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Abstract: Isogeometric Analysis (IgA) can be seen as the natural extension of the Finite
Element Method (FEM) to high-order B-spline basis functions. Combined with a time inte-
gration scheme within the method of lines, IgA has become a viable alternative to FEM for
time-dependent problems. However, as processors’ clock speeds are no longer increasing but
the number of cores are going up, traditional (i.e., sequential) time integration schemes become
more and more the bottleneck within these large-scale computations. The Multigrid Reduced
in Time (MGRIT) method is a parallel-in-time integration method that enables exploitation
of parallelism not only in space but also in the temporal direction. In this paper, we apply
MGRIT to discretizations arising from IgA for the first time in the literature. In particular,
we investigate the (parallel) performance of MGRIT in this context for a variety of geometries,
MGRIT hierarchies and time integration schemes. Numerical results show that the MGRIT
method converges independent of the mesh width, spline degree of the B-spline basis functions
and time step size ∆t and is highly parallelizable when applied in the context of IgA.

1 INTRODUCTION

Isogeometric Analysis (IgA) [1] can be seen as the natural extension of the Finite Element
Method (FEM) to high-order B-spline basis functions. By using the same building blocks (i.e.,
B-splines and Non-Uniform Rational B-Splines) as in Computer Aided Design (CAD), IgA
tries to bridge the gap between CAD and FEM, resulting in a highly accurate represention of
(curved) geometries. Furthermore, the use of high-order B-spline basis functions has shown to
be advantageous in many applications [3, 4, 5] and the accuracy per degree of freedom (DOF)
compared to FEM is significantly higher [6].

For time-dependent partial differential equations (PDEs), Isogeometric Analysis is often
combined with a time integration scheme within the method of lines. However, as with all tra-
ditional time integration schemes, the latter part is sequential by design and hence, a bottleneck
in numerical simulations. When the spatial resolution is increased to improve accuracy, the
time step size has to be reduced accordingly to ensure stability of the overall method. At the
same time, processors’ clock speeds are no longer increasing, but the core count goes up, which
calls for the parallelization of the calculation process to benefit from modern computer hard-
ware. As traditional time integration schemes are sequential by nature, new parallel-in-time
methods are needed to resolve this problem.

The Multigrid Reduced in Time (MGRIT) method [2] is a parallel-in-time algorithm based
on multigrid reduction (MGR) techniques [7]. In contrast to space-time methods, in which time
is considered as an extra spatial dimension, sequential time stepping is still necessary within
MGRIT. Space-time methods have been combined in the literature with IgA [8]. Although
very successful, a drawback of such methods is the fact that they are more intrusive on existing
codes, while MGRIT just requires a routine to integrate the fully discrete problem between two
time instances. Over the years, MGRIT has been studied in detail and applied to a variety of
problems in the literature [9, 10].
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To the best of our knowledge, this is the first publication that reports on combining Isogeo-
metric Analysis and MGRIT and therefore our focus lies on the performance of MGRIT when
different multigrid hierarchies, geometries and time integration schemes are considered within
an IgA setting.

This paper is structured as follows: Section 2 presents our two-dimensional model problem
and its spatial and temporal discretization. The MGRIT algorithm is then described in Sec-
tion 3. Numerical results, including CPU timings, obtained for different geometries and time
integration schemes are presented for different configurations of the MGRIT method in Section
4. Finally, conclusions are drawn in Section 5.

2 MODEL PROBLEM AND DISCRETIZATION

As a model problem, we consider the transient diffusion equation:

∂tu(x, t)− κ∆u(x, t) = f(x), x ∈ Ω, t ∈ [0, T ]. (1)

Here, κ denotes a constant diffusion coefficient, Ω the unit square (i.e., [0, 1]2) and f ∈ L2(Ω)
a source term. The above equation is complemented by initial conditions and both Dirichlet
and Neumann boundary conditions:

u(x, 0) = u0(x), x ∈ Ω, (2)

u(x, t) = 0, x ∈ ∂Ω \ ∂ΩW , t ∈ [0, T ], (3)

∂u(x, t)

∂n
= 1, x ∈ ∂ΩW , t ∈ [0, T ], (4)

where ΩW denotes the left boundary of Ω. Figure 1 denotes the solution of Equation (1) subject
to these initial and boundary conditions at various time instances.

