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València, Camino de Vera s/n, 46022 Valencia, Spain

bInstituto de Investigación Sanitaria La Fe, Avenida Fernando Abril Martorell, 10, 46026 Valencia, Spain.
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Abstract

Healthcare predictive models generally rely on static snapshots of patient information. Patient Trajectories (PTs)

model the evolution of patient conditions over time and are a promising source of information for predicting future

morbidities. However, PTs are highly heterogeneous among patients in terms of length and content, so only aggregated

versions that include the most frequent events have been studied. Further, the use of longitudinal multiscale data

such as integrating EHR coded data and laboratory results in PT models is yet to be explored. Our hypothesis is

that local similarities on small chunks of PTs can identify similar patients with respect to their future morbidities.

The objectives of this work are (1) to develop a methodology to identify local similarities between PTs prior to the

occurrence of morbidities to predict these on new query individuals; and (2) to validate this methodology to impute

risk of cardiovascular diseases (CVD) in patients with diabetes.

We have proposed a novel formal definition of PTs based on sequences of multi-scale data over time, so each

patient has their own PT including every data available in their EHR. Thus, patients do not need to follow partly or

completely one pre-defined trajectory built by the most frequent events in a population but having common events

with any another patient. A dynamic programming methodology to identify local alignments on PTs for predicting

future morbidities is proposed. The proposed methodology for PT definition and the alignment algorithm are generic

to be applied on any additional clinical domain. We tested this solution for predicting CVD in patients with diabetes

and we achieved a positive predictive value of 0.33, a recall of 0.72 and a specificity of 0.38. Therefore, the proposed

solution in the diabetes use case can result of utmost utility to patient screening.
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disease
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Highlights

• Local similarities between patient trajectories can

potentially be used to predict morbid conditions.

• A formal definition of patient trajectories compris-

ing heterogeneous clinical observations, biomedi-

cal tests and time gaps is proposed.

• A novel dynamic programming methodology is

proposed to find similar patients based on the

Smith-Waterman alignment algorithm and a set of

customized scoring matrices.

1. Introduction

1.1. Patient Trajectories

Patient trajectories (PTs) are a proposal for represent-

ing the evolution of diseases over time to facilitate their

understanding and analysis under a temporal perspec-

tive, as well as to discover relationships between patient

conditions. The need to use PTs arises due to the com-

plexity of clinical data, which include data from very di-

verse sources (e.g blood test, images, hospital expenses)

and its spread along time. Even though physicians

can access this information, usually event by event, on

the patients’ Electronic Health Records (EHR), draw-

ing conclusions at a population level under a precision

medicine approach becomes a more di�cult task. PTs

are able to represent the history of a patient as a timeline

of every clinical event.

We have found di↵erent names for the concept of PT

in our research. In [1], 1,171 di↵erent temporal disease

trajectories were defined from the EHR of 6.2 million

patients over 15 years using clustering and the Jaccard

index as similarity measure. These trajectories com-

piled the most frequent diagnosis in the development of

a disease. Giannoula et al. [2] identified temporal pat-

terns in patient disease trajectories using dynamic time

warping. They use the concept of distance/dissimilarity

between patients to find similar diagnosis codes and

build these aggregated trajectories. Both [1] and [2]

suggest that the trajectory analysis could be used for

the prediction and prevention of disease development,

but did not go further on that path. In [3], the frequent

process patterns found in clinical pathways were used

to design time dependency graphs. Given a new pa-

tient, they would be assignedto one of those designed

pathways. In [4], clustering was used to find 7 frequent

clinical pathways, according to the encounter types, di-

agnostics, medications and biochemical measurements

of 664 patients. After that, machine learning was used

both to assign the patients to one of the 7 created path-

ways and to predict the next visit of the patient with

and without timestamp using only their laboratory re-

sults. A very similar strategy was used in [5], were

31 distinct pathways were found from 1,576 patients.

In [6] they predict patient’s trajectory of physiological

data by retrieving patients who display similar trends

on their physiological streams, according to the Maha-

lanobis distance. In this work, they also try to identify

which patients will develop Acute Hypotensive Events

using these physiological signals.

In this study, we represent patient trajectories as the
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time-ordered sequences of consultations, laboratory re-

sults and diagnosis that each patient has in their EHR.

We use PTs to identify partial similarities in patient’s

EHR that allow to predict the development of a disease.

Patient trajectories are not built according to the most

frequent events recorded in EHRs but with all the avail-

able information, as aggregating that information could

limit the link between patients. Patients do not need

to follow partly or completely one pre-defined trajec-

tory, but having common events with another particu-

lar patient. In this way, query patients whose EHR in-

cludes rare events can also be reflected in the patients in

the database, and thus find high similarities during the

alignment.

1.2. Sequences Alignment

Since a patient trajectory is an ordered sequence of

events, the same technology as in biological sequence

analysis, such as the alignment of DNA sequences,

could be applied to PT analysis. Several well-known

bioinformatic algorithms based on dynamic program-

ming allow solving hard alignment problems by split-

ting the problem into simpler sub-problems. Sequence

alignment in bioinformatics aims to identify similar re-

gions in biological sequences under hypotheses of func-

tional, structural or evolutionary relationships.

The alignment can be made i.e. globally, using

the Needleman-Wunsch algorithm [7] or locally, us-

ing the Smith-Waterman [8]. Both are dynamic pro-

gramming algorithms, which guarantees finding the op-

timal alignment according to the scoring system used.

Smith-Waterman algorithm (Algorithm 1) performs lo-

cal alignments of two sequences of symbols of a com-

mon alphabet, identifying, as a result, the most similar

regions within them. This alignment is done by calcu-

lating the Levenshtein distance (or an opposite score)

given by three editing operations to transform each pair

of symbols (insertion, deletion, or substitution/match),

and the possibility to re-start the alignment score from

any alignment point (initialization). In consequence, us-

ing the Smith-Waterman algorithm for comparing PTs

would result in finding high-similar regions between

PTs, possibly related to a common disease appearing

in the future. This approach may be more adequate than

the Needleman-Wunsch algorithm due to the more than

likely high heterogeneity of PTs.

si, j  max

0
BBBBBBBBBBBBBBBB@

0

si, j�1 + �(�, v j) (insertion o f v j)

si�1, j + �(ui,�) (deletion o f ui)

si�1, j�1 + �(ui, v j) (substitution or match)

1
CCCCCCCCCCCCCCCCA

(1)

Algorithm 1 Main instruction of the Smith-Waterman algo-

rithm. The value � of the editing operations consists in a scor-

ing matrix which values change according to the particular use

case of the algorithm (e.g homology of proteins, DNA, RNA).

In the case of PT comparison, � value is the similarity between

EHR events.

Sha et al. work [9] also presented a modified ver-

sion of the Smith-Waterman algorithm to identify simi-

lar patients. They used it to predict mortality in patients

with Acute Kidney Injury, based only on their labora-

tory test data. They did compare the predictive power

of their similarity measure against other better known

such as the cosine distance and the Jaccard similarity

coe�cient. They concluded that this Smith-Waterman-
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based similarity measure achieved better sensitivity and

F-measure than the other similarity measures.

1.3. Hypothesis

Our hypothesis is that local similarities on small

chunks of PTs can identify similar patients with respect

to their future morbidities. In other words, we believe

that the development of a pathology can be predicted if

there is a high local similarity of a PT to a set of PTs of

people who developed this pathology. This hypothesis

relies on the reasonable assumption that similar patterns

in clinical conditions occur in patients during the devel-

opment of similar disease prognoses. The search and

location of these patterns could be used as a screening

method in healthy patients.

1.4. Use Case: Predict CVD development in Diabetes

Mellitus by patient trajectories

In our study, we have tested our hypothesis by as-

sessing the risk of developing cardiovascular diseases

(CVDs) in patients with diabetes. Diabetes is a well-

known disease with high prevalence worldwide, which

is estimated to increase even more by 2045, a↵ecting

more than 629 million people in the world [10]. Di-

abetes causes hyperglycaemia, which results toxic and

can cause the development of several health complica-

tions, such as ophthalmological, nephrological, neuro-

logical and/or cardiovascular diseases. It becomes a pri-

ority to diagnose these co-morbidities as soon as possi-

ble to improve the patients’ quality of life and reduce

economic costs. In this paper, we focus on detecting

CVDs as a proof of concept because of the close re-

lationship between cardiopathies and diabetes [11, 12].

This becomes more obvious in the study [12] , where

they show that while the rate of incidences of myocar-

dial infarction for non-diabetic subjects is 3.5% (18.8%

if they have had another infarction previously), in the

case of diabetes patients it is 20.2%, (45% if they have

had a prior infarction) [13].

2. Materials

2.1. Dataset

In this study, we used all patients with at least one

diagnosis of diabetes mellitus between 2012 and 2015

from Hospital Universitario y Politécnico La Fe, Valen-

cia. Hence, the dataset included 9,670 patients with di-

abetes mellitus type I or type II, and with or without

complications (see Table 1 for details). Each registry

consisted of de-identified demographic data (age and

gender), timestamped clinical data (diagnostics made

in hospitalization or in emergency room), timestamped

consultation codes, and timestamped laboratory test re-

sults. 425 patients were discarded because they had

only one observation on their EHR or they did not have

all the necessary identification fields. Hence, from the

9,245 available patients, 3,181 had developed cardio-

vascular diseases and 6,064 had not. Table 1 also shows

the mean and standard deviation of the number of di-

agnostics, consultations and laboratory test results per

patient. It shows how the length of the patient trajectory
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of people who have developed CVD is larger, due to the

development of the disease. It is remarkable that 25% of

the patients have less than 10 observations in their tra-

jectory, which means that most of the PTs will contain

less information than what it would be expected from a

chronic patient (see Figure A.1).

2.2. Codification

Diagnostics are coded according to ICD-9-CM,

which is divided into chapters according to the family

of the disease (i.e. diseases related to the circulatory

system and CVD belong to chapter 7, diseases related to

the genitourinary system makeup chapter 10). A total of

169 consultation and hospital services codes appeared

in the dataset, using hospital codes such as CCAR for

cardiology and CNEF for nephrology. In addition, some

numerical laboratory results have been discretized into

ranges such as Low, Normal, and High, according to the

thresholds defined by the hospital blood tests.

3. Methods

3.1. Local Patient Trajectory Alignment (LPTA) algo-

rithm

We have adapted the Smith-Waterman algorithm in

order to compare PTs. The computation of PTs com-

parisons has the following requirements. First, a simi-

larity measure between PTs should be defined. Second,

the algorithm should deal with sequences where hetero-

geneous observations that cannot be compared between

them may appear (i.e. laboratory results and diagnosis

codes). Finally, the predictive analytics based on PTs

should be applied to a massive number of patients. To

define a similarity measure between PTs, we establish

the next properties:

1. The local similarity measure of one PTs with itself

should be maximum.

2. The measure should consider that regions of PTs

may contain gaps that do not match. For instance,

one patient may have needed more consultations

than other between diagnostics during a similar

sequence of episodes, and the similarity measure

should be able to keep the track of the common

events despite of the noise that the extra consulta-

tions could add.

3. The similarity measure should penalize di↵erences

in time between two consecutive observations.

4. The calculated similarity score will then be used to

rank patients of the reference dataset according to

their local similarity to any query patient.

The main di↵erence between the classical edit dis-

tance of biological sequences, where all the characters

represent the same idea (i.e. nucleotides, amino acids),

and our PTs similarity measure, is that our sequences

may contain observations of di↵erent nature. Hence, in-

stead of having a single scoring matrix, as in the original

Smith-Waterman problem, we have a set of similarity

functions defined between concepts appearing in the PT

alphabet (e.g. diagnostics, consultations and laboratory

test results):
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Number of
observations

Number of
events
(µ ± �)

Number of
diagnostics

(µ ± �)

Number of
consultations

(µ ± �)

Number of
laboratory tests

(µ ± �)
Total 9670 37±38 8±7 13±21 15±17
Used 9245 39±38 8±7 14±21 16±17
With CVD 3181 53±47 10±8 20±28 21±21
Without CVD 6064 31±29 6±6 10±16 13±14

Table 1: Exploratory analysis of the dataset. A third of the patients have developed CVD. These patients have more events in their EHR, especially
more consultations, therefore longer trajectories.

• The similarity measure between consultations is an

indicator function of the consultation services.

• The similarity measure between diagnosis is de-

fined by a combination of indicator functions of

categories and subcategories of the ICD-9 codes,

weighted by the similarity of locations where the

diagnostics were done (emergency room or hospi-

talization) or by the time relationship with the pre-

vious diagnosis.

• For real-valued observations, such as laboratory re-

sults, we define similarities of indicator functions

after their categorization to have a clear clinical

comparison (e.g. both glucose values are in nor-

mal or abnormal levels).

These similarity functions will score the similarity

amongst the patients not only considering the degree of

similarity of the most similar regions between the PTs,

but also the similarity of these regions to the typical de-

velopment of the target disease.

Hence, we define the Local Patient Trajectory Align-

ment (LPTA) algorithm as a dynamic programming al-

gorithm for finding the most similar regions between

PTs (Function 3.1). These regions would be scored ac-

cording to their direct similarity and their relationship

to the development of the disease (e.g. CVD in patients

with diabetes mellitus). The Smith-Waterman function

of the LPTA procedure works similarly to the original

algorithm described in Algorithm 1 but changing how

the scoring works: � would no longer be a scoring ma-

trix, but a set of scoring functions. A pseudo-code ver-

sion of the functions involved in the scoring process can

be found in the appendix (see Functions Appendix A.1,

Appendix A.2), and an explained example of how they

work, together with the formal language defined on Sec-

tion 3.2, can be found in Figure A.2.

Function 3.1: LPTA main algorithm. queryPa-
tients is a list of n PTs which condition is wanted
to be known, DBPatients is a list of m PTs which
condition is already known(LabelDBPatients).
queryPatients are aligned to DBPatients using
the set of similarity functions DELTA (Ap-
pendix A.1) with dMatrices (see Figure3) as pa-
rameter. maxScores will store the scores of the
alignments between patients.
LPTA(queryPatients, DBPatients, LabelDBPatients,

DELTA, dMatrices)
Input : queryPatients, DBPatients,

LabelDBPatients, DELTA, dMatrices
Output: maxScores
maxScores=matrix(n,m)
for i = 1 to n do

for j = 1 to m do
maxScores[i,j]=SmithWaterman(

queryPatients[i], DBPatients[j], DELTA,
dMatrices)

end
end

LPTA algorithm returns a vector of scores for each
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query patient according to its similarity to each PT of

the reference database. In order to assign the condition

to the query patient based on these scores, a classifica-

tion method was developed: The query patient would

be classified as disease developer if at least one of the

N reference patients with a higher similarity score had

developed it. N is a parameter to be optimized in the

experiments.

It is worth noting that scores are normalized by the

length of the reference PT amongst which the query pa-

tient is being compared. This way, if the comparisons of

a query patient with two reference patients get the same

score, it can be assumed that the similarity between the

query patient and the patient with fewer observations is

higher than similarity to the longer one.

For our experiments, the LPTA algorithm has been

implemented using R and the packages [14, 15, 16, 17]

for CPU-parallelization, temporal cost calculation and

graphical representations. An implementation of the

LPTA using Big Data technologies, such as Storm and

Redis, is already in development [18]. This will help to

decrease the temporal cost of the algorithm, allowing us

to analyse massive amounts of PTs for screening paral-

lelly query patients. This is the desired real use of the

LPTA.

3.2. Patient Trajectory Formal Definition

We propose a formal language for defining patient

trajectories from EHR data and computing local similar-

ities using the proposed LPTA algorithm (Function 3.1).

In this section, we define the formal language of patient

trajectories for our use case, but this grammar could be

easily adapted to another problem’s needs. Every event

included in the EHR that had every field needed (con-

sultation type, diagnosis code, timestamp, etc.) will be

included in the PT. If any of these fields was missing,

the event would not been added in the PT.

PatientID, sex , {{m Dn Bp, v LBt, CX c}, d dd}{1..⇤}

(2)

The PT definition can be found in (2), where Pati-

entID is the identifier of the patient, sex is the sex of

the patient (F if female or M if male), m is an ICD-9

code, n can be either H if the diagnosis was made in

hospitalization or E if it was made in emergency room,

p can be either E if the diagnosis is related to a previ-

ous emergency or C if not, v is a numerical result of

the laboratory test, t is the laboratory test type (i.e. T

for total cholesterol, H for HDL, C for creatinine and

L for glycosylated haemoglobin) and c a consultation

code. In addition, d is the number of days from the

previous event, whichever its type is, whereas dd is the

number of days from the very first event recorded in the

EHR. The first temporal parameter reports the relation-

ship between the episodes and the second one the den-

sity of observations. The greater the density, the more

times the patient would have been to the hospital and the

greater the chances that they are developing a pathology.

