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EXTENSION OF LIPSCHITZ-TYPE OPERATORS ON
BANACH FUNCTION SPACES

WASTHENNY V. CAVALCANTE — PILAR RUEDA — ENRIQUE A.
SÁNCHEZ-PÉREZ

Abstract. We study extension theorems for Lipschitz-type operators
acting on metric spaces and with values on spaces of integrable func-
tions. Pointwise domination is not a natural feature of such spaces, and
so almost everywhere inequalities and other measure-theoretic notions
are introduced.We analyze Lipschitz type inequalities in two fundamen-
tal cases. The first concerns a.e. pointwise inequalities, while the second
considers dominations involving integrals. These Lipschitz type inequal-
ities provide the suitable frame to work with operators that take values
on Banach function spaces. In the last part of the paper we use some
interpolation procedures to extend our study to interpolated Banach
function spaces.

1. Introduction and basic definitions

Extension of Lipschitz functions acting on subsets of metric spaces is a
relevant issue in mathematical analysis, not only because of its theoretical
interest but also because of the large number of applications that have been
obtained. There are two classical extension results that are considered as
milestones in the theory. The first one is the McShane-Whitney theorem,
which concerns real valued functions, and establishes that given a subset
S of a metric space (M,d) and a Lipschitz function T : S → R with Lips-
chitz constant k, there is always a Lipschitz function M → R extending T
and with the same Lipschitz constant k. The second one is the celebrated
Kirszbraun theorem, and deals with Lipschitz maps between Hilbert spaces.
It asserts that for Hilbert spaces H and K, a subset U ⊆ H and a Lips-
chitz operator T : U → K, there is another Lipschitz operator T̂ : H → K
that extends T with the same Lipschitz constant (see [11], [14, p.21]). It
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is well-known that this result is not true in the class of Banach spaces, not
even in the finite dimensional case. Other relevant aspects of the theory
that are also of interest for our research have been developed recently, such
as those concerning Lipschitz functions on “∞-type” spaces as `∞, c0 and
C(K)-spaces. For example, the reader can find a remarkable complete study
of Lipschitz operators on C(K) spaces in a series of papers by Kalton (see
[8, 9, 10] and the references therein; see also [7]). After an inspection of
these works, it can be noticed that the structure of these “∞-type” spaces
—formed by functions (and not by classes of a.e. equal functions) and with
an ∞-type norm—, constitutes a fundamental part of the arguments for
obtaining extensions of Lipschitz operators on them. Although some of the
ideas developed in this setting can be applied also for spaces of integrable
functions, we will show that it is convenient to adapt them using suitable
measure theoretical notions. Indeed, we will show that the development
of extension procedures for function-valued maps forces the use of specific
Lipschitz-type inequalities taking into account the nature of the function
spaces in the range. Thus, if (Ω,Σ, µ) is a measure space, we will con-
sider “almost everywhere pointwise domination” for spaces as L∞(µ), as
well as “integral domination” or “measure domination” for spaces as L1(µ)
or Lp(µ).

Therefore, in this paper we provide extension results for Lipschitz-type
operators on metric spaces of measurable functions by adapting the notion
of Lipschitz map to this kind of spaces when necessary. We introduce a
new definition of a subclass of Lipschitz maps in which some elements as-
sociated to the underlying measure space appear explicitly. In particular,
if S is a subset of the metric space (M,d) and Y (µ) is a Banach function
space, we consider Lipschitz operators T : M → Y (µ) satisfying domination
properties of the form

‖
(
T (x)− T (y)

)
χA‖Y (µ) ≤ φ(A) d(x, y), x, y ∈ X, A ∈ Σ,

where φ : Σ→ R is a set function related to the measure µ.
Another aspect on factorization of Lipschitz maps that will be studied

here is the maximality of the extensions. That is, given an extension of a
Lipschitz map, what can we say about the size of the domain? Related to
this question, it makes sense to ask if it is still possible to find a maximal ex-
tension. Thus, we will also analyze if it is possible to find a bigger complete
metric space M̂ such that M is dense in M̂ and T is still Lipschitz as a map
T̂ : M̂ → Y (µ), under the requirement that M̂ is the bigger space satisfying
this property. These results will be presented at the beginning of the paper
(Section 2), and will be used in the rest of the sections. The advantage
of these preliminary results concerning maximality of the extension is that
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they do not need any structure on the range spaces. As we will show, they
can be established for general Lipschitz maps between metric spaces.

Thus, we will present our results in four sections. After the Introduc-
tion, Section 2 will be devoted to show two theorems on the existence of
extensions of Lipschitz operators between metric spaces and the description
of the maximal domain space where the extension can be defined. We will
present our specific results for spaces of measurable functions in Sections 3
and 4. In Section 3, pointwise domination will be studied, showing that this
property fits with order bounded Lipschitz-type operators, or with opera-
tors with values on ∞-type Banach lattices —`∞ and C(K)—. In Section
4 we will explain our extension theorems for Lipschitz-type operators on
general Banach function spaces, in which domination inequalities involving
the measure will be considered. All these results will be complemented by
the ones obtained in Section 2, including results on maximal factorizations
to the extensions as corollaries. In order to provide tools to use the results
obtained in specific cases of Banach function spaces, in Section 5 we will
show how to extend Lipschitz-type inequalities to larger classes of Banach
function spaces in some concrete cases using simple interpolation arguments.

We will use standard Banach space notation throughout the paper. (Ω,Σ, µ)
will be a σ-finite measure space and (E, ρ) a metric space. A Banach func-
tion space (Bfs for short) Y (µ) over µ is an (linear) ideal of the space L0(µ)
(the linear space formed by classes of µ-a.e. equal measurable functions),
endowed with a complete norm ‖ ‖Y (µ). That is, if f ∈ L0(µ), |f | ≤ g and
g ∈ Y (µ), then f ∈ Y (µ) and ‖f‖Y (µ) ≤ ‖g‖Y (µ). It also contains character-
istic functions of finite measure sets. Sometimes we will write Y instead of
Y (µ) in case the measure µ is clearly fixed in the context. As usual, f ∨ g
denotes the maximum of f and g. A Banach function space is order contin-
uous if for any decreasing sequence fn ↓ 0 we have that limn ‖fn‖Y (µ) = 0.
It is well-known that, if Y (µ) is order continuous, the dual space Y (µ)∗

coincides with its Köthe dual

Y (µ)′ =
{
g is a class of measurable functions :

∫
Ω

f g dµ <∞, f ∈ Y (µ)
}
.

