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Optical Implementation of 2 × 2 Universal Unitary Matrix
Transformations

Andrés Macho-Ortiz,* Daniel Pérez-López, and José Capmany*

Unitary operations are a specific class of linear transformations that have
become an essential ingredient for the realization of classical and quantum
information processing. The ability of implementing any n-dimensional
unitary signal transformation by using a reconfigurable optical hardware has
recently led to the pioneering concept of programmable linear optical
processor, whose basic building block (BB) must be correctly designed to
guarantee that the whole system is able to perform n × n universal (i.e.,
arbitrary) unitary matrix transformations. Here, it is demonstrated that the
present architectures of the BB do not fulfil the universal unitary property (at
least) in 2 × 2 optical processors, limiting the number of unitary matrix
transformations that may be generated. Aiming to solve this fundamental
constraint, the theoretical tools required to analyze and design 2 × 2
universal unitary optical circuits and their corresponding BBs are presented.
The consequences of this mathematical framework are explored, obtaining a
simple route to implement different BB architectures, all of them
guaranteeing a true universal unitary functionality in the resulting 2 × 2
optical processors. These findings may pave the way to revisit the design of
high-dimensional unitary optical processors, unleashing the potential of
programmable integrated photonics technology.

1. Introduction

Unitary operators are linear transformations between complex
vector spaces which preserve the norm of the input vector.[1–4]

Such a kind of transformations have become a mathematical
tool of paramount importance in fundamental and applied re-
search, for instance, enabling the implementation of any linear
mapping in a simple and elegant fashion,[1,5] explaining underly-
ing aspects of quantummechanics (such as the unitary nature of
the time evolution of a particle in a closed Hermitian quantum
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system[6,7]) and offering an energy-
efficient scheme to perform signal
processing applications.[8–11]

In particular, in recent years, uni-
tary signal processors have experienced
an increasing interest within the scope
of programmable integrated photonics
(PIP), since basic optical devices such
as directional couplers (DCs), multi-
mode interferometers (MMIs) and phase
shifters (PSs) inherently induce analog
unitary transformations in the electro-
magnetic waves (regardless of their clas-
sical or quantum nature), provided that
the insertion loss of such devices is
negligible.[12–14] In this vein, PIP has
emerged as an entire new field of re-
search in classical and quantum infor-
mation processing, bringing the promise
of alleviating the saturation of Moore’s
law in electronics and leading to a suit-
able platform to implement neuromor-
phic and quantum computation using
current technology.[11,14]

In this context, a myriad of works have
been reported motivated by the idea of

proposing a unique optical hardware, the so-called pro-
grammable linear optical processor, which must be able to
generate any n-dimensional unitary transformation (an in-
dispensable piece to implement any multidimensional linear
mapping via the singular value decomposition).[5,11,14–16] This
requires, as a necessary and sufficient condition, that the transfer
function of the system Tn is an n × n arbitrary (or universal)
unitary matrix, that is, the U(n) Lie group (an algebraic group
composed by all the n × n unitary matrices along with the matrix
multiplication operation[2,3]) must be completely described by
Tn when varying the value of its entries (encoded by param-
eters) in the complex plane.[2–4,17] Along this line, since the
proposed architectures of Tn are constructed by combining
basic building blocks (BBs), which perform 2 × 2 unitary
transformations,[15,16,18–21] it is of capital importance a correct
design and implementation of this system (also termed in the
literature as unit cell,[19,22,23] programmable photonic analog
block[14,24] or reconfigurable beamsplitter[25]) to guarantee the
universal unitary property in Tn for any n ≥ 2 (however,
note that the BB does not have to perform universal unitary
transformations by itself[20,21,25]).
In this work, it is shown that the existing architectures of the

BB[16,19–23,25–34] lead to optical processors which do not satisfy the
unitary universality (at least) for the case n = 2. To overcome this
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Figure 1. 2 × 2 universal unitary optical processor. Two (classical or quantum) optical wave packets A1 and A2 at the input waveguides may be linearly
transformed into any pair of optical wave packets B1 and B2 at the output waveguides with the same global energy as that of the input via the relation
(B1, B2)

