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Escuela de Matemáticas, Universidad Industrial de Santander, Colombia

(luchomartinez9816@hotmail.com, hpinedot@uis.edu.co, edwar5119@gmail.com)

Communicated by F. Lin

Abstract

Let X be a compact Hausdorff space. In this work we translate par-
tial actions of X to partial actions on some hyperspaces determined
by X, this gives an endofunctor 2− in the category of partial actions
on compact Hausdorff spaces which generates a monad in this cate-
gory. Moreover, structural relations between partial actions θ on X
and partial actions determined by 2θ as well as their corresponding
globalizations are established.
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1. Introduction

Given an action µ : G × Y → Y of a group G on a set Y and an invariant
subsetX of Y (i.e., µ(g, x) ∈ X, for all x ∈ X, and g ∈ G), the restriction of µ to
G×X determines an action of G on X. However, if X is not invariant, we obtain
a partial action on X. This is a collection of partially defined maps θg (g ∈ G)
on X satisfying θ1 = idX and θgh is an extension of the composition θg ◦θh, for
all g, h ∈ G. The notion of partial action of a group was introduced by R. Exel
in [6, 7] motivated by problems arising from C∗-algebras. Since then partial
group actions have appeared in many different contexts, such as the theory of
operator algebras, algebra, the theory of R-trees, tilings and model theory (see
for instance [10]). In topology, partial actions on topological spaces consist of
a family of homeomorphism between open subsets of the space, and have been
considered in the context of Polish spaces (see [13, 14]), 2-cell complexes (see
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[16]), topological semigroups [3] and recently in [11] where introduced in the
realm of profinite spaces.

It seems that when a partial action on some structure is given, one of the
most relevant problems is the question of the existence and uniqueness of a
globalization, that is, if a partial action can be realized as restrictions of a
corresponding collection of total maps on some superspace. In the topological
context, this problem was studied by Abadie [1] and independently by Kellen-
donk and Lawson [10]. It was proved that for any continuous partial action θ
of a topological group G on a topological space X, there is a topological space
Y and a continuous action µ of G on Y such that X is a subspace of Y and θ
is the restriction of µ to X. Such a space Y is called a globalization of X. They
also show that there is a minimal globalization XG called the enveloping space
of X (see subsection 2.2 for details). Recent topological advances on partial
actions on (locally) compact spaces include the groupoid approach to the en-
veloping spaces associated to partial actions of countable discrete groups [9].
Also several classes of C∗-algebras can be described as partial crossed products
that correspond to partial actions of discrete groups on profinite spaces; for
instance the Carlsen-Matsumoto C∗ -algebra OX of an arbitrary subshift X
(see [5]). The interested reader may consult [4] and [8] for a detailed account
in developments around partial actions.

On the other hand, the study of hyperspaces has developed for more than one
hundred years, topological properties in hyperspaces: dimension, shape, con-
tractibility, admissibility, unicoherence, etc., have been topics where researchers
have dedicated a lot of attention recently. Furthermore, there are many papers
in different areas of mathematics focused on the study of set-valued functions
where hyperspaces are the natural environment to work. For instance, in [2] the
authors study when a hyperspace can be embedded in a cell or when a cell can
be embedded in a hyperspace. Topics concerning the n-od problem, Whitney
properties and Whitney-reversible properties have been widely considered, for
a detailed account on hyperspaces the interested reader may consult [12] and
the reference therein.

This work is structured as follows. After the introduction in Section 2 we
present the preliminary notions on topological partial actions and their en-
veloping actions, at the end of this section we fix a compact Hausdorff space
X and state our conventions, notations and results on the hyperspaces H1, H2

and H3 consisting of compact, compact and connected, and finite subsets of
X, respectively. In Section 3 we translate partial actions θ of X to partial
actions 2θ on H ∈ {H1,H2,H3} and present in Theorem 3.2 and Proposition
3.5 some structural properties preserved by this correspondence. Separation
properties relating enveloping actions of θ and 2θ are considered in Corollary
3.12 and Theorem 3.14. Finally, Section 4 has a categorical flavor, where it is
considered the category Gy CH whose objects are topological partial actions
on compact Hausdorff spaces and show in Theorem 4.3 that the functor 2−

generates a monad in this category.
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2. The notions

We present the necessary background on partial actions and hyperspaces
that we use throughout the work.

2.1. Preliminaries on partial actions and their enveloping actions. We
start with the following.

Definition 2.1 ([10, p. 87-88]). Let G be a group with identity element 1 and
X be a set. A partially defined function θ : G × X 99K X, (g, x) 7→ g · x is
called a (set theoretic) partial action of G on X if for each g, h ∈ G and x ∈ X
the following assertions hold:

(PA1) If ∃g · x, then ∃g−1 · (g · x) and g−1 · (g · x) = x,
(PA2) If ∃g · (h · x), then ∃(gh) · x and g · (h · x) = (gh) · x,
(PA3) ∃1 · x and 1 · x = x,

where ∃g · x means that g · x is defined. We say that θ acts (globally) on X or
that θ is global if ∃g · x, for all (g, x) ∈ G×X.

