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Abstract: The simulation of underground flow across intricate fracture networks can be ad-
dressed by means of discrete fracture network models. The combination of such models with
an optimization formulation allows for the use of nonconforming and independent meshes for
each fracture. The arising algebraic problem produces a symmetric saddle-point matrix with a
rank-deficient leading block. In our work, we investigate the properties of the system to design
a block preconditioning strategy to accelerate the iterative solution of the linearized algebraic
problem. The matrix is first permuted and then projected in the symmetric positive-definite
Schur-complement space. The proposed strategy is tested in applications of increasing size, in
order to investigate its capabilities.

1 INTRODUCTION

The simulation of the flow in highly fractured systems can be particularly demanding from a
computational standpoint, because of the size and complexity of the domain and the uncertainty
characterizing the rock properties and the fracture geometry.

In this context, discrete fracture network (DFN) models can be used, and are preferred par-
ticularly when the presence of fractures has a dominant impact on the fluid flow dynamics. DFN
models represent only the fractures as intersecting planar polygons, neglecting the surrounding
underground rock formation. Differently from homogenization-based techniques, DFN models
provide an explicit representation of the fractures and their properties in a 3D structure, pre-
scribing continuity constraints for the fluid flow along the linear intersections. The number of
the fractures and their different size, that can change of orders of magnitude, entail a complex
and multi-scale geometry, which is not trivial to address. The problem has been effectively
reformulated as a PDE-constrained optimization problem in [1, 2]. The formulation relies on
the use of non-conforming discretizations of the single fractures and on the minimization of a
functional to couple intersecting planes. Thus, no match between the meshes of the fractures
and the traces are required, simplifying the mesh generation process. Moreover, the problem
on the entire DFN can be decoupled in several local problems on the fractures with a moderate
exchange of data among fractures, being suitable for a massive parallel implementation [2].

The linearized algebraic problem that derives from such a formulation produces a large size
symmetric saddle-point matrix with a rank-deficient leading block. In this work, we focus on
accelerating the iterative solution of the linear system by introducing effective block precon-
ditioning techniques. In particular, an appropriate permutation of the global matrix is first
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performed, in order to avoid a singular leading block. Though the permuted matrix is no
longer symmetric, this approach should be better suited for the solution with Krylov subspace
methods. Then, the matrix is projected in the symmetric positive-definite Schur complement
space of the fluxes along the intersection traces. The properties and the structure of matrix
blocks are properly exploited in order to guarantee an efficient parallel implementation. The
matrix properties are tested in applications of increasing size to verify pros and cons of the
approach.

The manuscript is organized as follows. In section 2 the mathematical problem and the
related discrete algebraic form are introduced. In section 3 the preconditioner framework is
described. In section 4 numerical results for four problems of increasing size and complexity
are analyzed and discussed.

2 PROBLEM STATEMENT

We consider a connected three-dimensional fracture network made by a system of intersected
polygonal fractures surrounded by an impervious matrix. The flow occurs only along the
fractures and their intersections, called traces. The flow along the fractures is modeled by
means of Darcy’s law with appropriate boundary conditions. Coupling conditions are imposed
on the traces, in order to guarantee the continuity of the solution and the balance of the
fluxes. The whole problem can be reformulated as PDE-constrained optimization problem [1].
Introducing an independent mesh on each fracture and trace, the Darcy equation, as well as the
optimization problem, can be discretized following the standard finite element method. The
result is the following algebraic problem [2]:

Ghh− αBu+ ATp = 0, (energy minimization) (1a)

−αBTh+Guu− CTp = 0, (energy minimization) (1b)

Ah− Cu = q, (mass balance) (1c)

where h ∈ Rnh
is the hydraulic head on the fractures, u ∈ Rnu

is the flux on the traces, p ∈ Rnp

are Lagrange multipliers and q ∈ Rnp
derives from the boundary conditions and the forcing

terms. Usually, np = nh, while according to the problem nu can be either larger or smaller than
nh. The coefficient α ∈ R is a user-specified positive parameter, usually on the order of 1. The
matrices Gh ∈ Rnh×nh

