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Abstract

The possibility of addressing the problem of process troubleshooting and understanding by means

of modelling common and distinctive sources of variation (factors or components) underlying two

sets of measurements was explored in a real world industrial case-study. The used strategy includes

a novel approach to systematically detect the number of common and distinctive components. An

extension of this strategy for the analysis of a larger number of data blocks, which allows the

comparison of data in multiple processing units, is also discussed.

Keywords: common components, distinctive components, permutation testing, Singular Value

Decomposition (SVD), Canonical Correlation Analysis (CCA)

1. Introduction

Nowadays, industrial processes generate massive amounts of data, which are collected for on-

line treatment or posterior analysis. In order to guarantee and preserve the high quality of the final
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products and to minimise the number of failures, most manufacturing companies design monitor-

ing schemes which allow abnormal events to be quickly, easily and efficiently recognised (fault

detection) and their possible root causes to be correctly identified (fault diagnosis). After that,

ad hoc countermeasures can be adopted to recover Normal Operating Conditions (NOC). These

monitoring schemes are usually constructed through empirical approaches based on e.g., Principal

Component Analysis (PCA) or Partial Least Squares regression (PLS) [1–5]. More specifically,

i) data collected under NOC are used to calibrate a so-called in-control model, and afterwards ii)

incoming data are projected onto its space for the assessment of the future evolution of the pro-

cess. Once an out-of-control signal is spotted, it is fundamental to verify which of the measured

variables are mostly affected by the fault. Tools like the so-called contribution plots [4] can be

exploited for this purpose.

However, process understanding and troubleshooting can also be regarded from a slightly different

perspective. Imagine that the same engineering variables (i.e., temperatures, pressures, flow rates,

etc.) are resorted to for characterising the same industrial process i) during NOC and ii) during the

occurrence of a failure. Subsequently, the two different data blocks resulting from the two distinct

time periods could be fused and analysed as a multi-set structure. In particular, assuming that

the variation that is distinctive for the second dataset contains information on a possible deviation

from NOC, it may be possible to retrieve and explore such variation to find out what is causing the

failure in production.

Distinguishing the common and distinctive sources of variability (factors or components) under-

lying, for instance, two sets of data has recently become an intriguing and challenging task [6, 7].

In the last decades, many dimensionality reduction methods have been proposed to model com-

mon and distinctive components when dealing with multi-set data analysis problems. Table 1 lists

some of the most commonly used of these approaches, recently compared in [8]. These tech-

niques can be classified according to their capability of handling various types of data structures

(i.e., object-wise or variable-wise linked [8, 19]) and retrieving the distinctive components affect-

ing the variability of the considered data blocks. Furthermore, most of them do not encompass

preliminary computational steps aimed at identifying the number of such common and distinctive

components, which in many cases can jeopardise the stability, and therefore the interpretation of
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Table 1: List of some of the most commonly used dimensionality reduction methods for common and distinctive

component modelling. The techniques are differentiated according to their capability of handling object-wise or

variable-wise linked data structures and retrieving distinctive components affecting the variability of the data blocks

under study. SCA, DISCO-SCA, GSVD, CCA, O2PLS, and JIVE stand for Simultaneous Component Analysis,

DIStinctive and COmmon Simultaneous Component Analysis, Generalised Singular Value Decomposition, Canon-

ical Correlation Analysis, 2-block Orthogonal Projections to Latent Structures, and Joint and Individual Variation

Explained, respectively

SCA [9, 10] DISCO-SCA [11, 12] Adapted GSVD [13, 14] ECO-POWER [15] CCA [16] O2PLS [17] JIVE [18]

Common components 3 3 3 3 3 3 3

Distinctive components 7 3 3 7 7 3 3

Object-wise linked data 3 3 3 3 3 3 3

Variable-wise linked data 3 3 3 7 7 7 7

the final results.

In the present article, the possibility of addressing the problem of process troubleshooting and un-

derstanding by means of modelling common and distinctive sources of variation will be explored

in a real world industrial chemical case-study. A novel strategy to systematically detect the num-

ber of common and distinctive components when two blocks of measurements are dealt with will

also be described.