Given a partial action θ of G on X, g ∈ G and x ∈ X. We set:

• G ∗X = {(g, x) ∈ G×X | ∃g · x} the domain of θ.
• Xg = {x ∈ X | ∃g−1 · x}.

Then θ induces a family of bijections {θg : Xg−1 3 x 7→ g · x ∈ Xg}g∈G. We
also denote this family by θ. The following result characterizes partial actions
in terms of a family of bijections.

Proposition 2.2 ([15, Lemma 1.2]). A partial action θ of G on X is a family
θ = {θg : Xg−1 → Xg}g∈G, where Xg ⊆ X, θg : Xg−1 → Xg is bijective, for all
g ∈ G, and such that:

(i) X1 = X and θ1 = idX;
(ii) θg(Xg−1 ∩Xh) = Xg ∩Xgh;

(iii) θgθh : Xh−1 ∩Xh−1g−1 → Xg∩Xgh, and θgθh = θgh in Xh−1 ∩Xh−1g−1 ;

for all g, h ∈ G.

In view of Proposition 2.2 a partial action on X are frequently denoted as a
family of maps (θg, Xg)g∈G, between subsets of X satisfying conditions (i)-(iii)
above.

For the reader’s convenience we recall a characterization of partial action.

Proposition 2.3 ([8, Proposition 2.5]). Let G be a group and X a set. Then a
family θ = {θg : Xg−1 → Xg}g∈G, of bijections between subsets of X is a partial
action of G on X if and only if, in addition to (i) of Proposition 2.2, for all
g, h ∈ G one has that:

(ii’) θg(Xg−1 ∩Xh) ⊆ Xgh,
(iii’) θg(θh(x)) = θgh(x), for all x ∈ Xh−1 ∩X(gh)−1 .

From now on in this work G will denote a topological group and X a topo-
logical space. We endow G×X with the product topology and G ∗X with the
topology of subspace. Moreover θ : G ∗ X → X will denote a partial action.
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We say that θ is a topological partial action if Xg is open and θg is a homeo-
morphism, for all g ∈ G. Moreover, if θ is continuous, θ is called a continuous
partial action.

2.2. Restriction of global actions and globalization. Let µ : G× Y → Y
be a continuous action of G on a topological space Y and X ⊆ Y be an open
set. Then we can obtain by restriction a topological partial action on X by
setting:
(2.1)
Xg = X ∩ µg(X), θg = µg � Xg−1 and θ : G ∗X 3 (g, x) 7→ θg(x) ∈ X.

Then θ is a topological partial action of G on X, we say that θ is the restriction
of µ to X.

As mentioned in the introduction, a natural problem in the study of partial
actions is whether they can be restrictions of global actions. In the topological
sense, this turns out to be affirmative and a proof was given in [1, Theorem 1.1]
and independently in [10, Section 3.1]. Their construction is as follows. Let θ
be a topological partial action of G on X and consider the following equivalence
relation on G×X:

(2.2) (g, x)R(h, y)⇐⇒ x ∈ Xg−1h and θh−1g(x) = y.

Denote by [g, x] the equivalence class of (g, x). The enveloping space or the
globalization of X is the set XG = (G × X)/R endowed with the quotient
topology. We have by [1, Theorem 1.1] that the action

(2.3) µ : G×XG 3 (g, [h, x])→ [gh, x] ∈ XG,

is continuous and is the so called the enveloping action of θ. Further by (ii) in
[10, Proposition 3.9] the map

q : G×X 3 (g, x) 7→ [g, x] ∈ XG,

is open. On the other hand the map

(2.4) ι : X 3 x 7→ [1, x] ∈ XG

satisfies G · ι(X) = XG. Moreover, it follows by [10, Proposition 3.12] that ι a
homeomorphism onto ι(X) if and only if θ is continuous, and by [10, Proposition
3.11] ι(X) is open in XG, provided that G ∗X is open.

We finish this section with a result that will be useful in the sequel.

Lemma 2.4. Let µ : G × Y → Y be a continuous global action of G on a
topological space Y and let U ⊆ Y be such that G · U = Y . Then the following
assertions hold.

(i) If G and U are separable, then Y is separable.
(ii) If U is clopen and regular, then Y is regular.

Proof. (i) Let {un : n ∈ N} ⊆ U and {gm : m ∈ N} ⊆ G be dense subsets
of U and G, respectively. Then for an open nonempty set V ⊆ Y we have
that W := µ−1(V ) ∩ (G × U) is open in G × U . Then there are n,m ∈ N
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such that (gm, un) ∈ W and consequently, gm · un ∈ V which implies that
{gm · un ∈ Y : m,n ∈ N} is dense in Y .

