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Abstract: This note is concerned with the application of Finite Element Method (FEM) and Newton-
Multigrid solver to simulate thixo-viscoplastic flows. The thixo-viscoplastic stress dependent on ma-
terial microstructure is incorporated via viscosity approach into generalized Navier-Stokes equations.
The full system of equations is solved in a monolithic framework based on Newton-Multigrid FEM
Solver. The developed solver is used to analyze the thixo-viscoplastic flow problem in a Lid-driven
cavity configuration.

1 INTRODUCTION

The thixo-viscoplastic flows are introduced into yield stress flows by taking in consideration the inter-
nal material micro-structure using a structure parameter λ. Firstly, the viscoplastic stress is modified
to include the thixotropic stress dependent on the structure parameterσ(λ) = 2η(λ)D(u)+ τ(λ)

D(u)
||D(u)||

, if ||D(u)|| 6= 0,

||σ(λ)|| ≤ τ(λ), if ||D(u)||= 0,
(1)

where D(u) denotes the strain rate tensor. The norm for a tensor Λ is given by ||Λ|| =
√

Tr(Λ2).
We use ||D(u)|| and ||D|| alternately. η denotes plastic viscosity, and τ defines a yield stress that is a
threshold parameter from which the material starts yielding. The shear stress has two contributions:
a viscous part, and a strain rate independent part. Secondly, an evolution equation for the structure
parameter is introduced to induce the time-dependent process of competition between the destruction
(breakdown) and the construction (buildup) inhabited in the material(

∂

∂t
+u ·∇

)
λ = F −G , (2)

where, F and G are two nonlinear functions representing the buildup and breakdown of material
micro-structure. A collection of thixotropic models with various choices of η, τ, F and G is given in
Table 1;

Table 1: Thixotropic models

η τ F G
Worrall & Tulliani [16] λη0 τ0 a(1−λ) ||D|| bλ ||D||
Coussot et al.[4] λg η0 a bλ ||D||
Hous̆ka [6] (η0 +η1λ) ||D||n−1 (τ0 + τ1λ) a(1−λ) bλm ||D||
Mujumbar et al. [9] (η0 +η1λ) ||D||n−1

λg+1G0Λc a(1−λ) bλ ||D||
Dullaert & Mewis [3] λη0 λG0(λ ||D||)Λc (a1 +a2 ||D||)(1−λ)t p bλ ||D|| t−p

where η0 and τ0 are initial plastic viscosity and yield stress resp. in the absence of any thixotropic
phenomena, η1 and τ1 are thixotropic plastic viscosity and yield stress. Λc is the critical elastic strain,
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and G0 is the elastic modulus of unyielded material. a and b are buildup and breakage constants, and
g, p,m,n are rate indices.

In quasi-Newtonian modeling approach for thixo-viscoplastic flows, an extended viscosity µ(·, ·) is
used for the generalized Navier-Stokes equations [10]. As for instance [13]:

µ(DII ,λ) = η(DII ,λ)+ τ(DII ,λ)

√
2

2
1√
DII

(
1− e−k

√
DII

)
, (3)

where k is the regularization parameter. The generalized Navier-Stokes equations and the evolution
equation for the structure parameter constitute the full set of modeling equations which is given as
follows: 

(
∂

∂t
+u ·∇

)
u−∇ ·

(
2µ(DII ,λ)D(u)

)
+∇p = 0, in Ω,

∇ ·u = 0, in Ω,(
∂

∂t
+u ·∇

)
λ−F (DII ,λ)+G(DII ,λ) = 0, in Ω,

(4)

where u denotes velocity, p the pressure, λ the structure parameter, F and G the nonlinear functions
for buildup and breakdown of material micro-structure. DII =

1
2

(
D(u) : D(u)

)
is the second invariant

of the strain rate tensor D(u).

