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Abstract—SKkin and proximity effects can cause a non-uniform
current distribution in the electrical conductors used in alter-
nating current (ac) busbar systems, which increases resistance,
decreases internal inductance, and causes asymmetries in the
electromagnetic fields and forces. As no explicit solution for the
ac resistance or the ac internal inductance of a rectangular
conductor has been found, numerical methods are needed to
obtain the distribution of the currents inside the busbars. In this
paper, a novel numerical approach, based on the fast Fourier
transform (FFT) and the convolution theorem, is proposed to
model the rectangular conductors of the busbar system, based
on the subdivision of the conductor in filamentary subconductors.
This technique is know to lead to a dense, huge inductance
matrix, that must be multiplied by the current vector, which
limits its practical application. The proposed method replaces this
matrix-vector multiplication with a simple element-wise vector
product in the spatial frequency domain. The FFT speed makes
the proposed method very fast and easy to apply. This approach
is theoretically explained and applied to an industrial busbar
system.

Index Terms—Current density, inductance, skin effect, spectral
analysis, convolution.

I. INTRODUCTION

HE dc resistance and the internal inductance of the

conductors used in ac power transmission and distribution
lines depends on the resistivity of their component wires, their
temperature, and their geometry [1]. But, with ac, the current
also causes the skin effect within the conductors. Besides,
the currents flowing in other conductors that run closely
parallel also cause proximity effects. Both effects increase the
resistance and reduce the internal inductance of the conductor,
giving raise to an increased power loss, which depends on the
current frequency. Another consequence of these aggregated
effects is that the distribution of the current density within
the conductor is not uniform [1]. The change of the electrical
parameters of the conductors with the frequency has a direct
impact in the design of grounding and bonding systems [2], in
the resonance analysis of long transmission cables in offshore
wind farms [3], in the shielding of electric automotive power
trains cables [4], in the calculation of rail impedances in
traction power systems [5], in the analysis of over-voltages in
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motors connected to frequency converters through long cables
[6], in the design of the windings of high speed electrical
machines [7], in electromagnetic compatibility analysis [8], or
in the computation of eddy loses in Litz wires [9], among
many other technological applications.

A particular type of distribution lines widely employed for
electrical energy distribution are modular busbar systems [10],
because they are fast and easy to install, modify and maintain
[11]. As [10] states, high-current busbars with rectangular
cross-section are often used in power substations and switching
stations, with rated currents up to 10 kA and rated voltages
in the range of 10-30 kV. Busbar systems consist of massive
copper or aluminum rectangular conductors, which are subject
to skin and proximity effects at the industrial frequency.
The current density inside this type of massive conductors
[12]-[15] is needed to optimize their volume, to evaluate
electrodynamics forces [16], to estimate their temperature
[17], or to analyse the environmental magnetic-field pollution
that they produce [18]. Unfortunately, explicit equations for
the ac resistance and internal inductance per-unit length are
only available in case of conductors with circular or elliptical
cross-section, and no explicit solutions have been found for
rectangular conductors [1], [19]-[21]. Therefore, analytical
and numerical models must be used instead [11], [22].

Different numerical methods have been proposed in the
technical literature for obtaining the current density in rectan-
gular conductors, taking into account both skin and proximity
effects. On the one hand, analytical models of the bus bar
conductors have been proposed in [11] for evaluating the
electrodynamic forces in a bus bar system, in [23], using a far
field/near field analysis, and in [10], using approximate triple
integrals for obtaining the magnetic field produced by a three-
phase bus duct system. Nevertheless, these models are either
approximated, or must be used in combination with numerical
approaches, as for example in [15], [24], where the problem
is formulated into a set of integral equations, which kernel
is expressed analytically in the quasi-static regime, but the
solution is found numerically using the method of moments
(MoM). On the other hand, numerical methods have been
used for obtaining the frequency dependent parameters of the
bus bar conductors. The finite element method (FEM) has
been used in [17] for the magnetic and thermal simulation
of bus bar conductor, in [25] for analysing the solenoidal
current flow in rectangular filamentary conductors, and in [6]
for cables on a tray or in an enclosing pipe. Nevertheless,
as [26] points out, the resulting finite elements global system
matrix is not sparse in case of skin effect problems, which



implies high memory requirements and solving times. Reduced
order models, such as the proper generalized decomposition
approach [14], [21] can alleviate this problem, and offer the
possibility of parametric determination of cable properties at
a negligible added computational cost. An alternative fast
numerical method to model skin and proximity effects consists
in replacing the conductors by equivalent longitudinal currents
on their surfaces, and building a surface admittance matrix
(via a differential surface admittance operator [27], [28], or a
Dirichlet to Neumann operator [29], [30]), which is combined
with an integral-equation approach to obtain the resistance and
inductance matrices of multiconductor transmission lines.