(ii) Take y ∈ Y and Z ⊆ Y an open set such that y ∈ Z. The fact that
G · U = Y implies that there are g ∈ G, u ∈ U such that y = g · u. Since µ is
continuous there is an open set B ⊆ Y for which u ∈ B and g · B ⊆ Z. Then
V = U ∩B is open in U and g ·V ⊆ Z. Since U is regular, there is an open set
W of U such that u ∈W ⊆ ClU (W ) ⊆ V but U is closed then

y = g · u ∈ g ·W ⊆ g · ClU (W ) = g ·W ⊆ g · V ⊆ Z,

and Y is regular. �

2.3. Conventions on hyperspaces. From now on in this work X will denote
a compact Hausdorff space.

The hyperspaceH1 := 2X is the set consisting of non-empty compact subsets
of X. For U1, U2, · · · , Un non-empty open sets of X, let

〈U1, ..., Un〉H1
=

{
A ∈ H1 : A ⊆

n⋃
i=1

Ui, and A ∩ Ui 6= ∅, 1 ≤ i ≤ n

}
,

moreover we set 〈∅〉 := ∅. The Vietoris topology on H1 is generated by collec-
tions of the form 〈U1, ..., Un〉H1

. We shall also work with the subspaces

H2 := {C ∈ H1 | C is connected} and H3 := {F ∈ H1 | F is finite}
that is 〈U1, · · · , Un〉Hi := Hi∩〈U1, · · · , Un〉H1

, for U1, U2, · · · , Un open subsets
ofX and i = 2, 3. Finally, when taking about a hyperspaceH we make reference
to any of the spaces H1,H2 as well as H3.

We summarize some well-known properties of the space H. For more details
on hyperspaces, the interested reader may consult [12].

Lemma 2.5. Let X be a compact Hausdorff space. Then the following asser-
tions hold.

(i) The map X 3 x 7→ {x} ∈ H is an embedding of X into H.
(ii) H is a compact Hausdorff space and the map u : 22X → 2X , A 7→ ∪A

is continuous.

3. From partial actions on X to partial actions on H

In what follows we shall use a continuous partial action on X to construct
a continuous partial action on H.

The following is straightforward.

Lemma 3.1. Let U and V be open subsets of X and f : U → V a homeomor-
phism, then the map 2f : 〈U〉H 3 A 7→ f(A) ∈ 〈V 〉H is a homeomorphism.

Theorem 3.2. Let θ := (θg, Xg)g∈G be a topological partial action of G on
X. For g ∈ G, we set 2θg : 〈Xg−1〉H 3 A 7→ θg(A) ∈ 〈Xg〉H. Then 2θ =

(2θg , 〈Xg〉H)g∈G is a topological partial action of G on H and the following
assertions hold.
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(i) G ∗ H is open provided that G ∗X is open.
(ii) If θ is continuous, then 2θ is continuous.
(iii) If θ is global then 2θ is global.

Proof. We shall only deal with the case H = H2. By Lemma 3.1 we have that
2θg is a homeomorphism between open subsets of H2, for any g ∈ G. We shall
check conditions (i) and (ii’) - (iii’) in Proposition 2.2 and Proposition 2.3,
respectively. To see (i) notice that 2θe is the identity map of 〈X〉H2 = H2.
For (ii’) take g, h ∈ G and A ∈ 〈Xg−1〉H2

∩ 〈Xh〉H2
= 〈Xg−1 ∩ Xh〉H2

, then

2θg (A) = θg(A) ⊆ θg(Xg−1 ∩Xh) ⊆ Xgh, and thus 2θg (〈Xg−1〉H2
∩ 〈Xh〉H2

) ⊆
〈Xgh〉H2 . For (iii’) take A ∈ 〈Xh−1〉H2 ∩ 〈X(gh)−1〉H2 = 〈Xh−1 ∩ X(gh)−1〉H2 ,
then

2θgh(A) = θgh(A) = θg(θh(A)) = 2θg (2θh(A)),

and we conclude that 2θ is a partial action of G on H2. Now we check (i)−(iii).
(i) Suppose that G ∗ X is open in G × X. To see that G ∗ H2 is open

in G × H2, take (g,A) ∈ G ∗ H2. Since A ⊆ Xg−1 , we have (g, a) ∈ G ∗
X for all a ∈ A. Now the fact that G ∗ X is an open subset of G × X,
implies that for any a ∈ A there are open sets Ua ⊆ G and Va ⊆ X for which
(g, a) ∈ Ua × Va ⊆ G ∗ X. Since A is compact, there exist a1, · · · , an ∈ A

with A ⊆
n⋃
i=1

Vai , and A ∈ 〈Va1 , · · · , Van〉H2 . Let U :=
n⋂
i=1

Uai , then (g,A) ∈

U×〈Va1 , · · · , Van〉H2
we claim that U×〈Va1 , · · · , Van〉H2

⊆ G∗H2. Indeed, take
(h,B) ∈ U×〈Va1 , · · · , Van〉H2

, we shall check B ∈ 〈Xh−1〉H2
. Take b ∈ B. Since

B ⊆
n⋃
i=1

Vai , there is 1 ≤ i ≤ n for which b ∈ Vai and (h, b) ∈ Uai×Vai ⊆ G∗X,

then b ∈ Xh−1 . From this we get B ∈ 〈Xh−1〉H2
and thus (h,B) ∈ G ∗ H2.