These two parameters avoid having to work with times-

tamps. Two explained instances of this formal language

are shown in Figure 1 and Figure A.2.
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Figure 1: An example instance for a patient trajectory and the trajectory token model. Three diagnostics events can be seen, followed by two
laboratory results and two consultations. The PT would be: -, F, 786.09 DE BC 0 0, 285.9 DE BE 1 1, 280.9 DH BC 23 24, 1.36 C 300 324, 3.4 L
300 324, CX CECR 15 339, CX CECR 1 340.

3.3. Use Case: Predict CVD in Diabetes Mellitus pa-

tients using Patient Trajectories

3.3.1. Chosen parameters

To know which clinical variables are of interest when

it comes to relating CVD with diabetes, an extensive

search on risk prediction models was made. Table

2 shows the variables that appeared somehow in the

risk prediction models proposed in the reviewed stud-

ies. The most used parameters in Table 2 would have

been the parameters to ideally consider but not all of

them were available in the EHR. Some of them, such as

height, weight or blood pressure, are usually annotated

in free text during anamnesis. Sex is a relevant factor for

CVD since its incidence rate is 4 times higher in diabetic

versus non-diabetic women, whereas this ratio is 2.5 in

men [12]. This di↵erence is due to the di↵erent HDL

levels in both sexes, having women usually higher, and

so more protective, levels. Diabetes usually decreases

HDL levels, causing to lose this advantage.

Although diagnostics and consultations are not di-

rectly used by the prediction models reported in the lit-

erature, we included them as observations of the patient

trajectories. Moreover, we have access to the informa-

tion about the place where the diagnosis was made (hos-

pitalization, DH, or emergency room, DE). This was

also included in the patient trajectories following the

work of Jensen et al. [1].

Finally, the selection of clinical variables to be con-

sidered is (1) sex, (2) diagnostics (ICD-9-CM), (3) out-

patient consultations, (4) total cholesterol, (5) HDL, (6)
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creatinine and (7) glycated haemoglobin. In addition,

some nephrological diseases can increase the chances

of having CVD in patients with diabetes [12], so ICD-

9 codes from chapter 10 will be specifically considered

for the delta function. We specified the similarity of

these parameters in di↵erent delta matrices that will be

used by the delta function. We defined a total of 12

di↵erent scoring matrices, one for each type of obser-

vation, that can be seen already optimized in Figure

3. There is an explained example of how these scor-

ing matrices are used together with the modified Smith-

Waterman algorithm in Figure A.2.

3.3.2. Experiments

The main experiment we performed to optimize the

LPTA for the use case aimed to find the best weight for

each one of the defined parameters, so its output is the

scoring matrices in Figure 3. As the number of param-

eters is large, our strategy was the following: (1) fix

a negative value both for those parameters not directly

related to a CVD development (e.g protective levels of

HDL) and for cases where di↵erent parameters are be-

ing compared. (e.g one diagnosis event and one labora-

tory test), (2) set the rest of parameters to 0, (3) evaluate

the performance of the algorithm when varying each pa-

rameter when they take di↵erent values 1, 3, 5, 7, 9, (4)

for each parameter, the lowest value with the highest

performance was preferred. After fixing these values,

we run a final experiment in order to determine which

number of patients (N) for the classification method

gives the best results: 1, 2, 5, 10, 15, 25, 40, 60, 80,

or 100.

3.3.3. Evaluation

The PTs of the CVD validation patients were cut be-

fore one of the CVD diagnostics appeared (i.e. ICD-9-

CM codes 410, 411, 412, 413, 414, 427.1, 427.3, 427.4,

427.5, 428, 429.2, 440.xx, 440.23, 440.24, and 441),

therefore some of the PTs had to be removed as the

CVD diagnosis was the first event recorded in their EHR

and there were not more events in the PT to make the

alignment. For evaluating the generalizability of the re-

sults, a cross-validation with 10 folds was made. Due to

the high computational cost of the experiments, a train-

ing set of 800 patients and a validation set of 200 pa-

tients were randomly selected for each experiment from

the corresponding cross-validation partition, as shown

in Figure 2.

Precision, Recall and Specificity of the results were

measured in each experiment. Precision, also called

positive predictive value, indicates how many of those

selected as CVD patients by the algorithm are really

CVD patients. Recall or Sensitivity indicates how many

of those who are CVD patients are selected by the algo-

rithm. Specificity indicates how many of those who are

not CVD patients are correctly identified as non-CVD

patients by the algorithm. Generally, there is a com-

promise between specificity and recall so the greater the

specificity, the lower the recall and vice versa. Since the

algorithm is to be applied in a clinical setting as sec-

ondary screening, it is advisable to have a conservative

perspective, which is why a high recall is preferred over

high specificity.
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Variable [19] [11] [12] [20] [21] [22] [23] [24] [25] [13] Total
HDL Cholesterol ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ 9
Systolic, diastolic pressure
or hypertension ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ 8
Total Cholesterol (TC) ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ 8
Sex ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ 6
Smoking ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ 6
Glycosylate haemoglobin
(HbA1c) ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ 6
Age ⇥ ⇥ ⇥ ⇥ ⇥ 5
BMI ⇥ ⇥ ⇥ ⇥ ⇥ 5
Diabetes time length ⇥ ⇥ ⇥ ⇥ 4
LDL Cholesterol ⇥ ⇥ ⇥ ⇥ 4
Creatinine ⇥ ⇥ ⇥ ⇥ 4
Age at diagnosis ⇥ ⇥ ⇥ 3
Tryglyceride ⇥ ⇥ ⇥ 3
Ethnic ⇥ ⇥ 2
Familiar history of diabetes ⇥ ⇥ 2
Height ⇥ 1
Haemoglobin (Hb) ⇥ 1
Hips-Waist ratio ⇥ 1
Physical activity ⇥ 1
Coagulation factor 8 ⇥ 1
Previous CVD ⇥ 1
Retinopathies ⇥ 1

Table 2: Variables included in each of the cited studies. Total column shows how many times each variable has been used in risk prediction models.

4. Results

After iterating with several values, the best results of

the matrices are those shown in Figure 3. The param-

eters of the delta matrices with the highest weight for

predicting CVD-development in diabetes mellitus were

(1) the exact match of the ICD-9 code, (2) diagnostics

of the cardiology chapter, (3) cardiology consultations,

(4) very high total cholesterol, (5) high HbA1c, (6) high

HDL in case of women and (7) coincidence in the time

parameters, therefore they are the most related to the

development of a CVD in patients with diabetes.

Once the scoring matrices were fixed, an extra exper-

iment was performed to choose the best number of pa-

tients which condition is consulted for the classification

method and its results can be seen in Figure 4. When N

was set to 5, which represents imputing the CVD condi-

tion if at least 1 out of the 5 most similar patients has de-

veloped a CVD, LPTA-based classification method ob-

tained its best results (positive predictive value of 0.33,

recall of 0.72 and specificity of 0.38).

5. Discussion

Although some studies about patient trajectories ana-

lytics have focused their attention on the sequential rep-

resentation of patients’ health records, to the best of our

knowledge this is the first study to predict potential mor-

bidities in patients based on local similarities of PTs.

This simple but powerful operation has proved to be
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Figure 2: Obtainment process of the train and validation sets for the
experiments. PTs of the test set patients are cut before the CVD ap-
pears.

useful as a secondary screening method of patients with

diabetes mellitus based on patient trajectories. Solving

this task using patient trajectories instead of the classic

multiparametric representations may draw on the tem-

poral relationships of the observations. The other great

contribution of this work is that it is not necessary to

generate aggregate PT from the reference dataset, as is

done in the works reviewed in Section 1.1. In this work,

the similarity measure is calculated for each of the avail-

able PTs, so that the comparisons made are more accu-

rate and there is no loss of information.

A formal definition for patient trajectories has been

proposed. PTs can be used not only for local align-

ment but also for dealing with di↵erent issues, such

as EHR-data visualization or detecting patterns in data,

as we have seen in Section 1.1. It would not be dif-

ficult to add new information as convenient, such as

Patient-Reported Outcomes (PROs) or Quality-adjusted

life year (QALY), in order to evaluate di↵erent thera-

pies or disease trajectories. It could also be added any

other clinical information such as secondary diagnos-

tics or DRG codes to have more relevant information

included in the PTs.

The LPTA algorithm has proved to be useful when

finding similar regions in PTs. If these common regions

are su�ciently similar, the condition of one of the pa-

tients can be imputed to the other one, as it has been

done in our use case. Generally speaking, although the

amount of data available for each patient may be dif-

ferent, as there are persons that visit the hospital more

frequently than others, significant local similarities can

be detected by the LPTA algorithm. Moreover, normal-

izing the similarity score by the number of observations

in the trajectory of the patient reduces the influence of

the PT length.

We were concerned that the length of the PTs was a

determining factor in the performance of the algorithm,

thinking that the shorter the PTs, the less information

the algorithm would have to evaluate. Previous exper-

iments were carried out and it was finally determined

that, although the length of the PT slightly a↵ects the

algorithm, it is not enough to justify the elimination of

the study of patients who do not have enough informa-

tion in their EHR. The main use we see for LPTA is

12



(a) Event type. If both events are diagnosis, 5 points are added, otherwise 5 points
are subtracted.

(b) Consultation type. If both events are cardiology consultations, 5 points
are added. If they are neither a cardiology or a nephrology consultation but
they are the same type, 1 point is subtracted.

(c) Diagnosis type. If both diagnostics are cardiopathies, 10 points are
added, while 3 points are added if they are both nephropathies. If they are
neither a cardiopathy or a nephropathy diagnosis 5 points are subtracted.

(d) ICD-9 codes. If both codes are identical, 10 points are added, if they
only share the main part 1 point is added, if they are di↵erent 5 points are
subctracted.

(e) Location of the diagnosis. If both diagnostics were made either in Hos-
pitalization (DH) or in Emergency room (DE), 3 points are added. If they
were made in di↵erent locations, 1 point is subtracted.

(f) Relationship of the diagnosis with previous diagnostics. If both diagnos-
tics were made within 15 days from the previous diagnosis on their respec-
tive EHR (BE). 1 point is added, otherwise 1 point is subtracted.

(g) Laboratory type. If both events are the same laboratory test, 1 point
is added. If they are di↵erent, 5 points are subtracted and the alignment
proceeding between events stops.

(h) Total cholesterol comparison. If both measures are high, 5 points are
added. If both are normal, 3 points are subtracted.

(i) HDL comparison in men. If both measures are low, 3 points are added.
If both are normal, 3 points are subtracted.

(j) HDL comparison in women. If both measures are low, 3 points are added.
If both are normal, 3 points are subtracted.

(k) Creatinine comparison. If both measures are high, 3 points are added.
If both are normal, 3 points are subtracted.

(l) HbA1c comparison. If both measures are high, 5 points are added; if they
are both normal, 3 points are subsracted.

Figure 3: Alignment scoring matrices optimized to our diabetes use case. (3a) is the main matrix, followed by (3b), (3c) and (3g) depending on the
event type. Matrices (3d), (3e) and (3f) will be used if both events are diagnsoses, while (3h), (3i), (3j), (3k) amd (3l) will be the ones used if both
events are laboratory tests. When evaluating the similarity of time parameters, five points would be added if they are similar while a point would
be subtracted if they are not similar, considered as similar time frames time di↵erences of less than 15 days, as explained in section 3.2.

screening, so it should be able to be applied to as many

patients as possible.

Several applications of the proposed algorithm arise.

While the LPTA has proved useful for screening in our

case study, for other problems it could also be useful

for diagnosis or prognosis. It could be also used for de-

tecting similarities of PTs for further understanding of

rare diseases, detecting similarities in di↵erent popula-

tion groups or predicting whether a patient could benefit

from a particular treatment. The algorithm can be easily

adapted to di↵erent datasets since the variables available

13



Figure 4: LPTA results according to the number (N) of most similar patients which condition is consulted to assign the development of the condition
to the query patient. This figure shows the compromise between sensitivity and specificity mentioned in Section 3.3.3, as one converges to 1 while
the other converges to 0.

can change from one use case to another.

5.1. Limitations

One of the main limitations of this algorithm is its

temporal cost, similar to the Smith-Waterman’s compu-

tational cost, (O(n2)), with n the mean number of events

in both sequences. This large temporal cost is also re-

ported in Sha et al. work [9], being up to six times

higher than other similarity measures such as the Jac-

card similarity coe�cient. A Big Data technology to

speed up the computation of LPTA is already being de-

veloped [18]. Although this problem is easily adaptable

to other diseases, dealing with high-dimensional data

can be complex. The more variables are included, the

larger the scoring matrices will be. However, as stated,

the matrices are divided into sub-matrices according to

sub-domains, allowing the reuse of some of them in dif-

ferent problems (e.g the score associated with a visit to

a traumatology consultation may be the same whether

the development of heart disease or nephropathy is be-

ing predicted).

In addition, although we had more than 20 param-

eters to evaluate the similarity, some parameters con-

sidered as important in risk prediction models such as

BMI or blood pressure were not included in the algo-

rithm as they were not available in our dataset. The in-

clusion of these parameters, in addition to others such

as medication and race, may improve the results of the

algorithm. Finally, there is an implicit limitation regard-

ing the temporal development of the disease. Some of

the patients that were labelled as non-CVD-developers

when the dataset was extracted may have developed a

CVD afterwards, so they should not be considered as er-

rors from the classifier if classified as CVD-developers.

14



The search for values for the matrices performed in

the optimization experiment was not continuous, so the

resulting values may not be optimal. In addition, as

some values were pre-set and not optimized, it may also

have led to sub-optimal results for the other parameters.

There is an implicit problem with the number of false

positives, whose probability of occurrence increases as

the number of cases analyzed increases. Final speci-

ficity and positive predictive value may not be the de-

sired, but recall is high (0.72). The proposed algorithm

is presented as a secondary screening method, so a high

recall and an acceptable specificity is wanted, which

have been achieved in the experiments. Another work

that was based on the alignment of history and used

a Smith-Waterman based similarity measure [9] also

achieved similar results, with a specificity around 0.7

and a recall around 0.6. Although these results seem

limited compared to those obtainable by other meth-

ods of the state-of-the-art like Machine Learning (ML),

the LPTA o↵ers the advantage of being able to recover

which part of the trajectory caused the classification, so

it is not a black box like what ML can be. By showing

the physician the part of maximum similarity with the

most similar reference patient’s PT, he or she can easily

understand which parts of the patient’s clinical history

most determine his or her condition.

6. Conclusions

This work has led to the following contributions: (1)

a formal definition of patient trajectory based on het-

erogeneous sequences of multi-scale data over time, (2)

a dynamic programming methodology to identify lo-

cal alignments in patient trajectories with customized

matrices, and (3) a specific LPTA-based classification

method to predict the development of CVD in patients

with diabetes mellitus that achieved a precision of 0.33,

a recall of 0.72 and a specificity of 0.38. The most

prevalent conditions in the local chunks of PTs predict-

ing cardiovascular diseases in diabetes patients included

cardiology diagnosis and consultations, serious levels of

total cholesterol, and high HbA1c. The proposed PT

definition has been tested in a specific CVD use case,

but it could be generalized to further domains, adapt-

ing it to include additional variables and cost matrices

without changing the algorithm. To our knowledge this

is the first methodology where patient trajectories have

been modelled as a sequence of multi-scale data aim-

ing to their local alignment through a dynamic program-

ming algorithm to identify future morbidities. This ap-

proach is able to evaluate the similarity in local chunks

of trajectories being robust to heterogeneous global tra-

jectories in terms of length and disease temporal pat-

terns spread along the patient life.
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Figure A.1: Distribution of the number of events per patient in their EHR. CVD patients have longer trajectories, while most of the non-CVD
patients have less than 10 observations.
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Function Appendix A.1: Delta scoring function. tupleS is an observation in a query patient trajectory and tu-
pleR is an observation in a reference patient trajectory. TYPEOFEVENT is a function which output is the type
of event that the tuple is: CX for consultations, DX for diagnosis and LX for laboratory tests. RESULTDX,
RESULTCX (Function Appendix A.2) and RESULTLX are functions which output is the similarity score
between two observations of the same type depending on the values of the scoring matrices.
Delta(tupleS, tupleR, dMatrices)

Input : tupleS, tupleR, dMatrices
Output: score
eventTypeS:=TYPEOFEVENT(tupleS)
eventTypeR:=TYPEOFEVENT(tupleR)
if eventTypeS != eventTypeR then

score = dMatrices.Type[di↵erentType]
else if eventTypeS == ”DX” then

score = dMatrices.Type[sameType] + RESULTDX(tupleS, tupleR, dMatrices.Chapter, dMatrices.Number,
dMatrices.D, dMatrices.B, dMatrices.T, codes)

else if eventTypeS == ”CX” then
score = dMatrices.Type[sameType] + RESULTCX(tupleS, tupleR, dMatrices.CX, dMatrices.T)

else if eventTypeS == ”LX” then
score = dMatrices.Type[sameType]+ RESULTLX(tupleS, tupleR, sexS, sexR, dMatrices.LX, dMatrices.T,

dMatrices.Hmen, dMatrices.Hwomen, dMatrices.C, dMatrices.L, dMatrices.B)
else if eventTypeS == ”-” then

score = dMatrices.deletion
else

score = dMatrices.insertion
end

Function Appendix A.2: ResultCX. For a further understanding of how the scoring functions work,
RESULTCX is shown. In dMatrices.CX we have di↵erent scores depending on the consultation type.
TIME.SIMILARITY will evaluate the similarity of available time parameters and will result in a score de-
pending on it.
ResultCX(tupleS, tupleR, dMatrices.CX, dMatrices.T)

Input : tupleS, tupleR, dMatrices.CX, dMatrices.T
Output: score
consultationTypeS:=TYPEOFCONSULTATION(tupleS)
consultationTypeR:=TYPEOFCONSULTATION(tupleR)
if consultationTypeS != consultationTypeR then

score = dMatrices.CX[di↵erentType]
end
else if consultationTypeS == ”CCAR” then

score = dMatrices.CX[CCAR]
end
else if consultationTypeS == ”...” then

score = dMatrices.CX[...]
end
score = score + TIME.SIMILARITY(dMatrices.T)
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(a) PTs to align. The upper PT would be from a new patient, while the lower PT would be from a patient already included in the database. It should be noted that, at
first glance, they seem quite similar.