T = T2 (A1, A2)
T, with the system transfer function T2 being an arbitrary matrix of U(2) (the yellow lines represent the matrix nature of the

transformation). Since the system input eA = A1ê1,⟂ + A2ê2,⟂ and the system output eB = B1ê1,⟂ + B2ê2,⟂ can always be illustrated as two different
points on the surface of the Bloch sphere, T2 must be able to induce any (no observable) global phase shifting 𝛿 along with a rotation of an angle
𝛼 around an arbitrary unit vector n̂ which allows us to move from eA to eB, i.e., T2 ≡ ej𝛿Rn̂(𝛼). Given that the arbitrary nature of n̂ hampers the direct
implementation of Rn̂(𝛼) (red arrow) usingmainstream integrated optical devices (PSs, DCs andMMIs), we take advantage of the Euler rotation theorem
(Equation (2)) to describe Rn̂(𝛼) as a concatenation of three rotations around two specific unit vectors r̂1, r̂2 ∈ ℝ3 (a particular example is depicted taking
r̂1 = ẑ and r̂2 = ŷ , see blue arrows).

fundamental restriction, we dig into the foundations of the U(2)
group to analyze and design compact 2 × 2 universal unitary
optical circuits and their corresponding BBs. To further unfold
the potential of our results, we also uncover the minimal circuit
architecture of the BB, defined as the BB implementation requir-
ing the lowest number of basic devices.

2. Preliminary Concepts: 2 × 2 Universal Unitary
Matrix Transformations

As illustrated inFigure 1, a 2 × 2 universal unitary optical proces-
sor is a system which linearly transforms two (classical or quan-
tum) optical wave packets A1 and A2 at the system input into any
pair of optical wave packets B1 and B2 at the system output with
the same global energy as that of the input via the matrix relation
(B1, B2)

T = T2 (A1, A2)
T, with the system transfer function T2 be-

ing an arbitrary matrix of U(2) (the superscript T accounts for the
matrix transposition).
In complete analogy with a path-encoded quantum bit where

the standard states |0⟩ and |1⟩ may be respectively identified
with the unit vectors ê1,⊥ and ê2,⊥ of Figure 1 (which account
for the transverse direction of the electric field strength prop-
agated by the upper and lower waveguides), the system input

eA = A1 ê1,⊥ + A2ê2,⊥ and the system output eB = B1 ê1,⊥ + B2ê2,⊥
can always be illustrated as two different points on the surface
of the Bloch sphere (also known as Poincaré sphere in classi-
cal polarization optics, although here there is no connection be-
tween the Cartesian axes of the Bloch sphere and the state-of-
polarization of light. The wave packets are always located in ê1,⊥
and ê2,⊥).
Consequently, T2 is an arbitrary matrix of U(2) if and only if T2

can perform a complete description of the surface of the Bloch
sphere and may induce any global phase shifting in A1,2 (no ob-
servable in the Bloch sphere). Mathematically, this necessary and
sufficient condition can be written as [7,35]

T2 = ej𝛿 Rn̂ (𝛼) = ej𝛿
(
cos 𝛼

2
− jnz sin

𝛼

2
−
(
ny + jnx

)
sin 𝛼

2(
ny − jnx

)
sin 𝛼

2
cos 𝛼

2
+ jnz sin

𝛼

2

)
, (1)

where 𝛿 ∈ [0, 2𝜋) is the global phase shifting andRn̂(𝛼) is amatrix
that allows us to move between two arbitrary points of the Bloch
sphere (from eA to eB) by performing a rotation of an angle 𝛼 ∈
[0, 2𝜋] around an arbitrary unit vector n̂ = nx x̂ + nyŷ + nzẑ, with
nx,y,z ∈ [−1, 1]. In line with the dimension of U(2) (dimU (2) =
4),[3] T2 is a parametric unitary matrix encompassing
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Figure 2. Building blocks (BBs) proposed in the PIP literature. a) BB architecture reported in refs. [26–31] and corresponding SU(2) processor.[30] b) BB
architecture reported in refs. [16,19–23,25,32–34] and resulting SU(2) processor.[25,34] The rotations of the Bloch sphere that cannot be generated by each
SU(2) processor are inset at the right of the figures.