This shows that G ∗ H2 is open in G×H2.
(ii) Suppose that θ is continuous. We need to show that 2θ : G ∗ H2 → H2,

(g,A) 7→ θg(A) is continuous. Let (g,A) ∈ G ∗ H2 and take V1, · · · , Vk open
subsets of X such that θg(A) ∈ 〈V1, · · · , Vk〉H2 . For each a ∈ A there is
1 ≤ ia ≤ k such that θg(a) ∈ Via , and since θ is continuous there are open sets
Uia ⊆ G and Wia ⊆ X such that:

(g, a) ∈ (Uia ×Wia) ∩ (G ∗X) and θ((Uia ×Wia) ∩G ∗X) ⊆ Via .

The fact that A is compact implies that there are a1, · · · , am ∈ A such that

A ⊆
m⋃
j=1

Wiaj
.

On the other hand, since θg(A) ∩ Vj 6= ∅, for any 1 ≤ j ≤ k, there are
r1, r2, · · · , rk ∈ A for which θg(rj) ∈ Vj , for all j = 1, 2, · · · , k. Set irj := j,
j = 1, · · · , k. Without loss of generality we may suppose {r1, r2, · · · , rk} ⊆
{a1, · · · , am} and ri = ai, for each i = 1, · · · , k. Let U :=

⋂m
j=1 Uiaj . Then

(g,A) ∈ Z := (U × 〈Wia1
, · · · ,Wiam

〉H2
) ∩ (G ∗ H2). To finish the proof it is

enough to show that 2θ(Z) ⊆ 〈V1, · · · , Vk〉H2
. For this take (h,B) ∈ Z and
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b ∈ B. Since B ⊆
m⋃
j=1

Wiaj
, there exists 1 ≤ j ≤ m such that b ∈Wiaj

and thus

(h, b) ∈ Uiaj ×Wiaj
. But B ⊆ Xh−1 , then (h, b) ∈ (Uiaj ×Wiaj

)∩ (G ∗X) and

θh(b) ∈ Viaj which implies θh(B) ⊆
k⋃
i=1

Vi. Finally, for 1 ≤ l ≤ k we see that

θh(B) ∩ Vl 6= ∅. Indeed, take b ∈ B ∩Wial
, where al = rl. Since h ∈ Uial , we

have (h, b) ∈ (Uial ×Wial
)∩ (G ∗X) and θh(b) ∈ Vial ∩ θh(B) = Virl ∩ θh(B) =

Vl ∩ θh(B) which finishes the proof of the second item.
(iii) This is clear. �

Remark 3.3. Given a partial action θ of G on X, we shall refer to 2θ as the
induced partial action of θ on H.

Example 3.4. There is a topological partial action of Z(4) on S1 given by the
family {Xn}n∈Z(4) as it is shown below.

X1X3

X2

θ0 = IdS1 ; θ1 : X3 → X1 by θ1(eit) = ei(t+π); θ3 = θ−1
1 , θ2 : X2 → X2

is the identity.

We construct the induced partial action of Z(4) on H2(S1), for this we find a
homeomorphism h between H2(S1), the connected sets of S1 and D = {z ∈
C : |z| ≤ 1}.

O

h(A)

P

A

Let P ∈ S1 and take an arc center at P

of length l, this arc is mapped on h(A) =(
1− l

2π

)
P ∈ D. The arc {P} of length

zero is mapped onto h({P}) = P ∈ D.

In particular, all arcs centered at P are mapped on OP . From this follows that
the sets {〈Xn〉H2}n∈Z(4) are
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〈X1〉H2〈X3〉H2

〈X2〉H2

We construct 2θ. The map 2θ2 is the identity on 〈X2〉H2
. Notice that 2θ1 rotates

each arc in X3 π radians to an arc in X1 of the same length.

X1X3

X2

A

2θ1(A)

h(A)

h(2θ1 (A))

Then h(2θ1(A)) is obtained by rotat-
ing h(A) π radians, from this 2θ1 in
D is identified with 2θ1 : 〈X3〉H2

−→
〈X1〉H2 , reit 7−→ rei(t+π), analogously
2θ3 : 〈X1〉H2 −→ 〈X3〉H2 , reit 7−→
rei(t+π).

