fault duration: Although launched for all the experiment time, the
duration of this attack depends on the percentage of time the attacker
affects a given node. Given the dynamic nature of ad hoc networks,

it is considered generally transient.
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3.3.4.8 F8: Selective forwarding attack

e Injection procedure: This attack requires the successful execution
of a sink hole attack [99]. Then, the original data flow between a

target pair of nodes is removed.

e Injection point: The injector node drops all those packets belonging

to a target data flow intercepted.

e Injection trigger: This attack is triggered as soon as the sink hole

succeeds.

e Fault duration: The duration of this attack depends on the injector

node skills to keep the sink hole alive as far as possible.

3.3.4.9 F9: Jellyfish attack

e Injection procedure: This attack requires the successful execution
of a sink hole attack [99]. After that, the original data flow established

between a source and a destination node is delayed.

e Injection point: The injector node delays all those packets belong-
ing to a target data flow intercepted a given period of time established

by the evaluator.

e Injection trigger: This attack is triggered as soon as the sink hole

succeeds.

e Fault duration: The duration of this attack depends on the injector

node skills to keep the sink hole alive as far as possible.
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3.3.4.10 F10: Flooding attack

e Injection procedure: The injector node responsible for introducing
the flooding attack in the network will send a constant burst of packets
reaching the saturation point of the network (for example, around 18
Mbps in practice for IEEE 802.11.g) [77].

e Injection point: The fault is launched by an injector node, thus
degrading the behaviour of all the nodes that were in the same radio

range during the packet emission.

e Injection trigger: The injector node will deploy the attack from

the beginning of the experimentation time.

e Fault duration: Although launched for all the experiment time, the
duration of this attack depends on the percentage of time the attacker
affects a given node. Given the dynamoc nature of ad hoc networks,

it is considered generally transient.

3.3.4.11 F11: Neighbours saturation

e Injection procedure: This fault is emulated by a single injector
node. The idea is instrumenting such node to send a burst of fake
routing protocol packets announcing a huge amount of different links
[77]. The amount of new links announced in such burst could be
statically assigned by the evaluator, or dynamically determined by

the injection node itself through different tries.

e Injection point: As far as the packets sent by the injector node are
received by all the neighbour nodes in the same radio range, they will

believe that each packet corresponds to a different announcing node.
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e Injection trigger: The injector node will deploy the attack from

the beginning of the experimentation time.

e Fault duration: The fault duration is limited by the number of
burst launched by the injector node. Such number is a parameter the

evaluation performer should configure.

3.3.4.12 F12: Sequence number replay

e Injection procedure: This fault is emulated by manipulating the
generation of packet sequence numbers in a single node. The idea is

sending always the same packet identifier [77].

e Injection point: The injector node will mainly affect those nodes

within the same radio range.

e Injection trigger: The injector node will deploy the fault from the

beginning of the experimentation time.

e Fault duration: The fault will be deployed for the whole duration
of the experiments. However, from the network viewpoint, it can be
considered transient as its practical duration is bounded by the time

the injector and affected nodes share the same radio range.

The degree of intrusiveness (either temporal or spatial) induced in network
nodes by the fault injection process is negligible. Conversely to other fault
injection methodologies [56], in any case the system execution is paused or
forced to launch complex routines or tasks to induce a faulty behaviour in

common nodes.

To ease the analysis of results, our approach considers that a fault injection
experiment is related to one particular type of fault, thus requiring addi-

tional fault injection experiments in case of considering additional faults.
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At the end of each experiment, collected measurements are transferred to
the experiment controller, which is in charge of processing them to obtain

the measures that characterise the network behaviour in presence of faults.

The faulty activity is monitored by the fault injection monitor. This module
records every relevant event. That is, when the fault injection starts, when

the fault is activated and when the fault injection finishes.

3.4 Analysis of results

At the end of the experimentation, the analysis of results is in charge of
processing all the log files generated with the information collected while

monitoring the system activity, as depicted in Figure 3.6. In order to reduce

Traces delivery

All traces
aligned ?

Yes

Traces
synchronisation

Measures
computation

Figure 3.6: Flow of the experiments analysis.

the degree of intrusiveness on measurements that can affect the accuracy of
results, all this information will be processed offline, filtered and correlated,
to extract (i) the measures required to quantify the system behaviour, (ii)
their average values and (iii) variability indicators such as the standard de-
viation or confidence intervals. Given the distributed nature of the system
monitoring process, it is possible that probes installed into network nodes

experience a minimal delay until the order to start or stop monitoring is
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applied. To correct the possible inconsistencies caused by this delay, and its
possible intrusiveness in final measures, all the traces obtained by different
probes are aligned in time. This operation involves bounding the observa-
tion time of the experiment between the latest beginning timestamp and
the earliest ending timestamp experienced by the traces collected from the

probes of each network node.

After the analysis of traces, measures can be finally obtained by applying

the expression introduced in Table 3.1.

3.5 Conclusions

The REFRAHN methodology proposed in this chapter has been designed
to be a practical approach for the systematic resilience evaluation of ad
hoc routing protocols. Such methodology is based on emulation to enable
evaluators to use real devices and routing protocols without the physical

limitations imposed by real mobility.

Fault injection is an important stage in the REFRAHN methodology to
evaluate the effectiveness of routing protocols and their fault tolerance
mechanisms. Accordingly, a representative set of faults in the domain of ad
hoc routing protocols has been modelled to enable the recreation of faulty

conditions in a repeatable way.

The impact of faults in ad hoc routing protocols is finally characterised
throughout the use of different types of measures encompassing perfor-
mance, resilience and resources consumption aspects. The idea of deriving
measures from several viewpoints is providing evaluators a more accurate

image of the target routing protocols they are evaluating.

Figure 3.7 shows the complete flow of the REFRAHN methodology, while

next chapter details how such methodology can be deployed in practice.
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Chapter 4

A tool to support our

methodology

This chapter presents the first prototype of REFRAHN supporting the pro-
posed methodology to evaluate the resilience of routing protocols. Such im-
plementation facilitates the recreation of realistic network environments in
presence of faults. QOur approach allows researchers to generate network
topologies, exporting them to real devices and obtaining the resulting traces.
It can also generate different types of workloads and faultloads between
nodes, and offers support for some well-known ad hoc routing protocols.
The architecture of this tool is described along with the different processes

required to conduct a fault injection campaign.

4.1 Introduction

The key principles that guide the REFRAHN implementation are (i) the

miniaturisation of the area of installation of a multi-node multi-hop wireless
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testbed, (ii) the control over the nodes to allow easy reconfigurability of
topology in the testbed, and (iii) last, but not the least, the emphasis
on building a low-cost testbed from Commercial Off The Shelf (COTS)

components.