Duality is then represented as the integral of the pointwise product of the
functions involved. The reader can find more information in [12, p.28 ff]
and [13, Ch.2].

Regarding metric spaces, throughout the paper (M,d) will represent a
(non-necessarily complete) metric space, and S a subset of M . No further
requirements will be assumed on M unless they are requested explicitly.
Recall that a map T : S → Y (µ) is K-Lipschitz (or Lipschitz with constant
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K) if for every x, y ∈ S,
‖T (x)− T (y)‖Y (µ) ≤ K d(x, y), (1)

and K is the smallest constant satisfying the inequality. As we are con-
cerned with range spaces of the form Y (µ), we will work with variants of
the above classical domination inequality that fit with Bfs-valued functions
in a sensible way. Our reference for defining the explicit formulas for the
extensions of these Lipschitz-type functions is the McShane-Whitney the-
orem for real-valued maps which states that, if S is a subset of a metric
space (M,d) and T : S → R is a Lipschitz function with constant K, there
is always a Lipschitz function T̃ : M → R extending T and with the same
Lipschitz constant K. The function

TM(x) := sup
u∈S
{T (u)−K d(x, u)}, x ∈M, (2)

provides such an extension, and it is sometimes called the McShane exten-
sion. The Whitney formula, given by

TW (x) := inf
u∈S
{T (u) +K d(x, u)}, x ∈M, (3)

gives also such an extension.
We refer to the classical monograph [15] (second edition) and the recently

appeared book [5] for the general theory of Lipschitz functions.

2. Extension of Lipschitz functions between metric spaces to
maximal metric domains

In order to introduce the notion of maximality of the Lipschitz extensions
that will be treated in the paper, let us start with two general results for
maps between metric spaces. We will show that the concept of maximality
can be formulated for general metric spaces without assuming further prop-
erties. However, we will see in the next sections that these results can be
improved when more requirements on the structure of the spaces involved
are added.

The first result ensures the existence of an extension, while the second
one proves that under reasonable assumptions this extension is maximal, in
the sense that its domain space is the biggest metric space with some special
requirements to which the Lipschitz map can be extended. Although the
results will be used in the next sections under many other restrictions, we
consider here the more abstract context in which they work.

Let us introduce a technical definition that will be needed for our pur-
poses. Let M and N be metric spaces. We say that a map j : M → N is
an inclusion-quotient map if j(M) is dense in N and there is an equivalence
relation providing equivalence classes in M such that the map j(x) = j(y)
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for x, y belonging to the same equivalence class. That is, j is a quotient map
on a dense subspace of N . The use of the term “inclusion-quotient” will
become clear below, since it is shown that such a function j can be factored
as j = i ◦ i∗ for a quotient map i∗ and an inclusion i. This notion differs
from other definitions of quotient maps related to LIpschitz functions, as
for example the uniform quotients that can be found in [2, Ch.7, §1].

Let (M,d) be a metric space and let (E, ρ) be a complete metric space.
Given a K-Lipschitz map T : M → E, consider the function dT : M×M →
R defined by

dT (x, y) =
1

K
ρ(T (x), T (y))

for any x, y ∈ M . Clearly, dT is a pseudo metric. We can consider the
equivalence classes associated to dT given by

[x] = {y ∈M : dT (x, y) = 0}, x ∈M.

The quotient space M∗ = {[x] : x ∈M}, formed by the equivalence classes,
becomes a metric space when endowed with the distance d∗T ([x], [y]) =
dT (x, y). Define the map i∗ : M → M∗ by i∗(x) = [x]. Since T is K-
Lipschitz, we have that i∗ is 1-Lipschitz. Write MT for the completion of
(M∗, d∗T ) and dT for the extended metric on MT . Note that the natural map
i : M∗ →MT is an isometric inclusion. Defining the inclusion-quotient map
j : M → MT by j = i ◦ i∗, we can easily ckeck that j is 1-Lipschitz and

j(M)
dT

= MT .
Now, define T ∗ : M∗ → E by T ∗([x]) = T (x). Note that T ∗ it is well

defined, since if y, z ∈ [x], then dT (y, z) = 0 and so ρ(T (y), T (z)) = 0. Let
us see that T ∗ is K-Lipschitz. Indeed,

ρ(T ∗([x]), T ∗([y])) = ρ(T (x), T (y))

= K d∗T ([x], [y]), x, y ∈ X.
We can extend T ∗ to T : MT → E by continuity, providing the factorization
T = T ◦ j, and clearly the Lipschitz constant of T is still K.

What we have proved is the following lemma:

Lemma 2.1. Let (M,d) be a metric space and let (E, ρ) be a complete
metric space. If T : M → E is a K-Lipschitz map, then there exists a
complete metric space (MT , dT ), an inclusion-quotient 1-Lipschitz map j :
M → MT and a K-Lipschitz map T : MT → E such that T = T ◦ j, i.e.,
the following diagram commutes

M
T //

j !!C
CC

CC
CC

C E.

MT

T

=={{{{{{{{
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Here, dT is the metric associated to the pseudo metric

dT (x, y) :=
1

K
ρ(T (x), T (y)), x, y ∈M.

Notice that the usual completion M of the metric space M also satisfies
the lemma, and it is usually seen as the smallest completed space that
contains M as a dense subspace. However, we look for a maximal completed
space that contains (a quotient of) M as a dense subspace. This is why
the above construction is necessary to obtain the maximal factorization, as
showed in the next theorem.

Theorem 2.2. In the same setting and with the same notation as in Lemma
2.1, we have that the factorization through MT and the Lipschitz operator T
is maximal in the following sense. If there is another complete metric space
(J, ρ) such that

i) the operator T can be factored as T = T0 ◦ i0, where T0 : J → E is
a K-Lipschitz operator and i0 : M → J is a 1-Lipschitz inclusion-
quotient map,

ii) i0(M) is dense in J .

then there is a 1-Lipschitz inclusion-quotient map i : J →MT satisfying

1) i ◦ i0 = j, and
2) T ◦ i = T0.

Proof. Let us prove that there exists i : J → MT . Let z ∈ J . Then by
ii) there is a sequence (xn) ⊂ M such that z = ρ − lim i0(xn). Therefore
(i0(xn)) ⊂ J is a ρ-Cauchy sequence. Note that

dT (j(x), j(y)) = dT (x, y) =
1

K
ρ(T (x), T (y))

=
1

K
ρ(T0 ◦ i0(x), T0 ◦ i0(y)) ≤ ρ(i0(x), i0(y)), x, y ∈M.