(b) Alignment of the first available event. Both of them are cardiology-related diagnostics (ICD-9 codes around 400) and were made at Emergency Room (DE).
However, both diagnostics do not have the same relationship with the previous diagnosis (BC vs BE).

(c) Alignment of the second event. The one from the query patient is a diagnosis, while the one from the DB patient is a consultation, so the alignment of this event do
not proceed further. Even though they are events of di↵erent type, having events with a similar timing is rewarded.
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(d) Alignment of the third event in the PTs. Both of them are consultations. The query patient’s consultation is from the cardiology service, while the DB patient’s is
from the nephrology service. As explained in Section 3.3.1, nephrology and cardiology diseases may be related, so this also add a point of similarity to the

development of a CVD.

(e) Alignment of the fourth event. Both of them are HbA1c laboratory test results. Both patients showed Normal HbA1c levels, which should add similarity points.
However, since having normal HbA1c levels is not related to the development of CVD, it is penalized (see Section 3.2).

Figure A.2: Example of an alignment between a new query patient’s PT and a PT from a patient in the database. This alignment is done by
substitution or match, not by insertion or deletion (see Section 1.2), so it might not be the optimum. The final similarity score between the PTs in
Figure A.2a would be of 27 points (22 � 1 + 4 + 3 = 27). The normalized score (see Section 3.1) would be of 27 points

4 events in the DB patient0 s PT = 6.75
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Abstract

Patient Trajectories (PTs) are a method of representing the temporal evolution of patients. They can include informa-

tion from di↵erent sources and be used in socio-medical or clinical domains. PTs have generally been used to generate

and study the most common trajectories in, for instance, the development of a disease. On the other hand, healthcare

predictive models generally rely on static snapshots of patient information. Only a few works about prediction in

healthcare have been found that use PTs, and therefore benefit from their temporal dimension. All of them, however,

have used PTs created from single-source information. Therefore, the use of longitudinal multi-scale data to build

PTs and use them to obtain predictions about health conditions is yet to be explored. Our hypothesis is that local simi-

larities on small chunks of PTs can identify similar patients concerning their future morbidities. The objectives of this

work are (1) to develop a methodology to identify local similarities between PTs before the occurrence of morbidities

to predict these on new query individuals; and (2) to validate this methodology on risk prediction of cardiovascular

diseases (CVD) occurrence in patients with diabetes. We have proposed a novel formal definition of PTs based on

sequences of longitudinal multi-scale data. Moreover, a dynamic programming methodology to identify local align-

ments on PTs for predicting future morbidities is proposed. Both the proposed methodology for PT definition and the

alignment algorithm are generic to be applied on any clinical domain. We validated this solution for predicting CVD

in patients with diabetes and we achieved a precision of 0.33, a recall of 0.72 and a specificity of 0.38. Therefore, the

proposed solution in the diabetes use case can result of utmost utility to secondary screening.

Keywords: Patient trajectory, risk prediction, local alignment, dynamic programming, diabetes, cardiovascular

disease
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Highlights

• Local similarities between patient trajectories can

potentially be used to predict morbid conditions.

• A formal definition of patient trajectories compris-

ing heterogeneous clinical observations, biomedi-

cal tests and time gaps is proposed.

• A novel dynamic programming methodology,

based on the Smith-Waterman alignment algo-

rithm, able to deal with observations of di↵erent

nature and time gaps is proposed to find similar

patients, together with a set of customized scoring

matrices.

1. Introduction

1.1. Patient Trajectories

Patient trajectories (PTs) are a proposal for repre-

senting the evolution of diseases over time to facili-

tate their understanding and analysis under a tempo-

ral perspective, as well as to discover relationships be-

tween patient conditions [1]. Even though PT’s concept

was initially used with a more socio-medical approach

[2, 3], its use in medical informatics has been increas-

ing lately. Its study and use may still be quite related

to that view of health system planning, but it is also

much more personalised and patient-centred [4]. The

need to use PTs arises due to the complexity of clini-

cal data, which include data from very diverse sources

(e.g blood test, images, hospital expenses) and its spread

along time. Even though physicians can access this in-

formation, usually event by event, on the patients’ Elec-

tronic Health Records (EHR), drawing conclusions at

a population level under a precision medicine approach

becomes a more di�cult task. PTs are able to conve-

niently represent the history of a patient as a timeline

of every clinical event. However, also due to this diver-

sity of data, there is no agreement on which information

should constitute a PT. Therefore, its structure and com-

position may vary from studio to studio. We have found

di↵erent names for the concept of PT in our research.

In [5], the frequent process patterns found in clinical

pathways were used to design time dependency graphs.

Given a new patient, they would be assigned to one of

those designed pathways. In [6], 1,171 di↵erent tempo-

ral disease trajectories were defined from the EHR of

6.2 million patients over 15 years using clustering and

the Jaccard index as similarity measure. These trajec-

tories compiled the most frequent diagnosis in the de-

velopment of a disease. Giannoula et al. [7] identified

temporal patterns in patient disease trajectories using

dynamic time warping. They use the concept of dis-

tance/dissimilarity between patients to find similar di-

agnosis codes and build these aggregated trajectories.

Also more recent methods such as Deep Learning, us-

ing deep embedding with recurrence, have been used to

cluster patient trajectories, also including the handling

of possible missing values [8]. Both [6] and [7] suggest

that the trajectory analysis could be used for the pre-

diction and prevention of disease development, but did

not go further on that path. Other studies have indeed

worked on getting predictions from PTs. In [9], clus-

tering was used to find 7 frequent clinical pathways, ac-

cording to the encounter types, diagnostics, medications
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and biochemical measurements of 664 patients. After

that, machine learning was used both to assign the pa-

tients to one of the 7 created pathways and to predict the

next visit of the patient with and without timestamp us-

ing only their laboratory results, with an accuracy up

to 0.44 and 0.75, respectively. In [10], they use pa-

tient’s trajectory of physiological data by retrieving pa-

tients who display similar trends on their physiological

streams, according to the Mahalanobis distance. In this

work, they also try to identify which ICU patients will

develop Acute Hypotensive Events from the top 10 most

similar patients regarding these physiological signals,

with an accuracy of 0.86, and precision of 0.80 using

kNN. Deep Learning has also been used for prediction,

using mainly recurrent neural networks (RNN). In [11],

they train a RNN with patient trajectories built from

publicly available datasets, trying to predict the next

diagnostics on admission of a patient given their PT,

formed by their ICD-9 codes. They report very promis-

ing results, with a precision between 0.24 and 0.81 de-

pending on the dataset used and the possible number of

diagnostics provided by the model to take into consider-

ation. In [12], disease trajectories are studied using also

RNN and multi-layer perceptrons to predict the levels

of cytokine in sepsis patients. Interest in the study of

PTs is so growing that even how to obtain them virtu-

ally has been studied, as obtaining real data is generally

temporarily expensive [13].

In this study, we represent patient trajectories as the

time-ordered sequences of consultations, laboratory re-

sults and diagnosis that each patient has in their EHR.

We use PTs to identify partial similarities in patient’s

EHR that allow to predict the development of a disease.

Patient trajectories are not built according to the most

frequent events recorded in EHRs, as in many of the

works presented previously based on clustering [5, 6, 9],

but with all the available information, as aggregating

that information could limit the link between patients.

Therefore, patients do not need to follow partly or com-

pletely one pre-defined trajectory, but having common

events with another particular patient. In this way, query

patients whose EHR includes rare events can also be re-

flected in the patients in the database, and thus find high

similarities during the alignment.

1.2. Sequences Alignment

Since a patient trajectory is an ordered sequence of

events, the same technology as in biological sequence

analysis, such as the alignment of DNA sequences,

could be applied to PT analysis. Several well-known

bioinformatics algorithms based on dynamic program-

ming allow solving hard alignment problems by split-

ting the problem into simpler sub-problems. Sequence

alignment in bioinformatics aims to identify similar re-

gions in biological sequences under hypotheses of func-

tional, structural or evolutionary relationships [14].

The alignment can be made i.e. globally, using

the Needleman-Wunsch algorithm [15] or locally, us-

ing the Smith-Waterman [16]. Both are dynamic pro-

gramming algorithms, which guarantees finding the op-

timal alignment according to the scoring system used.

Smith-Waterman algorithm (Algorithm 1) performs lo-

cal alignments of two sequences of symbols of a com-

mon alphabet (e.g. for DNA alignment, the alphabet
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would be composed of A, C, T, and G), identifying, as a

result, the most similar regions within them. This align-

ment is done by calculating the Levenshtein distance (or

an opposite score) given by three editing operations to

transform each pair of symbols (insertion, deletion, or

substitution/match), and the possibility to re-start the

alignment score from any alignment point (initializa-

tion). In consequence, using the Smith-Waterman algo-

rithm for comparing PTs would result in finding high-

similar regions between PTs, possibly related to a com-

mon disease appearing in the future. This approach may

be more adequate than the Needleman-Wunsch algo-

rithm due to the more than likely high heterogeneity and

length of PTs.

si, j  max

0
BBBBBBBBBBBBBBBB@

0

si, j�1 + �(�, v j) (insertion o f v j)

si�1, j + �(ui,�) (deletion o f ui)

si�1, j�1 + �(ui, v j) (substitution or match)

1
CCCCCCCCCCCCCCCCA

(1)

Algorithm 1 Main instruction of the Smith-Waterman algo-

rithm. Given two sequences (e.g. U, and V), si, j represents the

similarity between them when it comes to comparing events

i from sequence U, or ui, and j from sequence V, or v j. This

score would be the maximum between the 4 following possi-

ble options: 0, the score when it came to comparing the se-

quences U from event 1 to event i and V from event 1 to event

j � 1 plus the value of inserting v j, the score when it came to

comparing the sequences U from event 1 to event i � 1 and

V from event 1 to event j � 1 plus the value of deleting ui,

or, finally, the score of the sequence alignment up to events ui

and v j plus the value of comparing the events ui and v j. The

value � of the editing operations consists in a scoring

matrix which values change according to the particu-

lar use case of the algorithm (e.g homology of proteins,

DNA, RNA). In the case of PT comparison, � value is

the similarity between EHR events.

Sha et al. work [17] also presented a modified ver-

sion of the Smith-Waterman algorithm to identify simi-

lar patients. They used it to predict mortality in patients

with Acute Kidney Injury, based only on their labora-

tory test data. They did compare the predictive power

of their similarity measure against other better known

such as the cosine distance and the Jaccard similarity

coe�cient. They concluded that this Smith-Waterman-

based similarity measure achieved better sensitivity and

F-measure than the other similarity measures.

1.3. Hypothesis

Our hypothesis is that local similarities on small

chunks of PTs can identify similar patients concerning

their future morbidities. In other words, we believe that

the development of a pathology can be predicted if there

is a high local similarity of a PT to a set of PTs of people

who developed this pathology. This hypothesis relies on

the reasonable assumption that similar patterns in clini-

cal conditions occur in patients during the development

of similar disease prognoses. The search and location

of these patterns could be used as a screening method in

healthy patients.

1.4. Use Case: Predict CVD development in Diabetes

Mellitus by patient trajectories

In our study, we have tested our hypothesis by as-

sessing the risk of developing cardiovascular diseases
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(CVDs) in patients with diabetes. Diabetes is a well-

known disease with high prevalence worldwide, which

is estimated to increase even more by 2045, a↵ecting

more than 629 million people in the world [18]. Di-

abetes causes hyperglycaemia, which results toxic and

can cause the development of several health compli-

cations, such as ophthalmological, nephrological, neu-

rological and/or cardiovascular diseases. It becomes

a priority to diagnose these co-morbidities as soon as

possible to improve the patients’ quality of life and re-

duce economic costs. In this paper, we focus on de-

tecting CVDs as a proof of concept because of the

close relationship between cardiopathies and diabetes

[19, 20, 21]. This becomes more obvious in the study

[20] , where they show that while the rate of incidences

of myocardial infarction for non-diabetic subjects is

3.5% (18.8% if they have had another infarction previ-

ously), in the case of diabetes patients it increases up to

20.2%, (45% if they have had a prior infarction) [22]. To

the best of our knowledge, there are no PT-based works

that have addressed the prediction of CVD occurrence

on diabetes patients.

2. Materials

2.1. Dataset

In this study, we used all patients with at least one

diagnosis of diabetes mellitus between 2012 and 2015

from Hospital Universitario y Politécnico La Fe, Valen-

cia (Spain). Hence, the dataset included 9,670 patients

with diabetes mellitus type I or type II, and with or with-

out complications (see Table 1 for details). Each reg-

istry consisted of de-identified demographic data (age

and gender), time-stamped clinical data (diagnostics

made in hospitalization or in emergency room), times-

tamped consultation codes, and timestamped laboratory

test results. 425 patients were discarded because they

had only one observation on their EHR or they did not

have all the necessary identification fields. Hence, from

the 9,245 available patients, 3,181 had developed car-

diovascular diseases and 6,064 had not. Table 1 also

shows the mean and standard deviation of the number

of diagnostics, consultations and laboratory test results

per patient. It shows how the length of the patient trajec-

tory of people who have developed CVD is larger, due

to the development of the disease. It is remarkable that

25% of the patients have less than 10 observations in

their trajectory, which means that most of the PTs will

contain less information than what it would be expected

from a chronic patient (see Figure A.1).

2.2. Codification

Diagnostics are coded according to ICD-9-CM,

which is divided into chapters according to the family

of the disease (i.e. diseases related to the circulatory

system and CVD belong to chapter 7, diseases related to

the genitourinary system makeup chapter 10). A total of

169 consultation and hospital services codes appeared

in the dataset, using hospital codes such as CCAR for

cardiology and CNEF for nephrology. In addition, some

numerical laboratory results have been discretized into

ranges such as Low, Normal, and High, according to the

thresholds defined by the hospital blood tests.
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Number of
observations

Number of
events
(µ ± �)

Number of
diagnostics

(µ ± �)

Number of
consultations

(µ ± �)

Number of
laboratory tests

(µ ± �)
Total 9670 37±38 8±7 13±21 15±17
Used 9245 39±38 8±7 14±21 16±17
With CVD 3181 53±47 10±8 20±28 21±21
Without CVD 6064 31±29 6±6 10±16 13±14

Table 1: Exploratory analysis of the dataset. A third of the patients have developed CVD. These patients have more events in their EHR, especially
more consultations, therefore longer trajectories.

3. Methods

3.1. Local Patient Trajectory Alignment (LPTA) algo-

rithm

We have adapted the Smith-Waterman algorithm in

order to compare PTs. The existing heterogeneity in the

obtained PTs (see Table 1), in terms of the standard de-

viations of the number of events of each type present

in them, is high. This diversity is what made us fo-

cus on a local alignment (Smith-Waterman) instead of a

global alignment (Needleman-Wunch), as discussed in

Section 1.2. The computation of PTs comparisons has

the following requirements. First, a similarity measure

between PTs should be defined. Second, the algorithm

should deal with sequences where heterogeneous obser-

vations that cannot be compared between them may ap-

pear (i.e. laboratory results and diagnosis codes). Fi-

nally, predictive analytics based on PTs should be ap-

plied to a massive number of patients.