In essence, REFRAHN goes in the direction of alleviating the huge amount
of time elapsed and the manpower required to carry out real experimenta-
tion with ad hoc networks. REFRAHN proposes the emulation as a way to
reduce the space of experimentation and maintain the basic properties of
multi-hopping while considering fault injection to introduce a wide variety

set of faults within the ad hoc network.

REFRAHN implements three different stages related to the proposed me-
thodology: (i) the definition of all the required parameters to specify the
resilience evaluation to be performed; (ii) the execution of the requested
fault injection experiments while monitoring the system’s execution; and
(iii) the analysis to determine the impact of these faults into the system’s

behaviour.

The rest of this chapter is structured as follows. The architecture of the
REFRAHN implementation is described in Section 4.2. The experiments
definition process is presented in Section 4.3. After that, Section 4.4 details
the control flow for the execution of experiments and the particularities of
the implementation of the fault injection. How results can be analysed to
assess the resilience of targeted ad hoc routing protocols is a topic pre-
sented in Section 4.5. Section 4.6 discusses the main characteristics of the
REFRAHN implementation. Finally, Section 4.7 concludes the chapter.
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4.2 Architectural overview

REFRAHN has been defined to support IP as the base technology of their
communications, which makes our proposal independent from the technol-
ogy used in the PHY layer (Bluetooth, Zigbee, WiFi, etc). It is structured
in two types of elements, the experiment controller, and the common and
injector nodes. Figure 4.1 presents these basic elements. As can be seen,
the emulation of mobility enables experimenters to create scenarios with

dynamic topology without physically moving the nodes.

Common node

Commion . R Injector node 3 | ogical network
’ . )

node AR P \ P + topologyint=n
N \ _-- :
Common node Common node .
E : Common node :

. 0 Toso : Logical network

: fo o e « topologyint=1
. \y . Common node .
. Common node Injector node .

y Experiment
controller

eeccccccce

N

Physical network topology

eecscccce

Figure 4.1: Basic elements of REFRAHN.
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The experiment controller configures the network devices. The network
can comprise any sort of computing device, like a laptop, a smartphone
or a wireless router. Current prototype of REFRAHN, is implemented
using open-source tools based on Linux/Unix, but its design, according
to Chapter 3, is conceived to integrate other operating systems or tools,

according to the possible needs of the evaluator.

The controller application, developed in C' and shell script, controls all
devices and manages network nodes dynamically according to the desired
deployment scenario. Since the controlling application requires communi-
cating with nodes to send control packets, our approach combines two dif-
ferent networks: the control network (wired), that connects the controller
with the wireless nodes, and the wireless network, where actual tests run.
The control network is a wired network that allows the controller to send
configuration messages to all the nodes without creating any interference
within the wireless network itself. This aspect is very important to reduce
the intrusiveness of the evaluation platform itself in the evaluated system.
Basically, the control network requires a switch connecting the controller
to all the nodes. This communication is based on Ethernet technology,
to avoid large latencies. Maintaining the internal clocks of network nodes
synchronised is essential so that all the nodes participating in a experiment
start at the same time, avoiding significant latency effects and maximising
result accuracy. Accordingly, every node executes the Network Time Pro-
tocol (NTP) service before a new experiment starts. This service can be
installed in the experiment controller in case the evaluation platform does

not have Internet access to access remote NTP services.

REFRAHN comprises three different stages to manage the whole experi-

mentation process.

e FExperiments definition: A Graphical User Interface (GUI) imple-
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mented in java supports the definition of the evaluation experiments
by selecting the network profile and the execution profile, including
the workload and the faultload.

Ezxperiments execution: Once all the parameters have been defined,
REFRAHN takes control of the system to perform all the requested
experiments. The coordination between the controller and each node
is established using Secure SHell (SSH) through the wired network.
This is a simple way to spread commands to all the nodes. First,
the controller transmits the execution scripts to each node. These
scripts, apart from activating the ad hoc mode in the nodes, can be
customised to induce a particular behaviour in the network nodes
during the execution lifetime (i.e., a given distribution of nodes af-
fected by a given fault). The state of each node is recorded during

the experimentation execution.

Analysis of results: Trace logs issued from experiments subjected to
fault injection are compared to fault free execution (Golden Run)
traces to determine the behaviour of the system in the presence of

the injected faults.

The interactions (noted from 0 to 10) between the REFRAHN’s compo-

nents required to complete the aforementioned three steps are detailed in

Figure 4.2. Following sections are focused on explaining the details of such

interactions.

4.3 Experiments definition

This process tries to gather all the necessary information to perform the

desired experiments to assess the resilience of the system under study.
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Figure 4.2: Workflow between REFRAHN components.

4.3.1 Experiments campaign

REFRAHN needs to collect some data regarding the structure of the system
under study and general aspects of the experiments to be able to help
the user to comfortably define the evaluation experiments. This process,
referred to as interaction 0 in Figure 4.2, requires the user to provide this
information by means of the graphical user interface (GUI) shown in Figure
4.3.

An experiment campaign is defined by a name and the number of exper-
iment repetitions that bounds how many times the same experiment con-
figuration is executed. The experiment configuration specifies the warm up
time devoted for routing protocols to achieve a steady operating state and
the experiment time that limits the experiment duration, as well as the

network profile (that will be presented in Section 4.3.2) and the execution

68



| £ | Campaign Manager - |O ﬁ

File Edit

REFRAHN - Campaign Manager

Campaign Header Experiment Configuration
Name Warm Up Time Sec
Experiment Repetitions Network Profile

Output Report l:l Execution Profile I:I
Experiment Time Sec

‘ Generate Campaign || Close |

Figure 4.3: REFRAHN GUI: Form to configure the experiment campaign.

profile (that will be presented in Section 4.3.3). Finally, the output report
specifies the path where the final report containing the evaluation measures

will be stored.

4.3.2 Network profile

The network profile, as seen in Figure 4.4, enables the user to configure
the nodes comprising the network. This operation involves defining their
network alias, IP addresses, NICs and the type of applications that will be
available for common nodes during the workload execution. Additionally,
the REFRAHN GUI details the network area (length, width and radio range
of each network node), the initial distribution of nodes in the space, the node
speed, the mobility pattern and the target routing protocol under evaluation.
To include a new type of applicative data flow in REFRAHN, it is necessary
to define the path to the script that launches the new application.
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Figure 4.4: REFRAHN GUI: Forms to configure the network profile.