Thus (j(xn)) is a dT -Cauchy sequence, and so there exists w ∈MT such that
w = dT−lim j(xn). Define i : J →MT by i(z) = w, where z = ρ−lim i0(xn)
and w = dT − lim j(xn). We claim that i is well defined. Indeed, if there is
another sequence (yn) ⊂M such that

z = ρ− lim i0(xn) = ρ− lim i0(yn),

then the sequence

(i0(x1), i0(y1), i0(x2), i0(y2), . . .)

converges to z in J . Thus it is a ρ-Cauchy sequence and we have that

(j(x1), j(y1), j(x2), j(y2), . . .)

is a dT -Cauchy sequence. Therefore dT − lim j(xn) = dT − lim j(yn).
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Let us show now 1). Let x ∈M . Trivially we have i0(x) = ρ− lim i0(x).
Thus

i(i0(x)) = dT − lim j(x) = j(x).

Since the inequality

dT (j(x), j(y)) ≤ ρ(i0(x), i0(y)), x, y ∈M
holds, it follows that i is 1-Lipschitz.

To prove part 2), let z = ρ− lim i0(xn). Then

T (i(z)) = T (dT − lim j(xn)) = ρ− limT ◦ j(xn)

= ρ− limT (xn) = ρ− limT0 ◦ i0(xn)

= T0(ρ− lim i0(xn)) = T0(z),

and so the result holds. �

3. Extension of Lipschitz maps with values in function spaces

In this section we consider the problem of extending maps defined on met-
ric spaces and that take values in lattices of functions defined on a measure
space (Ω,Σ, µ); that is, spaces of classes of µ-a.e equal functions. It must be
said that the techniques used here are of different nature from the ones used
by Kalton and the other authors that considered the problem for the case
of “∞-type” spaces as explained in the introduction. The reason is that
the structure of the spaces of integrable functions is meaningfully different
from the case of C(K) spaces. Broadly speaking, pointwise domination and
norm domination are equivalent properties in the case of spaces of contin-
uous functions, but this is not the case for spaces of measurable functions.
This forces to adapt the definitions and to create new settings specifically
constructed for the case of lattices of integrable functions. Let us introduce
some concrete definitions. We will assume that a set of functions L is a
lattice if for every pair f, g ∈ L, we have that f ∨ g ∈ L. A subset F (µ)
of L0(µ) is a metric function space if it is a metric space which is a lattice,
and for every f ∈ F (µ) and A ∈ Σ, fχA ∈ F (µ).

Our aim is to analyze the extension procedure when maps with values
in a metric function space F (µ) satisfy a Lipschitz type inequality. In this
concrete setting of F (µ)-valued mappings, we will consider pointwise µ-a.e.
variants of the inequality that defines a Lipschitz map.

Definition 3.1. If (M,d) is a metric space, a map T : M → F (µ) is
pointwise K-Lipschitz µ-a.e. if∣∣T (x)− T (y)

∣∣ ≤ K d(x, y) µ-a.e.

for all x, y ∈ M. As usual, K is supposed to be the infimum of all the
constants satisfying the inequality.
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To be more specific, for each x, y ∈ M there is a set Ax,y ∈ Σ with
µ(Ω \ Ax,y) = 0 and∣∣T (x)(w)− T (y)(w)

∣∣ ≤ K d(x, y), for all w ∈ Ax,y.
Dealing with classes of µ-a.e. equal functions instead of functions leads

to extra difficulties. It is easy to see that in this case the extension formulae
(2) and (3) do not give necessarily measurable functions. This is why we will
have to limit the result to Lipschitz maps restricted to countable subsets.

Theorem 3.2. Let (M,d) be a metric space and let S ⊂M be a countable
set. Let F (µ) be a metric function space that is closed under translations
defined by constants (that is, f + a ∈ F (µ) whenever f ∈ F (µ) and ’a’ is a
real constant). If T : S → F (µ) is a pointwise K-Lipschitz µ-a.e. map, then

there exists an extension T̂ : M → F (µ) of T that is pointwise K-Lipschitz
µ-a.e.

Proof. By the Axiom of Choice, there exists an element R ∈ Πx∈ST (x),
R = (rx)x∈S, such that for every x, rx is a measurable function that belongs
to the equivalence class (determined by) T (x). For each y ∈ X consider the
function

T̂ (y)(w) := sup
x∈S
{rx(w)−Kd(x, y)}, w ∈ Ω (4)

and define T̂ (y)(w) as its equivalence class (as usual in Measure Theory

we write T̂ (y)(w) for both, the class and a representative of the class).
Notice that under the assumption that S is countable, the expression in
(4) determines a measurable function. Indeed, for a fixed y ∈ M we can
consider the countable set of functions Sy = {rx(w)−Kd(x, y)}. Of course,

the supremum of such a set is a measurable function, and so T̂ (y) is well
defined. Let us divide the proof in two steps.

Step 1. Let us show that T̂ extends T , i.e., if y ∈ S then T̂ (y) defined
in (4) coincides with T (y) µ-a.e. Note that for every x ∈ S there exists a
measurable null set Nx(y) such that

|T (y)(w)− T (x)(w)| ≤ Kd(x, y), w ∈ Ω\Nx(y).

Let N(y) := ∪x∈SNx(y). Note that it is a measurable null set as S is count-
able. Note also that T (x) is just defined µ-almost everywhere for every
x ∈ S and so its value is not uniquely determined. For every x ∈ S, con-
sider any other element tx of the class T (x), and take the set

Mx = {w ∈ Ω : tx(w) 6= rx(w)}.
It is clearly is a measurable null set, and so M = ∪x∈SMx is also a measur-
able null set. If w ∈ Ω \ (N(y) ∪M), then

ty(w) ≥ tx(w)−Kd(x, y) = rx(w)−Kd(x, y).
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Consequently, for such a w we have

ty(w) ≥ sup
x∈S
{tx(w)−Kd(x, y)} = sup

x∈S
{rx(w)−Kd(x, y)}.

Since y ∈ S, we have T (y)(w) = ry(w) = ry(w) − Kd(y, y) µ-a.e. There-
fore —again using an abuse of notation identifying the function with its
equivalence class—, we get

sup
x∈S
{rx(w)−Kd(x, y)} = T (y)(w).

Step 2. Let us now see that T̂ (x) ∈ F (µ) for all x ∈ M . Let x ∈ M and
y ∈ S. We claim that

|T̂ (x)(w)− T (y)(w)| ≤ Kd(x, y) µ-a.e.