4 independent real parameters (degrees of freedom): 𝛿, 𝛼

and two components of n̂ (the three components cannot be
independent parameters since n̂ must satisfy the normalization
condition |n̂|2 = n2x + n2y + n2z = 1).
Unfortunately, the arbitrary nature of n̂ hampers the direct im-

plementation of T2 using mainstream integrated optical devices
(PSs, DCs, and MMIs). This technological difficulty can be cir-
cumvented by taking advantage of the Euler rotation theorem,
which states that Rn̂(𝛼) can be factorized as a concatenation of
three rotations around two specific unit vectors r̂1, r̂2 ∈ ℝ3 which
must be linearly independent or, equivalently, nonparallel (note
that the orthogonality is a particular case of such condition) [7,35,36]

Rn̂ (𝛼) = Rr̂1

(
𝛼3
)
Rr̂2

(
𝛼2
)
Rr̂1

(
𝛼1
)
. (2)

Now, the four independent real parameters of T2 are encoded
in 𝛿 and the angles 𝛼1,2,3 ∈ [0, 2𝜋]. As shown below, selecting ad-
equate values in r̂1 and r̂2, we will be able to implement T2 using
PSs, DCs and MMIs (the implementation of each degree of free-
dom may require more than one basic device).
In the next sections, we will restrict the analysis of the uni-

tary universality to SU(2), a Lie subgroup of U(2) exclusively in-
cluding the 2 × 2 unitary matrices with determinant equal to
1.[2,3] Remarkably, this will allow us to: i) simplify the discussion
of the 2 × 2 optical processors reported in previous works to
demonstrate that the unitary universality is not hold,[16,19–23,25–34]

and ii) uncover compact architectures of universal U(2) proces-
sors in Section 4. Specifically, the restriction to SU(2) can be
done by excluding the term ej𝛿 in T2. In such circumstances,
T2 = Rr̂1

(𝛼3)Rr̂2
(𝛼2)Rr̂1

(𝛼1) and a set of three independent real pa-
rameters {𝛼1, 𝛼2, 𝛼3} are only required to perform a complete de-
scription of SU(2) (matching to the dimension of this subgroup,
dimSU (2) = 3).[3] For completeness, in Section S1 (Supporting
Information) we include alternative strategies to analyze the uni-
versal unitary property in a parametric matrix of SU(2).

On the other hand, bearing in mind that the optical cir-
cuits associated to two different SU(2) systems (e.g., T (i)

2 =
Rr̂1

(𝛼3)Rr̂2
(𝛼2)Rr̂1

(𝛼1) and T
(ii)
2 = Rr̂1

(𝛼6)Rr̂2
(𝛼5)Rr̂1

(𝛼4)) can be cas-
caded by describing the transformationsRr̂1

(𝛼4) andRr̂1
(𝛼3) using

a single rotation matrix Rr̂1
(𝛼4 + 𝛼3) in the matrix multiplication

T (ii)
2 T (i)

2 (while the other four rotations remain invariant), the BB
of a universal SU(2) processor can be defined via the following
transfer function

TB := Rr̂2

(
𝛼2
)
Rr̂1

(
𝛼1
)
. (3)

In this way, the final Rr̂1
transformation of Equation (2) may be

employed to connect the BBs of adjacent SU(2) systems, provid-
ing simultaneously the input and output rotations required by
their corresponding T2 matrices (the same definition of TB can
also be extrapolated to a more general scenario where the BBs
are connected in a mesh configuration to construct n × n optical
processors with n > 2, as discussed in Section 5).