2. Dataset

21 engineering variables (mainly temperatures, pressures and flow rates) were recorded over

time in a single reacting unit during the evolution of 77 batches of a 6-stage process. The data

were first synchronised by a recently proposed algorithm, Multisynchro [20, 21], to guarantee all

these batches had the same evolution pace, and afterwards unfolded batch-wise [5]. The final two-

way array was thereafter split into two different blocks, namely X1 (of dimensions NX1 × J where

NX1 = 20 and J = 9016) and X2 (NX2 × J where NX2 = 57), having the same number of columns

and whose single rows carry the whole time evolution of all the aforementioned variables for every

process run. X1 contained data associated to batches that were manufactured during a first time

period in which product quality was excellent and stable. The data in X2 were instead collected

during a second time period when product quality fluctuated and gradually became worse. X1 and
3



X2 were then auto-scaled and scaled to equal sum-of-squares (i.e., block-scaled [10, 22]).

A similar data structure was available for a second set of batch runs of the same process manufac-

tured in another reacting unit during the same time periods and for which the same engineering

variables were monitored. Here, the size of the 2 different arrays, Z1 and Z2, was 22 × 9016 and

14 × 9016, respectively.

3. Results and discussion

3.1. Common and distinctive component modelling strategy

Suppose the information associated to the common and distinctive components of X1 and X2,

has to be recovered. In a certain sense, considering the specific nature of the case-study at hand,

this might be looked at as a supervised Multivariate Statistical Process Control (MSPC) problem

in which both in-control and out-of-control sources of variation are to be captured at the same

time to achieve better insights into the root causes of the process deviations experienced in the

second manufacturing time period. Furthermore, apart from evaluating the nature of the common

and distinctive components for each manufacturing unit separately, it could also be interesting

to assess whether the distinctive factors from the second time period related to each unit have

something in common, which would indicate that both units were affected by the same type of

deviation. Such an aspect is very relevant in the present scenario, because the two reactors share

the same run-down tank from which product is taken for the performance test. Figure 1 displays a

general sketch of the data combination strategy presented in this paper. But how can one focus on

the various sources of variability highlighted in this scheme? One possible way is the following:

1. the Ac common factors between X1 and X2 are modelled by applying SVD to X1XT
2 :

X1XT
2 = ΥcΣcΨ

T
c + Ec (1)

and projecting X1 and X2 onto Υc and Ψc, respectively, as:

V1,c = XT
1Υc (2)

V2,c = XT
2Ψc (3)
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Figure 1: Schematic representation of the proposed data combination strategy. For the sake of clarity, the X1/X2 and

Z1/Z2 matrices contain the evolution of the batches manufactured in the two different reacting units during the first

and the second production period, respectively

with Υc of dimensions NX1 × Ac, Σc of dimensions Ac × Ac, Ψc of dimensions NX2 × Ac, Ec

of dimensions NX1 × NX2 and V1,c and V2,c of dimensions J × Ac;

2. the common components are deflated from X1 and X2 as:

XT
1,d = XT

1 − XT
1ΥcΥ

T
c (4)

XT
2,d = XT

2 − XT
2ΨcΨ

T
c (5)

3. SVD is finally used to retrieve the distinctive factors of X1 and X2:

X1,d = U1,dS1,dVT
1,d + E1,d (6)

X2,d = U2,dS2,dVT
2,d + E2,d (7)

where U1,d is NX1 × A1,d-sized, S1,d is A1,d × A1,d-sized, V1,d is J × A1,d-sized, E1,d is NX1 × J-

sized, U2,d is NX2 × A2,d-sized, S2,d is A2,d × A2,d-sized, V2,d is J × A2,d-sized, and E2,d is

NX2 × J-sized. A1,d and A2,d are estimated by permutation testing (see Appendix B) [23].

The procedure can be afterwards iterated for each level of the hierarchical structure depicted in

Figure 1.

For attaining a reasonable guess of Ac, one can proceed as follows:
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1. the total number of factors underlying X1 and X2 (A1 and A2) is calculated as for A1,d and

A2,d;

2. X1 and X2 are decomposed by SVD and their first A1 and A2 right singular vectors are

retained, respectively;

3. the right singular vector matrices (V1, J × A1, and V2, J × A2) are then subjected to Canon-

ical Correlation Analysis (CCA, see Appendix A) [16] (being the J-dimensional mode the

shared one between V1 and V2
i). The statistical significance of the resulting canonical corre-

lations is evaluated through a permutation test carried out randomising iteratively the order

of the entire rows of either V1 or V2 and recomputing the CCA solution. Canonical corre-

lations larger than the 99th percentile of their null-distributions are considered statistically

significant. The number of statistically significant canonical correlations is set as Ac.