, A ∈ Rnh×nh
and C ∈ Rnh×nu

are fracture-local, whereas B ∈ Rnh×nu

and Gu ∈ Rnu×nu
operate on degrees of freedom related to different fractures. Their properties

can be summarized as follows:

• Gh and Gu are symmetric positive semi-definite (SPSD), usually rank-deficient;

• B and C are rectangular coupling blocks, whose entries are given by inner products
between the basis functions of the main unknowns along the fracture traces;

• A is symmetric positive definite (SPD) with a block diagonal structure. Each diagonal
block arises from the discretization of a ∇ · (κ∇) operator over a fracture, where κ is a
proper diffusion tensor, hence inherits the usual structure of a 2-D discrete Laplacian.
Block size depends on each fracture dimension and can be significantly different one from
the other.

Equations (1) can be written in a compact form as: Gh −αB AT

−αBT Gu −CT

A −C 0

 h
u
p

 =

 0
0
q

 ⇒ Kx = f (2)
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where K is a symmetric saddle-point matrix with a rank-deficient leading block. Solution to
such problems arise in several applications and is the object of a significant number of works.
For a review on methods and ideas, see for instance [3]. With an SPD leading block, as it often
arises in Navier-Stokes equations, mixed finite element formulations of flow in porous media,
poroelasticity, etc., an optimal preconditioner exists based on the approximation of the Schur
complement matrix [4]. However, if the leading block is singular the problem is generally more
difficult and the only available result is for the case of maximal rank deficiency [5].

3 PRECONDITIONER FRAMEWORK

Matrix K in equation (2) is a classical example of the discretization of a coupled multi-
physics problem. A general preconditioning framework for such problems can be developed
following the results in [6], where the different unknown fields are approximately decoupled to
obtain a block diagonal problem.

Theorem 1 of [6] holds true if the leading blocks of K are non singular. In order to satisfy
this hypothesis, a proper row and column block permutation, Pr and Pc, can be applied:

K̃ = PrKPc, x̃ = PT
c x, f̃ = Prf , (3)

such that a decoupling operator can be computed for the equivalent system K̃x̃ = f̃ . A possible
choice is:

K̃ =

 A 0 −C
Gh AT −αB

−αBT −CT Gu

 , x̃ =

 h
p
u

 , f̃ =

 q
0
0

 . (4)

Let us define the decoupling operator factors G,F ∈ RN×N of K̃, being N = 2nh + nu, as:

G =

 I 0 0
G21 I 0
G31 G32 I

 , F =

 I F12 F13

0 I F23

0 0 I

 , (5)

with G21, F12 ∈ Rnh×nh
and G31, G32, F

T
13, F

T
23 ∈ Rnu×nh

, and such that GK̃F = S, with S a
block diagonal matrix. Then, the off-diagonal blocks of F satisfy the relationships:

AF12 = 0[
A 0
Gh AT

] [
F13

F23

]
=

[
C
αB

]
. (6)

from which we obtain:

F12 = 0, F13 = A−1C, F23 = A−T
(
αB −GhA−1C

)
. (7)

Similarly, the off-diagonal blocks of G read:
G21A = −Gh[
G31 G32

] [ A 0
Gh AT

]
=

[
αBT CT

] , (8)

which provides:

G21 = −GhA−1, G32 = CTA−T , G31 =
(
αBT − CTA−TGh

)
A−1. (9)
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It is easy to observe that G32 = F T
13 and G31 = F T

23, hence only three off-diagonal blocks, namely

F13, F23, and G21, are needed. Recalling that GK̃F = S, i.e.: I 0 0
G21 I 0
F T
23 F T

13 I

 A 0 −C
Gh AT −αB

−αBT −CT Gu

 I 0 F13

0 I F23

0 0 I

 =

 S1 0 0
0 S2 0
0 0 S3

 (10)

we have:

S1 = A, S2 = AT , (11)

and

S3 =
(
F T
23A+ F T

13G
h − αBT

)
F13 +

(
F T
13A

T − CT
)
F23 +Gu − F T

23C − αF T
13B

= Gu − F T
23C − αF T

13B. (12)

Remark 1 Using the definitions of F13 and F23, it is easy to observe that the matrix S3 of
equation (12) is actually the Schur complement of K̃ computed with respect to the third block
row:

S3 = Gu −
[
αBT CT

] [ A 0
Gh AT

]−1 [
C
αB

]
. (13)

Similarly, S1 and S2 can be also regarded as the Schur complements computed with respect to
the first and second block row of K̃, respectively.

Introducing the matrix E = B − C, the definition of the Schur complement (12) can be
rewritten also as a function of F13 only:

S3 = Gu + F T
13

(
Gh − 2αA

)
F13 − α

(
ETF13 + F T

13E
)

(14)

From equation (10) it follows immediately:

K̃−1 = FS−1G, (15)

that is, the expression of the exact inverse of the block matrix K̃. Of course, equation (15) can-
not be computed explicitly in large-size applications, because both the decoupling off-diagonal
blocks in F,G and the diagonal blocks in S−1 are dense. However, we can use the factorization
(15) to build an inexact application of K̃−1 that can be used as a preconditioner in a Krylov
subspace method.

Since our aim is to compute the product of K̃−1 by a vector r ∈ RN , we do not necessarily
need to form an explicit expression of F and G, but just to define an algorithm to compute
their products by portions of size nh and nu of a vector lying in RN . This can be done exactly
and efficiently in a parallel computational environment by recalling the properties of matrix A
(see section 2). Similarly, also S−1

1 and S−1
2 (equation (11)) can be exactly applied to a vector.

Hence, the block preconditioner M−1 for K̃ can be defined as:

M−1 = FŜ−1G, (16)

where Ŝ−1 reads:

Ŝ−1 =

 A−1 0 0
0 A−T 0

0 0 Ŝ−1
3

 , (17)

Ŝ−1
3 being some approximation, either implicit or explicit, of S3.

For the eigenspectrum of the preconditioned matrix M−1K̃, the following result holds true.
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Lemma 1 Let K̃,M−1 ∈ RN×N be the matrices defined in (3) and (16), respectively. Then,

the eigenvalues λ of M−1K̃ are either 1, with multiplicity 2nh, or equal to those of the matrix
Ŝ−1
3 S3.

Proof 1 By using equation (16), the matrix M−1K̃ reads:

M−1K̃ = FŜ−1GK̃, (18)

which is similar to Ŝ−1GK̃F. Recalling (10), we have:

Ŝ−1GK̃F = Ŝ−1S

=

 I 0 0
0 I 0

0 0 Ŝ−1
3 S3

 , (19)

which completes the proof.

The key for the effectiveness of M−1 as a preconditioner of K̃ is therefore the selection of
Ŝ−1
3 . In the next paragraph, we analyze the results from different choices for Ŝ−1

3 .

4 NUMERICAL RESULTS

Since the effectiveness of M−1 depends on Ŝ−1
3 only, we reduce the system (4) on the flux

space:
S3u = b with b =

(
αBT − F T

13G
h
)
A−1q (20)

Since S3 is SPD, system (20) is solved by a preconditioned CG method, setting the maximum
number of iterations to 1500 and the exit tolerance on the relative residual to 10−6. Four
problems of increasing size have been analyzed (Table 1). Figure 1 shows the mesh domain for
the case PC.

Figure 1: 3D mesh domain for the case PC.

Table 1: Problem size.