4.3.3 Execution profile

The configuration of the execution profile is illustrated in Figure 4.5. From
the workload viewpoint, the network activity can be animated through
different data flows launched by common nodes. Each data flow is charac-
terised by an alias flow name to assist users to identify it, a source node
that generates the applicative traffic using a given application (previously
registered in the system), and a destination node in charge of receiving such
data flow. Finally, the deployment time specifies the duration (in seconds)
of the data flow whereas the scheduler determines the instant of time when
the application is launched. Obviously, this time plus the deployment time

must be shorter than the experiment duration, which limits the experiment
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execution.

Analogously, injector nodes can select the faultload through a name to

ease its identification when there are several faultloads in the system. The

fault injection source makes reference to the injector nodes in charge of

deploying the faulty activity in the system. The type of fault introduced

in the system can be specified through the fault model. By the time being,
this information is introduced in the REFRAHN GUI indicating the path to

launch a script implementing the desired fault. Finally, the fields referring

to the deployment time and the scheduler mean the same that in the case

of the workload configuration.
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4.4 Execution of experiments

This process is in charge of controlling the experiment execution flow, in-
cluding the initialisation of the prototyping system, the execution of the
workload, the observation of the system’s behaviour, the injection of faults,

and the reset of the system to its initial state.

4.4.1 Initialisation

Once all the experimentation parameters are defined through the GUI, RE-
FRAHN generates two scripts that characterise the experimentation, the
Campaign_controller.sh that gathers all the parameters for the experiment
campaign and launches the its execution (as interaction number 1 details
in Figure 4.2), and the Experiment_controller.sh that manages the configu-
ration of the components installed in network nodes and the calls to other
scripts. The Visibility-manager.sh is the first script it calls (as interaction

number 2 in Figure 4.2 shows).

4.4.2 Visibility of nodes

As already stated, nodes can remain physically stationary (in a laboratory
for example) while their mobility is entirely emulated by means of the
Visibility_-manager.sh script. This script instruments the iptables tool [106]
for this purpose. iptables is a generic firewall for the definition of rule sets.
Fach rule within an IP table consists of a number of classifiers that will
trigger a connected action in case all of them are satisfied. Taking this into
account, each of the nodes is provided with a wvisibility script file, which
states the set of rules that must be used to emulate the visibility, and thus

the mobility of the nodes during experimentation. An example of such file
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is listed in Table 4.1. This script is generated by means of the Castadiva
application [50], an intuitive tool, we already introduced in Chapter 2, to

deploy emulated ad hoc networks topologies.

Table 4.1: Sample visibility script file.

#Initial visibility

/sbin/iptables —-I INPUT -m mac -mac-source 00:21:00:02:45:80 —-3j DROP
/sbin/iptables -I FORWARD -m mac -mac-source 00:21:00:02:45:80 —-3j DROP
#Changes into the visibility during experimentation

sleep 136

/sbin/iptables -D INPUT -m mac -mac-source 00:21:00:02:45:80 —-3j DROP
/sbin/iptables -D FORWARD -m mac -mac-source 00:21:00:02:45:80 —-3j DROP
sleep 54

/sbin/iptables -I INPUT -m mac -mac-source 00:1A:73:A1:67:CA —-Jj DROP
/sbin/iptables —-I FORWARD -m mac -mac-source 00:1A:73:A1:67:CA -3j DROP
#Delete remaining visibility instructions at the end of the experiment
sleep 62

/sbin/iptables -D INPUT -m mac -mac-source 00:1A:73:A1:67:CA -Jj DROP
/sbin/iptables -D FORWARD -m mac -mac-source 00:1A:73:A1:67:CA -3j DROP

The rules inserted (-I) by the first two lines of the script file will cause every
single packet received from a node with MAC address 00:21:00:02:45:80 to
be dropped (-j DROP). So, in this initial topology, the current node (the
one executing the script) is in the neighbourhood of the rest of nodes but the
one identified by these rules. As can be seen, after 136 seconds (the node
slept), some other command rules are executed to delete (-D) the initial
packet discarding rules. In this case, nodes have been moving around the
defined area at a given speed, and the selected node is now in radio range
of every other node. 54 seconds later, due to mobility, the node falls out
of range of the node with MAC address 00:1A:73:A1:67:CA. New rules are
inserted to drop those packets received from that node. Finally, 62 seconds
later, the experiment ends and these rules are deleted to allow for a clean

start up of the next experiment.
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4.4.3 Execution of the routing protocol

The target routing protocol under evaluation is launched through the Rout-
ing_protocol_manager.sh script after configuring the visibility of nodes (in-
teraction number 3 in Figure 4.2). Respecting this order is essential to
build communication routes which are compliant with the desired topol-
ogy. Otherwise, all the nodes, that are physically in the same radio range,

would be 1-hop neighbours.

By the time being, REFRAHN is ready to deploy ad hoc networks using
the 4 most representative open-source routing protocols in the community:
OLSR [29], AODV [32], BATMAN [30] and BABEL [31]. A description of
each routing protocol will be provided in Chapter 5, when introducing our

case study.

It is worth noting that the Routing_protocol_manager.sh script is generally
executed by common nodes. Its execution in injector nodes depends on their
necessity to run or not the routing protocol. Injector nodes introducing
intrusion-based attacks in the system typically rely in particular packet
generators to exactly forge the routing packets they require (for example
to announce a fake neighbour), instead of instantiating the regular version
of routing protocols. Conversely, in case of non-malicious faults, injector
nodes generally execute the default implementation of routing protocols
to look like common nodes while the faulty activity is injected through
an additional software. Section 4.4.5 will provide more details about fault
injection in REFRAHN.

4.4.4 Execution of the workload

Once routing protocols achieve a steady state after spending the warm up

time, the execution of the workload starts.
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REFRAHN allows defining different types of either real or synthetic traffic
flows between pairs of nodes. It can result very useful when analysing the
impact of using different types of workloads. The behaviour of the system
is generally workload-dependent. This means that it is not the same an
application generating a data flow that sends a heartbeat notification every
minute than a heavy application sending real-time video and audio. The
Workload_executer.sh script is in charge of assigning the proper workload

to concerning nodes (see iteration number 4) in Figure 4.2.

On one hand, the Workload_executer.sh has been instrumented to send
real traffic by means of actual network traffic applications. By default,
well-known open-source applications based on VoIP (like Ekiga [107]) and
FTP (FileZilla [108]) are supported. However, as previously stated, addi-
tional applications can be registered in REFRAHN (for example, this is
the case of remote control applications for AR-drones [109] or helicopters).
Table 4.2 shows an excerpt of the Ezperiment_controller.sh script devoted
to the notify to the controller node when the Workload_executer.sh script
has initiated the execution of real network traffic in a common node. As
seen, the experiment controller keeps locked until variable ready (checked
every second) receives a value distinct from 0, thus confirming when the
workload application has effectively started the process. This script can be
customised by modifying several variables (preceded by $ on the script file)

through incoming parameters.