2 FINITE ELEMENT DISCRETIZATION

To derive the variational form for thixo-viscoplastic flows, we consider the spaces T := L2(Ω),V :=
(H1

0 (Ω))2, and Q := L2
0(Ω) associated, respectively, with the corresponding L2-norm, ||·||0, H1-norm,

||·||1, and L2-norm, ||·||0. Let ũ := (λ,u, p) ∈
(
T∩ H1(Ω)

)
×V×Q, and ṽ := (ξ,v,q) ∈ T×V×Q be

a test function. The weak formulation for the thixo-viscoplastic flows reads: Find ũ∈
(
T∩ H1(Ω)

)
×

V×Q s. t.
aλ(ũ)(λ,ξ)+au(ũ)(u,v)+b(v, p)−b(u,q) = 0, ∀ṽ ∈ T×V×Q, (5)

where aλ(ũ)(·, ·), au(ũ)(·, ·), and b(·, ·) are given as follows

aλ(ũ)(λ,ξ) =
∫

Ω

(
−F (DII ,λ)+G(DII ,λ)

)
ξdΩ+

∫
Ω

u ·∇λξdΩ, (6)

au(ũ)(u,v) =
∫

Ω

2µ(DII ,λ)D(u) : D(v)dΩ+
∫

Ω

u ·∇uvdΩ, (7)

b(v,q) =−
∫

Ω

∇ · vqdΩ. (8)

The finite element approximations of the problem (5) have to take care of its saddle point character,
due to the bilinear form (8). Furthermore, since thixo-viscoplastic flows are usually slow, the only
remaining issue is the control/continuity of the bilinear form (6) in the norm of space T. We opt for
higher order stable pair bi-quadratic for velocity and piece-wise linear discontinuous for the pressure,
Q2/Pdisc

1 , and higher order quadratic for structure parameter Q2 with the appropriate stabilization
terms [10, 15]. Indeed, let the domain Ω be partitioned by a grid K ∈ Th which are assumed to be
open quadrilaterals such that Ω = int

(⋃
k∈Th

K
)
. For an element K ∈ Th, we denote by E(K) the set

of all 1-dimensional edges of K. Let Ei :=
⋃

k∈Th
E(K) be the set of all interior element edges of the

grid Th.

We define the conforming finite element spaces Th ⊂ T, Vh ⊂ V, and Q⊂Qh such that:
Th =

{
ξh ∈ T,ξh|K ∈ Q2(K)∀ K ∈ Th

}
, (9)

Vh =
{

vh ∈ V,vh|K ∈ (Q2(K))2∀ K ∈ Th, vh = 0 on ∂Ωh
}
, (10)

Qh =
{

qh ∈Q,qh|K ∈ Pdisc
1 (K)∀ K ∈ Th

}
. (11)
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The approximate problem reads: Find ũ ∈ Th×Vh×Qh s. t.

aλ(ũ)(λ,ξ)+ jũ(ũ, ṽ)+au(ũ)(u,v)+b(v, p)−b(u,q) = 0, ∀ṽ ∈ Th×Vh×Qh. (12)

The stabilization term jũ(·, ·) is given as follows

j(·, ·) := ju(·, ·)+ jλ(·, ·), (13)

ju(u,v) = ∑
E∈Ei

γu|E|2
∫

E
[∇u] [∇v]dσ, (14)

jλ(λ,ξ) = ∑
E∈Ei

γλ|E|2
∫

E
[∇λ] [∇ξ]dσ. (15)

The stabilization (13) is consistent, control the convective terms and makes the coercivity and conti-
nuity match in Th associated with the norm |||·|||, where

|||ξ|||2 = ||ξ||20 + jλ(ξ,ξ). (16)

3 GENERALIZED DISCRETE NEWTON

We use the Newton method to approximate the nonlinear residuals. Let R (ũ)= (Rλ(ũ),Ru(ũ),Rp(ũ))=(
R(λ,u)(ũ),Rp(ũ)