A simpler numerical method for the analysis of conductors
with non-circular shapes consists in the subdivision of each
conductor into subconductors, small enough so that uniform
current density can be assumed in each of them [31]-[33],
which reduces the problem to a simple network representation,
as in the partial element equivalent circuit (PEEC) method
[34]. The main difficulty that arises in this approach, which is
addressed in the present work, is that the inductance matrix of
the resulting network is a dense one, because it contains the
mutual inductances between all the subconductors. To repre-
sent accurately the skin and proximity effects, the dimensions
of these subconductors must be smaller than the skin depth,
which decreases with the square root of frequency. Therefore,
a great number of small subconductors are needed at high
frequencies, which results in a huge inductance matrix and
renders the network intractable. Diverse solutions have been
proposed in the technical literature to solve this problem.
In [35] the network is solved via the normal-mode theory
of current flow in linear conductors of rectangular shape,
by finding a set of spatial distributions of current that form
an orthogonal set, which reduces the inductance matrix to
a diagonal one. This method has been extended in [12]
to conductors of arbitrary shape, and in [36] to polyphase
systems. In [37], [38], subconductor currents are obtained as
power series expansions in frequency, and each element of
the impedance per unit length (p.u.l.) matrix is obtained as
a ratio of power expansions in frequency. Using the same
formulation, but avoiding the use of series expansions, in
[39] the calculation of the subconductor currents is avoided
using the partial inductance concept [40]. The p.u.l. impedance
matrix for the system of conductors is obtained by forming
appropriate row and column sums over the segment matrix, so
that an explicit calculation of the segment currents is bypassed.
The partial inductance approach has been applied also to the
analysis of conductors in [10], [11], [13], [40]-[43]. Other
methods, such as those based on induced voltage instead of
partial inductances, have been also proposed recently [44].
Nevertheless, both in partial inductance and in induced volt-
age methods, the problem of dealing with huge inductance
matrices when the size of the subconductors is small remains.
To alleviate the problem of the huge size of the inductance
matrix, several works propose matrix partitioning techniques
[32], non-uniform grids [34], and other works propose to use
subconductors with different cross-sections, as a way to reduce
the total number of elements: annular segments with frequency
dependent radii in [22], trapezoidal, elemental shapes [31], or

square subconductors with different size depending on their
position inside the conductor [5]. These proposals achieve a
reduction of the inductance matrix size, at the expense of a
much greater complexity on the calculation of its elements,
because different formulas are needed for each shape [31].

The solution proposed in this work follows the partial
inductance approach, using simple, constant size square sub-
conductors, and develops a novel technique for avoiding the
assembly of the inductance matrix, and its multiplication
with the current vector. This product is calculated instead in
the spatial frequency domain, using the convolution theorem,
which reduces it to an element-wise product of the current
vector and the magnetic vector potential (MVP) generated by
a filament with unitary current. This technique has been used
in other fields, such as in the calculation of the far field effect
of currents in semiconductors [45], or for solving large-scale
electromagnetic scattering and radiation problems [46], but, up
to the best of the authors’ knowledge, it is the first time that
it is applied to the analysis of busbar systems. The use of the
fast Fourier transform (FFT) for implementing this technique
makes this approach very fast and simple to apply.

The structure of the paper is as follows. Section II presents
briefly the method of subdivision of conductors in filamentary
subconductors, and establishes the matrix equation of the
busbar system in a current-driven approach. In Section III,
the proposed method to solve this equation in the spatial
frequency domain, using the convolution theorem and the
FFT, is presented. The results obtained in Section IV are
compared with other related works in Section V, and validated
with a FEM model in Section VI. Section VII presents the
conclusions of this work.

II. NUMERICAL MODEL OF THE THREE PHASE BUSBAR
SYSTEM

The busbar system considered in this work has three phase
bars (L1, Lo, and L3) plus a neutral one (/N), as depicted in
Fig. 1, left. The bars are considered to have an infinite length,
directed along the z axis [43]. The dimensions of the system
are a=12 mm, b=100 mm, and d=24 mm. All the bars are
made of copper (conductivity =58 MS m~1!). The currents
are assumed sinusoidal, with a frequency f=50 Hz.