PA PB PC PD

nh 787 13732 39288 93768
nu 206 5085 8219 18276
N 1780 32549 86795 205812

The non-zero pattern of the matrices of the smallest problem is shown in figure 2. Matrices A,
C and Gh are block diagonal. Being each block related to a fracture, these matrices are fracture-
local. Instead, matrices B and Gu connect degrees of freedom related to different fractures. In
particular, matrix B is made by the same diagonal blocks as C with additional extra-diagonal
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A GGCB h u

Figure 2: Structure and number of non-zeros of the matrices for case PA.

terms corresponding to intersections between fractures. Thus, the matrix E = B − C is zero
on the diagonal blocks and contains the same terms as B outside. Matrix F13, being defined as
A−1C, is also block diagonal, with the same size and structure as C.

On the basis of these considerations, the Schur complement can be written as (see equation
(14)):

S3 = SD − SE (21)

where SD = Gu + F T
13

(
Gh − 2αA

)
F13 and SE = α

(
ETF13 + F T

13E
)
. Matrix SD contains the

diagonal blocks of S3 and SE the off-diagonal part. Therefore, SD is SPD, whereas SE is
indefinite.

A key property for Ŝ3 is being SPD. It is therefore natural to consider Ŝ3 = SD, that is
the block diagonal and positive definite part. The results in terms of number of iterations
(iter), ratio between the non-zeros of the approximate Schur complement and the exact one
(µ) and the conditioning number (ξ) are reported in Table 2. Despite the preconditioning, the
number of iterations required to solve the system is still high and the conditioning number of
the preconditioned matrix is not very different from the original.

Table 2: Results considering the approximation Ŝ3 = SD. The ∗ indicates that the problem
does not converge, with the residual stagnating around 10−5.

Case iter µ ξ
(
Ŝ−1
3 S3

)
ξ (S3)

PA 125 0.3921 3.10e+04 1.67e+04
PB 300 0.3958 2.08e+06 4.90e+05
PC ∗ 0.3619 1.40e+08 1.72e+09
PD 957 0.3594 7.39e+06 1.15e+09

Approximating S3 with its diagonal blocks appears to be not enough for an efficient solution
of the system. Thus, in the following also the off-diagonal part is taken into account. Aiming
at understanding the importance of the single blocks of S3 as a preconditioner, we filter the
two contributions SD and SE separately, naming ŜD and ŜE their approximation. First, only
the extra-diagonal part of S3 is approximated:

Ŝ3 = SD − ŜE (22)

where ŜE is obtained by filtering each column j of the product ETF13 neglecting the components
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such that: ∣∣∣(ETF13

)
ij

∣∣∣ < τ
∥∥∥(ETF13

)
j

∥∥∥
2

(23)

Results for different values of τ are reported in Table 3.

Table 3: Results computing S3 with the sparsified SE. The * indicates the case when Ŝ3

becomes indefinite.

τ
case PA case PB

iter µ ξ
(
Ŝ−1
3 S3

)
iter µ ξ

(
Ŝ−1
3 S3

)
5× 10−2 * 0.8306 5.47e+03 * 0.4747 6.41e+08
10−2 8 0.9398 1.79e+02 26 0.6171 5.07e+06

case PC case PD

10−2 * 0.9577 3.26e+09 * 0.8056 4.68e+07
10−3 7 0.9950 2.28e+04 * 0.9742 3.44e+10

Finally, we consider the preconditioner Ŝ3:

Ŝ3 = ŜD − SE (24)

where the extra-diagonal blocks are computed exactly, while the diagonal ones are approximated
neglecting the components sij of the product F T

13

(
Gh − 2αA

)
F13 such that:

|sij| < τ
√

|sii sjj| (25)

Results for the four matrices are reported in Table 4.

Table 4: Results computing S3 after the sparsification of SD. The * indicates the case when Ŝ3

becomes indefinite.