3. Existing Proposals of the Building Block

Basically, two popular optical architectures of the BB have been
proposed in the state of the art, sketched in Figure 2.[16,19–23,25–34]

Both structures are composed by fixed couplers (MMIs or sym-
metric DCs) and PSs. Each coupler implements a perfect 50:50
beamsplitter and each PS encodes a tunable real parameter of
the BB transfer function. Considering only forward propagation
(from left to right) and assuming negligible wave reflection, the
following unitary matrices (𝜙, 𝜃 ∈ [0, 2𝜋])

TBa = jej(
𝜙+𝜃
2 )

⎛⎜⎜⎝
− sin

(
𝜙−𝜃
2

)
cos

(
𝜙−𝜃
2

)
cos

(
𝜙−𝜃
2

)
sin

(
𝜙−𝜃
2

)⎞⎟⎟⎠ , (4)
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TBb = jej
𝜃

2

(
ej𝜙 sin 𝜃

2
ej𝜙 cos 𝜃

2

cos 𝜃

2
− sin 𝜃

2

)
, (5)

are the transfer functions of the BBs shown in Figure 2a,b, re-
spectively (see Section S2 in the Supporting Information).
The simplest unitary optical processor that may be built from

each BB with the aim of performing universal SU(2) transforma-
tions is also depicted in Figure 2. In the former case (Figure 2a),
the SU(2) processor is implemented by its ownBBwithout resort-
ing to other additional elements, as reported in ref. [30] In the lat-
ter case (Figure 2b), one PS must be added at the input of the BB
to implement universal SU(2) operations, as explicitly indicated
in ref. [25,34] (although in ref. [16] it is suggested that the additional
PS must be included at the output of the BB, note that the same
SU(2) processor is finally found because of its BB is the reversal
version of the BB illustrated in Figure 2b). Accordingly, the corre-
sponding transfer functions T2a(b) of the above SU(2) systems are
found to be T2a = TBa and T2b = ej𝛾∕2 TBbRẑ(±𝛾), with 𝛾 ∈ [0, 2𝜋]
and the sign− (+) when the additional PS encoding the 𝛾 parame-
ter is integrated in the upper (lower) path, see Figure 2b and Sec-
tion S2 in the Supporting Information. In the following, let us
analyze if T2a and T2b are arbitrary matrices of the SU(2) group.
It is straightforward to demonstrate that T2a is not an arbi-

trary matrix of SU(2) because the number of real parameters
in T2a is 2, lower than the number of independent real param-
eters required by the dimension of SU(2). This reason directly
precludes the universal unitary property in the optical circuit
shown in Figure 2a. Using the Euler rotation theorem, we can
find specific rotations of the Bloch sphere that cannot be gener-
ated with T2a. For instance, performing the factorization T2a =
ej(𝜙+𝜃)∕2 Rx̂(−𝜋∕2)Rẑ(𝜙 − 𝜃)Rx̂(−𝜋∕2), we observe that the rota-
tions around the x-axis of the Bloch sphere are fixed to a specific
angle (−𝜋∕2 rad) and, consequently, we may infer that there exist
Rx̂ transformations that cannot be generated, e.g., Rx̂ (2𝜋) = −I,
where I is the identity matrix.
Contrariwise, T2b is parametrized with the number of degrees

of freedom ({𝛾 , 𝜃,𝜙}) required by the dimension of SU(2). How-
ever, note that this is a necessary, but not a sufficient condition
to guarantee the unitary universality because of such degrees of
freedommust independently account for three arbitrary rotations
of the Bloch sphere obeying the relation given by Equation (2).
Along this line, the following noteworthy features of T2b should
be taken into consideration when the PS encoding the 𝛾 param-
eter is added at the upper input of the BB:

1) Since det(T2b) = ej(𝜙+𝜃+𝛾) ≠ 1, T2b ∉ SU(2). Therefore, we
must impose the additional condition𝜙 + 𝜃 + 𝛾 = 2𝜋m (m ∈
ℤ) on the set of parameters {𝛾 , 𝜃,𝜙} to generate SU(2) trans-
formations. As a consequence, the number of degrees of free-
dom in T2b is reduced from 3 to 2, lower than the ones re-
quired by the group dimension. Here, we find the first proof
which indicates that T2b is not an arbitrary matrix of SU(2).
Likewise, it should be noted that an external synchronization
is required to guarantee that the PSs associated to 𝛾 , 𝜃 and 𝜙

fulfill the aforementioned condition.
2) Taking 𝛾 = 2𝜋m − 𝜃 − 𝜙, then it follows that T2b =