)
denote the residuals for the system (12). The nonlinear iteration is updated with

the correction δũ, ũk+1 = ũk +δũ. Then, the Newton linearization gives the following approximation
for the residuals:

R (ũl+1) = R (ũl +δũ)' R (ũl)+

[
∂R (ũl)

∂ũ

]
δũ. (17)

The Newton’s method iterations, assuming invertible Jacobians, are given as follows:

ũl+1 = ũl−ωl

[
∂R (ũl)

∂ũ

]−1

R (ũl). (18)

The damping parameter ωl ∈ (0,1) is chosen such that∣∣∣∣∣∣R (ũl+1)
∣∣∣∣∣∣≤ ∣∣∣∣∣∣R (ũl)

∣∣∣∣∣∣ . (19)

The damping parameter is not sufficient for the convergence of this type of highly nonlinear problem,
mainly due to the presence of Jacobian’s singularities related to the problem or simply by being
out of the domain of Newton’s convergence [8, 10]. We use a generalized Newton’s method which
consists of using approximate Jacobians far away from the quadratic convergence range or close to
singularities and accurate Jacobians in the quadratic region of convergence in an adaptive way [8].
Indeed, based on a priori analysis of Jacobians property. Let the Jacobian be written as follows:(

∂R (ũl)

∂ũ

)
=

(
∂R̃ (ũl)

∂ũ

)
+δl

(
∂R̂ (ũl)

∂ũ

)
. (20)

The Jacobian (20) is splitted into a direct sum of corresponding operators with different properties.
The parameter δl ∈ (0,1) is solely dependent on the rate of actual residual convergence [8]. It is
worth mentioning that the operator-related damped Jacobian method (20) is related to the continuous
Newton’s method. The Jacobian approximation is only dependent on the rate of the actual residual
convergence

(∣∣∣∣R l
∣∣∣∣/∣∣∣∣R l−1

∣∣∣∣). This generalized Newton’s method assures a global nonlinear conver-
gence [8].
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4 MONOLITHIC MULTIGRID LINEAR SOLVER

To develop an appropriate linear solver, we segregate the Jacobian as follows

(
∂R (ũ)

∂ũ

)
=


∂R(λ,u)(ũ)

∂(λ,u)
∂Ru(ũ)

∂p
∂Rp(ũ)

∂u
0

 , (21)

which is a saddle point problem. Then, the resulting linear system is treated with a Multilevel Pressure
Schur Complement (MPSC) approach with Vanka-like smoother i.e.

ũk+1 = ũk−ωk ∑
K∈Th

((
∂R (ũl)

∂ũ

)
|K

)−1

R (ũl)|K. (22)

In (22), we solve exactly on real element, K, and perform an outer Gau-Seidel iteration [5]. We
use standard geometric multigrid solver for linearized system with standard Q2 and Pdisc

1 restriction
and prolongation operators. The combination of a stable finite element approximations, Q2/Pdisc

1 , for
Stokes problem together with multigrid results in a high numerically accurate, flexible, and efficient
FEM-multigrid solver.

5 THIXO-VISCOPLASTIC FLOW IN LID-DRIVEN CAVITY

Lid-driven cavity flows represent an academic common standard benchmark for incompressible CFD
codes. Therefore, we present the corresponding results for Newtonian, viscoplastic, and thixo-
viscoplastic flows. Furthermore, this problem is accepted as a test configuration to check points
wise mesh convergences despite the lack of regularity due to the pressure singularity in the corners
of upper-lid. From thixotropic collection models given in Table 1, we use Hous̆ka’s material model
(m = 1).