It has to be noticed that V1,c and V2,c do not exactly correspond to the canonical variates whose

statistical significance is assessed. Nevertheless, assuming that common components show a rel-

atively high correlation between blocks (either positive or negative), CCA can be utilised to get

an at least tentative idea of their number before the proper data modelling phase, which can, in

principle, be addressed by any of the methodologies mentioned in Section 1.

3.2. Unit 1 data analysis (first level)

The novel strategy was first applied to the process data collected in the first reacting unit. As

described above, the dataset contains data on batch runs from two different time periods. In the

second time period the product was still on specification, but in one particular performance test

the quality started to fluctuate and gradually became worse. This performance test was not carried

out on product from individual batch runs, but on blends from a run-down tank. Therefore, the

question was formulated as: what has changed during the second time period in comparison to

the first one, i.e., what is distinctive in this second time period? Assuming, as specified before,

that the distinctive variation of the batches from the second time period contains information on

the product quality issue, the idea was to i) determine the number of common components shared

iThis can be considered a trick for adapting CCA when variable-wise linked data are coped with.
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by the two data blocks and supposedly accounting for the normal variability of the process, ii)

filter them from the second dataset by deflation and iii) explore the remainder trying to unveil

possible causes of the deviation. Two and five factors were detected as statistically significant by

the permutation-based effective rank estimation algorithm in the two datasets, respectively (i.e.,

the second time period was less homogeneous), and the presence of a single common component

was found by the CCA-based permutation test. Since the attention is focused on the distinctive

variability of the second time period, Figure 2 shows the time evolution of the loadings of its

first distinctive component (found to be statistically significant after executing again the afore-

mentioned effective rank estimation algorithm) for the 21 measured variables (first column of V2,d

Figure 2: Industrial batch process data - Reacting unit 1: time profiles of the loadings of the first distinctive component

of the second time period batch data block for the 21 measured variables (first column of V2,d according to Section

3.1). The vertical dashed lines separate the 6 stages of the industrial process. As not all the variables were active in

these stages, part of such profiles is missing
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Figure 3: Industrial batch process data - Reacting unit 1: original time trajectories of variables a) #1, b) #12, c) #13

and d) #15 for the first period (blue solid lines) and the second period (red dashed lines) runs. The vertical dashed

lines separate the 6 stages of the industrial process. As these variables were not active in every stage, part of their time

trajectories is missing

according to Section 3.1)ii. Among those presenting a consistent non-zero temporal trend and thus

a consistent contribution to this component, variables #1, #12, #13 and #15 generally exhibited

both a higher variability and a higher average level in the second period batch runs than in the

runs from the first time period (see Figure 3) and were isolated as those of interest from an engi-

neering point of view. MSPC charts with contribution plots did not provide the same satisfactory

insights into the product quality issue (not shown). This may have been due to the fact that the

NOC model built on X1 did not account for all in-control sources of variation in X2, which results

in confounding with the out-of-control ones in control charts and contribution plots. On the other

iiExploring the distinctive component(s) of X1 (column of V1,d according to Section 3.1) might also be of interest

in case one wants to investigate aspects like the presence of outlying batches in data supposed to be NOC.
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Figure 4: Industrial batch process data - Column-wise residual sum-of-squares (averaged across all the batch runs in

X2) resulting from a) the projection of X2 onto the in-control PCA model calibrated with the data in X1 and from

b) the deflation from X1 of the common component estimated by the proposed approach. The vertical dashed lines

separate the 6 stages of the industrial process. As not all the variables were active in these stages, part of such profiles

is missing
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hand, fusing the information contained in X1 and X2 might have allowed a bigger fraction of the

in-control variation of X2 to be modelled and filtered out prior to the exploration of its distinctive

components. In order to corroborate this hypothesis, Figures 4a and 4b display the column-wise

residual sum-of-squares (averaged across all the batch runs in X2) resulting from the projection of

X2 onto the in-control PCA model calibrated with the data in X1 and from the deflation from X2 of

the common component estimated by the proposed approach, respectively. As one can clearly see,

a larger amount of systematic in-control variation of X2 is removed by the second methodology.