First, to define a similarity measure between PTs, we

establish the next properties:

1. The local similarity measure of one PTs with it-

self should be maximum. The similarity measure

of the comparison of one PT with any other cannot

be greater than that of the PT with itself. The ex-

istence of any additional or missing event in a PT

should lead to a decrease in the similarity measure.

2. The measure should consider that regions of PTs

may contain gaps that do not match. For instance,

one patient may have needed more consultations

than other between diagnostics during a similar

sequence of episodes, and the similarity measure

should be able to keep the track of the common

events despite of the noise that the extra consulta-

tions could add. In addition, the similarity measure

must be able to deal with the possibility that dur-

ing alignment observations that do not fall within

the scope of a comparison coincide (e.g. laboratory

results and consultations).

3. The similarity measure should penalize di↵erences

in time between two consecutive observations.

4. The calculated similarity score will then be used to

rank patients of the reference dataset according to

their local similarity to any query patient.

The main di↵erence between the classical edit dis-

tance of biological sequences, where all the characters

represent the same idea (i.e. nucleotides, amino acids),

and our PTs similarity measure, is that our sequences
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may contain observations of di↵erent nature. Hence, in-

stead of having a single scoring matrix, as in the original

Smith-Waterman problem, we have a set of similarity

functions defined between concepts appearing in the PT

alphabet (e.g. diagnostics, consultations and laboratory

test results):

• The similarity measure between consultations is an

indicator function of the consultation services.

• The similarity measure between diagnosis is de-

fined by a combination of indicator functions of

categories and subcategories of the ICD-9 codes,

weighted by the similarity of locations where the

diagnostics were done (emergency room or hospi-

talization) and the time relationship with the previ-

ous diagnosis.

• For real-valued observations, such as laboratory re-

sults, we define similarities of indicator functions

after their categorization to have a clear clinical

comparison (e.g. both glucose values are in nor-

mal or abnormal levels).

These similarity functions will score the similarity

amongst the patients not only considering the degree of

similarity of the most similar regions between the PTs,

but also the similarity of these regions to the typical de-

velopment of the target disease. Therefore, the simi-

larity assessment functions of this algorithm are more

complex, in that they take into account more concepts

than a simple comparison of characters, than the orig-

inal Smith-Waterman’s � matrix. They can deal with

multi-scale observations. Furthermore, it incorporates

the modification of the similarity of events according to

their temporal similarity. In other words, two events can

be very similar, but their similarity will decrease if the

temporal distance is high. Finally, it can deal with the

case of comparing events that are completely di↵erent

and should not be compared (e.g. consultations and di-

agnostics).

Hence, we define the Local Patient Trajectory Align-

ment (LPTA) algorithm as a dynamic programming al-

gorithm for finding the most similar regions between

PTs (Function 3.1). These regions would be scored ac-

cording to their direct similarity and their relationship

to the development of the disease (e.g. CVD in patients

with diabetes mellitus). The Smith-Waterman function

of the LPTA procedure works similarly to the original

algorithm described in Algorithm 1 but changing how

the scoring works: � would no longer be a scoring ma-

trix, but a set of scoring functions that meets the require-

ments set out in this section. A pseudo-code version

of the functions involved in the scoring process can be

found in the appendix (see Functions Appendix A.1,

Appendix A.2), and an explained example of how they

work, together with the formal language defined on Sec-

tion 3.2, can be found in Figure A.2. Among the works

reviewed that make predictions based on PTs, LPTA is

the first to make predictions with multi-scale data. Some

works used only laboratory data [9, 12, 17], some only

physiological signals [10], and some only diagnostics

[11].

LPTA algorithm returns a vector of scores for each

query patient according to its similarity to each PT of

the reference database. In order to assign the condition
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Function 3.1: LPTA main algorithm. queryPa-
tients is a list of n PTs which condition is wanted
to be known, DBPatients is a list of m PTs which
condition is already known(LabelDBPatients).
queryPatients are aligned to DBPatients using
the set of similarity functions DELTA (Ap-
pendix A.1) with dMatrices (see Figure3) as pa-
rameter. maxScores will store the scores of the
alignments between patients.
LPTA(queryPatients, DBPatients, LabelDBPatients,

DELTA, dMatrices)
Input : queryPatients, DBPatients,

LabelDBPatients, DELTA, dMatrices
Output: maxScores
maxScores=matrix(n,m)
for i = 1 to n do

for j = 1 to m do
maxScores[i,j]=SmithWaterman(

queryPatients[i], DBPatients[j], DELTA,
dMatrices)

end
end

to the query patient based on these scores, a classifica-

tion method was developed: The query patient would

be classified as disease developer if at least one of the

N reference patients with a higher similarity score had

developed it. N is a parameter to be optimized in the

experiments.

It is worth noting that scores are normalized by the

length of the reference PT amongst which the query pa-

tient is being compared. This way, if the comparisons of

a query patient with two reference patients get the same

score, it can be assumed that the similarity between the

query patient and the patient with fewer observations is

higher than similarity to the longer one. This normal-

ization is also done in [17].

For our experiments, the LPTA algorithm has been

implemented using R (version 3.4) and the packages

[23, 24, 25, 26] for CPU-parallelization, temporal cost

calculation and graphical representations. An imple-

mentation of the LPTA using Big Data technologies,

such as Storm and Redis, is already in development

[27]. This will help to decrease the temporal cost of

the algorithm, allowing us to analyse massive amounts

of PTs for screening parallelly query patients. This is

the desired real use for the LPTA.

3.2. Patient Trajectory Formal Definition

We propose a formal language for defining patient

trajectories from multi-scale EHR data and computing

local similarities using the proposed LPTA algorithm

(Function 3.1). Every event included in the EHR that

had every field needed (consultation type, diagnosis

code, timestamp, etc.) will be included in the PT. If

any of these fields were missing, the event would not be

added in the PT.

PatientID, sex , {{m Dn Bp, v LBt, CX c}, d dd}{1..⇤}

(2)

The PT definition can be found in (2). The first two

fields would be PatientID, which is the identifier of the

patient, and sex is the sex of the patient (F if female or

M if male). Then the di↵erent events of the EHR are

added consecutively chronologically, whether they are

diagnostic, consultation or laboratory events. In case

of diagnosis: m is an ICD-9 code, n can be either H if
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the diagnosis was made in hospitalization or E if it was

made in emergency room, p can be either E if the di-

agnosis is related to a previous emergency or C if not.

In case of laboratory result: v is a numerical result of

the laboratory test, t is the laboratory test type (i.e. T

for total cholesterol, H for HDL, C for creatinine and

L for glycosylated haemoglobin). In case of consulta-

tion: c a consultation code. In addition, d is the number

of days from the previous event, whichever its type is,

whereas dd is the number of days from the very first

event recorded in the EHR. The first temporal parame-

ter reports the relationship between the episodes and the

second one the density of observations. The greater the

density, the more times the patient would have been to

the hospital and the greater the chances that they are de-

veloping a pathology. These two parameters avoid hav-

ing to work with timestamps. Two explained instances

of this formal language are shown in Figure 1 and Fig-

ure A.2.

3.2.1. Extra parameters

In this section, we have defined the formal language

for building patient trajectories for our use case. How-

ever, this grammar can be easily adapted to another use

case’s needs. If any extra parameter was wanted to be

included, as it could be considered decisive in the devel-

opment of a disease in a particular domain, it could be

added depending on its typology (i.e. number of sub-

domains of the parameter). Static single-domain pa-

rameters such as race could be treated like sex, being

added at the beggining of the PT and use them to adjust

the similarity scores of other parameters, or even hav-

ing their own scoring matrix. Dynamic single-domain

parameters such as age could be added to each event

definition, showing its value at the moment of the event.

Then, a scoring matrix should be computed to get a sim-

ilarity score from age di↵erences that could be added

to the rest of scores. Finally, multi-domain parameters

such as other medical tests, with sub-domains like type

of test (e.g. imaging, electrophysiology, etc.) and re-

sult (e.g. normal, abnormal, etc.) could be treated like

diagnosis, having multiple scoring sub-matrices. An in-

stance of PT definition having these three new parame-

ters can be found in (3).

ID, sex , race , {age {m Dn Bp, v LBt, CX c, MTq r}, d dd}{1..⇤}(3)

(3) Race represents a static single-domain parameter, age represents

a dynamic single-domain parameter, and MT (i.e. Medical Tests) rep-

resents a multi-domain parameter. For MT, q could represent the type

of MT (e.g. imaging, electrophysiology, etc.) and r its result (e.g.

normal, abnormal, etc.).

3.3. Use Case: Predict CVD in Diabetes Mellitus pa-

tients using Patient Trajectories

3.3.1. Chosen parameters

To know which clinical variables are of interest when

it comes to relating CVD with diabetes, an extensive

search on risk prediction models was made. Table

2 shows the variables that appeared somehow in the

risk prediction models proposed in the reviewed stud-

ies. The most used parameters in Table 2 would have
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Figure 1: An example instance for a patient trajectory and the trajectory token model. Three diagnostics events can be seen, followed by two
laboratory results and two consultations. The PT would be: -, F, 786.09 DE BC 0 0, 285.9 DE BE 1 1, 280.9 DH BC 23 24, 1.36 C 300 324, 3.4 L
300 324, CX CECR 15 339, CX CECR 1 340.

been the parameters to ideally consider but not all of

them were available in the EHR. Some of them, such as

height, weight or blood pressure, are usually annotated

in free text during anamnesis. Age was not included

directly in the PT. However, our PT definition treats di-

rectly with the elapsed time, which can be more decisive

when age tends to be similar between patients. For in-

stance, the higher the dd parameter is, the older the pa-

tient would be. Sex is a relevant factor for CVD since its

incidence rate is 4 times higher in diabetic versus non-

diabetic women, whereas this ratio is 2.5 in men [20].

This di↵erence is due to the di↵erent HDL levels in both

sexes, having women usually higher, and so more pro-

tective, levels. Diabetes usually decreases HDL levels,

causing to lose this advantage [28].

Although diagnostics and consultations are not di-

rectly used by the prediction models reported in the lit-

erature, we included them as observations of the patient

trajectories. Moreover, we have access to the informa-

tion about the place where the diagnosis was made (hos-

pitalization, DH, or emergency room, DE). This was

also included in the patient trajectories following the

work of Jensen et al. [6].

Finally, the selection of clinical variables to be con-

sidered is (1) sex, (2) diagnostics (ICD-9-CM), (3) out-

patient consultations, (4) total cholesterol, (5) HDL, (6)

creatinine and (7) glycated haemoglobin. In addition, as

some nephrological diseases can increase the chances of

having CVD in patients with diabetes [20], ICD-9 codes

from chapter 10 will be specifically considered for the

delta function. This follows what was discussed in Sec-

tion 3.1, so that not only the similarity between PTs is

rewarded, but also their similarity to the development

of CVD in diabetic patients. We specified the similar-
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ity of these parameters in di↵erent delta matrices that

will be used by the delta function. We defined a total of

12 di↵erent scoring matrices, one for each type of ob-

servation, that can be seen already optimized in Figure

3. There is an explained example of how these scoring

matrices are used together with the LPTA in Figure A.2.

3.3.2. Experiments

The main experiment we performed to optimize the

LPTA for the use case aimed to find the best weight for

each one of the defined parameters, so its output is the

scoring matrices in Figure 3. As the number of param-

eters is large, our strategy was the following: (1) fix

a negative value both for those parameters not directly

related to a CVD development (e.g protective levels of

HDL) and for cases where di↵erent parameters are be-

ing compared. (e.g one diagnosis event and one labora-

tory test), (2) set the rest of parameters to 0, (3) evaluate

the performance of the algorithm when varying each pa-

rameter when they take di↵erent values 1, 3, 5, 7, 9, (4)

for each parameter, the lowest value with the highest

performance was preferred. After fixing these values,

we run a final experiment in order to determine which

number of patients (N) for the classification method

gives the best results: 1, 2, 5, 10, 15, 25, 40, 60, 80,

or 100.

3.3.3. Evaluation

The PTs of the CVD validation patients were cut be-

fore one of the CVD diagnostics appeared (i.e. ICD-

9-CM codes 410, 411, 412, 413, 414, 427.1, 427.3,

427.4, 427.5, 428, 429.2, 440.xx, 440.23, 440.24, and

441). Therefore, some of the PTs had to be removed as

the CVD diagnosis was the first event recorded in their

EHR and there were not more events in the PT to make

the alignment. For evaluating the generability of the re-

sults, a cross-validation with 10 folds was made. Due to

the high computational cost of the experiments, a train-

ing set of 800 patients and a validation set of 200 pa-

tients were randomly selected for each experiment from

the corresponding cross-validation partition, as shown

in Figure 2.

Figure 2: Obtainment process of the train and validation sets for the
experiments. PTs of the test set patients are cut before the CVD ap-
pears.

Precision, recall (i.e. sensibility) and specificity of

the results were measured in each experiment. Preci-

11

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Variable [29] [19] [20] [30] [31] [32] [33] [34] [35] [22] Total
HDL Cholesterol ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ 9
Systolic, diastolic pressure
or hypertension ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ 8
Total Cholesterol (TC) ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ 8
Sex ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ 6
Smoking ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ 6
Glycosylate haemoglobin
(HbA1c) ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ 6
Age ⇥ ⇥ ⇥ ⇥ ⇥ 5
BMI ⇥ ⇥ ⇥ ⇥ ⇥ 5
Diabetes time length ⇥ ⇥ ⇥ ⇥ 4
LDL Cholesterol ⇥ ⇥ ⇥ ⇥ 4
Creatinine ⇥ ⇥ ⇥ ⇥ 4
Age at diagnosis ⇥ ⇥ ⇥ 3
Tryglyceride ⇥ ⇥ ⇥ 3
Ethnic ⇥ ⇥ 2
Familiar history of diabetes ⇥ ⇥ 2
Height ⇥ 1
Haemoglobin (Hb) ⇥ 1
Hips-Waist ratio ⇥ 1
Physical activity ⇥ 1
Coagulation factor 8 ⇥ 1
Previous CVD ⇥ 1
Retinopathies ⇥ 1

Table 2: Variables included in each of the cited studies. Total column shows how many times each variable has been used in risk prediction models.

sion, also called positive predictive value, indicates how

many of those selected as CVD patients by the algo-

rithm are really CVD patients. Recall indicates how

many of those who are CVD patients are selected by

the algorithm. Specificity indicates how many of those

who are not CVD patients are correctly identified as

non-CVD patients by the algorithm. Generally, there

is a compromise between specificity and recall so the

greater the specificity, the lower the recall and vice

versa. Since the algorithm is to be applied in a as a

secondary screening tool, it is advisable to have a con-

servative perspective, preferring to label non-CVD de-

velopers as such rather than failing to identify real CVD

developers. This means, a high recall is preferred over

a high specificity.

4. Results

After iterating with several values, the best results of

the matrices are those shown in Figure 3. The param-

eters of the delta matrices with the highest weight for

predicting CVD-development in diabetes mellitus were

(1) the exact match of the ICD-9 code, (2) diagnostics

of the cardiology chapter, (3) cardiology consultations,

(4) very high total cholesterol, (5) high HbA1c, (6) high

HDL in case of women and (7) coincidence in the time

parameters. Therefore, these events are the most related

to the development of a CVD in patients with diabetes.

Once the scoring matrices were fixed, an extra ex-

periment was performed to choose the best number of
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patients whose condition is consulted for the classifi-

cation method and its results can be seen in Figure 4.

When N was set to 5, which represents imputing the

CVD condition if at least 1 out of the 5 most similar

patients has developed a CVD, LPTA-based classifica-

tion method obtained its best results (precision of 0.33,

recall of 0.72 and specificity of 0.38).

5. Discussion

Several studies have been found that use patient tra-

jectories. Most of them focused only on the represen-

tation of patients’ EHRs to obtain the most frequent se-

quence of events on them or cluster them, having only a

few works that have used PTs to predict the occurrence

of a new event. These works used PTs built by only

one type of data (e.g. laboratory results, diagnostics).