Indeed, taking any representatives for T̂ (x) and T (y), —we again write T̂ (x)
and T (y) for them—, for all w except in a µ-null set we have

|T̂ (x)(w)− T (y)(w)| = | sup
z∈S
{rz(w)−Kd(z, x)} − sup

z∈S
{rz(w)−Kd(z, y)}|

≤ sup
z∈S

K|d(z, x)− d(z, y)| ≤ Kd(x, y) µ-a.e.

Therefore,

−Kd(x, y) ≤ T̂ (x)(w)− T (y)(w) ≤ Kd(x, y).

Since y ∈ S, T (y) ∈ F (µ). Define h1(w) = T (y)(w)−Kd(x, y) and h2(w) =
T (y)(w) +Kd(x, y), we have

h1(w) ≤ T̂ (x)(w) ≤ h2(w).

Consequently,

|T̂ (x)(w)| ≤ h(w)

where h(w) = (h1 ∨ h2)(w) = max{h1(w), h2(w)}. Since F (µ) is a lattice

and h ∈ F (µ), we conclude that T̂ (x) ∈ F (µ) for all x ∈M .

Since we have already proved in Step 1 that T̂ (y) = T (y) for all y ∈ S
we get that T̂ is a extension of T .

Step 3. Finally, let us show that T̂ is pointwise K-Lipschitz µ-a.e. Indeed,
if x, y ∈M , then

|T̂ (x)(w)− T̂ (y)(w)| = | sup
z∈S
{rz(w)−Kd(z, x)} − sup

z∈S
{rz(w)−Kd(z, y)}|

≤ sup
z∈S

K|d(z, x)− d(z, y)| ≤ Kd(x, y) µ-a.e.

This finishes the proof. �
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Remark 3.3. Let us write some examples to which the result above can be
applied. Assume that we have a pointwise K-Lipschitz map µ-a.e. T from
a countable subset S of a metric space (M,d) into a Banach function space
Y (µ). Note that, in particular, Banach function spaces are metric function

spaces. Then by Theorem 3.2 we have an extension T̂ to the whole space
M that is pointwise K-Lipschitz µ-a.e. So,

|T (x)− T (y)| ≤ Kd(x, y), µ− a.e. (5)

for all x, y ∈ M . Straightforward arguments show that this implies the
following Lipschitz type properties, depending on who is the space Y (µ).

(1) If Y (µ) = L1(µ) and µ is a finite measure, then the µ-a.e. domina-
tion of T given in (5) implies that

‖T̂ (x)− T̂ (y)‖L1(µ) =

∫
Ω

|T̂ (x)− T̂ (y)|dµ ≤ Kµ(Ω)d(x, y),

for all x, y ∈M , i.e., T̂ : M → L1(µ) is a K ′-Lipschitz operator with
constant K ′ ≤ Kµ(Ω).

(2) If Y (µ) = L∞(µ) and µ is a σ-finite measure, then (5) gives that

‖T̂ (x)− T̂ (y)‖L∞(µ) ≤ Kd(x, y),

for all x, y ∈M , i.e., T̂ : M → L∞(µ) is a K-Lipschitz map.
(3) If Y (µ) = Lp(µ) and µ is a finite measure, then

‖T̂ (x)− T̂ (y)‖Lp(µ) ≤ Kµ(Ω)1/pd(x, y),

for all x, y ∈M , i.e., T̂ : M → Lp(µ) is a K ′-Lipschitz operator with
constant K ′ ≤ Kµ(Ω)1/p.

Corollary 3.4. Let S be a countable subset of a metric space (M,d) and
let µ be a finite measure. Let 1 ≤ p ≤ ∞. Consider a pointwise K-Lipschitz
µ-a.e. map T : S → Lp(µ).

Then T can be extended to M in such a way that the extension T̂ factors
through an inclusion-quotient 1-Lipschitz map j and a K ′-Lipschitz map
T : MT̂ → Lp(µ) with constant K ′ ≤ µ(Ω)1/pK, as

S ↪→M
T̂ //

j $$JJ
JJJ

JJJ
JJJ

Lp(µ),

MT̂

T

;;wwwwwwwww
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where (MT̂ , dT̂ ) is a complete metric space in which j(M) is dense, and dT̂
is the metric associated to the pseudo metric

dT̂ (x, y) :=
1

µ(Ω)1/pK

∥∥T̂ (x)− T̂ (y)
∥∥
Lp(µ)

, x, y ∈M.

Moreover, this extension/factorization is optimal in the sense of Theorem
2.2.

Proof. If T : S → Lp(µ) is a pointwise K-Lipschitz µ-a.e. map, we have

by Theorem 3.2 that there exists an extension T̂ : M → Lp(µ) of T that

is pointwise K-Lipschitz µ-a.e. Remark 3.3 gives that T̂ is also µ(Ω)1/pK-
Lipschitz, and so we can apply Lemma 2.1 and Theorem 2.2 to obtain the
result.

�

Let us mention here some particular facts regarding the reference papers
on spaces with an ∞-type metric structure that we have commented in
the introduction, that is C(K)-spaces, `∞, c0... Concretely, for the case
of discrete measure spaces the simplicity of the structure of measurable
sets provides direct ways of proving the existence of extension for Lipschitz
maps. In this case, µ-a.e. properties and pointwise properties coincide,
and we do not need any assumption on the cardinality of the set S. Also,
there are no restrictions regarding finiteness (σ-finiteness) of the measure.
Also, pointwise domination and norm domination are the same things in
these spaces. Both facts together allow to identify the µ-a.e. Lipschitz type
property used in Theorem 3.2 and the classical Lipschitz property. Let us
finish this section by illustrating these facts.

Remark 3.5. Let (M,d) be a metric space and I an index set. Let T :
S → `∞(I) be a K-Lipschitz map, where S ⊂ M . Then there exists an

extension T̂ : M → `∞(I) of T that is also a K–Lipschitz map.

Proof. Let us write (Ti)i∈I for the “coordinate decomposition” of T . Then

|Ti(x)− Ti(y)| ≤ ‖T (x)− T (y)‖∞ ≤ Kd(x, y),

for all x, y ∈ S and all i ∈ I. Consequently Ti : S → R is a Lipschitz map
with Lipschitz constant Lip(Ti) ≤ K. By the McShane–Whitney Theorem,

there exists a Lipschitz map T̂i : M → R such that T̂i|S ≡ Ti and Lip(T̂i) =
Lip(Ti) ≤ K. Fix x0 ∈ S and let x ∈M . Then

|T̂i(x)| ≤ |T̂i(x)− T̂i(x0)|+ |Ti(x0)| ≤ Kd(x, x0) + ‖T (x0)‖`∞(I).