For the sake of a fair comparison X1 and X2 were auto-scaled and scaled to unit sum-of-squares

also when classical MSPC was applied.

3.3. Unit 1/Unit 2 data analysis (second level)

When the analysis was extended to the global ensemble of available data (two sets recorded in

the first reactor and two sets recorded in the second reactor, see Figure 1), only a single common

within-distinctive component was isolated by the CCA-based permutation test (not shown). As

expected, owing to the fact that the common component retrieval is attained by the SVD-based

modelling technique outlined in Section 3.1, its loadings profiles (first columns of V1,c and V2,c,

respectively, for the second level of the hierarchical structure graphed in Figure 1) are very similar

between units, but not identical (see Figures 5a and 5b) [8]. They, however, highlight that variable

#1 (starting from the second process stage) features the most consistent contribution to this factor

over time. Therefore, this variable could constitute the common problem affecting both reacting

units (see also Figure 6 which confirms that variable #1 exhibited a higher average level in the

second period batch runs in both reacting units from the second process stage on).

For the sake of completeness, the loading profiles of the first distinctive between-distinctive com-

ponent (statistically significant and corresponding to the first columns of V1,d and V2,d, respec-

tively, for the second level of the hierarchical structure graphed in Figure 1) are represented in

Figure 7. For several patterns of variables (e.g., variables #8, #12, #13, #14, #15 and #16 for the

first reactor, and variables #8, #16, #17, #18 and #21 for the second reactor) a consistent non-zero

temporal trend is observed. These variables might have been affected by a specific abnormal event

occurring in the respective unit. It is also important to notice that variable #1 is characterised by

10



Figure 5: Industrial batch process data - a) Reacting unit 1 vs b) reacting unit 2: time profiles of the loadings of the

first common within-distinctive component for the 21 measured variables (first columns of V1,c and V2,c, respectively,

for the second level of the hierarchical structure graphed in Figure 1). The vertical dashed lines separate the 6 stages

of the industrial process. As not all the variables were active in these stages, part of such profiles is missing11



Figure 6: Industrial batch process data - a) Reacting unit 1 vs b) reacting unit 2: original time trajectories of variable #1

for the first period (blue solid lines) and the second period (red dashed lines) runs. The vertical dashed lines separate

the 6 stages of the industrial process

practically zero and non-consistent loadings from the second process stage on, which is in good

agreement with what was stated above for the unique common within-distinctive factor.

4. Conclusions

In this article, the exploration of common and distinctive sources of variation in multi-set data

was shown to be a promising methodology for industrial batch process troubleshooting and un-

derstanding, as an alternative or a complement to classical MSPC. As highlighted in Section 3.2,

an accurate MSPC scheme should account for all the in-control variation of NOC data in order

to be able to correctly assess the quality of future process runs. If particular NOC events which

explain very small amounts of such an in-control variation are preponderant in new batches, this

MSPC scheme could clearly suffer from severe limitations that may be overcome by the approach

described here.

Apart from studying data from a single process unit, it also allowed to investigate what distinct

time periods in two manufacturing units have in common, which brought to the forefront small

sources of variation that would have been otherwise obscured by much larger normal process vari-

ability.

A proposal for estimating the number of significant common and distinctive components in mul-

tiple blocks of data and modelling them was here presented as well, even though a full evaluation
12



Figure 7: Industrial batch process data - a) Reacting unit 1 vs b) reacting unit 2: time profiles of the loadings of the first

distinctive between-distinctive component for the 21 measured variables (first columns of V1,d and V2,d, respectively,

for the second level of the hierarchical structure graphed in Figure 1). The vertical dashed lines separate the 6 stages

of the industrial process. As not all the variables were active in these stages, part of such profiles is missing13



of its properties will be addressed in future studies. In general, the procedure can be used in a

flexible way to focus on the part of the data variation that is most useful for the relevant questions.

Its comparison with other methods for common and distinctive component analysis (see Table 1)

will be subject of further research.
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[3] J. González-Martı́nez, J. Camacho, A. Ferrer, Bilinear modelling of batch processes. Part III: parameter stability,

J. Chemometr. 28 (2014) 10–27.

[4] T. Kourti, J. MacGregor, Multivariate SPC methods for process and product monitoring, J. Qual. Technol. 28

(1996) 409–428.

