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Abstract: Fiber metal laminates (FML) are lightweight hybrid structural materials that com-
bine the ductile properties of metal with high specific stiffness of fiber reinforced plastics. These
advantages led to a dramatic increase in such materials for aeronautical structures over the last
few years. One of the most common and vulnerable defects in FML is impact-related delami-
nation, often invisible to the human eye. Guided ultrasonic waves (GUW) show high potential
for monitoring structural integrity and damage detection in thin-walled structures by using the
physical phenomena of wave propagation interacting with the defects. The focus of this research
project is on describing an inverse solution for the detection and characterization of defect in
FML. Model-based damage analysis utilizes an accurate finite element model (FEM) of GUW
interaction with the damage. The FEM is developed by the project partners from mechanics at
Helmut-Schmidt-University in Hamburg, Germany, and will be treated as a black-box for fur-
ther analysis. A Bayesian approach (Markov chain Monte Carlo) is employed to characterize
the damage and quantify its uncertainties. This inference problem in a stochastic framework
requires a very large number of forward solves. Therefore, a profound investigation is carried
out on different reduced-order modeling (ROM) methods in order to apply a suitable technique
that significantly improves the computational efficiency. The proposed method is well illustrated
on a simpler case study for the damage detection, localization and characterization using 2D
elastic wave equation. The damage in this case is modeled as a reduction in the wave propa-
gation velocity. The inference problem utilizes a parameterized projection-based ROM coupled
with a surrogate model instead of the underlying high-dimensional model.

1 INTRODUCTION

Fiber reinforced plastics (FRPs), due to their very high strength to weight ratio, are often
the favorite choice of material for engineers in building lightweight structures. Although FRPs
possess high specific stiffness, they exhibit a weak bearing behaviour and impact resistance. In
order to overcome these disadvantages of FRPs, fiber metal laminates (FMLs) are developed
in the late 20" century. FMLs have the ability to demonstrate elastic-plastic behavior, as a
corollary, a part of the energy introduced by impacts is absorbed by plastic deformations of the
metal layers impeding its failure. The most commonly used FML is glass laminate aluminium
reinforced epoxy (GLARE), which has excellent fatigue strength, high specific strength and
low weight. However, due to its complex structure with different materials, its application is
very challenging in terms of its production as well as the damage detection. Guided ultrasonic
waves (GUW) have an immense potential in ensuring integrity of the structure and have been
extensively used over the last decade. It has been shown that the propagation behavior of
GUW changes when interacting with a damage.!?

Numerical studies like finite element methods (FEM) play a crucial role for a well founded
analysis of wave propagation and to assess the suitability of the GUW for damage detection.
Furthermore, based on these numerical models, the requirements for sensors and actuators

https://doi.org/10.4995/Y1C2021.2021.12684

36



Book of Extended Abstracts of the 6 ECCOMAS Young Investigators Conference
7th_9th July 2021, Valencia, Spain

can be derived with regard to their sensitivity through the solution of an inverse problem.
Often high-dimensional FEM analysis will be very expensive which restricts us to use them
directly for an inverse problem analysis. To alleviate this burden, projection-based model order
reduction techniques are commonly used. There exits two approaches towards solving an inverse
problem: the method of maximum likelihood estimation (MLE) and Bayesian estimation. The
former results into the best single point estimation of the parameter while the latter models the
parameter as a random variable and produces a probability density function (PDF) associated
with it. The fact that the likelihood function is often extremely complicated with several local
maxima, inhibits the use of MLE approach. Therefore, the inverse optimization problem is
reformulated to a stochastic inference problem. !

Based on the current status of this research project, we consider a two-dimensional elastic
hyperbolic wave equation as a test case, upon which a parameterized reduced order model is
developed and Bayesian inference is applied to estimate the damage parameters. The remainder
of this paper is organized as follows. Section 2 and section 3 describes the numerical model
and the model order reduction approach used in this project respectively. Bayesian stochastic
framework for damage identification is described in section 4. Section 5 discusses the results of
parametric model reduction and damage characterization. Finally, conclusion and future works
are given in section 6.

2 NUMERICAL MODEL

As the FEM model for wave propagation in FML is currently being developed by the project
partners from mechanics group at Helmut-Schmidt-University in Hamburg, several potential
inverse problem algorithms for damage characterization are simultaneously analyzed at Techni-
cal University Braunschweig. This led to the use of a simpler model, a two dimensional elastic
hyperbolic wave equation, instead of the FEM model itself.

A 2D plate of isotropic and heterogeneous medium with multiple damages (two damages) is
considered and the wave propagation is modeled by the equation:

i — ?Au = f. (1)

Here, u(yu,t) is displacement of the plate, A is the Laplacian in R?, ¢(x,y) describes the wave
velocity at any given point (x,y) on the plate, and f(z,y,t) is the excitation function. The
system is parameterized by ;i € R3?, where d represents the number of damages and the factor
3 accounts for the number of parameters z,y, ¢ for each of the damages.