(a) t = 0 (b) t = 0.01 (c) t = 0.02

Figure 1: Solution to Equation (1) on the unit square at different times t.

First, we discretize Equation (1) (in time) by dividing the time interval [0, T ] in Nt subin-
tervals of size ∆t and applying the θ-scheme to the temporal derivative, which leads to the
following equation to be solved at every time step:

u(x)k+1 − κ∆tθ∆u(x)k+1 = u(x)k + κ∆t(1− θ)∆u(x)k + ∆tf(x), x ∈ Ω, k = 0, . . . , Nt. (5)

To obtain the variational formulation, let V = H1
0 (Ω) be the space of functions in the Sobolev

space H1(Ω) that vanish on the boundary ∂Ω. Equation (5) is multiplied with a test function
v ∈ V and the result is then integrated over the domain Ω:∫

Ω

(
uk+1v − κ∆tθ∆uk+1v

)
dΩ =

∫
Ω

(
ukv + κ∆t(1− θ)∆ukv + ∆tfv

)
dΩ. (6)
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Applying integration by parts on the second term on both sides of the equation results in∫
Ω

(
uk+1v + κ∆tθ∇uk+1 · ∇v

)
dΩ =

∫
Ω

(
uk+1v − κ∆t(1− θ)∇uk · ∇v + ∆tfv

)
dΩ, (7)

for x ∈ Ω, k = 0, . . . , Nt, where the boundary integral integral vanishes since v = 0 on ∂Ω.
To parameterize the physical domain Ω, a geometry function F is then defined, describing an
invertible mapping to connect the parameter domain Ω0 = (0, 1)2 with the physical domain Ω:

F : Ω0 → Ω, F(ξ) = x. (8)

Provided that the physical domain Ω is topologically equivalent to the unit square, the ge-
ometry can be described by a single geometry function F. In case of more complex geometries,
a family of functions F(m) (m = 1, . . . , K) is defined and we refer to Ω as a multipatch geom-
etry consisting of K patches. For a more detailed description of the spatial discretization in
Isogeometric Analysis and multipatch constructions, the authors refer to chapter 2 of [1].

Then, we express u at every time step by a linear combination of multivariate B-spline basis
functions. Multivariate B-spline basis functions are defined as the tensor product of univariate
B-spline basis functions φi,p (i = 1, . . . , N), which are uniquely defined on the parameter
domain (0, 1) by an underlying knot vector Ξ = {ξ1, ξ2, . . . , ξN+p, ξN+p+1}. Here, N denotes
the number of univariate B-spline basis functions and p the spline degree. Based on this knot
vector, the basis functions are defined recursively by the Cox-de Boor formula [11], starting
from the constant ones

φi,0(ξ) =

{
1 if ξi ≤ ξ < ξi+1,

0 otherwise.
(9)

Higher-order B-spline basis functions of order p > 0 are then defined recursively

φi,p(ξ) =
ξ − ξi
ξi+p − ξi

φi,p−1(ξ) +
ξi+p+1 − ξ
ξi+p+1 − ξi+1

φi+1,p−1(ξ). (10)

The resulting B-spline basis functions φi,p are non-zero on the interval [ξi, ξi+p+1) and possess
the partition of unity property. Furthermore, the basis functions are Cp−mi-continuous, where
mi denotes the multiplicity of knot ξi. Throughout this paper, we consider a uniform knot
vector with knot span size h, where the first and last knot are repeated p + 1 times. As a
consequence, the resulting B-spline basis functions are Cp−1 continuous and interpolatory at
both end points. Figure 2 illustrates both linear and quadratic B-spline basis functions based
on such a knot vector.