[5] P. Nomikos, J. MacGregor, Multivariate SPC charts for monitoring batch processes, Technometrics 37 (1995)

41–59.

[6] A. Smilde, I. Måge, T. Næs, T. Hankemeier, M. Lips, H. Kiers, E. Acar, R. Bro, Common and distinct compo-

nents in data fusion, J. Chemometr. 31 (2017) e2900.

[7] I. Måge, A. Smilde, F. Kloet, Performance of methods that separate common and distinct variation in multiple

data blocks, J. Chemometr.

[8] K. Van Deun, A. Smilde, L. Thorrez, H. Kiers, I. Van Mechelen, Identifying common and distinctive processes

underlying multiset data, Chemometr. Intell. Lab. 129 (2013) 40–51.

[9] H. Kiers, J. ten Berge, Hierarchical relations between methods for simultaneous component analysis and a

technique for rotation to a simple simultaneous structure, Brit. J. Math. Stat. Psy. 47 (1994) 109–126.

[10] K. Van Deun, A. Smilde, M. van der Werf, H. Kiers, I. Van Mechelen, A structured overview of simultaneous

component based data integration, BMC Bioinformatics 10 (2009) 246–260.

[11] M. Schouteden, K. Van Deun, S. Pattyn, I. Van Mechelen, SCA with rotation to distinguish common and dis-

tinctive information in linked data, Behav. Res. Methods 45 (2013) 822–833.

[12] K. Van Deun, I. Van Mechelen, L. Thorrez, M. Schouteden, B. De Moor, M. van der Werf, L. De Lathauwer,

A. Smilde, H. Kiers, DISCO-SCA and properly applied GSVD as swinging methods to find common and dis-

tinctive processes, PLoS One 7 (2012) e37840.

[13] C. Paige, M. Saunders, Towards a generalized singular value decomposition, SIAM J. Numer. Anal. 18 (1981)

398–405.

[14] S. Friedland, A new approach to generalized singular value decomposition, SIAM J. Matrix Anal. A. 27 (2005)

434–444.

[15] M. Schouteden, K. Van Deun, I. Van Mechelen, ECO-POWER: a novel method to reveal common mecha-

nisms underlying linked data, in: Proceedings of the 20th International Conference on Computational Statistics

(COMPSTAT 2012), Physica-Verlag, Heidelberg, Germany, 2012, pp. 757–768.

[16] H. Hotelling, Relations between two sets of variates, Biometrika 28 (1936) 321–377.

15



[17] J. Trygg, O2-PLS for qualitative and quantitative analysis in multivariate calibration, J. Chemometr. 16 (2002)

283–293.

[18] E. Lock, K. Hoadley, J. Marron, A. Nobel, Joint and Individual Variation Explained (JIVE) for intergrated

analysis of multiple data types, Ann. Appl. Stat. 7 (2013) 523–542.

[19] R. Tauler, A. Smilde, B. Kowalski, Selectivity, local rank, three-way data analysis and ambiguity in multivariate

curve resolution, J. Chemometr. 9 (1995) 31–58.
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Appendix A. Canonical Correlation Analysis (CCA)

Let Xk be the k-th of multiple data matrices with dimensions N × Jk in the object-wise linked

data case. Assume from now on that each Xk is initially auto-scalediii and afterwards scaled to

equal sum-of-squaresiv.

iiiAuto-scaling corresponds to centering and scaling to unit variance the concerned Jk or J variables.
ivThis will allow all the measured variables to have equal weight and prevent potential bias due to differences in

e.g., the size of the various Xk [22, 24].
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Canonical Correlation Analysis (CCA) [16] is a technique suitable for handling pairs of object-

wise linked datasets. Here, the Xk blocks (k = 1, 2) are modelled as:

Xk = XkWkPT
k + Ek = TkPT

k + Ek (A.1)

where Wk (Jk×A) is a matrix containing the so-called canonical weights, Tk (N×A) represents the

canonical variate array, while the loadings Pk (Jk×A) are obtained by regressing Xk on Tk = XkWk.