A. Equation of the Current Inside a Bar

The equation of the current inside a bar is formulated
starting from the Maxwell equation,

0B
VxE=-— 1
where E is the electric intensity vector, and B is the magnetic
flux density vector. Using the scalar potential V', and the
magnetic vector potential (MVP), A, defined by the relation

B =V x A, (1) can be expressed as [43]

0A
E=-VV - a5 2)

Applying also the relation E = oJ, where J is the current
density vector, (2) becomes

J 0A
—VV = ; + E (3)
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Fig. 1. Busbar system considered in this work (left): three phase bars plus a
neutral one, with a=12 mm, =100 mm, and d=24 mm. All the bars are made
of copper (conductivity =58 MS m~1). The currents are assumed sinusoidal,
with a frequency of f=50 Hz. The subdivision of the bars into filamentary
subconductors, with a square cross section of side length Al=1 mm, is shown
in a zoomed view on the right.

As the currents are assumed to flow only in the z direction,
both J and A are solely z-directed. Therefore, they will be
denoted as scalars, J and A. Besides, on the cross-section of a
given bar k, the voltage gradient is constant, and (3) becomes
J(x,y) | OA(x,y)

Ok ot

where (z,y) are the coordinates of the cross-section points
of the kth bar, and oy is its conductivity. Assuming time
harmonic excitation, with a time dependence eIt (w=2r ,
(4) reduces to the phasor form

J(x,y)
Ok
The integration of (5) in the z-direction, along the conductors,
between two points separated 1m, gives

z+1 z+1 z+1
/ (=VV)pdz = / J(@:y) dz + / JwA(x,y)dz

Ok
(6)

(=VV) =

“4)

(=VV)i = + jwA(z,y) ®)

and, therefore,

J(z,y)
Ok

(Ve =Veg1)e = VVi =

+ jwA(z,y) (D)

where V'V, is the p.u.l. voltage drop along the kth bar.

The value of the MVP at the point with coordinates (x,y),
A(z,y) in (7), can be obtained from all the current densities in
the whole planar cross-section of the busbar system S, located
at any position (£,7) in this domain, as a function of their
distance to the point (x,y), as [20], [43], [47]

Alz,y) = 22 [ 76, n)n L d€ dn+C
(z,y) 2”4/ (&m) N CETEERUETE g dn+

®)

where C' is an arbitrary constant that depends on the potential

reference [47], and can be taken as zero if the total sum of
the currents is zero, as in the busbar system of Fig. 1.

In (8) pg = 4710~7 (H-m~1!) is the magnetic permeability
of the vacuum, which is assumed to be the same at every point
of the busbar system. The presence of magnetic materials with
a high permeability could be considered by replacing them
with fictitious currents using the method of images, but this
case has not been considered in the present work.

B. Subdivision of the Bars into Filamentary Subconductors

To obtain the current density applying (7) and (8), each
bar is subdivided into smaller subconductors, so small that
the current density can be assumed as uniform inside each of
them. The following assumptions are used:

o The bars are considered composed of parallel filaments,
all with the same square cross section.

o The current flows only longitudinally in the subconduc-
tors. No currents are assumed to flow between them.

¢ Uniform current density in each subconductor.

o Uniform, constant resistivity within each bar.

« Non-magnetic materials, with a relative magnetic perme-
ability equal to one.

The cross-sectional area of the elemental conductors must
be small enough to neglect the skin effect, so considering a
uniform current density [10]. The skin depth is given by § =
V2/(27 fuo), where f is the frequency, p is the magnetic
permeability and o is the conductivity. In this work f = 50
Hz, and, with copper conductors, 6 = 9.3 mm. As in [11],
the criterion used for selecting the size of the subconductors
is that their diagonal is no greater than §, which represents
a thickness lower than 6 mm in this work. The subconductor
thickness has been chosen as Al = 1 mm (see Fig. 1, right),
fully complying with this limitation, which gives N, = 4800
subconductors in this busbar system.

For easy of notation, from now on, the number of bars will
be denoted by N, and the number of subconductors per bar
as N.. In this case, N, = 4 and N. = N/N, = N,/4,
which is the same for all the bars. Busbar systems with a
different number of subconductors in each bar can be treated
also with the proposed approach. The conductor i of bar k
(k=0..N, — 1,7 =0..N. — 1) will be denoted as conductor
ki, and its cross-sectional surface will be denoted as Sy;.