Therefore, to the best of our knowledge, this is the first

work that used PTs formed from EHR multi-scale data

to predict the development of potential comorbidities,

using data from diagnostics, laboratory results and con-

sultations. This prediction is based on local similarities

among the PTs. This simple but powerful operation has

proven to be useful as a secondary screening method

for patients with diabetes mellitus based on patient tra-

jectories. Solving this task using patient trajectories in-

stead of the classic multiparametric approach (see Sec-

tion 3.3.1) may benefit of the temporal relationships of

the observations. The other great contribution of this

work is that it is not necessary to generate aggregated

PTs from the reference dataset, as is done in most of the

works reviewed in Section 1.1. In this work, the similar-

ity measure is calculated for each of the available PTs,

so that the comparisons are done without loss of infor-

mation.

A formal definition for patient trajectories capable of

representing multi-scale data has been proposed. PTs

can be used not only for local alignment but also for

dealing with di↵erent issues, such as EHR-data visual-

ization or detecting patterns in data, as it has been seen

in Section 1.1. It would not be di�cult to add new in-

formation as convenient, such as Patient-Reported Out-

comes (PROs) or Quality-adjusted life year (QALY), in

order to evaluate di↵erent therapies or disease trajec-

tories. It could also be added any other clinical infor-

mation such as secondary diagnostics or DRG codes to

have more relevant information included in the PTs.

The LPTA algorithm has proven to be useful when

finding similar regions in multi-scale-based PTs. Com-

pared to the traditional Smith-Waterman, which finds

similarity between observations of the same type, the

LPTA is able to deal with observations of di↵erent na-

ture, with di↵erent alphabets for each type. In addition,

time between events has been included as a modify-

ing factor of the similarity between the observations. If

these common regions are su�ciently similar, the con-

dition of one of the patients can be imputed to the other

one, as it has been done in our use case. Generally

speaking, although the amount of data available for each

patient may be di↵erent, as there are persons that visit

the hospital more frequently than others, significant lo-

cal similarities can be detected by the LPTA algorithm.

Moreover, normalizing the similarity score by the num-

ber of observations in the trajectory of the patient re-

duces the influence of the PT length. In addition, a clas-
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(a) Event type. If both events are diagnosis, 5 points are added. Otherwise, 5 points
are subtracted.

(b) Consultation type. If both events are cardiology consultations, 5 points
are added. If they are neither a cardiology or a nephrology consultation but
they are the same type, 1 point is subtracted.

(c) Diagnosis type. If both diagnostics are cardiopathies, 10 points are
added, while 3 points are added if they are both nephropathies. If they are
neither a cardiopathy or a nephropathy diagnosis 5 points are subtracted.

(d) ICD-9 codes. If both codes are identical, 10 points are added, if they
only share the main part 1 point is added, if they are di↵erent 5 points are
subtracted.

(e) Location of the diagnosis. If both diagnostics were made either in Hos-
pitalization (DH) or in Emergency room (DE), 3 points are added. If they
were made in di↵erent locations, 1 point is subtracted.

(f) Relationship of the diagnosis with previous diagnostics. If both diagnos-
tics were made within 15 days from the previous diagnosis on their respec-
tive EHR (BE), 1 point is added. Otherwise, 1 point is subtracted.

(g) Laboratory type. If both events are the same laboratory test, 1 point
is added. If they are di↵erent, 5 points are subtracted and the alignment
proceeding between events stops.

(h) Total cholesterol comparison. If both measures are high, 5 points are
added. If both are normal, 3 points are subtracted.

(i) HDL comparison in men. If both measures are low, 3 points are added.
If both are normal, 3 points are subtracted.

(j) HDL comparison in women. If both measures are low, 3 points are added.
If both are normal, 3 points are subtracted.

(k) Creatinine comparison. If both measures are high, 3 points are added.
If both are normal, 3 points are subtracted.

(l) HbA1c comparison. If both measures are high, 5 points are added; if they
are both normal, 3 points are subtracted.

Figure 3: Alignment scoring matrices optimized to our diabetes use case. (3a) is the main matrix, followed by (3b), (3c) and (3g) depending on the
event type. Matrices (3d), (3e) and (3f) will be used if both events are diagnostics, while (3h), (3i), (3j), (3k) and (3l) will be the ones used if both
events are laboratory tests. When evaluating the similarity of time parameters, five points would be added if they are similar while a point would
be subtracted if they are not similar, considered as similar time frames time di↵erences of less than 15 days, as explained in section 3.2.

sification method has been created to be able to convert

the similarities given by the LPTA into a prediction, in

this case about the development of a CVD. This method

consists of imputing the condition of CVD developer if

at least one of the 5 most similar patients is so.

This classification method reinforces the conservative

approach necessary for developing a secondary screen-

ing method, in which it is preferable to have an ex-

cess of false positives rather than false negatives, recog-

nising the majority of positive cases. In the proposed

use case, final specificity (0.38) and positive predictive
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Figure 4: LPTA results according to the number (N) of most similar patients which condition is consulted to assign the development of the condition
to the query patient. This figure shows the compromise between sensitivity and specificity mentioned in Section 3.3.3, as one converges to 1 while
the other converges to 0.

value (0.33) may not be the desired, which could imply

high costs depending on its use in clinical practice, but

recall is high (0.72). This means that out of 100 CVD

developers, LPTA can identify 72 of them. This, taking

into account that a dataset extracted from clinical prac-

tice has been used in which there is an imbalance (i.e.

there are approximately one third of CVD developers),

indicates that LPTA is good for a secondary screening

method. Another work that was based on the align-

ment of EHR and used a Smith-Waterman based sim-

ilarity measure [17] also achieved similar results, with

a specificity around 0.7 and a recall around 0.6. Al-

though these results seem limited compared to those ob-

tainable by other methods like Machine Learning (e.g.

in [10] a precision of 0.8 was obtained) or Deep Learn-

ing (DL) (e.g. in [11] precisions from 0.24 to 0.81 were

obtained), the LPTA o↵ers the advantage of being able

to recover which part of the trajectory caused the classi-

fication, so it is not a ”black box” model like what ML

or DL can be. By showing the physician the part of

maximum similarity with the most similar reference pa-

tient’s PT, he or she can easily understand which parts

of the patient’s clinical history most determined his or

her predicted condition.

We were concerned that the length of the PTs was a

determining factor in the performance of the algorithm,

thinking that the shorter the PTs, the less information

the algorithm would have to evaluate. Previous exper-

iments were carried out and it was finally determined

that, although the minimum length of the PT slightly af-

fects the algorithm, it is not enough to justify the elimi-

nation of the study of patients who do not have enough

information in their EHR. The main use we see for
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LPTA is screening, so it should be able to be applied

to as many patients as possible.

Several applications of the proposed algorithm arise.

While the LPTA has proven useful for screening in our

case study, for other problems it could also be useful

for diagnosis or prognosis. It could be also used for de-

tecting similarities of PTs for further understanding of

rare diseases, detecting similarities in di↵erent popula-

tion groups or predicting whether a patient could benefit

from a particular treatment. The algorithm can be easily

adapted to di↵erent datasets since the variables available

can change from one use case to another.

5.1. Limitations

One of the main limitations of this algorithm is its

temporal cost, similar to the Smith-Waterman’s com-

putational cost (i.e.O(n2)), with n the mean number of

events in both sequences. This large temporal cost is

also reported in Sha et al. work [17], being up to six

times higher than other similarity measures such as the

Jaccard similarity coe�cient or the cosine. A Big Data

technology to speed up the computation of LPTA is al-

ready being developed [27]. Although this problem is

easily adaptable to other diseases, dealing with high-

dimensional data can be complex. The more variables

are included, the larger the scoring matrices would be.

However, as stated, the matrices are divided into sub-

matrices according to sub-domains, allowing the reuse

of some of them in di↵erent problems (e.g the score as-

sociated with a visit to a traumatology consultation may

be the same whether the development of a heart disease

or a nephropathy is being predicted).

In addition, although we had more than 20 parame-

ters to evaluate the similarity, some parameters consid-

ered as important in risk prediction models such as BMI

or blood pressure were not included in the algorithm as

they were not available in our dataset. The inclusion

of these parameters, in addition to others such as drugs

and race, may improve the results of the algorithm. Fi-

nally, there is an implicit limitation regarding the tempo-

ral development of the disease. Some of the patients that

were labelled as non-CVD developers when the dataset

was extracted may have developed a CVD afterwards,

so they should not be considered as false positives from

the classifier if classified as CVD-developers.

The search for values for the matrices performed in

the optimization experiment was not continuous, so the

resulting values may not be optimal. In addition, as

some values were pre-set and not optimized, it may also

have led to sub-optimal results for the other parameters.

6. Conclusions

This work has led to the following contributions: (1)

a formal definition of patient trajectory based on het-

erogeneous sequences of multi-scale data over time, (2)

a dynamic programming methodology to identify lo-

cal alignments in patient trajectories with customized
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matrices that is able to handle observations from dif-

ferent nature and temporarily distanced, and (3) a spe-

cific LPTA-based classification method to predict the

development of CVD in patients with diabetes mellitus

that achieved a precision of 0.33, a recall of 0.72 and

a specificity of 0.38. The most prevalent conditions in

the local chunks of PTs predicting cardiovascular dis-

eases in diabetes patients included cardiology diagno-

sis and consultations, serious levels of total cholesterol,

and high HbA1c. The proposed PT definition has been

tested in a specific CVD use case, but it could be gen-

eralized to further domains, adapting it to include addi-

tional variables and cost matrices without changing the

algorithm. To our knowledge, this is the first method-

ology in which patient trajectories have been modelled

as a sequence of multi-scale data aiming to their local

alignment through a dynamic programming algorithm

to identify future morbidities. This approach is able to

evaluate the similarity in local chunks of trajectories be-

ing robust to heterogeneous global trajectories in terms

of length and disease temporal patterns spread along the

patient life.
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raitz Echevarriarteun, and the Sentinel Practice Network of the

Basque Country. Development of a prediction model for fatal

and non-fatal coronary heart disease and cardiovascular disease

in patients with newly diagnosed type 2 diabetes mellitus: The

basque country prospective complications and mortality study

risk engine (bascore). Diabetologia, 57(11):2324–2333, Nov

2014.

[35] Peter W. F. Wilson, Ralph B. D’Agostino, Daniel Levy, Al-

bert M. Belanger, Halit Silbershatz, and William B. Kannel.

Prediction of coronary heart disease using risk factor categories.

Circulation, 97(18):1837–1847, May 1998.

19

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Appendix A. Supplementary material

20

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Figure A.1: Distribution of the number of events per patient in their EHR. CVD patients have longer trajectories, while most of the non-CVD
patients have less than 10 observations.
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Function Appendix A.1: Delta scoring function. tupleS is an observation in a query patient trajectory and tu-
pleR is an observation in a reference patient trajectory. TYPEOFEVENT is a function which output is the type
of event that the tuple is: CX for consultations, DX for diagnosis and LX for laboratory tests. RESULTDX,
RESULTCX (Function Appendix A.2) and RESULTLX are functions which output is the similarity score
between two observations of the same type depending on the values of the scoring matrices.
Delta(tupleS, tupleR, dMatrices)

Input : tupleS, tupleR, dMatrices
Output: score
eventTypeS:=TYPEOFEVENT(tupleS)
eventTypeR:=TYPEOFEVENT(tupleR)
if eventTypeS != eventTypeR then

score = dMatrices.Type[di↵erentType]
else if eventTypeS == ”DX” then

score = dMatrices.Type[sameType] + RESULTDX(tupleS, tupleR, dMatrices.Chapter, dMatrices.Number,
dMatrices.D, dMatrices.B, dMatrices.T, codes)

else if eventTypeS == ”CX” then
score = dMatrices.Type[sameType] + RESULTCX(tupleS, tupleR, dMatrices.CX, dMatrices.T)

else if eventTypeS == ”LX” then
score = dMatrices.Type[sameType]+ RESULTLX(tupleS, tupleR, sexS, sexR, dMatrices.LX, dMatrices.T,

dMatrices.Hmen, dMatrices.Hwomen, dMatrices.C, dMatrices.L, dMatrices.B)
else if eventTypeS == ”-” then

score = dMatrices.deletion
else

score = dMatrices.insertion
end

Function Appendix A.2: ResultCX. For a further understanding of how the scoring functions work,
RESULTCX is shown. In dMatrices.CX we have di↵erent scores depending on the consultation type.
TIME.SIMILARITY will evaluate the similarity of available time parameters and will result in a score de-
pending on it.
ResultCX(tupleS, tupleR, dMatrices.CX, dMatrices.T)

Input : tupleS, tupleR, dMatrices.CX, dMatrices.T
Output: score
consultationTypeS:=TYPEOFCONSULTATION(tupleS)
consultationTypeR:=TYPEOFCONSULTATION(tupleR)
if consultationTypeS != consultationTypeR then

score = dMatrices.CX[di↵erentType]
end
else if consultationTypeS == ”CCAR” then

score = dMatrices.CX[CCAR]
end
else if consultationTypeS == ”...” then

score = dMatrices.CX[...]
end
score = score + TIME.SIMILARITY(dMatrices.T)
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(a) PTs to align. The upper PT would be from a new patient, while the lower PT would be from a patient already included in the database. It should be noted that, at
first glance, they seem quite similar.

(b) Alignment of the first available event. Both of them are cardiology-related diagnostics (ICD-9 codes around 400) and were made at Emergency Room (DE).
However, both diagnostics do not have the same relationship with the previous diagnosis (BC vs BE).

(c) Alignment of the second event. The one from the query patient is a diagnosis, while the one from the DB patient is a consultation, so the alignment of this event do
not proceed further. Even though they are events of di↵erent type, having events with a similar timing is rewarded.
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(d) Alignment of the third event in the PTs. Both of them are consultations. The query patient’s consultation is from the cardiology service, while the DB patient’s is
from the nephrology service. As explained in Section 3.3.1, nephrology and cardiology diseases may be related, so this also adds a point of similarity to the

development of a CVD.

(e) Alignment of the fourth event. Both of them are HbA1c laboratory test results. Both patients showed Normal HbA1c levels, which should add similarity points.
However, since having normal HbA1c levels is not related to the development of CVD, it is penalized (see Section 3.2).

Figure A.2: Example of an alignment between a new query patient’s PT and a PT from a patient in the database. This alignment is done by
substitution or match, not by insertion or deletion (see Section 1.2), so it might not be optimum. The final similarity score between the PTs in
Figure A.2a would be of 27 points (22 � 1 + 4 + 3 = 27). The normalized score (see Section 3.1) would be of 27 points

4 events in the DB patient0 s PT = 6.75
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Abstract

Patient Trajectories (PTs) are a method of representing the temporal evolution of patients. They can include informa-

tion from di↵erent sources and be used in socio-medical or clinical domains. PTs have generally been used to generate

and study the most common trajectories in, for instance, the development of a disease. On the other hand, healthcare

predictive models generally rely on static snapshots of patient information. Only a few works about prediction in

healthcare have been found that use PTs, and therefore benefit from their temporal dimension. All of them, however,

have used PTs created from single-source information. Therefore, the use of longitudinal multi-scale data to build

PTs and use them to obtain predictions about health conditions is yet to be explored. Our hypothesis is that local simi-

larities on small chunks of PTs can identify similar patients concerning their future morbidities. The objectives of this

work are (1) to develop a methodology to identify local similarities between PTs before the occurrence of morbidities

to predict these on new query individuals; and (2) to validate this methodology on risk prediction of cardiovascular

diseases (CVD) occurrence in patients with diabetes. We have proposed a novel formal definition of PTs based on

sequences of longitudinal multi-scale data. Moreover, a dynamic programming methodology to identify local align-

ments on PTs for predicting future morbidities is proposed. Both the proposed methodology for PT definition and the

alignment algorithm are generic to be applied on any clinical domain. We validated this solution for predicting CVD

in patients with diabetes and we achieved a precision of 0.33, a recall of 0.72 and a specificity of 0.38. Therefore, the

proposed solution in the diabetes use case can result of utmost utility to secondary screening.

Keywords: Patient trajectory, risk prediction, local alignment, dynamic programming, diabetes, cardiovascular

disease
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Highlights

• Local similarities between patient trajectories can

potentially be used to predict morbid conditions.

• A formal definition of patient trajectories compris-

ing heterogeneous clinical observations, biomedi-

cal tests and time gaps is proposed.

• A novel dynamic programming methodology,

based on the Smith-Waterman alignment algo-

rithm, able to deal with observations of di↵erent

nature and time gaps is proposed to find similar

patients, together with a set of customized scoring

matrices.