We finish this section with the next.

Proposition 3.5. Let θ be a topological partial action of G on X. If G ∗X is
closed, then G ∗ H is closed.

Proof. Take (g,A) ∈ (G × H) \ G ∗ H. Then there is a ∈ A such that @g · a
and (g, a) /∈ G ∗ X and there are open sets U ⊆ G and V ⊆ X such that
(g, a) ∈ U × V ⊆ (G × X) \ G ∗ X. Note that (g,A) ∈ U × 〈V,X〉H to
finish the proof we need to show that U × 〈V,X〉H ⊆ (G × H) \ G ∗ H. Take
(h,B) ∈ U × 〈V,X〉H and b ∈ B ∩ V . Since (h, b) ∈ U × V , we get @h · b, then
@h ·B and (h,B) /∈ G ∗ H as desired. �

3.1. Separation properties and enveloping spaces. It is shown in [1,
Proposition 1.2] that a partial action has a Hausdorff enveloping space if and
only if the graph of the action is closed. Below we show that partial actions on
compact Hausdorff spaces have Hausdorff enveloping space, if and only if the
enveloping space of the induced partial action on H is Hausdorff.

From now on, 2R denotes the equivalence relation associated to the envelop-
ing action of the partial action 2θ of G on H (see equation (2.2)). That is
HG = (G×H)/2R.

Lemma 3.6. Let θ be a partial action on X and 2θ be the corresponding
partial action of G on H, then the map Θ : XG 3 [g, x] 7→ [g, {x}] ∈ HG is an
embedding.
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Proof. First of all observe that Θ is well defined. Indeed, if (g, x)R(h, y), then

{x} ⊆ 〈Xg−1h〉H and 2θh−1g ({x}) = {y}, which gives (g, {x})2R(h, {y}). In
an analogous way one checks that Θ is injective. Now we prove that Θ is
continuous, for this it is enough to check that β : G×X 3 (g, x) 7→ [g, {x}] ∈
HG, is continuous. For this notice that ϕ : G×X 3 (g, x) 7→ (g, {x}) ∈ G×H,
is continuous because of Lemma 2.5. Also, β = qH◦ϕ, where qH : G×H → HG
is the quotient map, form this β is continuous, and so is Θ. Now we need to
show that Θ−1 : Im(Θ)→ XG is continuous. Let U ⊆ XG be an open set and
[g0, {x0}] ∈ Im(Θ) such that [g0, x0] ∈ U . Then (g0, x0) ∈ q−1(U) and there
exists open sets V ⊆ G and W ⊆ X such that (g0, x0) ∈ V ×W ⊆ q−1(U).
Take Z := qH(V × 〈W 〉H) ∩ Im(Θ). Since qH is open, then Z is open in
Im(Θ) and [g0, {x0}] ∈ Z. On the other hand, take [r, {s}] ∈ Z we check
that Θ−1([r, {s}]) = [r, s] ∈ U . For this take (v, F ) ∈ V × 〈W 〉H such that
[v, F ] = qH(v, F ) = [r, {s}]. Then F = {w} for some w ∈W and

Θ−1([r, {s}]) = Θ−1([v, {w}]) = [v, w] = q(v, w) ∈ q(V ×W ) ⊆ U ,

this shows that Θ−1 is continuous and Θ is an embedding. �

Lemma 3.7. Let θ be a partial action on X and 2θ be the induced partial
action of G on H, then 2R is closed in (G ×H)2 provided that R is closed in
(G×X)2.

Proof. Take ((g,A), (h,B)) ∈ (G×H)2 \ 2R, we have two cases to consider:
Case 1: A /∈ 〈Xg−1h〉H. Then there exists a ∈ A ∩ (X \ Xg−1h), and
((g, a), (h, b)) ∈ (G × X)2 \ R, for any b ∈ B. Since R is closed there are
open sets Ub, Yb ⊆ G and Vb, Zb ⊆ X such that

((g, a), (h, b)) ∈ (Ub × Vb)× (Yb × Zb) ⊆ (G×X)2 \R,

for any b ∈ B. The fact that B is compact implies that there are b1, · · · , bn ∈ B
for which B ⊆

n⋃
i=1

Zbi . Write U :=
n⋂
i=1

Ubi , V :=
n⋂
i=1

Vbi and Y =
n⋂
i=1

Ybi . Then

A ∈ 〈X,V 〉H and ((g,A), (h,B)) ∈ (U × 〈X,V 〉H) × (Y × 〈Zb1 , · · · , Zbn〉H).
Now we show that

(U × 〈X,V 〉H)× (Y × 〈Zb1 , · · · , Zbn〉H) ⊆ (G×H)2 \ 2R.