5m
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Figure 1: Distribution of wave propagation velocity in the plate

The plate has a side of 5 m and the damage was modeled as a change in the wave propa-
gation velocity. Approximating the spatial derivatives using central difference operators, the
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considered hyperbolic wave equation can be written as follows:
i—Au=f (2)

with A(u) = C(x,y)A. Here, A(u) € R¥*N is a parameterized symmetric positive definite
matrix, C(z,y) € RV*Y is a matrix with squared wave velocities at any given x-y coordinate,
and u(p,t), f(z,y,t) € RY at any given instant of time ¢ € [0, T]. The plate is discretized with
an element size of 0.02 m in both x and y directions. The wave propagation velocity in the
intact area is assumed to be 0.5 ms™!. Figure 1 represents the distribution of wave propagation
velocity in the plate. The green intact area of the plate has the highest velocity (0.5 ms™!)
whereas the brown regions represent the damages with relatively lower propagation velocity.
Based on Courant-Friedrichs-Lewy condition!¥, the time step for numerical integration of the
system is evaluated as 0.02 s in order to avoid the convergence issues.

3 PARAMETRIC MODEL ORDER REDUCTION

The numerical simulation of large-scale engineering problems requires a huge computational
effort. To overcome this computational cost, projection-based model reduction techniques are
often employed to reduce the model without a considerable loss of accuracy. The order reduc-
tion is accomplished by projecting the full order solution to the reduced order space using an
orthogonal projection matrix ® € RV*" such that,

u = u, = da i = iy, = da. (3)

where, uy, is the approximation of displacement u. Inserting (3) into (2) and projecting it onto
the lower dimensional space leads to the reduced order problem,

Py — APa = f
PToq — T AP = P f
a—Aa=f, (4)

where, a(u,t) € R*, A.(u) € R™™ and f,.(z,y,t) € R™ at any given instant of time ¢. The
projection matrix ® can be obtained by proper orthogonal decomposition (POD) of adap-
tively extracted features of the system. The displacements of the system that are numerically

evaluated at m discrete time steps are saved in an observation matrix called snapshot matrix
= RN Xm

U= u(rl) u(rz) u(zim) . (5)

The snapshot matrix is then split into its basis and coefficients using singular value decom-
position, U = PXVT. Here, ¥ € R™ ™ is a diagonal matrix containing singular values o,
P € RY*™ is a left singular matrix with proper orthogonal modes (POMs) and V € R™™ is
a right singular matrix. The projection error incurred for considering upto o, singular values
can be measured as . )

Zj:k+1 0j

Z;nzl 0_72
see Kerschen and Golinval, 20021, Using (6), the required level of accuracy to capture the

energy of the system can be chosen and subsequently, the number of POMs that enriches the
projection matrix can also be decided

E= (6)

D = [p1,p2, s Pul- (7)
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As the governing equation depends on several parameters like x-y coordinates of the central
position of the damage(s) and wave propagation velocity ¢ in the damaged area(s), a parametric
model order reduction (PMOR) is targeted. Due to its affine parameter dependency of the wave
equation, PMOR involves an offline training phase, where the projection matrix ® is built. This
ensures that the projection matrix need not vary with the model parameters during the inverse
problem analysis (online phase). After an intensive literature review, it was found that there was
only one previous work that studied PMOR for hyperbolic wave equation using classical POD-
Greedy approach!®. However, in this project, an adaptive POD-Greedy procedure with kriging
based on the work of Paul-Dubois-Tainel” is applied to accomplish the PMOR through an
optimized exploration strategy. This includes construction of a surrogate model for evaluating
the reduced model error estimates, finding the largest error estimate, solving the full order model
for the corresponding parameter sample with largest error estimate and subsequently updating
the reduced-order model (ROM). The error estimatel®®) at time t used in this procedure is as
follows:

2 I
3 g llénol )+ﬁ/0 Ir(s)]l ds (8)

where, e, and €5 are the error estimate and its derivative at ¢ = 0 respectively. § and v are
the coercivity and continuity constants of A(u) and the residual is given by r with s € [0, T].
After each greedy iteration, more error estimates are available to build the surrogate model. As
the greedy algorithm proceeds, it eventually makes the error model more accurate and thereby
finds a more optimal reduced space. It is essential to ensure that ® remains orthogonal in
this procedure. The offline phase can be terminated whenever the largest error estimate in an
iteration is less than the specified threshold error value. Once the projection matrix ® which
is enriched with the required number of POMs is obtained, the solution can be evaluated using