Denoting the total number of multivariate B-spline basis functions Φi,p by Ndof , the solution
u is thus approximated at every time step as follows:

u(x) ≈ uh,p(x) =

Ndof∑
i=1

uiΦi,p(x), uh,p ∈ Vh,p. (11)

Here, the spline space Vh,p is defined, using the inverse of the geometry mapping F−1 as
pull-back operator, as follows:

Vh,p := span
{

Φi,p ◦ F−1| Φi,p = 0 on ∂Ω0

}
i=1,...,Ndof

. (12)

By setting v = Φj,p, Equation (7) can be written as follows:

(M + κ∆tθK)uk+1 = (M− κ∆t(1− θ)K)uk + ∆tf , k = 0, . . . , Nt, (13)

where M and K denote the mass and stiffness matrix, respectively:

Mi,j =

∫
Ω

Φi,pΦj,p dΩ, Ki,j =

∫
Ω

∇Φi,p · ∇Φj,p dΩ, i, j = 1, . . . , Ndof . (14)
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(a) Linear B-spline basis functions
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(b) Quadratic B-spline basis functions

φ1 φ2 φ3 φ4 φ5

Figure 2: Linear and quadratic B-spline basis functions based on the knot vectors (a) Ξ1 =
{0, 0, 1, 2, 3, 3} and (b) Ξ2 = {0, 0, 0, 1, 2, 3, 3, 3}, respectively.

3 MULTIGRID REDUCED IN TIME

Instead of solving Equation (13) step-by-step directly, we apply the Multigrid Reduced in
Time (MGRIT) method. For the ease of notation, we set θ = 1 throughout the remainder
of this section. Let Ψ = (M + κ∆tK)−1 denote the inverse of the left-hand side operator.
Equation (13) can then be written as follows:

uk+1 = ΨMuk + gk+1, k = 0, . . . , Nt, (15)

where gk+1 = Ψ∆tf . Setting g0 equal to the initial condition u0(x) projected on the spline
space Vh,p, the time integration method can be written as a linear system of equations:

Au =


I

−ΨM I
. . . . . .

−ΨM I



u0

u1

...
uNt

 =


g0

g1

...
gNt

 = g. (16)

The two-level MGRIT method combines the use of a cheap coarse-level time integration
method with an accurate more expensive fine-level one which can be performed in parallel.
That is, Equation (16) can be solved iteratively by introducing a coarse temporal mesh with
time step size ∆tC = m∆tF . Here, ∆tF coincides with the ∆t from the previous sections and
m denotes the coarsening factor. It can be observed that the solution of Equation (16) at the
coarse-level times T0, T1, . . . , TNt/m satisfies:

A∆u∆ =


I

−(ΨM)m I
. . . . . .

−(ΨM)m I




u0
∆

u1
∆
...

u
Nt/m
∆

 =


g0

∆

g1
∆
...

g
Nt/m
∆

 = g∆. (17)

Here, uj
∆ = ujm and the vector g∆ is given by the original vector g multiplied by a restriction

operator:

g∆ =


I

(ΨM)m−1 · · · ΨM I
. . .

(ΨM)m−1 · · · ΨM I



g0

g1

...
gNt

 . (18)
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A two-level MGRIT method solves the coarse system given by Equation (17) iteratively and
computes the fine-level values in parallel within each interval (tjm, tjm+m−1). The coarse system
is solved using the following residual correction scheme:

u
(n+1)
∆ = u

(n)
∆ + B−1

∆

(
g∆ −A∆u

(n)
∆

)
, (19)

where B∆ is the coarse-level equivalent of the matrix A based on ∆tC instead of ∆tF . More
precisely, solving for B∆ gives the solution on the coarse mesh by coarse time stepping (using
∆tC), while solving for A∆ results in the solution on the coarse mesh by fine time stepping
(using ∆tF ). Here, the fine-level values are computed in parallel, denoted by the action of
operator A∆. This is in contrast to the action of B∆ which typically is performed on a single
processor.