Eq. (7) can be integrated over the cross-sectional surface of
each subconductor ki as

//VVk dxdy—//‘@dmdy—i—//jw/l(x,y) dz dy

Ski Sk; Sk’i
9)
giving
Jki .
VVi - As = - As + jw A(z,y) dz dy (10)
ok

Ski

where As = Al? is the cross-sectional area of a subcon-
ductor, and Jj; is the current density in subconductor k:. Eq.
(10) can be rewritten as

1
VVi =Ry Ii; —|-ij—8 // A(z,y) dz dy (11
Ski



where Ry = 1/(ok-As) is the p.ul resistance of a
subconductor of bar k, and Ip; = Jg; - As is the current
in subconductor ki. The value of the MVP at a point with
coordinates (z,y) in (11), A(x,y), can be obtained adding the
contributions of the currents through all the subconductors,
using (8), as

Az, y) =
Np—1 No— 1
J(E, d¢ d
ez% ;) /S{ " G-+
(12)

Defining he geometrical mean distance (GMD) dj; ¢; be-
tween subconductors ki and £j as [43], [48]

Indye; = A2/// ln\/x— (y —

Ski  Sej
(13)
and replacing (12) and (13) in (11) gives
Np—1N.—1 1
V=R Ini+jw Y. By =1, (4
=0 =0 2T kit

In case of ki = £j, (13) gives the geometric mean radius
(GMR) of subconductor k7. The GMD between to subconduc-
tors can be approximated by their centre-to-centre distance,
with an error in the worst case (adjacent subconductors) of
0.655% [31]. The GMR of a square subconductor of side
length Al is given within 0.13% by the formula dj;x; =
0.44705 - Al [48].

In (14) the term £2 In " represents the partial inductance
between subconductors k:z and lj, Lisej [20]. It is defined
as the ratio of the magnetic flux penetrating the rectangular
surface between the subconductor ki and infinity, per unit
length, to the current in subconductor £j, I;;, which produces
that flux. Using partial inductances, (14) can be expressed as

Ny—1 No—1
VVi =Ry - I + jw Z Z Ly ej - Iyj (15)
=0 j=0
with
1
Lki,fj ln (16)
i e

The systems of equations (15) can be expressed using matrix
notation as
VV=(R+jwL)- I=Z"-1 a7
where V'V is the vector of the N, p.u.l. voltage drops along
the subconductors, I is the vector of the NN, subconductor
currents, R is an Ny x N, diagonal matrix with all its
elements equal to ﬁ (in this work all the bars have the same
conductivity), and L is an Ng X Ny symmetrical matrix that
contains the partial inductances between the subconductors
given by (16).

n)? d§ dn dx dy

C. Current Driven Formulation

Two different formulations can be established for the busbar
system, a current-driven and a voltage-driven one [11]. In this
work, a current problem has been chosen: the total current
in each bar is specified, being the drop of voltage along all
the subconductors of a given bar the same, but unknown. To
establish the matrix equation of this problem, the numbering of
the subconductors in (15) is made sequentally by bars: the first
N, subconductors belong to the neutral bar N, the next N,
subconductors belong to phase bar L;, and so on. Using this
numbering schema, the current driven problem is formulated
adding four more equations to (17), corresponding to the
imposed currents in the bars, what results in the following
matrix equation,

Z|-NT I 0

= (18)
vv Iy

N 0

where VV = [VVy, VVL1, VVi2, VVi3]t (¢ stands for the
transpose operator) is the p.u.l drop of voltage along each bar,
I, = [In, Ip1, I12, I3t are the prescribed bar currents, and
N is a matrix of dimensions 4 x N, which adds the currents
of the N,/4 subconductors of each bar to give the total bar
current, as

N, /4
1 ... 1 0 0 0

0 1T ... 1 0 0

0 0 1 ... 1 0

0 0 0 1 ... 1

19)

The linear system (18) must be solved to find the current
in all the subconductors, I, plus the drops of voltage along
each bar, VV. The problem is that (18) is a very large
system, because the matrix L in (17) is dense and huge.
In the busbar system considered in this work, its size is
Ngx Ng = 4800 %4800 elements, that is, it scales quadratically
with the number of subconductors. And it is a dense matrix. A
possible simplification is to zero the entries of the inductance
matrix corresponding to subconductors that are separated by
a long distance, because their effects are negligible, but this
approach may led to an inductance matrix without a positive
definiteness property [49].

The most usual approach for solving large system of equa-
tions such as (18) is not a direct solution, based on Gaussian
elimination, which is very slow in this case. Instead, iterative
methods are used, which produce an approximate solution of
vectors I and V'V after a finite number of iterations, such as
the generalized minimal residual method (GMRES) used in
this work. Starting with zero vectors I and V'V, the following
process is used for solving (18):

1) Compute the residual norm res as the difference be-
tween the right-hand side and the left-hand side of (18).