(3).
4 BAYESIAN INFERENCE FOR DAMAGE CHARACTERIZATION

y 1
en(t) = lu = wn]| < J(— lenoll? + £

Given the shape and size of the damage, the parameters p = {z,y,c} for a damage are
estimated using the Bayesian stochastic framework. The parameter vector pu is represented
by a prior probability distribution P(u|l) conditioned upon the prior knowledge I on the
parameters. The posterior PDF P(u|D, I) given data D and prior information is given by the
Bayes’ formula:

P(Dlp, 1) P(plI) ©)
P(D|I)

where, P(D|u, I) is the likelihood function that describes how likely are the candidate param-
eters to produce the given measurement data. The denominator P(D|I) is called as marginal
likelihood or evidence which ensures the integration of the posterior PDF results to 1. Unlike
the deterministic approach that yields point estimates of the damage parameters, Bayesian
inference method aims to describe posterior distribution for a given set of measurement data
D. This allows the researcher to quantify the uncertainties associated with those parameters.
The Ly norm of the residual between the measurements and model output recorded at each
sensor is considered to identify the damage. This quantity implicitly signifies the time-of-flight
information. In this test case problem, four sensors are located at 4 corners of the plate with an
actuator in the center that establishes a pitch-catch configuration to characterize the damage
(see Figure 2(a)). The presence of model and measurement errors are described together by
the variable €. For convenience, ¢ is assumed to be an independent Gaussian variable with its
mean at zero and standard deviation of 0., ¢ ~ N(0,0.). This uncertainty is added to the
model output to generate synthetic data D which is used to carry out this inference problem.

P(u|D, 1) =
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The evaluation of posterior distribution is often analytically intractable and hence one tend
to draw samples numerically from the posterior. A more commonly used procedure is Markov
chain Monte Carlo (MCMC) method, which results into a dependent sequence of samples from
a stationary distribution, asymptotically equal to that of the target distribution. Of several
existing MCMC variants, we describe Metropolis-Hastings (MH) algorithm!'% and the same is
used in this work.

(a) Multiple damages (b) Single damage

Figure 2: A snapshot of wave propagation and damage scattering

An arbitrary sample from the prior distribution pu; is picked, then the algorithm produces a
proposal candidate sample pf using a stochastic model P(pf|p;) which denotes the probability
of attaining p conditioned upon the current sample. Both the samples p, p; are then used to
evaluate the ratio r:

o PDlpi, 1) x Pi|I) x Ppilps)

P(Dlpi, I) x Pl I) X P (g ;)

which is nothing but the ratio of their posteriors multiplied by the ratio of the candidate

generating stochastic models. The current sample p; is updated to the proposal candidate

sample g if the ratio » > z, where 2z is a random value between 0 and 1. This acceptance-

rejection sampling is iteratively carried out for a large specified number of samples, Nr, which

ensures that the resulting Markov chain is stationary. Often, when starting from an arbitrary

sample, there exist an initial phase of non-stationary period ng while building the chain. This

period is called 'burn-in’ period and the samples until np have to be discarded to represent the
final posterior distribution.

(10)

5 RESULTS

For convenience, model reduction is carried out on a slightly different setup with 2 sensors
and one damage as shown in figure 2(b). The PMOR is trained in the parametric domain,
P={xxyxc|[0.54.5] x[0.5,4.5] x [0.05,0.45]}. The application of adaptive POD-Greedy
algorithm as described in section 3 produced 800 global modes that could very well capture
dynamics of the system for any sample p from P. Figure 3 depicts the reconstruction of wave
signal measured at sensor 1, as shown in figure 2(b), for four randomly selected parameter
samples in P. On a 4-core Intel(R) Core(TM) i7-10510U CPU @ 1.80 GHz processor with 16
GB RAM, the evaluation of high-fidelity (HiFi) 2D elastic wave equation took 1.73 s while the
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reconstruction using global modes took 1.92 s. Based on the computation time, the first instinct
questions the purpose of model reduction. But the actual computational efficiency of PMOR
can be realized when applied to a much sophisticated higher-dimensional problem, for example,
the FEM-model of composite structures which involves the evaluation of individual element
shape functions. However, the application of adaptive POD-Greedy PMOR on hyperbolic
wave equation is very well demonstrated through this test case.