For this take ((r, C), (s,D)) ∈ (U × 〈X,V 〉H) × (Y × 〈Zb1 , · · · , Zbn〉H). For
c ∈ C∩V and d ∈ D, there is 1 ≤ j ≤ n such that d ∈ Zbj , then ((r, c), (s, d)) ∈
(Ubj × Vbj )× (Ybj ×Zbj ) ⊆ (G×X)2 \R which implies c /∈ Xr−1s or c ∈ Xr−1s

and θs−1r(c) 6= d. If c /∈ Xr−1s, then C /∈ 〈Xr−1s〉H and we have done. Now
suppose c ∈ Xr−1s and θs−1r(c) 6= d. If θs−1r(c) ∈ D, by a similar argument
as above we get ((r, c), (s, θs−1r(c)) /∈ R, which leads to a contradiction. Then,
θs−1r(C) 6= D and ((r, C), (s,D)) /∈ 2R.
Case 2. A ⊆ Xg−1h. Then θh−1g(A) 6= B. Suppose that there exists a ∈ A
such that θh−1g(a) /∈ B. Then ((g, a), (h, b)) /∈ R, for any b ∈ B, we argue as in
Case 1 to obtain b1, · · · , bn ∈ B and families {Ubi}ni=1, {Ybi}ni=1 of open subsets
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of G such that g ∈ U :=
n⋂
i=1

Ubi and h ∈ Y :=
n⋂
i=1

Ybi . Also there are families

{Vbi}ni=1 and {Zbi}ni=1 of open subsets of X such that a ∈ V :=
⋂
i=1

Vbi , B ∈

〈Zb1 , · · · , Zbn〉H and (Ubi×Vbi)×(Ybi×Zbi) ⊆ (G×X)2\R, for any i = 1, · · ·n.
As in Case 1 we get

((g,A), (h,B)) ∈ (U × 〈X,V 〉H)× (Y × 〈Zb1 , · · · , Zbn〉H) ⊆ (G×H)2 \ 2R.

To finish the proof, suppose that there is b ∈ B such that θh−1g(a) 6= b, for each
a ∈ A. If a ∈ A, then ((g, a), (h, b)) /∈ R and there are open sets Ua, Ya ⊆ G and
Va, Za ⊆ X such that ((g, a), (h, b)) ∈ (Ua×Va)×(Ya×Za) ⊆ (G×X)2\R. The

compactness of A implies that there are a1, · · · , an ∈ A such that A ⊆
n⋃
i=1

Vai .

Write U :=
n⋂
i=1

Uai , Y
′ :=

n⋂
i=1

Yai and Z :=
n⋂
i=1

Zai . Now

((g,A), (h,B)) ∈ (U × 〈Va1 , · · · , Van〉H)× (Y ′ × 〈X,Z〉H) ⊆ (G×H)2 \ 2R.

Indeed, let ((r, C), (s,D)) ∈ (U × 〈Va1 , · · · , Van〉H) × (Y ′ × 〈X,Z〉H) and d ∈
D∩Z. For c ∈ C, there is 1 ≤ j ≤ n such that c ∈ Vaj therefore ((r, c), (s, d)) ∈
(Uaj × Vaj ) × (Yaj × Zaj ) ⊆ (G × X)2 \ R. Moreover, ((s, d), (r, c)) /∈ R
and d /∈ Xs−1r or d ∈ Xs−1r and θr−1c(d) 6= c. In the case d /∈ Xs−1r,
we obtain D /∈ 〈Xs−1r〉H and ((r, C), (s,D)) /∈ 2R. Thus it only remains to
consider the case d ∈ Xs−1r and θr−1c(d) 6= c. If θr−1s(d) ∈ C, as above
we get ((s, d), (r, θr−1s(d))) /∈ R, which leads to a contradiction. This shows
θr−1s(d) /∈ C, and ((r, C), (s,D)) /∈ 2R. �

Combining [13, Lemma 34] with Lemma 3.6, Lemma 3.7 and using that the
quotient map to the globalization is open we obtain the following.

Theorem 3.8. Let θ be a partial action of G on X. Then XG is Hausdorff if
and only if HG is Hausdorff.

Recall that a locally compact Cantor space is a locally compact Hausdorff
space with a countable basis of clopen sets and no isolated points. If a locally
compact Cantor space X is compact, then there is a homeomorphism between
X and the Cantor space.

We proceed with the next.

Proposition 3.9. Let X be a metric compact Cantor space, G a countable
discrete group and suppose that θ = (θg, Xg)g∈G is a partial action of G on X
such that Xg is clopen for all g ∈ G. Then (2X)G is a locally compact Cantor
space.