5.1 Newtonian flow in lid-driven cavity

The global accuracy of the approximation which consist of the L2-norm of the velocity is investigated
using the kinetic energy. On the other hand, the point wise accuracy is investigated using the velocity
magnitude at vertical center-line beside the primary vortex and the lower left secondary vortex. In
order to check the solver convergence, we list in Table 2 the kinetic energy, 1

2
∫

Ω
||u||2 dx, and Newton-

multigrid iterations, the number of nonlinear iteration versus the average number of multigrid sweeps
(N/M), w.r.t. mesh refinement for an increased Reynolds numbers Re = 1000, Re = 5000, and Re =
10000. The starting solution for any level is the interpolated one from one level coarser. Table 3 shows
the primary vortex and lower left secondary vortex w.r.t. mesh refinement for Reynolds numbers
Re = 1000, Re = 5000, and Re = 10000. Moreover, we provide in Figure 1 the stream function
contours for the mesh refinement level 9 and the velocity magnitude at vertical center-line w.r.t. mesh
refinement for Reynolds numbers Re = 1000, Re = 5000, and Re = 10000.
As can be seen in Table 2, grid independent results are achieved for the kinetic energy, as well as
for Newton-multigrid solver. It is worth mentioning that for the coarser levels few extra nonlinear
iterations are required in contrast to finer mesh due to the decrease of interpolation error in the starting
solutions.
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Table 2: Newtonian flow in lid-driven cavity: The kinetic energy and the number of Newton-multigrid iterations,
nonlinear number of iterations and the average number of multigrid iterations (N/M), for different mesh refinement at
Reynolds numbers Re = 1000, Re = 5000, and Re = 10000.

Re 1000 5000 10000

Level cells Energy×102 N/M Energy×102 N/M Energy×102 N/M
7 16384 4.452357 3/1 4.768669 4/1 4.868399 5/1
8 65536 4.451904 3/1 4.744815 3/2 4.783917 4/2
9 262144 4.451846 3/1 4.742921 3/1 4.773500 3/2
10 1048576 4.451834 2/1 4.742815 3/1 4.772692 3/1

Re f .values ≈ 4.45 4.74 4.77

Table 3: Newtonian flow in lid-driven cavity: The primary vortex and the lower left secondary vortex at Re = 1000,
Re = 5000, and Re = 10000.

Re 1000 5000 10000

Level ψmax ψmin×103 ψmax ψmin×103 ψmax ψmin×103

7 0.1189360 −1.72649 0.1225439 −3.077555 0.1236127 −3.2070181
8 0.1189361 −1.72851 0.1222499 −3.072411 0.1225210 −3.1831353
9 0.1189362 −1.72963 0.1222269 −3.073524 0.1224097 −3.1910101

10 0.1189366 −1.72965 0.1222259 −3.073589 0.1223892 −3.1797390
Ref. 0.1189[1] −1.729[1] 0.1221[7] −3.070[1]

Figure 1: Newtonian flow in lid-driven cavity: The stream-function’s contours at mesh refinement level 9 (TOP) and
velocity magnitude at vertical centerline w.r.t. mesh refinement (BOTTOM) computed for Reynolds numbers Re = 1000,
Re = 5000, and Re = 10000 resp. (LEFT to RIGHT).
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5.2 Viscoplastic flow in lid-driven cavity flow

We acheived point wise convergence under mesh refinement for Newtonian flow. Moreover, no fur-
ther improvement by increasing the resolution beyond mesh refinement level 8. Now, we investigate
the impact of the regularization parameter in quasi-Newtonian modeling approach for viscoplastic
flow. Figure 2 shows the boundary limit of the numerical approximation of the rigid zone w.r.t. regu-
larization parameter k. Clearly, the relative convergence of the boundary limit of the rigid zone w.r.t.
regularization parameter k is obtained. Furthermore, there is an optimal regularization KL≈ 2L8≈ 103

from from which there is no further accuracy improvement in capturing the rigid zone by increasing
the regularization parameter k. In Figure 3, we use the optimal choice of the regularization parameter