(a) 1= [2.2,2.2,0.05] (b) 1 =[1.4,3.0,0.05]

(c) i =[1.68,3.0,0.3] (d) p = [1.68,2.6,0.15]

Figure 3: Comparison of reduced-order solution with high-fidelity solution

Bayesian inference for damage characterization was informed by the reduced-order model
instead of the high-fidelity model. In order to embed multiple damages, the configuration shown
in figure 2(a) is used to estimate the damage parameters and quantify their uncertainties. The
MCMC approach described in section 3 is performed to localize and characterize the damages.
The measurement data is obtained by adding a zero mean Gaussian-type errors to the model
output. The data used for Bayesian inference is generated as follows:

D= M(ut)+e (11)

where, M (u,t) is the noise-free model output and ¢ is the normally distributed measurement
error of 5%. The damage localization parameters, i.e., the x-y coordinates are uniformly dis-
tributed in [0.5,4.5] m and the localized wave propagation velocity in the damaged areas are
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also uniformly distributed in [0.05,0.45] ms~!. By MCMC-MH algorithm, 35000 samples from
the posterior distribution are drawn. Figure 4(a) illustrates the point estimate and figure 4(b)
shows the joint posterior PDF of the x-y coordinates of the center location of the damages
in 2D view. The posterior PDF is not normalized with the evidence. The identified center
locations of damage 1 and damage 2 are 0.21 m and 0.11 m respectively away from their actual
locations accounting for relative errors of 4.2% and 2.2% with respect to the minimum sensor
spacing. Similarly, the propagation velocities in damage 1 and damage 2 are estimated to have
relative errors of 3.3% and 6.08% respectively. These small quantities of errors in parameter
estimation describes the effectiveness of Bayesian inference approach.

Breadth of the plate in m

o
(&)

o

0 0.5 1 1.5 2 25 3 3.5 4 4.5 5

Length of the plate in m

(a) Deterministic estimate (b) Stochastic estimate

Figure 4: Ilustration of the localization of the damages with center locations at (3.2,1.7) and
(1.25,3.75) using the deterministic and stochastic approaches

Figure 5: Trace plot of the estimated damage parameters using Bayesian approach with their
true values indicated in red dashed lines.

Trace plots and histograms for the damage parameters corresponding to 5% measurement
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error are shown in figure 5 and 6 respectively. Trace plots show the Markov chains for each
parameter while the histograms represent their marginal posterior distributions. The true
values are indicated in red dashed lines in each of these plots. The histograms indicate that all
the parameters appear normally distributed with some skewness around their true values.
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Figure 6: Histograms of the estimated damage parameters using Bayesian approach

Table 1: CoVs of damage parameters for 5% measurement error

Parameters | Damage 1 | Damage 2
X 0.144 0.122
y 0.324 0.101
c 0.318 0.374

The uncertainties associated with parameters are analyzed using coefficient of variation
(CoV)M. CoV is defined as the ratio of the standard deviation to the mean of the distri-
bution. The CoVs for the estimated damage parameters are listed in table 1. The values of
CoVs increase as the standard deviation of the error model in (11) increases. This is illustrated
in the table 2 containing the CoVs for 7% and 10% error. Therefore, it is crucial to recog-
nize the fact that the estimation uncertainties are positively correlated with the errors, i.e.,
uncertainties magnifies with the rise in modeling and measurement errors.
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Table 2: CoVs of damage parameters for 7% and 10% measurement errors

7% 10 %
Parameters | Damage 1 Damage 2 | Damage 1 Damage 2
X 0.287 0.274 0.422 0.421
y 0.382 0.219 0.451 0.407
¢ 0.412 0.433 0.487 0.574

6 CONCLUSIONS AND FUTURE WORK

This work implemented considerable amount of the future work associated with this re-
search project. An investigation of the applicability of parametric model-order reduction and
Bayesian framework for damage identification is presented here. The effectiveness of the pro-
posed approaches for model-order reduction and damage identification is validated by a nu-
merical experiment on a two-dimensional elastic wave equation. The numerical study showed
that not only the damages are localized but also the defects are well characterized, i.e., the
wave velocities in the damaged areas are also estimated in this case study. The described
adaptive POD-Greedy procedure with kriging produced a global projection matrix over the
entire parametric domain which is used to evaluate the reduced-order solution. Subsequently,
the Bayesian approach for inferring the damage parameters employed the reduced-order model
rather than the high-fidelity model. Unlike pinpointing the estimate of parameters through the
classical deterministic method, the Bayesian inference produced a distribution for the damage
parameters. These distributions are not only used to identify the damage parameters with
certain confidence levels but also to quantify their associated uncertainties.

Future work concerns the application of the presented methods on a finite element model
of guided wave propagation in fiber metal laminate structures for the damage identification.
Obviously, the anisotropic nature of the material could possibly impose challenges which need
to be addressed. The number of parameters involved in the constitutive modeling of composite
materials is usually large and hence a prior sensitivity analysis should be performed in order to
ignore the less influential parameters in damage characterization. Also the embedded sensors
and actuators could potentially act as defects, hence novel techniques are required to solve this
artefact. It is ultimately aimed to detect, localize and characterize the class and degree of the
damage in FML structures. This study can also be further extended to estimate the in-plane
residual strength of the structure corresponding to the estimated parameters using a suitable
artificial neural network model.
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