Rẑ (−𝜙 − 𝜋)Rŷ(𝜃 − 𝜋)Rẑ(𝜙 + 𝜃), with 𝛼3 ≡ −𝜙 − 𝜋, 𝛼2 ≡ 𝜃 − 𝜋

and 𝛼1 ≡ 𝜙 + 𝜃 being the rotation angles (see Section S2

in the Supporting Information). Since 𝛼1 = 𝛼2 − 𝛼3, T2b
does not encode three independent rotation angles, as
required by the Euler rotation theorem. This implies that
T2b cannot completely describe the SU(2) group. Specifi-
cally, T2b cannot generate an arbitrary rotation around the
z-axis of the Bloch sphere. In a universal SU(2) matrix
of the form Rẑ(𝛼3)Rŷ(𝛼2)Rẑ(𝛼1), with three independent
arbitrary rotation angles, we will be able to generate any
rotation around the z-axis by taking 𝛼2 = 0 given that
Rẑ(𝛼3)Rŷ(0)Rẑ (𝛼1) = Rẑ (𝛼3)Rẑ (𝛼1) = Rẑ (𝛼3 + 𝛼1). In this
way, varying the values of 𝛼1 and 𝛼3, we will generate in-
finite different Rẑ transformations. Nonetheless, setting
𝛼2 = 0 (𝜃 = 𝜋) in T2b, we obtain a single Rẑ transformation:
T2b = Rẑ (−𝜙 − 𝜋)Rẑ (𝜋 + 𝜙) = Rẑ (0) = I. Hence, there exist
rotations around the z-axis that cannot be described by T2b,
e.g., Rẑ (2𝜋) = − I. The same results can equivalently be
validated by means of two different ways: i) verifying that
T2b cannot be restated as a rotation matrix of the Bloch
sphere Rn̂(𝛼) around an arbitrary unit vector n̂ ∈ ℝ3, (ii)
demonstrating that the corresponding Lie algebra 𝔰𝔲(2) is
not completely generated when applying the logarithmic
mapping to T2b, see Section S2 (Supporting Information) for
more details.

Alternatively, as commented above, the PS associated to 𝛾 may
be integrated in the lower input of the BB. This scenario gives
rise to similar conclusions to those of the above system. In such
circumstances, wemust also impose the samemathematical con-
dition on the set of parameters of T2b to induce SU(2) transfor-
mations (𝜙 + 𝜃 + 𝛾 = 2𝜋m,m ∈ ℤ), reducing the number of de-
grees of freedom from 3 to 2 and, therefore, being inviable to
generate specific SU(2) transformations, in particular, arbitrary
rotations around the y-axis (see Section S2 in the Supporting
Information).
So far, we have extensively discussed the main architectures of

the BB reported in previous works, demonstrating that they lead
to SU(2) processors where the unitary universality is not hold. In
the next subsection, we will provide a simple route to overcome
this fundamental constraint.

4. Universal SU(2) Optical Processor and Building
Block

Taking a closer look at Equations (2) and (3), two interesting re-
marks can be inferred. First, note that an infinite number of
different 2 × 2 universal unitary processors and BBs may be
constructed by taking different rotation vectors r̂1, r̂2. Each dupla
(r̂1, r̂2) will lead to an explicit architecture of the universal uni-
tary processor and the BB, which will differ from other possible
schemes in the number and the kind of integrated basic devices.
Second, observe that there is a one-to-one correspondence be-
tween T2 and TB once the rotation vectors are selected. Hence,
the design of the BB suffices to specify the optical circuit of the
universal U(2) (or SU(2)) processor based on the same rotation
vectors.
In order to uncover a compact implementation of the BB, we

will use the following design criteria: i) we must select rotation
vectors which give rise to an optical circuit of the rotation matri-
ces Rr̂1