1. Introduction

1.1. Patient Trajectories

Patient trajectories (PTs) are a proposal for repre-

senting the evolution of diseases over time to facili-

tate their understanding and analysis under a tempo-

ral perspective, as well as to discover relationships be-

tween patient conditions [1]. Even though PT’s concept

was initially used with a more socio-medical approach

[2, 3], its use in medical informatics has been increas-

ing lately. Its study and use may still be quite related

to that view of health system planning, but it is also

much more personalised and patient-centred [4]. The

need to use PTs arises due to the complexity of clini-

cal data, which include data from very diverse sources

(e.g blood test, images, hospital expenses) and its spread

along time. Even though physicians can access this in-

formation, usually event by event, on the patients’ Elec-

tronic Health Records (EHR), drawing conclusions at

a population level under a precision medicine approach

becomes a more di�cult task. PTs are able to conve-

niently represent the history of a patient as a timeline

of every clinical event. However, also due to this diver-

sity of data, there is no agreement on which information

should constitute a PT. Therefore, its structure and com-

position may vary from studio to studio. We have found

di↵erent names for the concept of PT in our research.

In [5], the frequent process patterns found in clinical

pathways were used to design time dependency graphs.

Given a new patient, they would be assigned to one of

those designed pathways. In [6], 1,171 di↵erent tempo-

ral disease trajectories were defined from the EHR of

6.2 million patients over 15 years using clustering and

the Jaccard index as similarity measure. These trajec-

tories compiled the most frequent diagnosis in the de-

velopment of a disease. Giannoula et al. [7] identified

temporal patterns in patient disease trajectories using

dynamic time warping. They use the concept of dis-

tance/dissimilarity between patients to find similar di-

agnosis codes and build these aggregated trajectories.

Also more recent methods such as Deep Learning, us-

ing deep embedding with recurrence, have been used to

cluster patient trajectories, also including the handling

of possible missing values [8]. Both [6] and [7] suggest

that the trajectory analysis could be used for the pre-

diction and prevention of disease development, but did

not go further on that path. Other studies have indeed

worked on getting predictions from PTs. In [9], clus-

tering was used to find 7 frequent clinical pathways, ac-

cording to the encounter types, diagnostics, medications
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and biochemical measurements of 664 patients. After

that, machine learning was used both to assign the pa-

tients to one of the 7 created pathways and to predict the

next visit of the patient with and without timestamp us-

ing only their laboratory results, with an accuracy up

to 0.44 and 0.75, respectively. In [10], they use pa-

tient’s trajectory of physiological data by retrieving pa-

tients who display similar trends on their physiological

streams, according to the Mahalanobis distance. In this

work, they also try to identify which ICU patients will

develop Acute Hypotensive Events from the top 10 most

similar patients regarding these physiological signals,

with an accuracy of 0.86, and precision of 0.80 using

kNN. Deep Learning has also been used for prediction,

using mainly recurrent neural networks (RNN). In [11],

they train a RNN with patient trajectories built from

publicly available datasets, trying to predict the next

diagnostics on admission of a patient given their PT,

formed by their ICD-9 codes. They report very promis-

ing results, with a precision between 0.24 and 0.81 de-

pending on the dataset used and the possible number of

diagnostics provided by the model to take into consider-

ation. In [12], disease trajectories are studied using also

RNN and multi-layer perceptrons to predict the levels

of cytokine in sepsis patients. Interest in the study of

PTs is so growing that even how to obtain them virtu-

ally has been studied, as obtaining real data is generally

temporarily expensive [13].

In this study, we represent patient trajectories as the

time-ordered sequences of consultations, laboratory re-

sults and diagnosis that each patient has in their EHR.

We use PTs to identify partial similarities in patient’s

EHR that allow to predict the development of a disease.

Patient trajectories are not built according to the most

frequent events recorded in EHRs, as in many of the

works presented previously based on clustering [5, 6, 9],

but with all the available information, as aggregating

that information could limit the link between patients.

Therefore, patients do not need to follow partly or com-

pletely one pre-defined trajectory, but having common

events with another particular patient. In this way, query

patients whose EHR includes rare events can also be re-

flected in the patients in the database, and thus find high

similarities during the alignment.

1.2. Sequences Alignment

Since a patient trajectory is an ordered sequence of

events, the same technology as in biological sequence

analysis, such as the alignment of DNA sequences,

could be applied to PT analysis. Several well-known

bioinformatics algorithms based on dynamic program-

ming allow solving hard alignment problems by split-

ting the problem into simpler sub-problems. Sequence

alignment in bioinformatics aims to identify similar re-

gions in biological sequences under hypotheses of func-

tional, structural or evolutionary relationships [14].

The alignment can be made i.e. globally, using

the Needleman-Wunsch algorithm [15] or locally, us-

ing the Smith-Waterman [16]. Both are dynamic pro-

gramming algorithms, which guarantees finding the op-

timal alignment according to the scoring system used.

Smith-Waterman algorithm (Algorithm 1) performs lo-

cal alignments of two sequences of symbols of a com-

mon alphabet (e.g. for DNA alignment, the alphabet
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would be composed of A, C, T, and G), identifying, as a

result, the most similar regions within them. This align-

ment is done by calculating the Levenshtein distance (or

an opposite score) given by three editing operations to

transform each pair of symbols (insertion, deletion, or

substitution/match), and the possibility to re-start the

alignment score from any alignment point (initializa-

tion). In consequence, using the Smith-Waterman algo-

rithm for comparing PTs would result in finding high-

similar regions between PTs, possibly related to a com-

mon disease appearing in the future. This approach may

be more adequate than the Needleman-Wunsch algo-

rithm due to the more than likely high heterogeneity and

length of PTs.

si, j  max

0
BBBBBBBBBBBBBBBB@

0

si, j�1 + �(�, v j) (insertion o f v j)

si�1, j + �(ui,�) (deletion o f ui)

si�1, j�1 + �(ui, v j) (substitution or match)

1
CCCCCCCCCCCCCCCCA

(1)

Algorithm 1 Main instruction of the Smith-Waterman algo-

rithm. Given two sequences (e.g. U, and V), si, j represents the

similarity between them when it comes to comparing events

i from sequence U, or ui, and j from sequence V, or v j. This

score would be the maximum between the 4 following possi-

ble options: 0, the score when it came to comparing the se-

quences U from event 1 to event i and V from event 1 to event

j � 1 plus the value of inserting v j, the score when it came to

comparing the sequences U from event 1 to event i � 1 and

V from event 1 to event j � 1 plus the value of deleting ui,

or, finally, the score of the sequence alignment up to events ui

and v j plus the value of comparing the events ui and v j. The

value � of the editing operations consists in a scoring

matrix which values change according to the particu-

lar use case of the algorithm (e.g homology of proteins,

DNA, RNA). In the case of PT comparison, � value is

the similarity between EHR events.

Sha et al. work [17] also presented a modified ver-

sion of the Smith-Waterman algorithm to identify simi-

lar patients. They used it to predict mortality in patients

with Acute Kidney Injury, based only on their labora-

tory test data. They did compare the predictive power

of their similarity measure against other better known

such as the cosine distance and the Jaccard similarity

coe�cient. They concluded that this Smith-Waterman-

based similarity measure achieved better sensitivity and

F-measure than the other similarity measures.

1.3. Hypothesis

Our hypothesis is that local similarities on small

chunks of PTs can identify similar patients concerning

their future morbidities. In other words, we believe that

the development of a pathology can be predicted if there

is a high local similarity of a PT to a set of PTs of people

who developed this pathology. This hypothesis relies on

the reasonable assumption that similar patterns in clini-

cal conditions occur in patients during the development

of similar disease prognoses. The search and location

of these patterns could be used as a screening method in

healthy patients.

1.4. Use Case: Predict CVD development in Diabetes

Mellitus by patient trajectories

In our study, we have tested our hypothesis by as-

sessing the risk of developing cardiovascular diseases
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(CVDs) in patients with diabetes. Diabetes is a well-

known disease with high prevalence worldwide, which

is estimated to increase even more by 2045, a↵ecting

more than 629 million people in the world [18]. Di-

abetes causes hyperglycaemia, which results toxic and

can cause the development of several health compli-

cations, such as ophthalmological, nephrological, neu-

rological and/or cardiovascular diseases. It becomes

a priority to diagnose these co-morbidities as soon as

possible to improve the patients’ quality of life and re-

duce economic costs. In this paper, we focus on de-

tecting CVDs as a proof of concept because of the

close relationship between cardiopathies and diabetes

[19, 20, 21]. This becomes more obvious in the study

[20] , where they show that while the rate of incidences

of myocardial infarction for non-diabetic subjects is

3.5% (18.8% if they have had another infarction previ-

ously), in the case of diabetes patients it increases up to

20.2%, (45% if they have had a prior infarction) [22]. To

the best of our knowledge, there are no PT-based works

that have addressed the prediction of CVD occurrence

on diabetes patients.

2. Materials

2.1. Dataset

In this study, we used all patients with at least one

diagnosis of diabetes mellitus between 2012 and 2015

from Hospital Universitario y Politécnico La Fe, Valen-

cia (Spain). Hence, the dataset included 9,670 patients

with diabetes mellitus type I or type II, and with or with-

out complications (see Table 1 for details). Each reg-

istry consisted of de-identified demographic data (age

and gender), time-stamped clinical data (diagnostics

made in hospitalization or in emergency room), times-

tamped consultation codes, and timestamped laboratory

test results. 425 patients were discarded because they

had only one observation on their EHR or they did not

have all the necessary identification fields. Hence, from

the 9,245 available patients, 3,181 had developed car-

diovascular diseases and 6,064 had not. Table 1 also

shows the mean and standard deviation of the number

of diagnostics, consultations and laboratory test results

per patient. It shows how the length of the patient trajec-

tory of people who have developed CVD is larger, due

to the development of the disease. It is remarkable that

25% of the patients have less than 10 observations in

their trajectory, which means that most of the PTs will

contain less information than what it would be expected

from a chronic patient (see Figure A.1).

2.2. Codification

Diagnostics are coded according to ICD-9-CM,

which is divided into chapters according to the family

of the disease (i.e. diseases related to the circulatory

system and CVD belong to chapter 7, diseases related to

the genitourinary system makeup chapter 10). A total of

169 consultation and hospital services codes appeared

in the dataset, using hospital codes such as CCAR for

cardiology and CNEF for nephrology. In addition, some

numerical laboratory results have been discretized into

ranges such as Low, Normal, and High, according to the

thresholds defined by the hospital blood tests.
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Number of
observations

Number of
events
(µ ± �)

Number of
diagnostics

(µ ± �)

Number of
consultations

(µ ± �)

Number of
laboratory tests

(µ ± �)
Total 9670 37±38 8±7 13±21 15±17
Used 9245 39±38 8±7 14±21 16±17
With CVD 3181 53±47 10±8 20±28 21±21
Without CVD 6064 31±29 6±6 10±16 13±14

Table 1: Exploratory analysis of the dataset. A third of the patients have developed CVD. These patients have more events in their EHR, especially
more consultations, therefore longer trajectories.

3. Methods

3.1. Local Patient Trajectory Alignment (LPTA) algo-

rithm

We have adapted the Smith-Waterman algorithm in

order to compare PTs. The existing heterogeneity in the

obtained PTs (see Table 1), in terms of the standard de-

viations of the number of events of each type present

in them, is high. This diversity is what made us fo-

cus on a local alignment (Smith-Waterman) instead of a

global alignment (Needleman-Wunch), as discussed in

Section 1.2. The computation of PTs comparisons has

the following requirements. First, a similarity measure

between PTs should be defined. Second, the algorithm

should deal with sequences where heterogeneous obser-

vations that cannot be compared between them may ap-

pear (i.e. laboratory results and diagnosis codes). Fi-

nally, predictive analytics based on PTs should be ap-

plied to a massive number of patients.

First, to define a similarity measure between PTs, we

establish the next properties:

1. The local similarity measure of one PTs with it-

self should be maximum. The similarity measure

of the comparison of one PT with any other cannot

be greater than that of the PT with itself. The ex-

istence of any additional or missing event in a PT

should lead to a decrease in the similarity measure.

2. The measure should consider that regions of PTs

may contain gaps that do not match. For instance,

one patient may have needed more consultations

than other between diagnostics during a similar

sequence of episodes, and the similarity measure

should be able to keep the track of the common

events despite of the noise that the extra consulta-

tions could add. In addition, the similarity measure

must be able to deal with the possibility that dur-

ing alignment observations that do not fall within

the scope of a comparison coincide (e.g. laboratory

results and consultations).

3. The similarity measure should penalize di↵erences

in time between two consecutive observations.

4. The calculated similarity score will then be used to

rank patients of the reference dataset according to

their local similarity to any query patient.

The main di↵erence between the classical edit dis-

tance of biological sequences, where all the characters

represent the same idea (i.e. nucleotides, amino acids),

and our PTs similarity measure, is that our sequences
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may contain observations of di↵erent nature. Hence, in-

stead of having a single scoring matrix, as in the original

Smith-Waterman problem, we have a set of similarity

functions defined between concepts appearing in the PT

alphabet (e.g. diagnostics, consultations and laboratory

test results):

• The similarity measure between consultations is an

indicator function of the consultation services.

• The similarity measure between diagnosis is de-

fined by a combination of indicator functions of

categories and subcategories of the ICD-9 codes,

weighted by the similarity of locations where the

diagnostics were done (emergency room or hospi-

talization) and the time relationship with the previ-

ous diagnosis.

• For real-valued observations, such as laboratory re-

sults, we define similarities of indicator functions

after their categorization to have a clear clinical

comparison (e.g. both glucose values are in nor-

mal or abnormal levels).

These similarity functions will score the similarity

amongst the patients not only considering the degree of

similarity of the most similar regions between the PTs,

but also the similarity of these regions to the typical de-

velopment of the target disease. Therefore, the simi-

larity assessment functions of this algorithm are more

complex, in that they take into account more concepts

than a simple comparison of characters, than the orig-

inal Smith-Waterman’s � matrix. They can deal with

multi-scale observations. Furthermore, it incorporates

the modification of the similarity of events according to

their temporal similarity. In other words, two events can

be very similar, but their similarity will decrease if the

temporal distance is high. Finally, it can deal with the

case of comparing events that are completely di↵erent

and should not be compared (e.g. consultations and di-

agnostics).

Hence, we define the Local Patient Trajectory Align-

ment (LPTA) algorithm as a dynamic programming al-

gorithm for finding the most similar regions between

PTs (Function 3.1). These regions would be scored ac-

cording to their direct similarity and their relationship

to the development of the disease (e.g. CVD in patients

with diabetes mellitus). The Smith-Waterman function

of the LPTA procedure works similarly to the original

algorithm described in Algorithm 1 but changing how

the scoring works: � would no longer be a scoring ma-

trix, but a set of scoring functions that meets the require-

ments set out in this section. A pseudo-code version

of the functions involved in the scoring process can be

found in the appendix (see Functions Appendix A.1,

Appendix A.2), and an explained example of how they

work, together with the formal language defined on Sec-

tion 3.2, can be found in Figure A.2. Among the works

reviewed that make predictions based on PTs, LPTA is

the first to make predictions with multi-scale data. Some

works used only laboratory data [9, 12, 17], some only

physiological signals [10], and some only diagnostics

[11].

LPTA algorithm returns a vector of scores for each

query patient according to its similarity to each PT of

the reference database. In order to assign the condition
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Function 3.1: LPTA main algorithm. queryPa-
tients is a list of n PTs which condition is wanted
to be known, DBPatients is a list of m PTs which
condition is already known(LabelDBPatients).
queryPatients are aligned to DBPatients using
the set of similarity functions DELTA (Ap-
pendix A.1) with dMatrices (see Figure3) as pa-
rameter. maxScores will store the scores of the
alignments between patients.
LPTA(queryPatients, DBPatients, LabelDBPatients,

DELTA, dMatrices)
Input : queryPatients, DBPatients,

LabelDBPatients, DELTA, dMatrices
Output: maxScores
maxScores=matrix(n,m)
for i = 1 to n do

for j = 1 to m do
maxScores[i,j]=SmithWaterman(

queryPatients[i], DBPatients[j], DELTA,
dMatrices)

end
end

to the query patient based on these scores, a classifica-

tion method was developed: The query patient would

be classified as disease developer if at least one of the

N reference patients with a higher similarity score had

developed it. N is a parameter to be optimized in the

experiments.

It is worth noting that scores are normalized by the

length of the reference PT amongst which the query pa-

tient is being compared. This way, if the comparisons of

a query patient with two reference patients get the same

score, it can be assumed that the similarity between the

query patient and the patient with fewer observations is

higher than similarity to the longer one. This normal-

ization is also done in [17].

For our experiments, the LPTA algorithm has been

implemented using R (version 3.4) and the packages

[23, 24, 25, 26] for CPU-parallelization, temporal cost

calculation and graphical representations. An imple-

mentation of the LPTA using Big Data technologies,

such as Storm and Redis, is already in development

[27]. This will help to decrease the temporal cost of

the algorithm, allowing us to analyse massive amounts

of PTs for screening parallelly query patients. This is

the desired real use for the LPTA.