CCA solves the following objective function:

max
W1,W2

tr(WT
1 XT

1 X2W2) s.t. N−1TT
1 T1 = I = N−1TT

2 T2 (A.2)

Thus, W1 and W2 result from the maximisation of the sum of the correlations between the A

couples of canonical variates. Since the variance of the different Xk explained by such canonical

variates is not taken into account in Equation A.2, they might be poor descriptors of the original

data [25]. In order to overcome this limitation, which can generate certain instability in the final

outcomesv, one may apply PCA block-wise prior to CCA or use regularisation [26–28]. The

extension of the CCA algorithm for coping with more than two datasets is known as Generalised

Canonical Correlation Analysis (GCCA) [28].

Appendix B. Effective rank determination algorithm

Let X be a centred data matrix of N rows and J columns with rank Q = min{N − 1, J}. The

novel computational procedure proposed in [23] comprises the following 10 steps grouped in three

consecutive phases:

Phase I - Singular Value Decomposition of X:

1. Perform Singular Value Decomposition (SVD) on X:

X = USVT = TPT (B.1)

where U (N ×N) and V (J × J) contain the left and right singular vectors of X, respec-

tively, and S (N × J) is a rectangular diagonal array whose non-zero diagonal elements

are its singular values (
√
λ1,
√
λ2, . . . ,

√
λQ);

ve.g., when N < Jk for some k Equation A.2 leads to an undetermined system of equations.
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2. Compute for each a-th calculated component the ratio:

Fa =
λa∑Q

q=a λq
(B.2)

where λa corresponds to the a-th eigenvalue obtained after the decomposition of X.

Fa is used for testing the statistical significance of the single factors. It equals the ratio

between the amount of variation explained by the a-th component and the total amount

of variation captured by the last Q − (a − 1) components.

Phase II - Test for the first component:

3. For a = 1, randomly and independently permute the order of the entries within every

column of X constructing a new matrix Xperm, featuring uncorrelated variables;

4. Apply SVD to Xperm and calculate the ratio:

F1,perm =
λ1,perm∑Q

q=1 λq,perm

(B.3)

where λ1,perm denotes the first eigenvalue obtained after the decomposition of Xperm.

Note that the sum of squares of X and Xperm is exactly the same, despite the permuta-

tions;

5. Iterate step 3 and 4 to generate a null-distribution for F1,perm
vi. If F1 is found to be

higher than its (1 − α) × 100th percentile (α equals the nominal Overall Type I - OT I

- risk value imposed to the test, i.e., its false positive rate), the first component is

considered statistically significant.

Phase III - Test for the a-th component (a > 1):

6. For a > 1, calculate the residual matrix:

Ea = X −
a−1∑
q=1

uq
√
λqvT

q = X −
a−1∑
q=1

tqpT
q (B.4)

viThe total number of iterations is a user-defined parameter and should be selected so as to obtain a precise estima-

tion of such a null-distribution.
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where uq, vq, tq and pq are the q-th column vectors of U, V, T and P (see Equation

B.1), respectivelyvii. Note that after each deflation round Ea has rank Q − (a − 1);

7. Randomly and independently permute the order of the entries within each column of

Ea constructing a new matrix Ea,perm. Unlike Ea, Ea,perm has rank Q (apart from chance

deviations), but their total sums of squares are the same;

8. Calculate the projection of Ea,perm on a subspace of dimensionality Q−(a−1), Ea,perm,proj,

as:

Ea,perm,proj = (IN −

a−1∑
q=1

uq,Ea,permuT
q,Ea,perm

)Ea,perm (B.5)

where IN is an identity matrix of dimensions N×N, Ea,perm = UEa,permSEa,permVT
Ea,perm

, and

uq,Ea,perm is the q-th column vector of UEa,perm;

9. Perform SVD on Ea,perm,proj and retain the ratio:

Fa,perm,proj =
λ1,perm,proj∑Q−(a−1)

q=1 λq,perm,proj

(B.6)

where λ1,perm,proj is the first eigenvalue obtained after the decomposition of Ea,perm,proj;

10. Iterate step 7, 8 and 9 to generate a null-distribution for Fa,perm,proj
iv. If Fa is found to be

higher than its (1−α)× 100th percentile, the a-th component is considered statistically

significant.

Computations are stopped as soon as the first non-significant component is detected.

viiAccording to this notation a hypothetical E1 would correspond to X.
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