On the other hand, synthetic traffic is created by means of the well-known
application iperf [110]. This is an open-source packet generator for Linux to
establish CBR (Constant Bit Rate) or VBR (Variable Bit Rate) UDP/TCP

data flows among a source and a destination node.
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Table 4.2: Sample of the Faperiment_controller.sh file.

#launching real application in common network node...
eval “ssh S$app_user@${control_network}s$node $app_command &"
ready=0
#waiting for the application to start...
while [ $ready -eq 0 ]
do
ready=$ (ssh ${control_network}$node “ps -u $app_user \ grep $app_name wc —-1" )
sleep 1
done

4.4.5 Execution of the faultload

The fault injection procedure is executed in parallel with the workload (as
interaction number 4 in Figure 4.2 states). Section 4.4.5.1 will introduce
the different open-source Commercial-Off-The-Shelf (COTS) components
considered by REFRAHN to instrument to faultload execution. Figure
4.6 relates the basic actions previously introduced in Figure 3.3 to the
tools selected by REFRAHN to deploy them. Once such tools presented,
Section 4.4.5.2 will support the faultload implementation according to the

specification of Section 3.3.4.

4.4.5.1 Injection nodes instrumentation

Instead of building new tools from the scratch to deploy required actions,
we rely on well-known COTS components to ease the portability and main-
tainability of REFRAHN.

Traffic monitors are suitable tools to capture and analyse network traffic.
It is to note that tepdump [111] is a good solution among the available
traffic monitors considered nowadays, given the wide variety of filtering

parameters that can be tuned, like the timestamp, IP and MAC addresses,
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Figure 4.6: COTS used by REFRAHN’s fault injector.

ports and so on. Furthermore, it implements several verbose modes to
include more or less detail in reported logs. The fact that it can be launched

by command line in a console, eases its integration within REFRAHN.

To instantiate packet generation actions, the nemesis utility [112] has been
used. nemesis is a packet injector tool enabling REFRAHN to forge pack-
ets addressed to some of the most well-known communication protocols
nowadays (such as ARP, ICMP, UDP, TCP, etc). In case of considering
the injection of a particular type of packet not implemented natively by
nemesis, the Fault_injector_executer.sh must (i) build the adequate pay-
load according to the structure of the protocol message and (ii) including it
within a conventional packet to send it using nemesis. This is very common
for routing protocol messages typically encapsulated within UDP or TCP
packets. Unfortunately, nemesis presents some deficiencies when needing
to forge a continuous data flow. Indeed, current version of nemesis cannot

neither tune the amount of packets to send nor the duration of the sending
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period. An alternative tool called iperf, also considered for the workload

generation, has been taken into account for this purpose.

Packet modifying and forwarding actions can be implemented through tools
such as tcprewrite and tcpreplay respectively, both included within the
tepreplay [113] suite. Such tools edit packets already captured and replay

them at arbitrary sampling speeds onto the network.

Finally, network emulation libraries such as netem [114] are very useful
to recreate packet removing and delaying. The current version of netem
emulates packets variable delay, loss, duplication and re-ordering in the
node’s network interface card. netem is generally enabled by default in
Linux-based kernels. Furthermore, it is possible to model their activation
according to a given uniform or non-uniform distribution. For example,
Table 4.3 shows an excerpt of the script to recreate packet removing. Such
script creates a filter for all the outgoing packets addressed to a given port.
Filtered packets are then subjected to a percentage of packet loss (from 0%
to 100%) corresponding to the level desired by the evaluator.

Table 4.3: Script to introduce a given packet loss $LOSS for those packets
received in port $SPORT.

tc gdisc add dev $DEV root handle 1: prio
tc gdisc add dev $DEV parent 1:3 handle 30: \
netem loss ${LOSS}%
tc filter add dev S$SDEV protocol ip parent 1:0 \
prio 3 u32 match ip dport $PORT Oxffff flowid 1:3

The resources consumption required by these components is less than 2% in
terms of CPU and memory for regular laptops and 5% in wireless routers
according to our previous experience, so the level of intrusiveness intro-

duced in the nodes is practically negligible.
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4.4.5.2 Fault injection

The Fault_injector_executer.sh configures previous tools to orchestrate the

faulty activity deployed by injector nodes. For simplicity, just a summary

of most important details is provided below for each one of the faults con-
sidered by the first implementation of REFRAHN.

F1.

F2.

F3.

F4.

F5.

Signal attenuation: The percentage of packet loss induced by this
fault is emulated by the netem tool following a normal distribution.
By default, this percentage is set to 5% during the experimentation

time.

Ambient noise: The percentage of packet corruption induced by
ambient noise is introduced by the netem tool following a normal
distribution. By default, such percentage is set to 5% during all the

experiment time.

Battery extenuation: The effects of battery extenuation are emu-
lated by means of the netem tool introducing a packet loss in both
receiving and sending packets. By default, packet loss is set to 100%

for the whole experimentation duration.

Traffic peak: The massive generation of packets is emulated using
the iperf tool. The effect of peaks has been recreated by default by
tuning 2-second bursts of 18 Mbps every 10 seconds of the experi-

mentation.

Sink hole attack: The selection of the injection point once detected
the suitable data flow to launch the intrusion is determined execut-
ing the actions specified in Figure 4.7. This step consists in selecting
the candidate victim nodes (A and C) to deploy the route intrusion.

This phase could be represented by a conceptual diagram based on
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attack trees. The leaves of the diagram represent basic actions that
can (OR) or must (AND) be deployed to intrude the target route
according to the ad hoc routing protocol specification. The diagram
must be read from left to right and from bottom (basic actions) to
top (goal). The information required to execute these actions is pro-
vided by tepdump. Once victim nodes identified, the route intrusion
requires knowing the syntax and semantics of the packets exchanged
by routing protocols. The fault_injector_executer.sh script is in charge
of providing nemesis correct payloads in the right order to success-
fully join the targeted route. Some examples of successful intrusion

processes will be provided in Section 5.2.4.2.

Locate route
intrusion point

AND
I |
Locate Identify victim Identify victim
target route neighbour A neighbour C
Locate target Obtain MAC Obtain IP Obtain MAC Obtain IP
data flow of node of node of node of node
Check local Get ARP packets Check local Get ARP packets
ARP tables from network ARP tables from network

Figure 4.7: Location of the intrusion point.

F6. Tampering attack: This attack requires the successful execution of
a sink hole attack. Once the injector node located within the com-

munication route, it uses the tcprewrite tool to edit the payload of
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F7.

F8.

F9.

F10.

F11.

the applicative packets it forwards. By default, the original payload
is changed by a string set to Os.