(𝛼1) and Rr̂2
(𝛼2) encompassing the lowest number of basic
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Figure 3. Optical circuits of the basic rotation matrices of the Bloch sphere. a) Architecture of Rx̂(𝛼) based on a tunable synchronous DC (the PSs
integrated in its arms must induce the same effective index modulation in the fundamental mode of each waveguide). b) Architecture of Rẑ(𝛼) using
two PSs integrated in parallel uncoupled waveguides. c) Architecture of Rŷ(𝛼) built from the concatenation of the Rx̂ and Rẑ transformations using the
two possibilities provided by the Euler rotation theorem (Equation (2)).

devices (N), ii) these basic devices must perform unitary signal
operations and must be highly compactable and scalable in inte-
grated photonics using current technology. The resulting scheme
of the BB fulfilling the above criteria will be referred to as the
minimal circuit architecture (MCA).
Basic optical devices satisfying the second criterion are PSs,

DCs and MMIs, whose transfer matrices may induce rotations
around the Cartesian axes of the Bloch sphere, as detailed below.
Accordingly, the natural option to design the BB-MCA is r̂1, r̂2 ∈
{x̂, ŷ, ẑ}.
Therefore, before delving into the specific structure of the BB-

MCA, we should first discuss the optical implementation of the
basic rotation matrices Rx̂(𝛼), Rŷ(𝛼) and Rẑ(𝛼), defined as

[7,36]

Rx̂ (𝛼) :=

(
cos 𝛼

2
−j sin 𝛼

2

−j sin 𝛼

2
cos 𝛼

2

)
, Rŷ (𝛼) :=

(
cos 𝛼

2
− sin 𝛼

2

sin 𝛼

2
cos 𝛼

2

)
,

Rẑ (𝛼) :=

(
e−j

𝛼

2 0

0 ej
𝛼

2

)
. (6)

The matrix Rx̂(𝛼) can be implemented by using a tunable syn-
chronous DC, with PSs integrated in its arms which allow us
to change the mode-coupling coefficient 𝜅 of the DC inducing
the same effective index modulation in the fundamental mode
of each waveguide. The rotation angle 𝛼 may be controlled via
𝜅 (𝛼 = 2𝜅L, where L is the length of the PSs, see Chapter
2 of ref. [14] for a more technical discussion about the tunable
DC). Hence, the number of basic devices required to implement
Rx̂(𝛼) is Nx̂ = 3 (1 DC and 2 PSs, see Figure 3a). Furthermore,

the matrix Rẑ(𝛼) is the transfer function of a system composed
by two parallel uncoupled waveguides, each of which integrates
a PS inducing a phase shifting of ±𝛼∕2 rad in the optical sig-
nals. Thus, Rẑ(𝛼) requires Nẑ = 2 basic devices (2 PSs, see Fig-
ure 3b). Finally, Rŷ(𝛼) can be built by concatenating the Rx̂ and Rẑ
transformations using Equation (2) in two distinct ways: Rŷ (𝛼) =
Rx̂ (𝜋∕2)Rẑ(−𝛼)Rx̂(−𝜋∕2) and Rŷ (𝛼) = Rẑ (𝜋∕2)Rx̂(𝛼)Rẑ(−𝜋∕2).
The former can be implemented by means of two 50:50 beam-
splitters to induce the Rx̂(±𝜋∕2) transformations (using MMIs
or symmetric DCs) and 2 PSs to generate the Rẑ(−𝛼) matrix
(Nŷ = 2 + 2 = 4). The latter requires 4 PSs to perform the
Rẑ(±𝜋∕2) transformations along with the optical circuit shown
in Figure 3a to produce the Rx̂(𝛼) matrix (Nŷ = 4 + Nx̂ = 7). As
seen in Figure 3c, the former factorization encompasses a lower
Nŷ but the latter leads to the most compact architecture of Rŷ(𝛼)
because of only a single coupler is required.
Once we have discussed the optical implementation of the ba-

sic rotation matrices, let us retrieve the initial goal of this sub-
section: the design of the BB-MCA. In line with the first de-
sign criterion indicated above, we must select rotation vectors
r̂1, r̂2 ∈ {x̂, ŷ, ẑ} which give rise to a BB architecture integrating
the lowest number of basic devices (N = Nr̂1