3.2. Patient Trajectory Formal Definition

We propose a formal language for defining patient

trajectories from multi-scale EHR data and computing

local similarities using the proposed LPTA algorithm

(Function 3.1). Every event included in the EHR that

had every field needed (consultation type, diagnosis

code, timestamp, etc.) will be included in the PT. If

any of these fields were missing, the event would not be

added in the PT.

PatientID, sex , {{m Dn Bp, v LBt, CX c}, d dd}{1..⇤}

(2)

The PT definition can be found in (2). The first two

fields would be PatientID, which is the identifier of the

patient, and sex is the sex of the patient (F if female or

M if male). Then the di↵erent events of the EHR are

added consecutively chronologically, whether they are

diagnostic, consultation or laboratory events. In case

of diagnosis: m is an ICD-9 code, n can be either H if
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the diagnosis was made in hospitalization or E if it was

made in emergency room, p can be either E if the di-

agnosis is related to a previous emergency or C if not.

In case of laboratory result: v is a numerical result of

the laboratory test, t is the laboratory test type (i.e. T

for total cholesterol, H for HDL, C for creatinine and

L for glycosylated haemoglobin). In case of consulta-

tion: c a consultation code. In addition, d is the number

of days from the previous event, whichever its type is,

whereas dd is the number of days from the very first

event recorded in the EHR. The first temporal parame-

ter reports the relationship between the episodes and the

second one the density of observations. The greater the

density, the more times the patient would have been to

the hospital and the greater the chances that they are de-

veloping a pathology. These two parameters avoid hav-

ing to work with timestamps. Two explained instances

of this formal language are shown in Figure 1 and Fig-

ure A.2.

3.2.1. Extra parameters

In this section, we have defined the formal language

for building patient trajectories for our use case. How-

ever, this grammar can be easily adapted to another use

case’s needs. If any extra parameter was wanted to be

included, as it could be considered decisive in the devel-

opment of a disease in a particular domain, it could be

added depending on its typology (i.e. number of sub-do-

mains of the parameter). Static single-domain parame-

ters such as race could be treated like sex, being added at

the beggining of the PT and use them to adjust the simi-

larity scores of other parameters, or even having their

own scoring matrix. Dynamic single-domain parame-

ters such as age could be added to each event definition,

showing its value at the moment of the event. Then, a

scoring matrix should be computed to get a similarity

score from age differences that could be added to the

rest of scores. Finally, multi-domain parameters such as

other medical tests, with sub-domains like type of test

(e.g. imaging, electrophysiology, etc.) and result (e.g.

normal, abnormal, etc.) could be treated like diagno-

sis, having multiple scoring sub-matrices. An instance

of PT definition having these three new parameters can

be found in (3).

ID, sex , race , {age {m Dn Bp, v LBt, CX c, MTq r}, d dd}{1..⇤}(3)

(3) Race represents a static single-domain parameter, age represents

a dynamic single-domain parameter, and MT (i.e. Medical Tests) rep-

resents a multi-domain parameter. For MT, q could represent the type

of MT (e.g. imaging, electrophysiology, etc.) and r its result (e.g.

normal, abnormal, etc.).

3.3. Use Case: Predict CVD in Diabetes Mellitus pa-

tients using Patient Trajectories

3.3.1. Chosen parameters

To know which clinical variables are of interest when

it comes to relating CVD with diabetes, an extensive

search on risk prediction models was made. Table

2 shows the variables that appeared somehow in the

risk prediction models proposed in the reviewed stud-

ies. The most used parameters in Table 2 would have
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Figure 1: An example instance for a patient trajectory and the trajectory token model. Three diagnostics events can be seen, followed by two
laboratory results and two consultations. The PT would be: -, F, 786.09 DE BC 0 0, 285.9 DE BE 1 1, 280.9 DH BC 23 24, 1.36 C 300 324, 3.4 L
300 324, CX CECR 15 339, CX CECR 1 340.

been the parameters to ideally consider but not all of

them were available in the EHR. Some of them, such as

height, weight or blood pressure, are usually annotated

in free text during anamnesis. Age was not included

directly in the PT. However, our PT definition treats di-

rectly with the elapsed time, which can be more decisive

when age tends to be similar between patients. For in-

stance, the higher the dd parameter is, the older the pa-

tient would be. Sex is a relevant factor for CVD since its

incidence rate is 4 times higher in diabetic versus non-

diabetic women, whereas this ratio is 2.5 in men [20].

This di↵erence is due to the di↵erent HDL levels in both

sexes, having women usually higher, and so more pro-

tective, levels. Diabetes usually decreases HDL levels,

causing to lose this advantage [28].

Although diagnostics and consultations are not di-

rectly used by the prediction models reported in the lit-

erature, we included them as observations of the patient

trajectories. Moreover, we have access to the informa-

tion about the place where the diagnosis was made (hos-

pitalization, DH, or emergency room, DE). This was

also included in the patient trajectories following the

work of Jensen et al. [6].

Finally, the selection of clinical variables to be con-

sidered is (1) sex, (2) diagnostics (ICD-9-CM), (3) out-

patient consultations, (4) total cholesterol, (5) HDL, (6)

creatinine and (7) glycated haemoglobin. In addition, as

some nephrological diseases can increase the chances of

having CVD in patients with diabetes [20], ICD-9 codes

from chapter 10 will be specifically considered for the

delta function. This follows what was discussed in Sec-

tion 3.1, so that not only the similarity between PTs is

rewarded, but also their similarity to the development

of CVD in diabetic patients. We specified the similar-
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ity of these parameters in di↵erent delta matrices that

will be used by the delta function. We defined a total of

12 di↵erent scoring matrices, one for each type of ob-

servation, that can be seen already optimized in Figure

3. There is an explained example of how these scoring

matrices are used together with the LPTA in Figure A.2.

3.3.2. Experiments

The main experiment we performed to optimize the

LPTA for the use case aimed to find the best weight for

each one of the defined parameters, so its output is the

scoring matrices in Figure 3. As the number of param-

eters is large, our strategy was the following: (1) fix

a negative value both for those parameters not directly

related to a CVD development (e.g protective levels of

HDL) and for cases where di↵erent parameters are be-

ing compared. (e.g one diagnosis event and one labora-

tory test), (2) set the rest of parameters to 0, (3) evaluate

the performance of the algorithm when varying each pa-

rameter when they take di↵erent values 1, 3, 5, 7, 9, (4)

for each parameter, the lowest value with the highest

performance was preferred. After fixing these values,

we run a final experiment in order to determine which

number of patients (N) for the classification method

gives the best results: 1, 2, 5, 10, 15, 25, 40, 60, 80,

or 100.

3.3.3. Evaluation

The PTs of the CVD validation patients were cut be-

fore one of the CVD diagnostics appeared (i.e. ICD-

9-CM codes 410, 411, 412, 413, 414, 427.1, 427.3,

427.4, 427.5, 428, 429.2, 440.xx, 440.23, 440.24, and

441). Therefore, some of the PTs had to be removed as

the CVD diagnosis was the first event recorded in their

EHR and there were not more events in the PT to make

the alignment. For evaluating the generability of the re-

sults, a cross-validation with 10 folds was made. Due to

the high computational cost of the experiments, a train-

ing set of 800 patients and a validation set of 200 pa-

tients were randomly selected for each experiment from

the corresponding cross-validation partition, as shown

in Figure 2.

Figure 2: Obtainment process of the train and validation sets for the
experiments. PTs of the test set patients are cut before the CVD ap-
pears.

Precision, recall (i.e. sensibility) and specificity of

the results were measured in each experiment. Preci-
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Variable [29] [19] [20] [30] [31] [32] [33] [34] [35] [22] Total
HDL Cholesterol ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ 9
Systolic, diastolic pressure
or hypertension ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ 8
Total Cholesterol (TC) ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ 8
Sex ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ 6
Smoking ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ 6
Glycosylate haemoglobin
(HbA1c) ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ 6
Age ⇥ ⇥ ⇥ ⇥ ⇥ 5
BMI ⇥ ⇥ ⇥ ⇥ ⇥ 5
Diabetes time length ⇥ ⇥ ⇥ ⇥ 4
LDL Cholesterol ⇥ ⇥ ⇥ ⇥ 4
Creatinine ⇥ ⇥ ⇥ ⇥ 4
Age at diagnosis ⇥ ⇥ ⇥ 3
Tryglyceride ⇥ ⇥ ⇥ 3
Ethnic ⇥ ⇥ 2
Familiar history of diabetes ⇥ ⇥ 2
Height ⇥ 1
Haemoglobin (Hb) ⇥ 1
Hips-Waist ratio ⇥ 1
Physical activity ⇥ 1
Coagulation factor 8 ⇥ 1
Previous CVD ⇥ 1
Retinopathies ⇥ 1

Table 2: Variables included in each of the cited studies. Total column shows how many times each variable has been used in risk prediction models.

sion, also called positive predictive value, indicates how

many of those selected as CVD patients by the algo-

rithm are really CVD patients. Recall indicates how

many of those who are CVD patients are selected by

the algorithm. Specificity indicates how many of those

who are not CVD patients are correctly identified as

non-CVD patients by the algorithm. Generally, there

is a compromise between specificity and recall so the

greater the specificity, the lower the recall and vice

versa. Since the algorithm is to be applied in a as a

secondary screening tool, it is advisable to have a con-

servative perspective, preferring to label non-CVD de-

velopers as such rather than failing to identify real CVD

developers. This means, a high recall is preferred over

a high specificity.

4. Results

After iterating with several values, the best results of

the matrices are those shown in Figure 3. The param-

eters of the delta matrices with the highest weight for

predicting CVD-development in diabetes mellitus were

(1) the exact match of the ICD-9 code, (2) diagnostics

of the cardiology chapter, (3) cardiology consultations,

(4) very high total cholesterol, (5) high HbA1c, (6) high

HDL in case of women and (7) coincidence in the time

parameters. Therefore, these events are the most related

to the development of a CVD in patients with diabetes.

Once the scoring matrices were fixed, an extra ex-

periment was performed to choose the best number of
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patients whose condition is consulted for the classifi-

cation method and its results can be seen in Figure 4.

When N was set to 5, which represents imputing the

CVD condition if at least 1 out of the 5 most similar

patients has developed a CVD, LPTA-based classifica-

tion method obtained its best results (precision of 0.33,

recall of 0.72 and specificity of 0.38).

5. Discussion

Several studies have been found that use patient tra-

jectories. Most of them focused only on the represen-

tation of patients’ EHRs to obtain the most frequent se-

quence of events on them or cluster them, having only a

few works that have used PTs to predict the occurrence

of a new event. These works used PTs built by only

one type of data (e.g. laboratory results, diagnostics).

Therefore, to the best of our knowledge, this is the first

work that used PTs formed from EHR multi-scale data

to predict the development of potential comorbidities,

using data from diagnostics, laboratory results and con-

sultations. This prediction is based on local similarities

among the PTs. This simple but powerful operation has

proven to be useful as a secondary screening method

for patients with diabetes mellitus based on patient tra-

jectories. Solving this task using patient trajectories in-

stead of the classic multiparametric approach (see Sec-

tion 3.3.1) may benefit of the temporal relationships of

the observations. The other great contribution of this

work is that it is not necessary to generate aggregated

PTs from the reference dataset, as is done in most of the

works reviewed in Section 1.1. In this work, the similar-

ity measure is calculated for each of the available PTs,

so that the comparisons are done without loss of infor-

mation.

A formal definition for patient trajectories capable of

representing multi-scale data has been proposed. PTs

can be used not only for local alignment but also for

dealing with di↵erent issues, such as EHR-data visual-

ization or detecting patterns in data, as it has been seen

in Section 1.1. It would not be di�cult to add new in-

formation as convenient, such as Patient-Reported Out-

comes (PROs) or Quality-adjusted life year (QALY), in

order to evaluate di↵erent therapies or disease trajec-

tories. It could also be added any other clinical infor-

mation such as secondary diagnostics or DRG codes to

have more relevant information included in the PTs.

The LPTA algorithm has proven to be useful when

finding similar regions in multi-scale-based PTs. Com-

pared to the traditional Smith-Waterman, which finds

similarity between observations of the same type, the

LPTA is able to deal with observations of di↵erent na-

ture, with di↵erent alphabets for each type. In addition,

time between events has been included as a modify-

ing factor of the similarity between the observations. If

these common regions are su�ciently similar, the con-

dition of one of the patients can be imputed to the other

one, as it has been done in our use case. Generally

speaking, although the amount of data available for each

patient may be di↵erent, as there are persons that visit

the hospital more frequently than others, significant lo-

cal similarities can be detected by the LPTA algorithm.

Moreover, normalizing the similarity score by the num-

ber of observations in the trajectory of the patient re-

duces the influence of the PT length. In addition, a clas-

13

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



(a) Event type. If both events are diagnosis, 5 points are added. Otherwise, 5 points
are subtracted.

(b) Consultation type. If both events are cardiology consultations, 5 points
are added. If they are neither a cardiology or a nephrology consultation but
they are the same type, 1 point is subtracted.

(c) Diagnosis type. If both diagnostics are cardiopathies, 10 points are
added, while 3 points are added if they are both nephropathies. If they are
neither a cardiopathy or a nephropathy diagnosis 5 points are subtracted.

(d) ICD-9 codes. If both codes are identical, 10 points are added, if they
only share the main part 1 point is added, if they are di↵erent 5 points are
subtracted.

(e) Location of the diagnosis. If both diagnostics were made either in Hos-
pitalization (DH) or in Emergency room (DE), 3 points are added. If they
were made in di↵erent locations, 1 point is subtracted.

(f) Relationship of the diagnosis with previous diagnostics. If both diagnos-
tics were made within 15 days from the previous diagnosis on their respec-
tive EHR (BE), 1 point is added. Otherwise, 1 point is subtracted.

(g) Laboratory type. If both events are the same laboratory test, 1 point
is added. If they are di↵erent, 5 points are subtracted and the alignment
proceeding between events stops.

(h) Total cholesterol comparison. If both measures are high, 5 points are
added. If both are normal, 3 points are subtracted.

(i) HDL comparison in men. If both measures are low, 3 points are added.
If both are normal, 3 points are subtracted.

(j) HDL comparison in women. If both measures are low, 3 points are added.
If both are normal, 3 points are subtracted.

(k) Creatinine comparison. If both measures are high, 3 points are added.
If both are normal, 3 points are subtracted.

(l) HbA1c comparison. If both measures are high, 5 points are added; if they
are both normal, 3 points are subtracted.

Figure 3: Alignment scoring matrices optimized to our diabetes use case. (3a) is the main matrix, followed by (3b), (3c) and (3g) depending on the
event type. Matrices (3d), (3e) and (3f) will be used if both events are diagnostics, while (3h), (3i), (3j), (3k) and (3l) will be the ones used if both
events are laboratory tests. When evaluating the similarity of time parameters, five points would be added if they are similar while a point would
be subtracted if they are not similar, considered as similar time frames time di↵erences of less than 15 days, as explained in section 3.2.

sification method has been created to be able to convert

the similarities given by the LPTA into a prediction, in

this case about the development of a CVD. This method

consists of imputing the condition of CVD developer if

at least one of the 5 most similar patients is so.

This classification method reinforces the conservative

approach necessary for developing a secondary screen-

ing method, in which it is preferable to have an ex-

cess of false positives rather than false negatives, recog-

nising the majority of positive cases. In the proposed

use case, final specificity (0.38) and positive predictive
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Figure 4: LPTA results according to the number (N) of most similar patients which condition is consulted to assign the development of the condition
to the query patient. This figure shows the compromise between sensitivity and specificity mentioned in Section 3.3.3, as one converges to 1 while
the other converges to 0.

value (0.33) may not be the desired, which could imply

high costs depending on its use in clinical practice, but

recall is high (0.72). This means that out of 100 CVD

developers, LPTA can identify 72 of them. This, taking

into account that a dataset extracted from clinical prac-

tice has been used in which there is an imbalance (i.e.

there are approximately one third of CVD developers),

indicates that LPTA is good for a secondary screening

method. Another work that was based on the align-

ment of EHR and used a Smith-Waterman based sim-

ilarity measure [17] also achieved similar results, with

a specificity around 0.7 and a recall around 0.6. Al-

though these results seem limited compared to those ob-

tainable by other methods like Machine Learning (e.g.

in [10] a precision of 0.8 was obtained) or Deep Learn-

ing (DL) (e.g. in [11] precisions from 0.24 to 0.81 were

obtained), the LPTA o↵ers the advantage of being able

to recover which part of the trajectory caused the classi-

fication, so it is not a ”black box” model like what ML

or DL can be. By showing the physician the part of

maximum similarity with the most similar reference pa-

tient’s PT, he or she can easily understand which parts

of the patient’s clinical history most determined his or

her predicted condition.