Replay attack: The injector node first captures the routing packets
exchanged in the network using tcpdump. Filtering captured packets
by port will be useful to identify targeted routing protocol packets.
Then, by default, captured routing packets will be replayed 30 sec-
onds later using the tcpreplay tool for all the experimentation time.
The fact of replaying routing packets pursues inducing topology in-

coherences in the network.

Selective forwarding attack: This attack can only take place after
a successful sink hole attack. After that, the injector node configures
the netem tool to drop all the applicative packets belonging to a
target data flow.

Jellyfish attack: This attack requires a successful sink hole attack.
After that, the injector node delays all data packets using the netem
tool. By default, the delay has been tuned to 2 seconds since it is

time enough to realise their effects.

Flooding attack: In this attack, the injector node must generate a
heavy network traffic. Conversely to the effects of traffic peak, this
attack generates a continuous broadcast data flow using iperf. This
data flow is tuned by default to send a rate of 18 Mbps for all the

experimentation time.

Neighbours saturation: Injector nodes emulate this fault using
nemesis to randomly forge fake routing packets. By default, such
routing packets are sent in a burst of packets announcing 400 new

fake links between nodes.
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F12. Sequence number replay: Injector nodes use the nemesis tool to
forge routing packets that fix the sequence number of routing pro-
tocol packets. By default, the duration of the fault was set to the

experiment duration.

4.5 Analysis of results

As shown in Figure 4.2, monitoring scripts are executed in parallel with
the workload and faultload executer scripts (see iteration number 4 in
Figure 4.2 for more information). At the end of the experimentation
time, the Ezperiment_controller.sh stops the activity of the scripts pre-
viously started up. In order to avoid the intrusiveness of this opera-
tion in final results, scripts are stopped sequentially. First, the Work-
load_executer.sh, the Fault_injector_executer.sh and their respective moni-
tors, the Workload_monitor.sh and the Fault_injection_monitor.sh (as iter-
ation number 5 in Figure 4.2 states). Then, REFRAHN stops the Rout-
ing_protocol_manager.sh (as iteration number 6 in Figure 4.2 shows), and fi-
nally the Visibility_manager.sh is switched off (as iteration number 7 in Fig-
ure 4.2 confirms). After that, the Experiment_controller.sh remains waiting
for the trace logs from the monitoring probes installed in both the common
and injector nodes (see iteration number 8 in Figure 4.2). After that, the
Ezxperiment_controller.sh analyses them to determine the impact of injected

faults on the behaviour of the ad hoc network.

Three different logs are generated by the nodes while monitoring the be-
haviour of the ad hoc network during the experimentation. The Work-
load_monitor.sh manages information related to the activity deployed by
common nodes (common node log) and ping requests (ping log), injector
nodes use the Fault_injection_monitor.sh script to obtain the injector node

log. The whole set of data stored in these logs must be processed, cor-
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related, and analysed to extract those values needed to estimate desired

measures (see iteration number 9 in Figure 4.2).

REFRAHN estimates the impact of faults in ad hoc networks using perfor-
mance, resources consumption and resilience measures as specified in Sec-
tion 3.2.3. Generic performance measures, typically taken into account in
current literature such as the packet delivery ratio, packet loss and delay,
have been selected. The resources consumption is computed throughout
the energy consumption. Finally, this subset of measures is completed with
some resilience measures: route availability, packet integrity, threat exposure

time and fault effectiveness.

The common node log is useful to compute performance- and resources-
consumption-related measures. The other two logs, the ping log and injec-
tor node logs, are required to estimate resilience-related measures. The rest
of this section details how expected measures from performance (addressed
in Section 4.5.1), resources consumption (addressed in Section 4.5.2) and
resilience (addressed in Section 4.5.3) can be deduced from all these exper-

imental measurements.

4.5.1 Performance measures computation

FEach node must collect all the information related to the workload activity
(involving the applicative traffic sent or received) using common node logs.
Such logs will be used to compute the packet delivery ratio, packet loss and
delay. Tools, like tcpdump, are good candidates to help generating these
logs given their flexibility (e.g., -vv option in tepdump prints a wide variety
of useful information, like the Time To Live (TTL), packet ID or the total
length of packets). Regarding the intrusiveness, tcpdump is a light process
running through the line command, which monitors all the network activity

with a low CPU and memory usage.
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Table 4.4 lists an excerpt of the information collected by these means, which
includes (i) a timestamp stating when the packet was sent /received, (ii) the
MAC addresses of the source and destination nodes, and (iii) the packet

header.

As previously indicated in Table 3.1, the packet delivery ratio is computed
as the relationship among the amount of packets delivered to the destination
node and the total amount of packets sent by the source node. The amount
of packets delivered can be computed from the source node’s log whereas
the set of packets received is estimated from the destination node’s log,

with respect to the same data flow.

Packet loss is computed as the relationship among the amount of packets
not delivered to the destination node and the total amount of packets sent
by the source node (see Table 3.1). The amount of packets not delivered
can be computed as the difference between the set of packets sent (from
the source node’s log) and the set of packets received (from the destination
node’s log) with respect to the same data flow. It can be alternatively

estimated as 100-packet delivery ratio.

A similar process can be followed to compute the average delay of data
flows (see Table 3.1). In this case the traffic log of the source and destina-

tion nodes is required to compute the delay as the difference between the

Table 4.4: Sample entry of a traffic log.

| timestamp [ source MAC [ destination MAC [ length [ Packet ID [ Dst. port [ ... |
1233226811.175453 | 00:21:00:02:46:66 | 00:1a:73:a1:62:€9 50 1 3333
1233226812.365123 | 00:21:00:02:46:66 | 00:1a:73:a1:62:€9 50 2 3333
1233226813.578987 | 00:21:00:02:46:66 | 00:1a:73:a1:62:€9 50 3 3333
1233226931.795546 | 00:21:00:02:46:66 | 00:1a:73:a1:62:€9 50 6000 3333
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timestamps of the packets sent and received with the same packet identifier.

4.5.2 Resources consumption measures computation

The energy consumption is the measure considered to estimate the resources
consumption. It is computed as the energy required by common nodes’
NIC to send, receive and overhear packets (see Table 3.1). To estimate this
measure, it is necessary to compute the amount of packets sent, received
and overheard by a node from all their neighbourhood (including both
applicative and routing packets). It is worth noting that the notion of
overheard traffic makes reference to those packets listened by a node even
when it is not their addressee. Accordingly, it is necessary to filter from
the traffic log of each node (i) those packets sent by the node (ii) those
packets addressed to the node itself, and (iii) those which are not. Then,
it is necessary to multiply each amount of filtered packets by the energy
required to send, receive and overhear a packet respectively. To make our
measurements more realistic, we offline obtain this value directly from the
wireless NIC using hardware probes. Although this process is hard and
requires the use of oscilloscope, taking the measurement once is enough.
After that, the value is stored in REFRAHN to be used in the following

experiment campaigns.