Proof. Since X is a compact Hausdorff space, then 2X is a compact Hausdorff
space. Moreover since X is metric, we get from [12, Proposition 8.4] that 2X

has no isolated points, and from [12, Proposition 8.6] we have that 2X have a
countable basis of clopen sets. Therefore H1 = 2X is the Cantor space. Also
〈Xg〉 is clopen for all g ∈ G and the result follows from [9, Proposition 2.3]. �

© AGT, UPV, 2022 Appl. Gen. Topol. 23, no. 2 264



Partial actions of groups on hyperspaces

Now we shall work with the hyperspace H3 = F (X) consisting of finite
subsets of X. The following result shows that the enveloping space (H3)G is
T1, provided that XG is.

Proposition 3.10. Let θ be a topological partial action of G on X and 2θ be
the induced partial action of G on H3. If XG is T1, then (H3)G is T1.

Proof. Let A = {a1, · · · , an} ∈ H3 and g ∈ G, and qH3
: G ×H3 → (H3)G be

the corresponding quotient map. We need to show that

q−1
H3

([g,A]) = {(h, F ) ∈ G×H3 : ∃(g−1h) · F and (g−1h) · F = A}

is closed in G×H3. Take (h, F ) /∈ q−1
H3

([g,A]). There are two cases to consider.

Case 1: @(g−1h) · F . Then there is f ∈ F such that @(g−1h) · f . Since XG

is T1, for 1 ≤ i ≤ n there are open sets Ui ⊆ G and Vi ⊆ X for which

(h, f) ∈ Ui × Vi ⊆ (G×X) \ q−1([g, ai]).

Take U :=
⋂n
i=1 Ui and V =

⋂n
i=1 Vi. Note that (h, F ) ∈ U × 〈X,V 〉H3

⊆
(G × H3) \ q−1

H3
([g,A]). Indeed, if (t, B) ∈ U × 〈X,V 〉H3

and b ∈ B ∩ V we

have (t, b) /∈ q−1([g, ai]) for any 1 ≤ i ≤ n. If @g−1t · b, then @(g−1t) · B and
(t, B) /∈ q−1

H3
([g,A]). On the other hand, if ∃(g−1t) · b, then (g−1t) · b 6= ai, for

each 1 ≤ i ≤ n, then (g−1t) · b /∈ A and (t, B) /∈ q−1
H3

([g,A]).

Case 2: ∃(g−1h) · F and (g−1h) · F 6= A. If there is f ∈ F for which
(g−1h) · f /∈ A we get (h, f) /∈ q−1([g, ai]) for 1 ≤ i ≤ n and we proceed as
in Case 1. If there is a ∈ A such that (g−1h) · f 6= a, for any f ∈ F write
F = {f1, · · · , fk}, then (h, fj) /∈ q−1([g, a]) for each 1 ≤ j ≤ k. Hence there are
open sets U ⊆ G and V ⊆ X such that (h, fj) ∈ U ×V ⊆ (G×X) \ q−1([g, a]),

for every 1 ≤ j ≤ k. Note that (h, F ) ∈ U × 〈V 〉H3
⊆ (G ×H3) \ q−1

H3
([g,A]).

Indeed, if (t, B) ∈ U × 〈V 〉H3
. If @(g−1t) · B, then (t, B) /∈ q−1

H3
([g,A]). In the

case ∃g−1t · B, we get that for any b ∈ B the pair (t, b) belongs to U × V and
thus (g−1t) · b 6= a which gives (t, B) /∈ q−1

H3
([g,A]), as desired. �

Combining Lemma 3.6 and Proposition 3.10 we get.

Corollary 3.11. Let θ be a topological partial action of G on X and 2θ be the
induced partial action of G on H3. Then (H3)G is T1 if and only if XG is T1.

We proceed with the next

Corollary 3.12. Let G be a separable group and θ be a continuous partial
action of G on X such that G ∗ X is open and X is separable. Take H ∈
{H1,H3} then the following assertions hold.

(i) XG is separable;
(ii) HG is separable;

(iii) If XG is T1, then H(XG) and H(F (X)G) are separable.

Proof. (i) Since θ is continuous with open domain then ι(X) is open in XG and
(2.4) is a homeomorphism onto ι(X), in particular ι(X) is separable, moreover
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the map µ given in (2.3) acts continuously in XG and G · ι(X) = XG thus the
result follows by (i) in Lemma (2.4).

(ii) Since X is separable and T1, then H is separable. Then by (i) and (ii)
of Theorem 3.2 and Lemma (2.4) we get that HG is separable.

(iii) By (i) the space XG is separable and follows that H(XG) is separable.
Finally, by Proposition 3.10 we have that F (X)G is T1, moreover F (X)G is
separable thanks to (ii), and thus H(F (X)G) is separable. �

Example 3.13 ([13, Example 4.8]). Consider the partial action of Z on X =
[0, 1] given by θ0 = idX and θn = id[0,1), n 6= 0 then θ is continuous with open
domain and XZ is T1. Thus by Corollary 3.12 the spaces XZ,HZ,H([0, 1]Z) and
H(F ([0, 1])G) are separable, where H ∈ {H1,H3}.