Thus (T̂i(x))i∈I ∈ `∞(I). Define T̂ : M → `∞(I) by T̂ (x) = (T̂i(x))i∈I . Note

that T̂ |S ≡ T and

|T̂i(x)− T̂i(y)| ≤ Kd(x, y),
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for all x, y ∈M and all i ∈ I. We have shown that T̂ is a K ′–Lipschitz map
with constant K ′ ≤ K. However K = K ′ as T̂ is an extension of T . �

4. Measure-type domination and extension properties for
Bfs-valued Lipschitz maps

In this section we study extension of maps satisfying Lipschitz-type dom-
inations that involve measure-type theoretical elements. We restrict our
attention to the case of operators whose range is a Banach function space,
a particular case of the metric function spaces that have been considered
in the previous section. In order to formalize the measure theoretical no-
tions that are needed, we will introduce a set function φ in the domination
equation. Let (Ω,Σ, µ) be a finite measure space and let Y (µ) be a Banach
function space. Consider a subset S of a metric space (M,d).

Definition 4.1. Let φ : Σ → R+ be an increasing bounded set function,
that is, a set function satisfying that for every A,B ∈ Σ such that B ⊆ A,
φ(B) ≤ φ(A), and supA∈Σ φ(A) < ∞. We say that a Lipschitz map T :
M → Y (µ) is φ-Lipschitz if

‖(T (x)− T (y))χA‖Y (µ) ≤ φ(A)d(x, y)

for all x, y ∈M and all A ∈ Σ.

The main examples in this section are related to functions φ that are
given by norms of Banach function spaces Z(µ) over the same measure µ.
That is, we will consider functions φ as

φ(A) := K‖χA‖Z(µ), A ∈ Σ,

for a constant K > 0, that is supposed to be minimal as usual. We will say
in this case that T is a Z-Lipschitz map with constant K from M to Y (µ)
. In particular, if Z(µ) = L1(µ) and φ(A) = ‖χA‖L1(µ) = µ(A), A ∈ Σ,
we will say that T : M → Y (µ) is µ-Lipschitz with constant K if there is
K ′ > 0 such that

‖(T (x)− T (y))χA‖Y (µ) ≤ K ′‖χA‖L1(µ)d(x, y)

for all x, y ∈M and all A ∈ Σ, and K is the infimum of such constants.
Note that φ is bounded when the measure µ is finite, which will be a

natural assumption through this section. We will need also some measure-
related notions.

Definition 4.2. Let Y (µ) be a Banach function space and ν : Σ → R a
countably additive measure. We define the Y -variation of ν by

|ν|Y := sup∑n
i=1 αiχAi∈BY ′

∣∣∣ n∑
i=1

αiν(Ai)
∣∣∣.
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The reader can find some applications of this notion for general vector
measures in [4, §4] (see also [3] and the references therein for more informa-
tion about).

Remark 4.3. The space L1(µ) can be endowed with the norm given by the
semivariation of the measure that defines each function in it. Indeed, take
f ∈ L1(µ) and consider the measurable set

Af = {w ∈ Ω : f(w) > 0}

and the set Acf = Ω \ Af . Then

‖f‖L1(µ) =

∫
Af

fdµ−
∫
Acf

fdµ ≤ 2 max
{∫

Af

fdµ,

∫
Acf

−fdµ
}

≤ 2 sup
A∈Σ

∣∣∣ ∫
A

fdµ
∣∣∣ ≤ 2‖f‖L1(µ).

In the next result, we will use the equivalent norm ‖ ·‖L1(µ),0, that is defined
as

‖f‖L1(µ),0 := sup
A∈Σ

∣∣∣ ∫
A

fdµ
∣∣∣, f ∈ L1(µ).

We have just proved that ‖ · ‖L1(µ) ≤ 2‖ · ‖L1(µ),0 ≤ 2‖ · ‖L1(µ).

Recall that, if ν is a finite (real) measure, its semivariaton (in Ω) is defined
by

|‖ν‖| = sup
B∈Σ
|ν(B)|,

and its variation by |ν| = supg∈BL∞ (ν) |
∫
gdν|.

Proposition 4.4. Let M be a metric space and let S be a subset of M .
Let φ : Σ → R+ be an increasing and bounded set function. Suppose that
T : S → L1(µ) —where L1(µ) is endowed with the norm ‖ · ‖L1(µ),0– is a
φ-Lipschitz map. The following statements hold.

(1) Suppose that for each x ∈M the set function νx : Σ→ R given by

νx(A) := sup
y∈S

{∫
A

T (y)dµ− φ(A)d(x, y)
}
, A ∈ Σ,

is a µ-continuous (countably additive) measure. Then T admits a
φ-Lipschitz extension to M into L1(µ).

(2) Conversely, if T can be extended to all the space M as a φ-Lipschitz
map, then for each x ∈M the set function

ν̂x(A) := sup
y∈M

{∫
A

T (y)dµ− φ(A)d(x, y)
}
, A ∈ Σ,
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is a µ-continuous (countably additive) measure. Moreover, in this
case

|‖ν̂x‖| = ‖T (x)‖L1(µ),0, |ν̂x| = ‖T (x)‖L1(µ), and |ν̂x(A)−ν̂y(A)| ≤ φ(A)d(x, y)

for all x, y ∈M and A ∈ Σ.

Proof. Let us prove (1). Let x ∈ M . Since νx is a (countably additive)
measure that is µ-continuous, we have by the Radon-Nikodym Theorem
that there is a function hx ∈ L1(µ) such that

∫
A
hxdµ = νx(A) for all

A ∈ Σ. Define T̂ (x) := hx for every x ∈ M. Let us first see that T̂ is an
extension of T . Take x ∈ S. Clearly∫

A

T (x) dµ ≤ νx(A) =

∫
A

hx dµ, A ∈ Σ.

To see the converse inequality, for any y ∈ S we have∣∣∣ ∫
A

T (y)dµ−
∫
A

T (x)dµ
∣∣∣ ≤ ∥∥(T (y)− T (x))χA

∥∥
L1(µ)

≤ φ(A)d(x, y),

and so ∫
A

T (y)dµ−
∫
A

T (x)dµ ≤ φ(A)d(x, y),

what implies ∫
A

T (y)dµ− φ(A)d(x, y) ≤
∫
A

T (x)dµ.

Then,

νx(A) = sup
y∈S

{∫
A

T (y)dµ− φ(A)d(x, y)
}
≤
∫
A

T (x)dµ.

Hence, from both inequalities,∫
A

hx dµ =

∫
A

T (x) dµ

for all A ∈ Σ. Thus, T̂ (x) = hx = T (x) µ-a.e., for all x ∈ S.