The two-level MGRIT algorithm can be seen as a multigrid reduction (MGR) method that
combines a coarse time stepping method with (parallel) fine time stepping within each coarse
time interval. Here, the time stepping from a coarse point C to all neighbouring fine points is
also referred to as F -relaxation [2]. On the other hand, time stepping to a C-point from the
previous F -point is referred to as C-relaxation. It should be noted that both types of relaxation
are highly parallel and can be combined leading to so-called CF - or FCF -relaxation.

3.1 Multilevel MGRIT method

Next, we consider the true multilevel MGRIT method. First, we define a hierarchy of L
temporal meshes, where the time step size for the discretization at level l (l = 0, 1, . . . , L) is
given by ∆tFm

l. The total number of levels L is related to the coarsening factor m and the
total number of fine steps ∆tF by L = logm(Nt). Let A(l)u(l) = g(l) denote the linear system
of equations based on the considered time step size at level l. The MGRIT method can then
be written as follows:

Algorithm 1 MGRIT

if l = L then
Solve A(L)u(L) = g(L)

else
Apply FCF-relaxation on A(l)u(l) = g(l)

Restrict the residual g(l) −A(l)u(l) using injection
Call MGRIT setting l→ l + 1
Update u(l) → u(l) + Pu(l+1)

end if

Here, the prolongation operator P is based on ordering the F -points and C-points, starting
with the F -points. The matrix A can then be written as follows:

A =

[
Aff Afc

Acf Acc

]
. (20)

and the operator P is then defined as the “ideal interpolation” [2]:

P =

[
−AffAfc

Ic

]
. (21)

The recursive algorithm described above leads to a so-called V -cycle. However, as with standard
multigrid methods, alternative cycle types (i.e., W -cycles, F -cycles) can be defined. At all levels
of the multigrid hierarchy, the operators are obtained by rediscretizing Equation (1) using a
different time step size.
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4 NUMERICAL RESULTS

To assess the effectiveness of the MGRIT method when applied in combination with Iso-
geometric Analysis, we solve Equation (1) on the time domain T = [0, 0.1], where the initial
condition is chosen equal to zero and a right-hand side equal to one. This initial condition is
adopted as well as initial guess at all times t > 0. The MGRIT method is said to have reached
convergence if the relative residual at the end of an iteration is smaller or equal to 10−10, unless
stated otherwise.

Throughout this section, the MGRIT hierarchy, the domain of interest Ω and the time
integration scheme are varied. The MGRIT hierarchies that will be adopted are two-level
methods, a V -cycle and an F -cycle. As a domain, we consider the unit square (i.e., Ω = [0, 1]2),
a quarter annulus defined in the first quadrant with inner radius of 1 and an outer radius of 2
and a multipatch geometry, see Figure 3. As a time integration scheme, we consider a value of
θ of 0, 0.5 and 1 for the θ-scheme throughout this section, which corresponds to forward Euler,
Crank-Nicolson and backward Euler, respectively.

Figure 3: Spatial domains Ω considered throughout this section.

4.1 MGRIT hierarchies

First, we consider the MGRIT method using different hierarchies for the implicit case (i.e.,
backward Euler). At each time step, the linear system (Equation (13)) is solved by the Conju-
gate Gradient method. Table 1 shows the number of MGRIT iterations for different values of
h and p when a two-level method, V -cycles or F -cycles are considered. Here, F -relaxation is
applied at all levels of the MGRIT hierarchy. The number of time steps Nt for all configurations
equals 100. For all three hierarchies, the number of MGRIT iterations needed to reach con-
vergence is independent of h and p. The results obtained with a two-level method or F -cycles
are identical and lead to a lower number of iterations compared to the use of V -cycles for all
configurations.

p = 2 p = 3 p = 4 p = 5
TL V F TL V F TL V F TL V F

h = 2−4 7 9 7 7 9 7 7 9 7 7 9 7
h = 2−5 7 9 7 7 9 7 7 9 7 7 9 8
h = 2−6 8 9 8 8 9 8 8 9 8 8 9 8
h = 2−7 8 9 8 8 9 8 8 9 8 8 9 8

Table 1: Number of MGRIT iterations for solving the model problem when adopting a two-level
(TL) method, V -cycles (V) or F -cycles (F).