(a) τ0 = 1.0 (b) τ0 = 20 (c) τ0 = 50

Figure 2: Non-thixotropic (Bingham plastic) flow in lid-driven cavity: The boundary limit of the numerical approx-
imation of the plastic/rigid zone w.r.t. regularization parameter k, k = 102 (blue), k = 103 (red) and k = 104 (black), for
different non-thixotropic yield stress parameter τ0. The other parameters are set to η0 = 1.0, η1 = 0.0, and τ1 = 0.0. The
solutions are calculated at mesh-refinement level 8.

and mesh refinement level to predict the relative position of the rigid zone to stream function contours
for an increased non-thixotropic yield stress parameter τ0 = 1, τ0 = 2, τ0 = 5, τ0 = 10, τ0 = 20, and
τ0 = 50. Furthermore, we provide the corresponding Newton-multigid data in Table 4 which depicts
the number of Newton-multigrid iterations, i.e. the nonlinear number of iterations and the average
number of multigrid iterations (N/M), w.r.t. different regularization parameters k and mesh refine-
ment levels L. The solutions are calculated using the continuations process w.r.t. regularization k.
From Table 4, we conclude the Newton-multigrid solver is mesh refinement independent. Clearly, the
nonlinearity of the problem is increased by increasing the non-thixotropic yield stress parameter τ0,
But, the slightly increases in the nonlinearity w.r.t. mesh refinement is due to the continuation process
w.r.t. regularization parameter k used to obtain the solutions.
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(a) τ0 = 1 (b) τ0 = 2 (c) τ0 = 5

(d) τ0 = 10 (e) τ0 = 20 (f) τ0 = 50

Figure 3: Non-thixotropic (Bingham plastic) flow in lid-driven cavity: The relative position of the plastic/rigid zone to
streamline contours for an increased non-thixotropic yield stress parameter τ0. The other parameters are set to η0 = 1.0,
η1 = 0.0, and τ1 = 0.0. The Papanastasiou regularization parameter is set to k = 104. The solutions are calculated at
mesh-refinement level 8.

Table 4: Non-thixotropic (Bingham plastic) flow in lid-driven cavity: The number of Newton-multigrid iterations,
nonlinear number of iterations and the average number of multigrid iterations (N/M), w.r.t. different regularization pa-
rameters k and mesh refinement levels L for Bingham viscoplastic flow for different values of non-thixotropic yield stress
parameters τ0.

k\L 5 6 7 5 6 7 5 6 7
τ0 = 1 τ0 = 2 τ0 = 5

1×101 3/1 3/1 3/1 3/1 3/1 3/1 4/1 4/1 4/1
1×102 3/1 3/1 3/1 3/1 3/1 3/1 4/1 4/1 4/1
1×103 2/2 3/2 3/1 3/1 3/1 4/1 4/1 5/2 5/2
1×104 2/1 2/2 5/1 3/1 3/1 6/1 4/1 5/4 6/3

τ0 = 10 τ0 = 20 τ0 = 50
1×101 5/1 5/1 5/1 6/1 6/1 6/1 5/1 7/1 7/1
1×102 5/2 4/1 4/1 5/2 5/2 5/1 6/5 5/4 5/1
1×103 5/2 7/4 9/1 5/5 7/2 8/1 5/5 9/2 9/2
1×104 6/1 7/2 8/3 6/3 5/5 7/3 6/3 7/3 8/2
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5.3 Thixo-viscoplastic flow in lid-driven cavity flow

Armed with the knowledge of the point wise mesh convergence of viscoplastic driven cavity flow.
Indeed, we obtained the point wise convergence of the boundary limit of the rigid zone w.r.t. the
regularization parameter k. Furthermore, there is pair (K,L) ≈ (2L8,L8) regularization and mesh
refinement level beyond which no further resolution improvement is possible. Now, we are ready the
investigate thixo-viscoplastic driven cavity. Figure 4 sets out the relative position of the rigid zone
to stream function contours for an increased thixotropic yield stress parameter τ1. The solutions are
calculated with the resolution barrier pair (K,L).