Now we need to prove that the extension T̂ , is φ-Lipschitz. Let x, y ∈M.
Fix A ∈ Σ. Then,∥∥(T (x)−T (y))χA

∥∥
L1(µ),0

≤ sup
Σ3B⊆A

∣∣ ∫
B

T̂ (x)dµ−
∫
B

T̂ (y)dµ
∣∣ = sup

Σ3B⊆A

∣∣νx(B)−νy(B)
∣∣

= sup
Σ3B⊆A

(
sup
z∈S

{∫
B

T (z)dµ−φ(B)d(x, z)
}
−sup
v∈S

{∫
B

T (v)dµ−φ(B)d(y, v)
})

≤ sup
Σ3B⊆A

(
sup
w∈S

{∫
B

T (w)dµ− φ(B)d(x,w)−
∫
B

T (w)dµ− φ(B)d(y, w)
})

= sup
Σ3B⊆A

sup
w∈S

φ(B)(d(y, w)− d(x,w)) ≤ φ(A) d(x, y).



EXTENSION OF LIPSCHITZ-TYPE OPERATORS 15

Therefore, the extension given is φ-Lipschitz too.
For part (2), fix x ∈M. Since we have that T is defined in all M, we also

have that for A ∈ Σ

ν̂x(A) = sup
y∈M

{∫
A

T (y)dµ−φ(A)d(x, y)
}
≥
∫
A

T (x)dµ−φ(A)d(x, x) =

∫
A

T (x)dµ.

On the other hand, for every y ∈M we have also that∣∣∣ ∫
A

T (y)dµ−
∫
A

T (x)dµ
∣∣∣ ≤ φ(A)d(x, y),

and so ∫
A

T (y)dµ−
∫
A

T (x)dµ ≤ φ(A)d(x, y),

what implies for all y ∈M∫
A

T (y)dµ− φ(A)d(x, y) ≤
∫
A

T (x)dµ.

Therefore,

ν̂x(A) = sup
y∈M

{∫
A

T (y)dµ− φ(A)d(x, y)
}
≤
∫
A

T (x)dµ.

Consequently, ν̂x(A) =
∫
A
T (x)dµ for all A ∈ Σ. A simple look to the

definition of the semivariation shows that |‖ν̂x‖| = ‖T (x)‖L1(µ),0. Since by
hypothesis T (x) ∈ L1(µ), we have indeed that νx is a countably additive
measure. Moreover,

|ν̂x|L1(µ) = sup
g∈BL∞(µ)

∣∣∣∣∫ gdν̂x

∣∣∣∣ = sup
g∈BL∞(µ)

∣∣∣∣∫ gT (x)dµ

∣∣∣∣ = ‖T (x)‖L1(µ).

Finally, if y ∈M and A ∈ Σ, we also have

|ν̂x(A)−ν̂y(A)| =
∣∣∣∣∫
A

T (x)dµ−
∫
A

T (y)dµ

∣∣∣∣ ≤ ‖(T (x)−T (y))χA‖L1(µ) ≤ φ(A)d(x, y).

�

Remark 4.5. The main situation where Proposition 4.4 can be applied, is
given for functions φ defined by means of a norm associated to the space
L1(µ). There are two canonical cases.

(1) The case φ1(A) := Kµ(A), that is, φ1(A) := K‖χA‖L1(µ), A ∈ Σ,
for some constant K > 0; the extension provided by Proposition 4.4
preserves the average variation, that is, the original T satisfies that
is φ1-Lipschitz, i.e., T is µ-Lipschitz, if and only if

sup
A∈Σ, µ(A)>0

‖(T (x)− T (y))χA‖L1(µ)

µ(A)
≤ Kd(x, y), x, y ∈M.
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(2) The “dual” case that consists of considering the function given by
φ∞(A) := K‖χA‖L∞(µ) = K, for a constant K > 0, and for all
A ∈ Σ such that µ(A) > 0, and 0 otherwise. This gives the classical
Lipschitz property. Indeed, T is φ∞-Lipschitz if and only if

‖T (x)−T (y)‖L1(µ) = sup
A∈Σ
‖(T (x)−T (y))χA‖L1(µ) ≤ φ∞(A)d(x, y) = Kd(x, y),

for x, y ∈ M . That is, the original requirement for T is that it is
Lipzchitz with constant K. Note that for x ∈M, the function νx is
given in this case by

νx(A) = sup
y∈S

{∫
A

T (y)dµ−Kd(x, y)
}
, A ∈ Σ.

Let us show in the next result how we can adapt the extension given in
Proposition 4.4 for operators having values in a general Banach function
space Y (µ).

Theorem 4.6. Let µ be a finite measure. Let Y (µ) be an order continuous
Banach function space such that simple functions are dense in its dual. Let
(M,d) be a metric space and S ⊂M and let T : S → Y (µ) be a µ-Lipschitz
map with constant K. Suppose that for every x ∈ M, the set function
νx : Σ→ R given by

νx(A) := sup
y∈S

{∫
A

T (y)dµ−Kµ(A)d(x, y)
}
,

is a µ-continuous (countably additive) measure with finite Y -variation. Then
T admits a Y -Lipschitz extension with constant K to M into Y (µ).

Proof. By the Radon-Nikodym theorem, there is an integrable function hx
such that νx(A) =

∫
A
hxdµ for every A ∈ Σ. Since νx has finite Y -variation

and taking into account that Y (µ) is order continuous and simple functions
are dense in the dual, we have that

|νx|Y = sup∑n
i=1 αiχAi∈BY ′

∣∣∣ n∑
i=1

αiνx(Ai)
∣∣∣ = sup

g∈BY ′
|
∫
hxgdµ| <∞.

Therefore, hx ∈ Y (µ) and ‖hx‖Y (µ) = |νx|Y . Since µ is a finite measure,

Y (µ) is contained in L1(µ). Then, as T : S →  L1(µ) is µ-Lipschitz with
constant K, we can apply Proposition 4.4 (1) (taking φ(A) = Kµ(A), A ∈
Σ) and consider the extension T̂ (x) := hx for every x ∈M given in its proof.