Instead of varying the mesh width, the number of time steps can be increased as well. This is
particularly interesting as MGRIT is a parallel-in-time method, where speed-ups will primarily
come from parallelization in the temporal component. Table 2 shows the number of MGRIT
iterations adopting different hierarchies for different numbers of time steps, different values of p
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and h = 2−6. For all configurations, the use of a two-level method or F -cycles leads to a lower
number of iterations compared to the use of V -cycles. In particular, the number of iterations
are independent of the number of time steps for all MGRIT hierarchies and comparable to the
ones obtained when considering different values of the mesh width.

p = 2 p = 3 p = 4 p = 5
TL V F TL V F TL V F TL V F

Nt = 250 7 10 7 7 10 7 7 10 7 7 10 7
Nt = 500 7 10 7 7 10 7 7 10 7 7 10 7
Nt = 1000 7 11 7 7 11 7 7 11 7 7 11 7
Nt = 2000 7 11 7 7 11 7 7 11 7 7 11 7

Table 2: Number of MGRIT iterations for solving the model problem when adopting a two-level
(TL) method, V -cycles (V) or F -cycles (F).

4.2 Varying geometries

Next, we apply MGRIT on a curved and multipatch geometry, respectively. Table 3 shows
the number of V -cycles needed with MGRIT, using backward Euler for the time integration, for
both geometries. Results can be compared to the ones presented in Table 2, showing identical
iteration numbers for all geometries.

Quarter Annulus Multipatch
p = 2 p = 3 p = 4 p = 5 p = 2 p = 3 p = 4 p = 5

Nt = 250 10 10 10 10 10 10 10 10
Nt = 500 10 10 10 10 10 10 10 10
Nt = 1000 11 11 11 11 11 11 11 11
Nt = 2000 11 11 11 11 11 11 11 11

Table 3: Number of MGRIT iterations for solving Equation (1) on a quarter annulus and
multipatch geometry when adopting V -cycles for varying time step sizes.

Table 4 shows the results when the number of time steps is kept constant (Nt = 100) for the
quarter annulus and multipatch geometry when adopting V -cycles. Results can be compared
to Table 1 and are (again) identical for all three geometries.

Quarter Annulus Multipatch
p = 2 p = 3 p = 4 p = 5 p = 2 p = 3 p = 4 p = 5

h = 2−4 9 9 9 9 9 9 9 9
h = 2−5 9 9 9 9 9 9 9 9
h = 2−6 9 9 9 9 9 9 9 9
h = 2−7 9 9 9 9 9 9 9 9

Table 4: Number of MGRIT iterations for solving Equation (1) on a quarter annulus and
multipatch geometry when adopting V -cycles for varying mesh widths.

4.3 Time integration schemes

Next to the implicit backward Euler scheme, we have considered alternative time integration
schemes as well. In this subsection, we consider the forward Euler and (second-order accurate)
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Crank-Nicolson method. The use of explicit time integration schemes in the context of parallel-
in-time integration is on the one hand highly relevant, as the required number of time steps
needed to ensure stability is relatively high. On the other hand, coarsening with respect to
the time step size might still exhibit stability issues at coarser levels. Therefore, explicit-
implicit methods are often considered, where explicit time integration is applied on the fine
level problem, while implicit methods are adopted at the coarser levels. The question remains
to which extent the resulting MGRIT algorithm remains robust in the mesh width and/or spline
degree.