We were concerned that the length of the PTs was a

determining factor in the performance of the algorithm,

thinking that the shorter the PTs, the less information

the algorithm would have to evaluate. Previous exper-

iments were carried out and it was finally determined

that, although the minimum length of the PT slightly af-

fects the algorithm, it is not enough to justify the elimi-

nation of the study of patients who do not have enough

information in their EHR. The main use we see for
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LPTA is screening, so it should be able to be applied

to as many patients as possible.

Several applications of the proposed algorithm arise.

While the LPTA has proven useful for screening in our

case study, for other problems it could also be useful

for diagnosis or prognosis. It could be also used for de-

tecting similarities of PTs for further understanding of

rare diseases, detecting similarities in di↵erent popula-

tion groups or predicting whether a patient could benefit

from a particular treatment. The algorithm can be easily

adapted to di↵erent datasets since the variables available

can change from one use case to another.

5.1. Limitations

One of the main limitations of this algorithm is its

temporal cost, similar to the Smith-Waterman’s com-

putational cost (i.e.O(n2)), with n the mean number of

events in both sequences. This large temporal cost is

also reported in Sha et al. work [17], being up to six

times higher than other similarity measures such as the

Jaccard similarity coe�cient or the cosine. A Big Data

technology to speed up the computation of LPTA is al-

ready being developed [27]. Although this problem is

easily adaptable to other diseases, dealing with high-

dimensional data can be complex. The more variables

are included, the larger the scoring matrices would be.

However, as stated, the matrices are divided into sub-

matrices according to sub-domains, allowing the reuse

of some of them in di↵erent problems (e.g the score as-

sociated with a visit to a traumatology consultation may

be the same whether the development of a heart disease

or a nephropathy is being predicted).

In addition, although we had more than 20 parame-

ters to evaluate the similarity, some parameters consid-

ered as important in risk prediction models such as BMI

or blood pressure were not included in the algorithm as

they were not available in our dataset. The inclusion

of these parameters, in addition to others such as drugs

and race, may improve the results of the algorithm. Fi-

nally, there is an implicit limitation regarding the tempo-

ral development of the disease. Some of the patients that

were labelled as non-CVD developers when the dataset

was extracted may have developed a CVD afterwards,

so they should not be considered as false positives from

the classifier if classified as CVD-developers.

The search for values for the matrices performed in

the optimization experiment was not continuous, so the

resulting values may not be optimal. In addition, as

some values were pre-set and not optimized, it may also

have led to sub-optimal results for the other parameters.

6. Conclusions

This work has led to the following contributions: (1)

a formal definition of patient trajectory based on het-

erogeneous sequences of multi-scale data over time, (2)

a dynamic programming methodology to identify lo-

cal alignments in patient trajectories with customized
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matrices that is able to handle observations from dif-

ferent nature and temporarily distanced, and (3) a spe-

cific LPTA-based classification method to predict the

development of CVD in patients with diabetes mellitus

that achieved a precision of 0.33, a recall of 0.72 and

a specificity of 0.38. The most prevalent conditions in

the local chunks of PTs predicting cardiovascular dis-

eases in diabetes patients included cardiology diagno-

sis and consultations, serious levels of total cholesterol,

and high HbA1c. The proposed PT definition has been

tested in a specific CVD use case, but it could be gen-

eralized to further domains, adapting it to include addi-

tional variables and cost matrices without changing the

algorithm. To our knowledge, this is the first method-

ology in which patient trajectories have been modelled

as a sequence of multi-scale data aiming to their local

alignment through a dynamic programming algorithm

to identify future morbidities. This approach is able to

evaluate the similarity in local chunks of trajectories be-

ing robust to heterogeneous global trajectories in terms

of length and disease temporal patterns spread along the

patient life.
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Juan Miguel Garcı́a-Gómez, and Bernardo Valdivieso. Big data

platform for comparing data-driven pathways for warning po-

tential complications in patients with diabetes. 2017.

[28] Dan Farbstein and Andrew P Levy. Hdl dysfunction in diabetes:

causes and possible treatments. Expert Review of Cardiovascu-

lar Therapy, 10(3):353–361, 2012.

[29] P. T. Donnan, L. Donnelly, J. P. New, and A. D. Morris. Deriva-

tion and validation of a prediction score for major coronary heart

disease events in a u.k. type 2 diabetic population. Diabetes

Care, 29(6):1231–1236, May 2006.

[30] A. R. Folsom, L. E Chambless, B. B. Duncan, A. C. Gilbert,

and J. S. Pankow and. Prediction of coronary heart disease in

middle-aged adults with diabetes. Diabetes Care, 26(10):2777–

2784, September 2003.

[31] Xilin Yang, Wing-Yee So, Alice P.S. Kong, Ronald C.W. Ma,

Gary T.C. Ko, Chung-Shun Ho, Christopher W.K. Lam, Clive S.

Cockram, Juliana C.N. Chan, and Peter C.Y. Tong. Develop-

ment and validation of a total coronary heart disease risk score

in type 2 diabetes mellitus. The American Journal of Cardiol-

ogy, 101(5):596–601, March 2008.

[32] Xilin Yang, Ronald C Ma, Wing-Yee So, Alice P Kong, Gary T

Ko, Chun-Shun Ho, Christopher W Lam, Clive S Cockram, Pe-

ter C Tong, and Juliana C Chan. Development and validation of

a risk score for hospitalization for heart failure in patients with

18

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



type 2 diabetes mellitus. Cardiovascular Diabetology, 7(1):9,

2008.

[33] Andre Pascal Kengne, Anushka Patel, Michel Marre, Flo-

rence Travert, Michel Lievre, Sophia Zoungas, John Chalmers,

Stephen Colagiuri, Diederick E Grobbee, Pavel Hamet, Simon

Heller, Bruce Neal, and Mark Woodward. Contemporary model

for cardiovascular risk prediction in people with type 2 diabetes.

European Journal of Cardiovascular Prevention & Rehabilita-

tion, 18(3):393–398, February 2011.
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Figure A.1: Distribution of the number of events per patient in their EHR. CVD patients have longer trajectories, while most of the non-CVD
patients have less than 10 observations.
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Function Appendix A.1: Delta scoring function. tupleS is an observation in a query patient trajectory and tu-
pleR is an observation in a reference patient trajectory. TYPEOFEVENT is a function which output is the type
of event that the tuple is: CX for consultations, DX for diagnosis and LX for laboratory tests. RESULTDX,
RESULTCX (Function Appendix A.2) and RESULTLX are functions which output is the similarity score
between two observations of the same type depending on the values of the scoring matrices.
Delta(tupleS, tupleR, dMatrices)

Input : tupleS, tupleR, dMatrices
Output: score
eventTypeS:=TYPEOFEVENT(tupleS)
eventTypeR:=TYPEOFEVENT(tupleR)
if eventTypeS != eventTypeR then

score = dMatrices.Type[di↵erentType]
else if eventTypeS == ”DX” then

score = dMatrices.Type[sameType] + RESULTDX(tupleS, tupleR, dMatrices.Chapter, dMatrices.Number,
dMatrices.D, dMatrices.B, dMatrices.T, codes)

else if eventTypeS == ”CX” then
score = dMatrices.Type[sameType] + RESULTCX(tupleS, tupleR, dMatrices.CX, dMatrices.T)

else if eventTypeS == ”LX” then
score = dMatrices.Type[sameType]+ RESULTLX(tupleS, tupleR, sexS, sexR, dMatrices.LX, dMatrices.T,

dMatrices.Hmen, dMatrices.Hwomen, dMatrices.C, dMatrices.L, dMatrices.B)
else if eventTypeS == ”-” then

score = dMatrices.deletion
else

score = dMatrices.insertion
end

Function Appendix A.2: ResultCX. For a further understanding of how the scoring functions work,
RESULTCX is shown. In dMatrices.CX we have di↵erent scores depending on the consultation type.
TIME.SIMILARITY will evaluate the similarity of available time parameters and will result in a score de-
pending on it.
ResultCX(tupleS, tupleR, dMatrices.CX, dMatrices.T)

Input : tupleS, tupleR, dMatrices.CX, dMatrices.T
Output: score
consultationTypeS:=TYPEOFCONSULTATION(tupleS)
consultationTypeR:=TYPEOFCONSULTATION(tupleR)
if consultationTypeS != consultationTypeR then

score = dMatrices.CX[di↵erentType]
end
else if consultationTypeS == ”CCAR” then

score = dMatrices.CX[CCAR]
end
else if consultationTypeS == ”...” then

score = dMatrices.CX[...]
end
score = score + TIME.SIMILARITY(dMatrices.T)

22

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



(a) PTs to align. The upper PT would be from a new patient, while the lower PT would be from a patient already included in the database. It should be noted that, at
first glance, they seem quite similar.

(b) Alignment of the first available event. Both of them are cardiology-related diagnostics (ICD-9 codes around 400) and were made at Emergency Room (DE).
However, both diagnostics do not have the same relationship with the previous diagnosis (BC vs BE).

(c) Alignment of the second event. The one from the query patient is a diagnosis, while the one from the DB patient is a consultation, so the alignment of this event do
not proceed further. Even though they are events of di↵erent type, having events with a similar timing is rewarded.
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(d) Alignment of the third event in the PTs. Both of them are consultations. The query patient’s consultation is from the cardiology service, while the DB patient’s is
from the nephrology service. As explained in Section 3.3.1, nephrology and cardiology diseases may be related, so this also adds a point of similarity to the

development of a CVD.

(e) Alignment of the fourth event. Both of them are HbA1c laboratory test results. Both patients showed Normal HbA1c levels, which should add similarity points.
However, since having normal HbA1c levels is not related to the development of CVD, it is penalized (see Section 3.2).

Figure A.2: Example of an alignment between a new query patient’s PT and a PT from a patient in the database. This alignment is done by
substitution or match, not by insertion or deletion (see Section 1.2), so it might not be optimum. The final similarity score between the PTs in
Figure A.2a would be of 27 points (22 � 1 + 4 + 3 = 27). The normalized score (see Section 3.1) would be of 27 points

4 events in the DB patient0 s PT = 6.75
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Figure 1: An example instance for a patient trajectory and the trajectory token model. Three diagnostics events can be seen, followed by two
laboratory results and two consultations. The PT would be: -, F, 786.09 DE BC 0 0, 285.9 DE BE 1 1, 280.9 DH BC 23 24, 1.36 C 300 324, 3.4 L
300 324, CX CECR 15 339, CX CECR 1 340.
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Figure 2: Obtainment process of the train and validation sets for the
experiments. PTs of the test set patients are cut before the CVD ap-
pears.
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(a) Event type. If both events are diagnosis, 5 points are added, otherwise 5 points
are subtracted.

(b) Consultation type. If both events are cardiology consultations, 5 points
are added. If they are neither a cardiology or a nephrology consultation but
they are the same type, 1 point is subtracted.

(c) Diagnosis type. If both diagnostics are cardiopathies, 10 points are
added, while 3 points are added if they are both nephropathies. If they are
neither a cardiopathy or a nephropathy diagnosis 5 points are subtracted.

(d) ICD-9 codes. If both codes are identical, 10 points are added, if they
only share the main part 1 point is added, if they are di↵erent 5 points are
subctracted.

(e) Location of the diagnosis. If both diagnostics were made either in Hos-
pitalization (DH) or in Emergency room (DE), 3 points are added. If they
were made in di↵erent locations, 1 point is subtracted.

(f) Relationship of the diagnosis with previous diagnostics. If both diagnos-
tics were made within 15 days from the previous diagnosis on their respec-
tive EHR (BE). 1 point is added, otherwise 1 point is subtracted.

(g) Laboratory type. If both events are the same laboratory test, 1 point
is added. If they are di↵erent, 5 points are subtracted and the alignment
proceeding between events stops.

(h) Total cholesterol comparison. If both measures are high, 5 points are
added. If both are normal, 3 points are subtracted.

(i) HDL comparison in men. If both measures are low, 3 points are added.
If both are normal, 3 points are subtracted.

(j) HDL comparison in women. If both measures are low, 3 points are added.
If both are normal, 3 points are subtracted.

(k) Creatinine comparison. If both measures are high, 3 points are added.
If both are normal, 3 points are subtracted.

(l) HbA1c comparison. If both measures are high, 5 points are added; if they
are both normal, 3 points are subsracted.

Figure 3: Alignment scoring matrices optimized to our diabetes use case. (3a) is the main matrix, followed by (3b), (3c) and (3g) depending on the
event type. Matrices (3d), (3e) and (3f) will be used if both events are diagnostics, while (3h), (3i), (3j), (3k) and (3l) will be the ones used if both
events are laboratory tests. When evaluating the similarity of time parameters, five points would be added if they are similar while a point would
be subtracted if they are not similar, considered as similar time frames time di↵erences of less than 15 days, as explained in Section 3.2.
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Figure 4: LPTA results according to the number (N) of most similar patients which condition is consulted to assign the development of the condition
to the query patient. This figure shows the compromise between sensitivity and specificity mentioned in Section 3.3.3, as one converges to 1 while
the other converges to 0.
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Appendix A. Supplementary material
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Figure A.1: Distribution of the number of events per patient in their EHR. CVD patients have longer trajectories, while most of the non-CVD
patients have less than 10 observations.
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(a) PTs to align. The upper PT would be from a new patient, while the lower PT would be from a patient already included in the database. It should be noted that, at
first glance, they seem quite similar.

(b) Alignment of the first available event. Both of them are cardiology-related diagnostics (ICD-9 codes around 400) and were made at Emergency Room (DE).
However, both diagnostics do not have the same relationship with the previous diagnosis (BC vs BE).

(c) Alignment of the second event. The one from the query patient is a diagnosis, while the one from the DB patient is a consultation, so the alignment of this event do
not proceed further. Even though they are events of di↵erent type, having events with a similar timing is rewarded.
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(d) Alignment of the third event in the PTs. Both of them are consultations. The query patient’s consultation is from the cardiology service, while the DB patient’s is
from the nephrology service. As explained in Section 3.3.1, nephrology and cardiology diseases may be related, so this also add a point of similarity to the

development of a CVD.

(e) Alignment of the fourth event. Both of them are HbA1c laboratory test results. Both patients showed Normal HbA1c levels, which should add similarity points.
However, since having normal HbA1c levels is not related to the development of CVD, it is penalized (see Section 3.2).

Figure A.2: Example of an alignment between a new query patient’s PT and a PT from a patient in the database. This alignment is done by
substitution or match, not by insertion or deletion (see Section 1.2), so it might not be the optimum. The final similarity score between the PTs in
Figure A.2a would be of 27 points (22 � 1 + 4 + 3 = 27). The normalized score (see Section 3.1) would be of 27 points

4 events in the DB patient0 s PT
= 6.75
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Number of

observations

Number of

events

(µ ± �)

Number of

diagnostics

(µ ± �)

Number of

consultations

(µ ± �)

Number of

laboratory tests

(µ ± �)

Total 9670 37±38 8±7 13±21 15±17

Used 9245 39±38 8±7 14±21 16±17

With CVD 3181 53±47 10±8 20±28 21±21

Without CVD 6064 31±29 6±6 10±16 13±14

Table 1: Exploratory analysis of the dataset. A third of the patients have developed CVD. These patients have more events in their EHR, especially

more consultations, therefore longer trajectories.

Variable [19] [11] [12] [20] [21] [22] [23] [24] [25] [13] Total

HDL Cholesterol ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ 9

Systolic, diastolic pressure

or hypertension ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ 8

Total Cholesterol (TC) ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ 8

Sex ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ 6

Smoking ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ 6

Glycosylate haemoglobin

(HbA1c) ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ 6

Age ⇥ ⇥ ⇥ ⇥ ⇥ 5

BMI ⇥ ⇥ ⇥ ⇥ ⇥ 5

Diabetes time length ⇥ ⇥ ⇥ ⇥ 4

LDL Cholesterol ⇥ ⇥ ⇥ ⇥ 4

Creatinine ⇥ ⇥ ⇥ ⇥ 4

Age at diagnosis ⇥ ⇥ ⇥ 3

Tryglyceride ⇥ ⇥ ⇥ 3

Ethnic ⇥ ⇥ 2

Familiar history of diabetes ⇥ ⇥ 2

Height ⇥ 1

Haemoglobin (Hb) ⇥ 1

Hips-Waist ratio ⇥ 1

Physical activity ⇥ 1

Coagulation factor 8 ⇥ 1

Previous CVD ⇥ 1

Retinopathies ⇥ 1

Table 2: Variables included in each of the cited studies. Total column shows how many times each variable has been used in risk prediction models.
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