A generic expression to estimate the energy consumed (in Joules) to send
a packet p from a wireless network interface card is Es(p) = Ps(p) * ts(p),
where Ps(p) is the power consumed to send a packet and t(p) the time

required to transmit it. Ps(p) can be computed as Ps(p) = V; US}(zp ) [115],

where Vj,, is the input voltage (e.g., about 3.3 V for current laptops), vs(p)
is the voltage required to send a packet, and R is a test resistance (1 2 is
generally enough). Accordingly, we get Eq(p) = 3.3”%(’»155(1)) Joules for our

example, where t4(p) depends on the packet size (the larger the packet, the
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longer the time to send it). Figure 4.8 depicts an example of measurement
of ts(p) and wvs(p). It shows an oscilloscope screenshot while monitoring
the sending of a routing packet of 150 bytes, where vs(p) = 216mV and
tp(s) = lms for a conventional wireless card. Finally, the total energy
consumed by a wireless card to send packets during experimentation can be
approximated as Es = Fg(p) * Ng, where Ny is the total amount of packets
sent. Similarly, we can also compute the energy consumed by receiving
(E,) and overhearing (E,) packets, to estimate the total energy consumed
by a wireless card as £ = F; + E, + E,.
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Figure 4.8: Oscilloscope sample representing the voltage consumed by an
IEEE 802.11 b/g Broadcom WMIB184G card sending a packet of 150 bytes.

4.5.3 Resilience measures computation

The route availability measure represents the average probability of a packet
to be delivered from source to destination nodes (see Table 3.1). In order
to estimate this probability it is necessary to deploy some mechanism in the
ad hoc network to determine whether the communication between source
and destination is possible at any time. Since the network workload may
not ensure that applicative packets are continuously exchanged between
nodes, ICMP ECHO REQUEST (ping) messages are continuously sent from
source to destination. This activity is reported by ping logs (see Table 4.5).
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Each log’s line represents a small slot of time the experimentation has been
divided into. The first item in each line is a timestamp identifying that
time slot. Several ping packets are sent from source to destination in each
time slot to account for ambient noise or other phenomena that could lead
to missing pings. Thus, the second element of each line indicates whether
at least one packet was received by the destination node and, hence, the

communication between nodes was available.

Table 4.5: Ping log sample.
timestamp [ ICMP Reply packets received ]

1233226773.899245 | Yes
1233226774.523744 | Yes
1233226775.495388 | No
1233226776.936998 | No
1233226777.011103 | Yes

The rest of resilience measures (packet integrity, threat exposure and fault
effectiveness), can be derived from the information provided by the injector
node. As shown in Table 4.6, the injector node log lists all the events it
induces on the network. The first element of each log’s line is a timestamp
stating when an event occurred. This is followed by an event identifier and
description. In the particular case of the injector log reported in Figure 4.6,
the reader can see the log of a selective forwarding attack. Event E1 notifies
the detection of a target data flow, whereas Events E2 and E3 notify the
execution of the sink hole attack and its successful intrusion respectively.
Finally, Event E4 confirms the packet dropping of the targeted data flow.
In this case, the injector node only disrupts packets (i.e. data flows) sent by
node 192.168.2.56 to 192.168.2.55 in a port range between 5000 and 5099.

Using this log, the packet integrity of a data flow (see Table 3.1) is computed

as the ratio between (i) the time when the data flow is not affected by
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Table 4.6: Sample of an injector node log reflecting a selective packet drop-
ping attack.

‘ timestamp ‘ event notification ‘

1233226824.839366 | E1 DETECTION data flow between 192.168.2.56 and 192.168.2.55
1233226836.093937 | E3 OFF INTRUSION data flow between 192.168.2.56 and 192.168.2.55
1233226836.116471 | E2 GENERATING malicious routing packets between 192.168.2.56 and 192.168.2.55

1233226858.660319 | E3 ON INTRUSION data flow between 192.168.2.56 and 192.168.2.55
1233226858.684511 | E2 GENERATING malicious routing packets between 192.168.2.56 and 192.168.2.55
1233226859.797914 | E4 ON DATA FLOW DISRUPTION between ports 5000 and 5099

attacks altering the packet content and (ii) the total experimental time.

The estimation of the threat exposure can be computed analysing the inter-
vals of time when common nodes are in the radio range of injector nodes,
i.e., when they are susceptible to suffer the fault effects (see Table 3.1).
This information can be easily extracted from the injector logs. It is cal-
culated as the ratio between the time when the fault is activated and the
total experimentation time. In the example of Table 4.6, the time when
the fault is activated refers to the difference between Event E1 (the injec-
tor node detects the data flow) and Event E3 ON (the intrusion has been

successfully completed).

Finally, fault effectiveness is computed as the ratio between the time when
the fault is activated and the experimentation time spent by the injector
node to successfully activate the fault (see Table 3.1). In the example of
Table 4.6, fault effectiveness is computed as the difference between Event
E2 (the injector node starts generating fake packets addressed to the routing

protocol) and Event E3 ON (the intrusion has been successfully completed).
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4.5.4 Measures report delivery

After the measures computation, the Results_analyser.sh script transfers
a measures report to the Campaign_controller.sh, which stores it in the
path previously indicated by the evaluation user, as iteration number 10
in Figure 4.2 shows. Table 4.7 presents an extract of the measures report
stored by REFRAHN for a VoIP data flow established between nodes A
and C. The average and standard deviation values are provided to estimate

the statistical representativeness of the experiments.

Table 4.7: Sample of measures report stored in the system.

PERFORMANCE MEASURES

Delay (ms): Node A — Node C (VoIP (Ekiga))
mean: 2802.57
std dev: 569.64

Packet loss (%): Node A — Node C (VoIP (Ekiga))
mean: 23.96
std dev: 9.08

RESOURCES CONSUMPTION MEASURES
Energy consumption (J): Node A
mean: 11.20
std dev: 1.10
Energy consumption (J): Node B
mean: 10.34
std dev: 0.90
Energy consumption (J): Node C
mean: 10.31
std dev: 0.88

RESILIENCE MEASURES

Route availability (%): Node A — Node C (VoIP (Ekiga))
mean: 83.24
std dev: 9.42

Packet integrity (%): Node A — Node C (VoIP (Ekiga))
mean: 53.97
std dev: 4.87
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4. A TOOL TO SUPPORT OUR METHODOLOGY

4.6 Tool features

REFRAHN satisfactorily copes with the requirements of controllability,
repeatability, observability, portability and low intrusiveness presented in

the introduction of this chapter.