Table 5 shows the number of MGRIT iterations for different numbers of time steps when
adopting V -cycles and a mesh width of h = 2−4. Here, forward Euler/Crank-Nicolson is applied
at the fine level, while backward Euler is applied at the coarse levels. For some of the considered
configurations, the resulting MGRIT method does not converge for forward Euler (indicated
by ‘∗’). It should be noted, however, that for these configurations, forward Euler applied as a
sequential time integration scheme does not converge either, which is a direct consequence of
the CFL condition. When the Crank-Nicolson method is applied the resulting MGRIT method
converges in a relatively low number of iterations.

forward Euler Crank-Nicolson
p = 2 p = 3 p = 4 p = 5 p = 2 p = 3 p = 4 p = 5

Nt = 250 ∗ ∗ ∗ ∗ 11 11 14 24
Nt = 500 13 ∗ ∗ ∗ 11 11 11 12
Nt = 1000 13 13 ∗ ∗ 11 11 11 11
Nt = 2000 13 13 13 ∗ 11 11 11 11

Table 5: Number of MGRIT iterations for solving Equation (1) on the unit square using forward
Euler and Crank-Nicolson when adopting V -cycles.

Table 6 shows the number of MGRIT iterations for a varying mesh width and 1000 time steps
for both time integration methods. For many configurations, MGRIT using forward Euler does
not convergence, while the Crank-Nicolson method converges for all configurations. A small
dependency on h and p is, however, visible.

forward Euler Crank-Nicolson
p = 2 p = 3 p = 4 p = 5 p = 2 p = 3 p = 4 p = 5

h = 2−3 13 13 13 14 11 11 11 12
h = 2−4 13 13 ∗ ∗ 11 11 11 11
h = 2−5 ∗ ∗ ∗ ∗ 11 11 13 23
h = 2−6 ∗ ∗ ∗ ∗ 13 28 52 88

Table 6: Number of MGRIT iterations for solving Equation (1) on the unit square using forward
Euler and Crank-Nicolson when adopting V -cycles.

4.4 CPU timings

Next to investigating the iteration numbers needed with MGRIT to reach convergence, CPU
timings have been obtained as well. Here, we adopt V -cycles, a mesh width of h = 2−6 and the
unit square as our domain of interest. Note that the corresponding iteration numbers can be
found in Table 2. The computations are performed on three nodes, which consist each of an
Intel(R) i7-10700 (@ 2.90GHz) processor.
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As shown in Figure 4a, doubling the number of time steps roughly doubles the time needed
to reach convergence for all values of p. Furthermore, the CPU times significantly increase for
higher values of p which is related to the spatial solves at every time step. It is known from the
literature that standard iterative solvers have a detoriating performance for increasing values
of p, leading to an increased number of CG iterations and, hence, higher computational costs.

In Figure 4b, results obtained adopting six cores can be found. In general, the same behavior
can be observed with respect to the number of time steps and the spline degree. It should be
noted, however, that doubling the number of cores significantly reduces the CPU time needed
to reach convergence. More precisely, a reduction of 45− 50% can be observed when doubling
the number of cores, implying the MGRIT algorithm is highly parallelizable.
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Figure 4: CPU times for MGRIT using V -cycles and backward Euler on the unit square for
a fixed problem size (h = 2−6) adopting a different number of cores. The cores are evenly
distributed over the nodes.

5 CONCLUSIONS

In this paper, we successfully combined Isogeometric Analysis with the Multigrid Reduced
in Time (MGRIT) method to solve the time-dependent diffusion equation. Here, both (curved)
single patch and multipatch geometries have been considered. Furthermore, different time
integration methods and MGRIT hierarchies have been adopted. Numerical results show for
all considered benchmarks that the MGRIT method converges independent of the considered
mesh width h, spline degree p or time step size ∆t. Furthermore, the use of an implicit time
integration method has shown to be more robust compared to explicit time integration methods
when applied within MGRIT. In general, a two-level hierarchy as well as the use of F -cycles
leads to a slightly lower number of MGRIT cycles, but they are associated to higher costs per
iteration. CPU timings show that the time needed to reach convergence does not only dependent
on the number of time steps, but also on the spline degree of the B-spline basis functions when
a standard iterative method is considered for the spatial solves. Future work will therefore
focus on the use of state-of-the-art solvers for Isogeometric Analysis within MGRIT to mitigate
this dependency. As increasing the number of CPUs significantly decreases the computational
times, future research will focuss as well on the parallel performance of the MGRIT method and
its comparison to traditional sequential time integration methods for large-scale simulations.
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