+ Nr̂2
). Therefore,

it is straightforward to infer that the most compact design of the
BB requires to select r̂1 = ẑ and r̂2 = x̂ , with N = Nẑ + Nx̂ = 5.
Figure 4a depicts the optical circuit of the BB-MCA, whose trans-
fer function is given by the matrix:

TB = Rx̂

(
𝛼2
)
Rẑ

(
𝛼1
)
=
⎛⎜⎜⎝
e−j

𝛼1
2 cos 𝛼2

2
−jej

𝛼1
2 sin 𝛼2

2

−je−j
𝛼1
2 sin 𝛼2

2
ej

𝛼1
2 cos 𝛼2

2

⎞⎟⎟⎠ . (7)
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Figure 4. BB-MCA and universal SU(2) and U(2) optical processors. a)
Scheme of the BB-MCA and resulting universal SU(2) processor. b) Uni-
versal U(2) processor built from the SU(2) system depicted in (a). The
PSs encoding 𝛿 can equivalently be integrated along with the PSs which
perform the Rẑ(𝛼3) transformation at the output of the BB-MCA. c) BB ar-
chitecture based on 50:50 beamsplitters (implemented via symmetric DCs
or MMIs), constructed by using the optical circuit of Rŷ(𝛼) shown in the
top of Figure 3c to perform the second rotation required by Equation (3).

The architecture of the universal SU(2) processor is completed
by adding the optical circuit associated to the rotation matrix
Rẑ(𝛼3) at the output of the BB (Figure 4a). As a result, we ob-
tain a 2 × 2 system with transfer function T2 = Rẑ (𝛼3) TB =
Rẑ (𝛼3)Rx̂(𝛼2)Rẑ(𝛼1) being able to perform any SU(2) transforma-
tion. Here, in contrast to the scheme of Figure 2b, it is not re-
quired an external synchronization between the PSs to perform
SU(2) transformations given that det(T2) = 1, ∀𝛼1,2,3 ∈ [0, 2𝜋].
The same optical circuit can be employed to perform universal
U(2) transformations by including two additional PSs at the out-
puts (or inputs) in order to implement a global phase shifting
ej𝛿 . Along this line, it should be noted that 𝛿 can optionally be
encoded along with 𝛼3 (or 𝛼1) in the corresponding PSs, see Fig-
ure 4b. However, in such a case, a mutual synchronization (e.g.,
via software[37,38]) is essential between these PSs to be able of tun-
ing 𝛼3 (or 𝛼1) and 𝛿 independently.
As commented above, additional BB candidates may be ex-

plored by selecting different rotation vectors in Equation (3). As
an illustrative example, in Figure 4c it is shown a BB based on
fixed couplers (50:50 beamsplitters implemented via MMIs or
symmetric DCs), whose transfer function is directly obtained by
replacing Rx̂(𝛼2) with Rŷ(𝛼2) in Equation (7). Nevertheless, the
manufacturing of this BB will approximately require the double

footprint than that of the BB depicted in Figure 4a because of a
twice number of couplers must be integrated in this BB architec-
ture.

5. Conclusion

Overall, these results demonstrate that the programmable linear
optical processors built from the existing architectures of the BB
do not furnish a 2 × 2 universal unitary functionality and, in or-
der to circumvent this fundamental limitation, we blaze a trail for
designing BB schemes that guarantee the unitary universality in
2 × 2 optical processors. The theoretical framework presented
here is a first research step to: i) establish the fundamentals of
analog optical gates and,[11,14] ii) build a systematic approach for
the design of integrated photonic signal processing devices and
subsystems that can be directly translated into commercial de-
velopment kits. With the obvious differences, we expect that the
future availability of such an approach can render similar bene-
fits as those ripped by the science and technology of electronic
integrated circuit design through the exploitation of the princi-
ples of Boole’s algebra.
By virtue of the Euler rotation theorem, it is shown that the