With respect to controllability, REFRAHN is able to define and manage
experimental campaigns manipulating all type of parameters concerning
nodes configuration, such as their spatial location, mobility pattern, the
routing protocol target considered and the work- and fault- load, among
other parameters. Furthermore, the execution of the experiments is totally

automated through a serial of scripts.

The degree of control achieved through to the mobility emulation and the
precise fault injection, enables REFRAHN to execute repeatable experi-
ments. This feature makes of REFRAHN, an interesting testbed in the
domain of ad hoc networks to conduct reproducible fault-injection experi-

ments for ad hoc routing protocols.

REFRAHN also provides a good level of observability. Our tool uses meth-
ods based on the analysis of experiments to collect packet traces from dif-
ferent types of nodes (both common and injector nodes), at different levels
(software and hardware). This information is filtered and correlated to
compute measures that require data from different logs, and aggregated to

deliver average values.

Taking the scalability issues into account, REFRAHN is able to deploy
network topologies formed by tens of nodes in a reduced space. This is a
good balance between the need to scale network deployments and the space

limitations of most research laboratories.

Apart from these basic characteristics, it is worth noting the notable degree

of portability provided by REFRAHN to support the evaluation of a wide
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variety of current real ad hoc routing protocol prototypes running on real

devices implementing IP-based communications.

Finally, the low intrusiveness of REFRAHN is guaranteed not only because
the managing operations between the experiment controller and network
nodes use a different control network, but also because the tools installed in
network nodes deploy light processes, which, in no case saturate the nodes

capacity during the experiment duration.

4.7 Conclusions

The implementation of REFRAHN shows the feasibility of the resilience
evaluation methodology presented in Chapter 3. This tool implements a
fault injection approach for the controllable, repeatable, observable portable
and low-intrusive injection of faults in real routing protocols running on real

devices.

REFRAHN relies on the use of a controller node that assigns a particular
role to the nodes of the ad hoc network. Accordingly, nodes can act as
common (regular) nodes or injector (faulty) nodes. Likewise, REFRAHN
(i) allows for the recreation of different network topologies applying the
benefits of mobility emulation, (ii) implements a considerable set of fault
models considered representative for current ad hoc routing protocols, and
(iii) presents a very simple GUI that any non-skilled user may employ to

deploy a complete experimental campaign.

Apart from coping with the resilience evaluation of ad hoc routing pro-
tocols, REFRAHN could be exploited to support the processes of design,
benchmarking, tuning and discovery of vulnerabilities of ad hoc routing
protocols, since resilience evaluation is the pillar of all of them. In this

way, external evaluator, auditors or certifiers could benefit from REFRAHN
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4. A TOOL TO SUPPORT OUR METHODOLOGY

to instrument the benchmarking process of various protocol candidates to
select the most suitable one according to particular requirements (e.g., a
critical application deployed in an aircraft, or a domestic entertainment
system), thus easing the analysis of results issued from experimentation.
Network administrators, typically in charge of managing and configuring
the components within the system, may rely on this tool for the fine tuning
of the system behaviour, thus obtaining optimal configurations in presence
of faults. Finally, component developers (e.g., routing protocol designers)
might use REFRAHN for guiding the robust design of routing protocols
and detecting flaws that can lead components to exhibit vulnerabilities at

runtime.

Next chapter illustrates the exploitation of REFRAHN for different pro-

cesses supported by the resilience evaluation of ad hoc routing protocols.
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Chapter 5

Exploitation of REFRAHN

Once the methodology of REFRAHN has been shown, and the main features
of the current implementation have been presented, it is desirable to show
some examples of the possible exploitation of REFRAHN.

This chapter considers various case studies to show the interest and ap-
plicability of REFRAHN for different user profiles, different purposes, and
different types of networks.

5.1 Introduction

The flexibility of REFRAHN enables users to recreate the dynamic charac-
teristics of ad hoc networks, including a wide variety of fault models. This
fact poses an interesting discussion about the use of REFRAHN to support
processes that require the resilience evaluation of ad hoc routing protocols
to improve the confidence of ad hoc network solutions along their life-cycle.
The final aim of REFRAHN is to improve the practical aspects that limit,

by the time being, the exploitation of ad hoc networks in our daily life.
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5. EXPLOITATION OF REFRAHN

This section is structured as follows. First, Section 5.2 presents a case study
to show the feasibility of the experimental resilience evaluation for ad hoc
routing protocols. This section shows the power of REFRAHN to evaluate
different routing protocols subjected to the presence of all the accidental

faults and attacks previously considered in Chapter 3 and Chapter 4.

Then, the rest of this chapter is devoted to show the exploitation of results
issued from experimentation to carry out the design, benchmarking, fine
tuning and discovery of vulnerabilities of ad hoc routing protocols and their
fault /intrusion tolerance complements. More concretely, Section 5.3 shows
the usefulness of REFRAHN to guide the discovery of new vulnerabilities
on ad hoc routing protocols. Section 5.4 poses the problem of determining
which is the best alternative when different candidate routing protocol are
eligible. Section 5.5 illustrates a typical need of system administrators: the
process of tuning a system component. Our fault injection methodology
can assist the user to evaluate the impact of considering one parameterisa-
tion setup or another, or what is more, guiding the selection of the optimum
configuration for a given component. Section 5.6 shows the applicability of
REFRAHN for the discovery and correction of flaws and vulnerabilities in
those routing protocols and fault-tolerance strategies under development.
Concretely, as a result of applying the fault injection capability of RE-
FRAHN in this case study, a novel adaptive fault-tolerance technique as
been proposed to mitigate the impact of ambient noise in proactive routing

protocols. Finally, Section 5.7 concludes the chapter.

5.2 Experimental resilience evaluation

This section presents a case study where a simple ad hoc network has
been recreated. All the fault models implemented by REFRAHN have

been introduced in different experiment campaigns to determine whether
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our approach can be effectively used for the resilience evaluation of ad hoc

routing protocols.

The rest of this section is structured as follows. Subsection 5.2.1 presents
the routing protocol targets. Then, subsection 5.2.2 introduces the experi-
mental testbed. After that, subsections 5.2.3 and 5.2.4 define the network
profile and the execution profile configurations respectively. The number
and duration of experiments is determined in subsection 5.2.5. Subsection
5.2.6 presents some considerations about REFRAHN measures that are
taken into account in subsection 5.2.7 in the analysis of results. Finally,

subsection 5.2.8 concludes the section.