2) Compare the residual against a specified tolerance tol.
If res <= tol, the computation ends.

3) If the maximum number of iterations has not been
reached, update the magnitude and direction of the



vectors I and V'V based on the value of the residual,
and return to Step 1.

Step 1 of this process requires a costly matrix-vector mul-
tiplication, Z - I , with a computational complexity O(N?2),
which must be performed at each iteration. Nevertheless, there
is a way to avoid forming the entire coefficient matrix Z,
making the calculation much more efficient. It consists in
replacing the matrix-vector multiplication Z-I by a convolution
in the spatial domain, with a much lower computational
complexity, as explained in the next Section.

III. PROPOSED METHOD FOR OBTAINING THE CURRENT
DENSITY IN THE BUSBAR SYSTEM THROUGH THE FFT
AND THE CONVOLUTION THEOREM

Using the concept of partial inductance, the summation term
in (14), or each entry of the matrix-vector multiplication L - I
in (17), can be expressed as

Np—1 N.—1

Z Z Liiyej - Lej

(=0 j=0

Yri = (20)

where 1y; represents the flux linkage of subconductor ki, that
is, the total magnetic flux penetrating the rectangular surface
between the subconductor ki and infinity, per-unit length,
generated by all the busbar currents. The flux linkages of all
the subconductors can be represented using a vector ¥ with
the N flux linkages of the subconductors, and (20) can be
expressed in matrix form as

U=L-I @21)

The main idea of the method proposed in this work is to
use a uniform grid to mesh the busbar system domain, so that
the discrete FFT can be applied to calculate (21), avoiding the
costly matrix-vector multiplication L-I. This requires meshing
the whole domain, including the non-conducting regions, as
shown in Fig 2. Paradoxically, this approach, which increases
the number of points compared with the usual approach of
meshing only the cross-sections of the bars, results in a great
reduction of computational complexity.

The uniform grid used in this work is aligned with the
centres of the subconductors, and must include all the bars,
as shown in Fig 2. The currents and flux linkages of each
subconductor are assigned to the grid point that coincides with
its centre. The grid cells have the same dimensions than the
elementary subconductors. For the busbar system considered
in this work, the minimum grid that contains all the busbar
subconductor centres has N, = (3d + a)/Al = 84 points
in the x direction, and N, = b/Al = 100 points in the y
direction, as depicted in Fig. 2. The spatial (z,y) coordinates
of the (m,n) grid node are (mAl, nAl).

Nevertheless, for correctly applying the convolution theo-
rem, the minimal grid of Fig. 2 must be zero-padded in each
direction, as shown in Fig. 3. The final size of the uniform
grid will be N, = (2N, — 1) x (2N, — 1). On this spatial
grid, three matrices are defined:

o The current matrix I. Its element I,(m, n) is the current

in the subconductor located at the grid node (m,n) (it
will be zero outside the bars).
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Fig. 2. Uniform grid (gray color), aligned with the subconductor centres
(black dots), for the busbar system considered in this work. It has N; =
(3d + a)/Al = 84 points in the z direction, and Ny, = b/Al = 100 points
in the y direction.
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Fig. 3. Extended grid, needed to apply the convolution theorem. The original
grid depicted in Fig. 2 is zero-padded in both directions, for correctly applying
the circular convolution.

o The flux linkage matrix Wg. Its element ¥ ,(m,n) is the
flux linkage (20) of the subconductor located at the grid
node (m,n).

o The partial inductance matrix Lg. Its element L,(m,n)
is the partial inductance between two subconductors, one
located at the origin of coordinates and the other one at

the grid node (m,n). From (16),
bl ggrosm  ifm=n=0

Lg(m,n) = (22)
oy 1
21 7 \/m24n2. Al
Fig. 4 represents Ly(m,n) (22) in the grid used in
Fig. 3. It is worth mentioning that matrix Lg only depends

otherwise



on the grid geometry, and not on the position of the bars
in the grid, which gives a great flexibility to the proposed
method. Therefore, it can be calculated once for a given
grid region, and is valid for any distribution of the bars
inside this planar region.

0
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-50
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50
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Fig. 4. Partial inductance matrix Lg corresponding to the busbar system of
Fig. 63. Its element Ly(m,n) (22) is the partial inductance between two
subconductors, one located at the origin of coordinates and the other one at
the grid node (m,n).