Let us prove that T̂ is Y -Lipschitz with constant K. Let x, y ∈M. Then

‖(T (x)− T (y))χA‖Y (µ) = sup
g∈BY ′

|
∫
A

(hx − hy)gdµ|
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= sup
g=

∑n
i=1 αiχAi∈BY ′

∣∣∣ n∑
i=1

αi
(
νx(Ai ∩ A)− νy(Ai ∩ A)

)∣∣∣.
If we fix a norm one function g =

∑n
i=1 αiχAi ∈ BY ′ , we have that

sup
z∈S

(∫
Ai∩A
T (z) dµ−Kµ(Ai ∩ A)d(x, y)

)
−sup
v∈S

(∫
Ai∩A
T (v) dµ−Kµ(Ai ∩ A)d(y, v)

)
≤ sup

w∈S
Kµ(Ai ∩ A)(d(y, w)− d(x,w)) ≤ Kµ(Ai ∩ A)d(x, y).

Then, interchanging the role of x and y we get

sup
z∈S

(∫
Ai∩A
T (z) dµ−Kµ(Ai ∩ A)d(x, y)

)
−sup
v∈S

(∫
Ai∩A
T (v) dµ−Kµ(Ai ∩ A)d(y, v)

)
≤ Kµ(Ai ∩ A)d(x, y).

Hence,∣∣∣ n∑
i=1

αi
(
νx(Ai∩A)−νy(Ai∩A)

)∣∣∣ ≤ n∑
i=1

|αi|
∣∣∣ sup
z∈S

{∫
Ai∩A

T (z)dµ−Kµ(Ai∩A)d(x, z)
}

− sup
v∈S

{∫
Ai∩A

T (v)dµ−Kµ(Ai ∩ A)d(y, v)
}∣∣∣

≤
n∑
i=1

|αi|Kµ(Ai ∩ A)d(x, y) = ‖gχA‖L1(µ)Kd(x, y)

≤ ‖g‖Y ′(µ)‖χA‖YKd(x, y) ≤ K‖χA‖Y d(x, y).

Therefore, the extension given is Y -Lipschitz with constant K.
�

Remark 4.7. Some information about the converse can be also given in
this case. Let us show that, if T : M → Y (µ) is a Y -Lipschitz map with
constant K, then the set function νx given by

νx(A) = sup
y∈M

{∫
A

T (y)dµ−K‖χA‖Y d(x, y)
}
, A ∈ Σ,

for every x ∈ M is a countably additive measure with finite Y -variation.
Assume for the aim of simplicity that ‖χΩ‖Y ′ ≤ 1. Arguing as in the proof
of Proposition 4.4, suppose that T : M → Y (µ) is a Y -Lipschitz map with
constant K. Fix x ∈ M. Then we clearly have that for A ∈ Σ, νx(A) ≥∫
A
T (x)dµ. Taking into account that we are assuming that ‖χΩ‖Y ′ ≤ 1, for

every y ∈M we also have that∣∣∣ ∫
A

(T (y)− T (x))χΩdµ
∣∣∣ ≤ ‖(T (x)− T (y))χA‖Y ≤ K‖χA‖Y d(x, y),
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and so
∫
A
T (y)dµ−

∫
A
T (x)dµ ≤ K‖χA‖Y d(x, y). Therefore, we also obtain

in this case that

νx(A) = sup
y∈M

{∫
A

T (y)dµ−K‖χA‖Y d(x, y)
}
≤
∫
A

T (x)dµ.

Consequently, νx(A) =
∫
A
T (x)dµ for all A ∈ Σ. Since by hypothesis T (x) ∈

Y (µ) ⊆ L1(µ), we have indeed that νx is a countably additive measure.
Finally, note that we have that

|νx| ≤ sup
g∈BY ′

∫
T (x)gdµ ≤ ‖T (x)‖Y (µ) <∞,

and so for all x ∈M, νx has finite Y -variation.

Corollary 4.8. Let S be a subset of a metric space (M,d) and let µ be
a finite measure. Let Y (µ) be an order continuous Banach function space
such that simple functions are dense in its dual. Let T : S → Y (µ) be a
µ-Lipschitz map with constant K, and suppose that for every x ∈M, the set
function νx : Σ→ R given by

νx(A) := sup
y∈S

{∫
A

T (y)dµ−Kµ(A)d(x, y)
}
,

is a µ-continuous (countably additive) measure with finite Y -variation.
Then T can be extended to M as a K ′-Lipschitz map with constant K ′ ≤

K‖χΩ‖Y , and the extension T̂ factors through an inclusion-quotient 1-Lipschitz
map j and a K‖χΩ‖Y -Lipschitz map T : MT̂ → Y (µ) as

S ↪→M
T̂ //

j $$JJ
JJJ

JJJ
JJJ

Y (µ),

MT̂

T

<<xxxxxxxx

where (MT̂ , dT̂ ) is a complete metric space in which j(M) is dense, and dT̂
is the metric associated to the pseudo metric

dT̂ (x, y) :=
1

K‖χΩ‖Y
∥∥T̂ (x)− T̂ (y)

∥∥
Y (µ)

, x, y ∈M.

Moreover, this extension/factorization is optimal in the sense of Theorem
2.2.

Proof. If T : S → Y (µ) is a µ-Lipschitz map with constant K, by Theorem

4.6 we obtain an extension T̂ : M → Y (µ) of T that is Y -Lipschitz with

constant K. Then, it is easy to see that T̂ is also K‖χΩ‖Y -Lipschitz. Lemma
2.1 and Theorem 2.2 give the result.

�
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5. Interpolation tools for obtaining Lipschitz-type
inequalities for maps on Banach function spaces

To finish the paper, in this section we provide some interpolation tools
for generalizing the Lipschitz-type inequalities that have been studied in
the previous sections, in order to apply them in more general contexts. For
example, as we have seen, some results hold for operators on L∞ or L1. In-
terpolated inequalities for interpolation spaces of these “extreme cases” are
easy to be obtained, as we will show in what follows. We will consider two
cases: the lattice interpolation method —that under some mild require-
ments coincides in the case of Banach function spaces with the complex
interpolation method—, and the real interpolation of function lattices.

Through this section we will consider a finite measure space (Ω,Σ, µ) and
two bounded functions φi : Σ→ R+, i = 0, 1.

5.1. Calderón-Lozanowskii interpolation of function lattices and
Lipschitz-type maps. Let us recall the lattice interpolation construction.
Let Y0(µ) and Y1(µ) be Banach function spaces in L0(µ). Let 0 ≤ θ ≤ 1.
We define the set

Y0(µ)1−θ Y1(µ)θ

:= {x ∈ L0(µ) : there are functionsx0 ∈ Y0, x1 ∈ Y1 such that |x| ≤ |x0|1−θ|x1|θ}.
It is a linear space, that is complete with the norm

‖x‖Y 1−θ
0 Y θ1

:= inf ‖x0‖1−θ ‖x1‖θ,

where the infimum is computed over all dominations like the one above. In
fact, it is a Banach function space over µ that clearly contains Y0(µ)∩Y1(µ).