optical architectures of the BB proposed in previous works (Fig-
ure 2) lead to 2 × 2 optical processors that cannot describe three
independent rotations around two nonparallel axes of the Bloch
sphere and, as a result, such schemes cannot induce arbitrary
SU(2) transformations. In contrast, in our proposal (Figure 4),
three independent rotations around two Cartesian axes of the
Bloch sphere are correctly encoded by the transfer function of
the optical circuits, an arbitrarymatrix of SU(2), guaranteeing the
complete description of this Lie group while leveraging the exist-
ing mainstream integrated optical components. Moreover, it is
worth mentioning that the kind and the number of basic devices
required to implement a specific architecture of the BB can be ac-
commodated by using different rotation vectors in Equation (3).
Table 1 summarizes the most suitable and compact BB schemes
that can be implemented by using PSs and couplers (MMIs, sym-
metric DCs or tunable synchronous DCs). In the same line, other
basic devices such as tunable asynchronous DCs (inducing rota-
tions around a reconfigurable arbitrary unit vector n̂ of the Bloch
sphere[14]) and optical resonators (that may perform the same
functionality as that of couplers and PSs[39]) might be explored
to construct novel structures of the BB. In any case, a BB archi-
tecture must be built from basic devices with negligible inser-
tion losses or, otherwise, the unitary nature of the transforma-
tions will not be preserved, leading to energy-inefficient optical
processors requiring amplification stages.
On the other hand, it is natural to wonder about the possibility

of designing a more compact BB than the architecture proposed
in Figure 4a by using a different unitary factorization from the
Euler rotation theorem. Diverse 2 × 2 unitary factorization tech-
niques can be found in the mathematical literature,[40–44] but all
of them lead to optical schemes of the BB integrating a higher
number of basic devices than in our proposal (see Section S3 in
the Supporting Information).
Finally, note that these results may establish a starting point

to revisit the n × n unitary universality for the case n > 2 in
current programmable linear optical processors (based on
well-known optical architectures of high-dimensional unitary
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Table 1. Suitable BB architectures proposed in this work and number of integrated basic devices. The design of the basic rotation matrices (Equation (6))
is also included for clarity in the results. A 2 × 2 universal unitary optical system may be built from these BBs by adding a Rẑ(𝛼3) transformation at their
outputs.

System Transfer matrix Number of couplers Number of phase shifters Total number of basic devices

Basic rotation
(Figure 3a)

Rx̂(𝛼) 1 2 3

Basic rotation
(Figure 3b)

Rẑ(𝛼) 0 2 2

Basic rotation
(Figure 3c, top)

Rŷ (𝛼) = Rx̂ (
𝜋

2
)Rẑ(−𝛼)Rx̂(−

𝜋

2
) 2 2 4

Basic rotation
(Figure 3c, bottom)

Rŷ (𝛼) = Rẑ (
𝜋

2
)Rx̂(𝛼)Rẑ(−

𝜋

2
) 1 6 7

BB-MCA
(Figure 4a)

TB = Rx̂ (𝛼2)Rẑ(𝛼1) 1 4 5

BB
(Figure 4c)

TB = Rŷ (𝛼2)Rẑ(𝛼1) 2 4 6

matrix transformations, where the BBs are connected in a mesh
configuration[15,16]) by combining the concept of multidimen-
sional rotation matrices[4] along with different factorization
algorithms of the U(n) Lie group.[18,40–44] In such a scenario, our
definition of the BB (Equation (3)) also guarantees the unitary
universality of the U(2) processors integrated in the whole sys-
tem, provided that the first rotation inTB is performed around the
z-axis of the Bloch sphere (note that the PSs that implement this
rotation are integrated in uncoupled waveguides (Figure 3b) and,
consequently, such a scheme can set the connection of a given BB
with two independent BBs of the mesh and may simultaneously
generate a Rẑ transformation along with a global phase shifting).
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