Using matrices Wg, I, and Lg, and taking into account that
the subconductor currents are restricted to the first quadrant,
(20) can be formulated in grid coordinates as

Ny—1N,—1

Yg(mn) =Y > Ly(m—p,n—q) I(p,q)

p=0 ¢=0

(23)

The direct evaluation of (23) requires a costly matrix-
vector multiplication, even greater than the original one (17).
Nevertheless, thanks to the regularity of the newly defined
spatial grid of Fig. 3, (23) is the expression of the 2D
convolution (*) of matrices Lg (which is is a Toeplitz circulant
matrix) and I, as

U, =Ly +1, (24)

Exploiting this Toeplitz property [46], the convolution
theorem can be applied, and the costly evaluation of (23) can
be replaced by a simple element-by-element product of the
Fourier transforms of the small spatial matrices Lg and Ig,
implemented in a very efficient way using the FFT (and its
inverse, the IFFT), as [45]

W, = IFFT(FFT(Ly) - FFT(I,)) (25)

Therefore, the proposed method for obtaining the right hand
side of (23), Z - I, given the vector of subconductor currents
and voltages [I V'V, is the following one:

1) The subconductor currents contained in vector I are
mapped to the elements of matrix Iz corresponding to
the location of each subconductor in the uniform grid.

2) The matrix ¥, which contains the flux linkages at each
node of the grid, is obtained using (25).

3) The vector ¥, which contains the flux linkages of each
subconductor, is assembled by collecting the elements
of W, at the bars positions on the grid.

4) The first Ny rows of the right hand side of (17),
corresponding to the residuals of voltages in the N
subconductors, are calculated using the vector ¥ as
Z-1-VV=1/(c-As)I+ jw¥ —VV.

5) The last four rows of the right hand side of (17),
corresponding to the total currents in each bar Iy, are
calculated by adding all the currents of the subconduc-
tors belonging to each bar.

This method has been programmed as a Matlab function
(PropFun), whose pointer is passed as an argument to the
iterative solver (GMRES), along with the right hand side of
(18), b, as gmres (RPropFun, b, [],1e-6,100).

A problem associated with the use of the FFT in (25) is
that it results in a periodic frequency domain representation
of matrix Lg. This means that Lg wraps around the grid edges
when doing the convolution. For example, for evaluating the
flux linkages of any subconductor produced by a subconductor
located in the upper-right corner (p = N, — 1,9 = N, — 1)
in (23), the peak of Lg is shifted to the upper-right corner,
wrapping around the edges, as seen in Fig. 5. The partial
inductances to everything other than the upper-right quadrant
are incorrect, but it does not matter since the currents in
these other quadrants are zero. This justifies the need of zero-
padding the original busbar grid (Fig. 2) to obtain the grid of
Fig. 3.

%1077

0
-50
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Fig. 5. Partial inductance matrix Lg shifted by (N — 1, Ny — 1) during the
application of (23), to evaluate the flux linkages produced by a subconductor
located in the upper-right corner. The partial inductances to everything other
than the upper-right quadrant are incorrect, but it does not matter since the
currents in these other quadrants are zero.

IV. CURRENT DENSITY IN THE BUSBAR SYSTEM
OBTAINED WITH THE PROPOSED METHOD

The busbar system has been simulated using a 2.5 kA
(RMS) balanced three-phase current system. The modulus of
the current density obtained using the proposed method has
been represented in Fig. 6 as a 2D plot, and in Fig. 7, using a
3D view to better display the non-uniform current density in
each bar.

The modulus of the current density along two horizontal
lines of the busbar system have been represented in Fig. 8:
one at middle of the bars, y = b/2 = 50 mm (blue line), and
other one near the top edge y = 0.99-b = 99 mm (red line). It



can be observed a strong displacement of the current towards
the bar edges, even at a rated frequency of 50 Hz.
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Fig. 6. Modulus of the current density in the analysed busbar system for a
balanced three-phase current system of 2.5 kA.
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Fig. 7. 3D view of the modulus of the current density in the analysed busbar
system for a balanced three-phase current system of 2.5 kA.
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Fig. 8. Modulus of the current density along two horizontal lines: a middle
line, at y = 50 mm (blue line), and a line close to the top edge of the bars,
at y = 99 mm (red line), for a balanced three-phase current system of 2.5
kA.

V. COMPARISON WITH OTHER NUMERICAL METHODS

For comparative purposes, the linear system (18) has been
solved both with the proposed approach and with other nu-
merical methods that rely on the matrix-vector multiplication,
a direct solver and an iterative solver, using GMRES. The
computer platform used is detailed in the Appendix. The linear
system (18) can be expressed in compact form as

M-x=b (26)
where
Z | =NT
M = 27
N 0

is a square matrix with (Ng + 4) x (Ns + 4) elements,
x = VV],,and b = [0 Ip]* are column vectors with
N, + 4 elements.