For the following result, consider the inclusion maps Iθ : Y0(µ)∩Y1(µ) ↪→
Y 1−θ

0 Y θ
1 , for θ ∈ [0, 1].

Proposition 5.1. Let Y0(µ) and Y1(µ) be Banach function spaces and let
M be a metric space. Consider a map T : M → Y0(µ) ∩ Y1(µ) such that
there are constants K0, K1 > 0 such that the maps Ti := Ii ◦T : M → Yi(µ),
i = 0, 1, satisfy the Lipschits inequalities

‖Ti(x)− Ti(y)‖Yi(µ) ≤ Ki d(x, y), x, y ∈M.

Then, for each θ ∈ (0, 1) the map Tθ : M → Y 1−θ
0 Y θ

1 given by Tθ := Iθ ◦T
is well defined and satisfies

‖Tθ(x)− Tθ(y)‖Y 1−θ
0 Y θ1

≤ K1−θ
0 Kθ

1 d(x, y), x, y ∈M.

Proof. The proof is given by a simple computation. All the maps involved
are clearly defined. Thus, taking into account that the elements T (x) are
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defined as functions of L0(µ) and so T0(x) = Tθ(x) = T1(x) ∈ L0(µ) for
every x ∈M, we have that for x, y ∈M,

|Tθ(x)− Tθ(y)| = |T0(x)− T0(y)|1−θ|T1(x)− T1(y)|θ,
and therefore

‖Tθ(x)−Tθ(y)‖Y 1−θ
0 Y θ1

≤ ‖T0(x)−T0(y)‖1−θ
Y0(µ)‖T1(x)−T1(y)‖θY1(µ) ≤ K1−θ

0 Kθ
1 d(x, y).

�

Remark 5.2. The same computations as above provide also the following
results for some of the cases that we have studied in the present paper. In
particular, using the same notation that in Proposition 5.1, we obtain

(a) For φ-Lipschitz maps. Assume that for i = 0, 1, φi are increasing set
functions such that

‖(Ti(x)− Ti(y))χA‖Yi(µ) ≤ φi(A) d(x, y) A ∈ Σ, x, y ∈M.

In this case, it can be easily seen that the map Tθ satisfies

‖(Tθ(x)− Tθ(y))χA‖Y 1−θ
0 Y θ1

≤ φ0(A)1−θφ1(A)θ d(x, y).

(b) For the case of pointwise K-Lipschitz µ-a.e. maps we get a similar
result. Assume that the following inequalities hold for i = 0, 1,

|Ti(x)− Ti(y)| ≤ Ki d(x, y) µ-a.e., x, y ∈M.

Then it can be easily seen that the mapping Tθ satisfies

|Tθ(x)− Tθ(y)| ≤ K1−θ
0 Kθ

1d(x, y) µ-a.e., x, y ∈M.

5.2. Real interpolation and Lipschitz-type inequalities. Interpolation-
type inequalities can also be obtained for our class of maps by using real
interpolation, concretely, the K-functional. We consider here the case when
M is also a Banach space with the metric associated to its norm, in order
to provide some results on φ-Lipschitz maps in the Banach space setting.
Let E = (E0, E1) be an interpolation couple of Banach spaces. For t > 0,
we consider the functional

K(t, a, E0, E1) = inf{‖a0‖0+t‖a1‖1 : a = a0+a1, a0 ∈ E0, a1 ∈ E1}, a ∈ E0+E1.

Let θ ∈ (0, 1) and p ∈ [1,∞). The interpolation space Eθ,p is defined to be
the set of all a ∈ E0 + E1 satisfying(∫ ∞

0

(t−θK(t, a, E0, E1))p
dt

t

) 1
p

<∞.

The norm on Eθ,p is given by

‖a‖θ,p =

(∫ ∞
0

(t−θK(t, a, E0, E1))p
dt

t

) 1
p

.
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Under some Lipschitz-type requirements for a map T : E1 → Y1(µ), we
obtain the following result, that provides a φ-Lipschitz type inequality at
least when T is linear.

Proposition 5.3. Let E0, E1 Banach spaces and Y0(µ) and Y1(µ) Banach
function spaces such that E0 ⊂ E1. Assume that the following E = (E0, E1)
and Y = (Y0(µ), Y1(µ)) are Banach couples. Let φi : Σ→ R+ be increasing
set functions, i = 0, 1. Suppose that T : E1 → Y1(µ) is a map satisfying the
following properties.

(a) T (E0) ⊂ Y0 and ‖T (x)χA‖Y0 ≤ φ0(A)‖x‖E0 for all A ∈ Σ and
x ∈ E0, and

(b) ‖(T (x)−T (y))χA‖Y1 ≤ φ1(A)‖x−y‖E1 for all A ∈ Σ and x, y ∈ E1.

Let θ ∈ (0, 1) and p ∈ [0,∞]. Then T : Eθ,p → Y θ,p is a well-defined
map, and

‖T (x)χA‖Y θ,p ≤ φ0(A)1−θφ1(A)θ‖x‖Eθ,p x ∈ Eθ,p and A ∈ Σ.

Proof. Given x ∈ E1 = E0 + E1, t > 0 and ε > 0, we choose xi ∈ Ei with
i = 0, 1 such that

‖x0‖E0 + t
φ1(A)

φ0(A)
‖x1‖E1 ≤ (1 + ε)K

(
t
φ1(A)

φ0(A)
, x;E0, E1

)
.

Writing T (x)χA = T (x0)χA + (T (x)− T (x0))χA, we have that

K (t, T (x)χA;Y0, Y1) ≤ ‖T (x0)χA‖Y0 + t‖(T (x)− T (x0))χA‖Y1
≤ φ0(A)‖x0‖E0 + tφ1(A)‖x− x0‖E1

≤ φ0(A)(1 + ε)K

(
t
φ1(A)

φ0(A)
, x;E0, E1

)
.

Therefore,

K (t, T (x)χA;Y0, Y1) ≤ φ0(A)K

(
t
φ1(A)

φ0(A)
, x;E0, E1

)
.

Besides that,

t−θK (t, T (x)χA;Y0, Y1) ≤ φ0(A)1−θφ1(A)θ
(
t
φ1(A)

φ0(A)

)−θ
K

(
t
φ1(A)

φ0(A)
, x;E0, E1

)
.

Consequently

‖T (x)χA‖Y θ,p ≤ φ0(A)1−θφ1(A)θ‖x‖Eθ,p .

�
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