(a) τ1 = 0.5 (b) τ1 = 1.0 (c) τ1 = 2.0

(d) τ1 = 5.0 (e) τ1 = 10.0 (f) τ1 = 20.0

Figure 4: Thixo-viscoplastic flow in lid-driven cavity: The relative position of the plastic/rigid zone to streamline
contours for an increased thixotropic yield stress parameter τ1. The other parameters are set to η0 = 1.0, η1 = 0.0,
τ0 = 1.0, a = 1.0 and b = 0.1. The Papanastasiou regularization parameter is set to k = 104. The solutions are calculated
at mesh-refinement level 8.

In Table 5, we summarize the number of Newton-multigrid iterations, nonlinear number of iterations
and the average number of multigrid iterations (N/M), w.r.t. different regularization parameters k and
mesh refinement levels L for thixo-viscoplastic flow for different values of thixotropic yield stress
parameters τ1. The solutions are calculated using the continuations process w.r.t. regularization k.

Table 5 shows the mesh refinement independent of Newton-multigrid solver. Indeed, the nonlinearity
of the problem is increased by increasing the thixotropic yield stress parameter τ1, But, the slightly
increases in the nonlinearity w.r.t. mesh refinement is due to the continuation process w.r.t. regular-
ization parameter k used to obtain the solutions.
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Table 5: Thixo-viscoplastic flow in lid-driven cavity: The number of Newton-multigrid iterations, nonlinear number
of iterations and the average number of multigrid iterations (N/M), w.r.t. different regularization parameters k and mesh
refinement levels L for thixo-viscoplastic flow for different values of thixotropic yield stress parameters τ1. The solutions
are calculated using the continuations process w.r.t. regularization k.

k\L 5 6 7 5 6 7 5 6 7
τ1 = 0.5 τ1 = 1 τ1 = 2

1×101 5/2 5/3 6/2 5/2 5/2 9/1 5/2 5/2 9/1
1×102 4/1 4/2 5/1 4/1 4/2 7/1 4/2 4/2 8/1
1×103 4/1 4/1 4/1 4/2 4/2 8/1 4/4 6/1 7/1
1×104 4/1 4/2 4/2 5/1 7/1 4/1 7/1 10/1 8/2

τ1 = 5.0 τ1 = 10.0 τ1 = 20.0
1×101 6/2 6/2 10/1 11/1 8/2 11/1 10/1 9/2 11/1
1×102 4/2 5/2 11/1 10/1 5/3 8/1 12/1 6/3 10/1
1×103 5/2 9/1 10/1 10/1 9/1 7/1 8/2 9/1 9/2
1×104 5/1 5/2 5/1 8/3 7/1 5/1 8/2 7/1 9/1

6 SUMMARY

We presented a Newton-multigrid FEM solver for the quasi-Newtonian modeling approach for thixotropic
flows. Based on a two-fields Stokes solver, we used higher order stable Q2/Pdisc

1 FE approximations
for velocity and pressure and higher order Q2 FE approximation for the structure parameter field with
appropriate stabilization term. The combination of a stable finite element approximations, Q2/Pdisc

1 ,
for Stokes problem together with multigrid results in high numerically accurate, flexible and efficient
FEM-multigrid solver. The nonlinearity is handled with generalized Newton’s method w.r.t. the Jaco-
bian’s singularities having a global convergence property. For the numerical investigations; we used
lid-driven cavity benchmark to find out the optimal setting, mesh refinement, and regularization. In-
deed, we achieved a point-wise mesh convergence as well as a resolution barrier, (k,L) regularization
mesh refinement level, beyond which no further resolution’s improvement is possible. Furthermore,
the solver shows a mesh refinement independency. For viscoplastic and thixo-viscoplastic solutions,
we used the discrete continuation process w.r.t. regularization which might be integrated continuously
within the solver in a black box manner.
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