Table I shows the memory usage (in GB) and the times
needed to build and solve the problem (wall times measured
with Matlab function timeit), obtained when solving (26)
using a direct solver (x = M\b) in Matlab code), and an
iterative solver based on the direct matrix-vector multiplication
M - x (x=gmres (M,b, [],1e-6,100) in Matlab code).
Besides, the problem has been solved with increasing spatial
resolutions, for three different values of the cell size Al (1
mm, 0.5 mm, 0.25 mm), each one halving the previous value.
As shown in Table I, the last value of Al leads to a huge matrix
M, which makes it impossible to solve it with the computer
platform given in the Appendix.

TABLE I
COMPUTING RESOURCES NEEDED FOR SOLVING (26) WITH A DIRECT AND
AN ITERATIVE METHODS, FOR INCREASING SPATIAL RESOLUTION

Al Size of M Time to build Time to solve the problem (s)

(mm) (GB) the problem (s)  Direct solver  Iterative solver
1 0.18 3.34 2.61 0.45

172 2.95 66.45 155.01 6.09

1/4 47.19 Not enough memory error

The same problem has been solved using the pro-
posed method (x=gmres (@PropFun, b, []1,1e-6,100)
in Matlab code, where PropFun is the function that imple-
ments the convolution based method proposed in this work).
In this case, matrix Lg is the most demanding in terms of
memory requirements. Table II shows its size (in MB), and
the time needed to build and solve the problem (26) using the
proposed method, for the same increasing spatial resolutions
presented in Table I. The total times (time to build plus
time to solve) obtained from Table I and Table II have been
represented in Fig. 9.

A direct comparison of the results presented in Table I and
Table II shows that, in the proposed method, the memory
requirements have been reduced up to four orders of mag-
nitude, the time to build the problem has been reduced two
orders of magnitude, and the time to solve the problem has
been reduced up to one order of magnitude. Besides, with
the computer platform given in the Appendix, the proposed
method is able to solve problems that are intractable with



TABLE II
COMPUTING RESOURCES NEEDED FOR SOLVING (26) WITH THE
PROPOSED METHOD, FOR INCREASING SPATIAL RESOLUTION

Al Number of  Size of Lg Time Time
(mm)  conductors (MB) to build (s)  to solve (s)
1 4800 0.27 0.002 0.17
12 19200 1.07 0.006 0.50
1/4 76800 4.29 0.021 1.90
1/8 307200 17.19 0.097 7.58
1/16 1228800 68.77 0.399 49.35
1/32 4915200 275.16 1.711 219.8

10*

T T T
—0— Iterative method with matrix-vector product
—e— Proposed method

Total time (s)

Il Il Il Il
1 1/2 1/4 1/8 1/16 1/32
Cell size (mm)

Fig. 9. Total time, in logarithmic scale, for solving the problem (26) with the
proposed method (blue line) and with an iterative solver based on the direct
matrix-vector multiplication (red line), for increasing spatial resolutions. Only
the first two points can calculated using the direct matrix-vector multiplication
due to its huge memory requirements at high spatial resolutions. The proposed
method overcomes this limitation, and is much faster for a given cell size.

an iterative solver that implements directly the matrix-vector
multiplication M-x, such as using high spatial resolution, what
allows the simulation at high frequencies, or solving much
larger problems, with a given cell size.

VI. VALIDATION WITH A FEM MODEL

To further validate the proposed approach, the busbar system
of Fig. 1 has been simulated using a standard 2D FEM method
for magnetics, FEMM [50]. This problem has no natural
outer boundary. To approximate this open boundary problem,
an asymptotic boundary condition is used: a circular outer
boundary enclosing the busbar system, with a radius = b has
been defined, and the "IABC Open Boundary” tool available
in FEMM has been applied to it, with a Dirichlet boundary
condition (MVP=0).

Fig. 10 presents the modulus of the current density com-
puted with FEM, which agrees with the current density ob-
tained with the proposed method, depicted in Fig. 6.

In Fig. 11, the modulus of the current density along a
horizontal line in the middle of the bars, at y = 50 mm,
calculated with FEM (solid, blue line) and with the proposed
method (red triangles) is depicted, and in Fig. 12, the same
comparison is presented along a horizontal line close to the
top edge of the bars, at y = 99 mm. These results show a very
good agreement between both methods.