τ
case PA case PB

iter µ ξ
(
Ŝ−1
3 S3

)
iter µ ξ

(
Ŝ−1
3 S3

)
5× 10−1 * 0.6604 1.47e+04 * 0.6114 3.51e+08
10−1 10 0.9217 1.99e+03 * 0.6351 4.62e+07
10−2 3 0.9910 2.99e+00 * 0.8902 1.84e+05
10−3 2 0.9987 1.06e+00 * 0.9925 2.33e+04

case PC case PD

10−2 * 0.9928 2.34e+04 * 0.9851 4.39e+05
10−3 2 0.9993 2.47e+01 2 0.9987 6.88e+01

In both cases, i.e. when approximating only SE or SD, the level of fill-in of Ŝ3 required for
the convergence is near to the one of the exact Schur complement (µ ≃ 1). This is because
Ŝ3 can easily become indefinite after the filtering. As an example, in figure 3 the ten smallest
eigenvalues of the exact and the approximated (with τ equal to 5 × 10−1) Schur complement
for the case PA are shown. While S3 is positive definite, the eigenvalues of Ŝ3 are both positive
and negative.
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Figure 3: Case PA: ten smallest eigenvalues of S3 and Ŝ3 computed through equation (24) with
τ = 5× 10−1.

In the last test, the preconditioner is computed approximating both SD and SE:

Ŝ3 = ŜD − ŜE (26)

To this aim, a sparsified F13 is computed by filtering the smallest components. Since F13 is block
diagonal, it can be efficiently computed in a parallel computational environment exploiting a
Cholesky factorization of the blocks of A. A relative drop tolerance is used, removing the
components such that:

|F13,ij| < τ ∥F13,j∥2 (27)

Results are reported in Table 5. The iterations count can decrease significantly with respect to
Table 2, with densities that are even smaller than those obtained keeping SD only. However,
in difficult problems, such as PC, quite a high fill-in can be required and the performance can
be very sensitive to the τ selection.

Table 5: Results computing S3 with the approximation of F13.

τ
case PA case PB

iter µ ξ
(
Ŝ−1
3 S3

)
iter µ ξ

(
Ŝ−1
3 S3

)
10−1 28 0.2697 3.75e+04 136 0.1226 1.88e+07

5× 10−2 19 0.8595 5.85e+04 57 0.2508 1.45e+07
10−2 1 1.0000 1 17 0.6072 1.48e+06

case PC case PD

5× 10−2 1483 0.5400 1.08e+11 445 0.3196 1.06e+09
2.5× 10−2 8 0.9952 1.64e+06 128 0.5663 8.89e+07

10−2 4 0.9990 3.38e+04 41 0.8100 1.57e+07
10−3 1 1.0000 1 5 0.9912 1.10e+05

Considering as a preconditioner an approximation Ŝ3 obtained by filtering S3 or its compo-
nents can be efficient (as results in Table 5 demonstrate), but also quite fragile because of the
possible indefiniteness of the approximation (see Table 3 and Table 4).
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5 CONCLUSIONS

A symmetric saddle-point matrix with a rank-deficient leading block arises from the com-
bination of DFN models with an appropriate optimization formulation. Here, we focused on
accelerating the iterative solution of this system with a block preconditioning technique. First,
an appropriate permutation of the matrix is performed and then a projection on the Schur
complement space of the flux is performed. The Schur complement proves to be the key for an
effective preconditioner, therefore we investigate different approaches to approximate it. Both
the diagonal and off-diagonal blocks of the Schur complement are fundamental for an efficient
solution of the system. Independent filterings of such components reveal the fragility of the ap-
proximated Schur complement, that can easily become indefinite. When the filter step regards
the matrix F13, before the computation of the Schur complement, results are more promising.
This suggests to investigate different other filtering approaches for F13, aiming at finding a more
robust and less τ dependent solution. Alternatively, a polynomial acceleration in a matrix-free
implementation can help improving the performance when working in a parallel environment.
Comparing the approaches we investigated, we noted that the conditioning number does not
vary according to the number of iterations, as one can expect. This can be related to the dis-
tribution of the eigenvalues, that means that the eigenspectrum is mainly grouped, but there
are a few outliers. In order to fix this problem, a deflation approach can be used to remove
the eigenvectors related to the extreme eigenvalues. This technique requires the a priori knowl-
edge of these eigenvalues, that is quite computational expensive, but reasonable in an iterative
framework.
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