5.2.1 Routing protocol targets

For the sake of representativeness, the experimental routing protocol target
considered in this case study is well-known by the ad hoc networks commu-
nity and extensively used for experimentation: The Optimized Link-State
Routing (OLSR) protocol. OLSR [29] is a proactive protocol which main-
tains routing information within network nodes to ease the quick estab-
lishment of routes among them. Network nodes continuously disseminate
HELLO messages to announce their presence in their neighbourhood, and
Topology Control (TC) packets to disseminate such information to the rest
of the network. So as to ensure that every single node shares the same vi-
sion of the network topology, all this information is distributed by following
an optimised flooding procedure. This study will consider different versions
of an implementation of OLSR called olsrd (from www.olsr.org), which in-
struments a Link Quality extension to compute the minimum path among
two nodes. Versions v.0.4.10 (released in 2006), v.0.5.6 (released in 2008)

and v.0.6.0 (released in 2010) have been considered for experimentation.

Moreover, an additional version implementing a Message-Digest Algorithm
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5. EXPLOITATION OF REFRAHN

5 (MD5) encryption-based mechanism was included in the case study to
evaluate its effectiveness versus default versions. The proposed mecha-
nism consists in a plugin that can be added to olsrd v.0.6.0 (from now on
v.0.6.04+md5). This plugin is in charge of establishing a 3-way handshaking
between every pair of neighbour nodes. To verify the exchange of routing
packets, a signature (or hash) is included at the end of any routing packet.
Such signature is computed by cyphering, using the md5 algorithm, the
content of the outgoing routing packet with a timestamp and a 128-bits
symmetric key. Such symmetric key should be known by all legitimate
network nodes. As far as this signature is checked for any incoming rout-
ing packet, the protocol protects the routing integrity against malicious

outsiders.

5.2.2 Experimental testbed

(b)

Figure 5.1: Experimental testbed consisting on 7 laptops (a), 10 routers
(b) and a server controller (c).

The experimental testbed configured to deploy the experimentation re-
quired in this chapter relies on both regular and tiny devices. As Figure
5.1 shows, regular nodes were implemented by 7 HP 530 laptops with a
processor of 1.6 GHz and 512 MB of RAM running Ubuntu 7.10 OS (See
5.1a). Tiny devices consisted of 10 Linksys WRT54GL routers with a pro-
cessor of 200 MHz and 16MB of RAM running OpenWRT White Russian
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OS (see Figure 5.1b). Considered nodes were equipped with both a wired
Ethernet and a wireless IEEE 802.11b/g interface. The controller used to
orchestrate the interactions between network nodes consisted, as illustrated
in Figure 5.1¢, in a desktop PC equipped with a 64-bits AMD Athlon pro-

cessor running Debian Lenny.

5.2.3 Network profile configuration

Figure 5.2 depicts the nodes deployment for two different scenarios. The
goal is showing the flexibility of REFRAHN to recreate both static (Network

A) and mobile (Network B) scenarios.

As ad hoc networks performance degrades with an increasing number of
hops, routing protocols tend to minimise the length of routes. So, effective
routes rarely expand beyond 4-5 hops. Results from [116] show that the
probability of finding a route formed by more than 4 hops in that study
was less than 6%. Accordingly, the topology and mobility of the considered
scenarios have been tuned to follow this trend and represent, as close as
possible, the behaviour of real ad hoc networks. For instance, the topology
specified for Network A has been defined so that nodes A and F are 3 hops
distant. As Network B represents a scenario addressed to people, speeds
ranging from 0 to 3 m/s have been considered adequate for nodes mobility.
The topology evolves dynamically as depicted in Figure 5.2. For the sake
of simplicity, a snapshot of this evolution is shown every 120 seconds. The
number of hops along the route formed by nodes A and F ranges from 1
to 4 hops. Furthermore, it is to note that, precomputed topology changes,
causes nodes involved in traffic forwarding to move away from the route,
whereas new nodes appear as suitable candidates for routing. As far as
these nodes are not identified yet by their new neighbours, the routing

protocol requires some time to form a route again.
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| Wireless link Static topology
1 Wireless link transmitting .

1 the target data flow
I'Wireless link transmitting
I other data flows
Effective radio range of
malicious node M

@ HP 530 laptops
O Linksys WRT54GL routers

[ Residential WMN (Network A) j=3p
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[ Rescue MANET (Network B) |

Route: A—C—B—F (3 hops)

Topologyint=0s Topology in t = 120 s

Route: A—C—D—E—F (4 hops) Route: A—C—B—F (3 hops)
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Route: A—B—F (2 hops) Route: A—F (1 hop)

Figure 5.2: Topology evolution in considered scenarios.
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5.2.4 Execution profile configuration

The execution profile defines the configuration of the workload and fault-

load considered in the case study.

5.2.4.1 Workload

Network A recreates the case of a WMN to provide low-cost Internet to a
residential district. The applicative traffic was defined in terms of a syn-
thetic UDP constant bit rate data flows of 200 Kbps, which is similar to
the rates observed in real daily scenarios'. Network B recreates a rapid
MANET deployment to assist the victims of a natural disaster. The work-
load defined for the Network B consisted in a synthetic UDP constant bit
rate data flows of 2 Mbps, which was specially conceived to exchange a

huge amount of information (e.g., real-time video streaming).

Three different data flows are established for each experiment. However,
measurements are collected only from the data flow established along laptop
nodes labelled A to F (see Figure 5.2), where the impact of monitoring
probes is lower than in routers in terms of intrusiveness. The rest of the
data flows are exchanged among router nodes which are 1-hop neighbours
of nodes A to F. This intends to emulate the real conditions of a wireless
network, where the transmission, reception and overhearing of packets are
influenced by the traffic conditions imposed by nodes in the same radio

range.

Lhttp: //dashboard. open-mesh. com/overview2.php ?id=Hillsdale
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5.2.4.2 Faultload

All the faults implemented by REFRAHN have been used in the faultload
on this case study. In total, a set of 11 representative faults in the domain
of ad hoc routing protocols have been introduced in the system: signal at-
tenuation, ambient noise, battery extenuation, traffic peak, olsrd tampering
attack, olsrd replay attack, olsrd selective forwarding attack, olsrd jellyfish
attack, flooding attack, olsrd neighbour saturation and olsrd sequence num-
ber replay. It is worth noting that the sink hole attack was not injected
alone but as a prerequisite to launch intrusion-based attacks. In our case,
node M from Figure 5.2 will play the role of the injector node for all the
faults but signal attenuation and ambient noise, executed by every sin-
gle node because these faults typically affect a wider zone of the network.
Please refer to Section 3.3.4 for more information about these fault models,

and Section 4.4.5.2 for their implementation and default configuration.

It is worth mentioning that routing-protocol-dependant faults have been

instantiated to olsrd, our target routing protocol in this case study.

5.2.5 Number and duratio