5.513e+000 : >5.803e+000
5.222e+000 : 5.513e+000
4.932e+000 : 5.222e+000
4.642e+000 : 4.932e+000
4.352e+000 : 4.642e+000
4.062e+000 : 4.352e+000
3.772e+000 : 4.062e+000
3.482e+000 : 3.772e+000
3.192e+000 : 3.482e+000
2.901e+000 : 3.192e+000
2.611e+000 : 2.901e+000
2.321e+000 : 2.611e+000
2.031e+000 : 2.321e+000
1.741e+000 : 2.031e+000
1.451e+000 : 1.741e+000
1.161e+000 : 1.451e+000
8.704e-001 : 1.161e+000
5.803e-001 : 8.704e-001
2.901e-001 : 5.803e-001
<0.000e+000 : 2.901e-001

ensity Plot: |J|, MA/m~2

4 - |

Fig. 10. Current density for a balanced three-phase current system of 2.5 kA,
calculated with FEM.
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Fig. 11. Modulus of the current density for a balanced three-phase current
system of 2.5 kA, along a horizontal line in the middle of the bars, at y = 50
mm, calculated with FEM (solid, blue line) and with the proposed method
(red triangles).
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Fig. 12. Modulus of the current density for a balanced three-phase current
system of 2.5 kA, along a horizontal line close to the top edge of the bars,
at y = 99 mm, calculated with FEM (solid, blue line) and with the proposed
method (red triangles).



The maximum errors (in %) along the horizontal lines at
the middle and close to the top edge of the bar, relative to the
FEM solution are depicted in Table III, and they have been
plotted in Fig. 13, for increasing spatial resolutions. Regarding
computing times, the FEM solution requires 3.03 seconds
on the computing platform given in the Appendix (with a
triangular mesh of 14904 nodes). The times needed to compute
the proposed approach in the same computing platform are
depicted in Table II, and range between 0.17 seconds for a
cell size of 1 mm to 219.8 seconds for a cell size of 1/32
mm. It is worth mentioning that, although the finite elements
(FE) model has a great flexibility and speed, and modern-day
FE software can deal with the busbar system, the method of
subconductors offers a very intuitive and physical description
of the problem, uses a very simple orthogonal mesh and can
be programmed easily without needing a full FE software.
Anyway, both methods cannot be considered as mutually
exclusive, and the proposed approach tries to improve one of
them, expanding the field of application of the subconductors
method to busbar systems that cannot be treated with iterative
solvers based on direct matrix-vector multiplication, due to the
size of the inductance matrix. In particular, it may be useful
for simulating high frequency problems, with a fine spatial
resolution, or large busbar systems.

TABLE IIT
MAXIMUM ERRORS ALONG THE HORIZONTAL LINES AT THE MIDDLE AND
CLOSE TO THE TOP EDGE OF THE BAR WITH THE PROPOSED METHOD,
RELATIVE TO THE FEM SOLUTION, FOR INCREASING SPATIAL

RESOLUTIONS.
Al Maximum error ~ Maximum error
(mm) middle line top line
1 5.70 % 3.02 %
172 2.81 % 1.65 %
1/4 1.46 % 0.96 %
1/8 0.79 % 0.62 %
1/16 0.48 % 0.45 %
1/32 0.35 % 0.35 %

—— Middle line

Maximum error (%)

10-! I I I I

Cell size (mm)

Fig. 13. Maximum relative errors (in logarithmic scale) along the horizontal
lines at the middle (red line) and close to the top edge (blue line) of the
busbar system with the proposed method, relative to the FEM solution, for
increasing spatial resolutions.

VII. CONCLUSIONS

In this work, a novel technique has been presented for
obtaining the current density in industrial busbar systems,
based on the method of subdivision of the bars in filamentary
subconductors. This method allows taking into account both
the skin and proximity effects using a simple formulation.
Nevertheless, one of its known problems is that it involves
a costly matrix-vector multiplication, where the mutual induc-
tances matrix is a dense, huge one, proportional to the number
of subconductors squared. The method proposed in this work
circumvents this computation by applying the convolution
theorem, converting it into a fast element-wise product of small
matrices in the spatial frequency domain. This method has
been theoretically presented, compared with other numerical
methods and validated with a FEM model of an industrial
busbar system. It can be easily extended, using the convolution
theorem, to the computation of the magnetic fields around the
conductors, and of the forces acting between them, which is
a work under development.

APPENDIX

Computer features. CPU: Intel Core i7-2600K CPU @ 3.40
GHZ RAM memory: 16 GB, Matlab Version: 9.10.0.1602886
(R2021a).
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