Now we shall deal with the regularity condition.

Theorem 3.14. Let θ : G ∗X → X be a continuous partial action with clopen
domain. Then the spaces XG and HG are regular, provided that H ∈ {H1,H2}.

Proof. Let ι be the embedding map defined in (2.4) then Gι(X) = XG, we shall
prove that ι(X) is clopen and regular. Let q : G × X → XG be the quotient
map, then q−1(ι(X)) = G ∗ X is clopen in G × X which shows that ι(X) is
clopen in XG. Now since X is a compact Hausdorff space we have that ι(X)
is regular and thus XG is regular thanks to item (ii) of Lemma 2.4. On the
other hand, we have that H is compact and Hausdorff, 2θ is continuous ((ii) of
Theorem 2.8) and G ∗ H is clopen thanks to of Theorem 3.2 and Proposition
3.5 , then it is enough to apply (ii) of Lemma 2.4. �

Example 3.15 ([8, p. 22]). Partial Bernoulli action Let G be a discrete
group and X := {0, 1}G. The map β : G × X 3 (g, ω) 7→ gω ∈ X, is a
continuous global action. The topological partial Bernoulli action is obtained
by restricting β to the open set Ω1 = {ω ∈ X : ω(1) = 1} (see (2.1)). It is
shown in [11, Example 3.4] that G ∗ Ω1 is clopen. Thus by Theorem 3.14 we
have that HG is regular where H ∈ {H1,H2}. Moreover, since G · Ω1 = X,
then XG = {0, 1}G is regular.

Remark 3.16. In [13, Theorem 4.6] are presented other conditions for the space
XG being regular.

4. On the category Gy CH

We shall use some of the above results to construct a monad in the category
of partial actions on compact Hausdorff spaces. First recall the next.

Definition 4.1. Let φ = (φg, Xg)g∈G and ψ = (ψg, Yg)g∈G, be partial actions
of G on the spaces X and Y , respectively. A G-map f : φ→ ψ is a continuous
function f : X → Y such that:

(i) f(Xg) ⊆ Yg,
(ii) f(φg(x)) = ψg(f(x)), for each x ∈ Xg−1 ,
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for any g ∈ G. If moreover f is a homeomorphism and f−1 is G-map, we say
that φ are ψ equivalent.

We denote by G y Top the category whose objects are topological partial
actions of G on topological spaces and morphisms are G-maps defined as above.
Also, we denote by Gy CH the subcategory of Gy Top whose objects are
topological partial actions of G on compact Hausdorff spaces. It follows by
Theorem 3.2 that there is a functor 2− : Gy CH→ Gy CH.

4.1. The monad I. Recall the next.

Definition 4.2. Let C be a category. A monad in C is a triple (T, η, µ), where
T : C → C is an endofunctor, η : IdC =⇒ T and µ : T 2 =⇒ T are natural
transformations such that:

(4.1) µ ◦ Tη = µ ◦ ηT = 1T and µ ◦ µT = µ ◦ Tµ.

Given an object α = (αg, Xg)g∈G ∈ Gy CH. We have by Lemma 2.5 that
the map ηα : X 3 x 7→ {x} ∈ 2X , is a continuous function. From this it is not
difficult to see that ηα : α → 2α is a morphism in G y CH. Moreover, for
another object β = (Yg, βg)g∈G in G y CH and a morphism f : α → β the
diagram:

X

f

��

ηα // 2X

2f

��
Y

ηβ
// 2Y

is commutative. Thus the family η = {ηα}α∈GyCMet : IdGyCMet =⇒ 2− is a

natural transformation. Now set µα : 22X 3 A 7→ ∪A ∈ 2X , by Lemma 2.5 µα
is continuous. We shall check that µα : 22α → 2α is a morphism in Gy CH .

(i) Take g ∈ G and A ∈ 〈〈Xg〉〉. Then A ⊆ 〈Xg〉 and µα(A) = ∪A ⊆ Xg,
that is µα(A) ∈ 〈Xg〉.

(ii) ForA ∈ 〈〈Xg−1〉〉 we have 2αg [A] = {αg(F ) : F ∈ A}, then µα(22αg (A)) =
µα(2αg [A]) = ∪2αg [A] = αg(∪A) = 2αg (∪A) = 2αg (µα(A)), as desired.

Now we prove that µ = {µα}{α∈GyCH} : (2−)2 =⇒ 2− is a natural transfor-
mation. For this take β = (Yg, βg)g∈G in Gy CH and a morphism f : α→ β
in Gy CH. Consider the diagram

(4.2) 22X

22f

��

µα // 2X

2f

��
22Y

µβ
// 2Y

Let A ∈ 22X , then 2f [A] = {f(B) : B ∈ A} and 2f (µα(A)) = 2f (∪A) =
f(∪A) = ∪2f [A] = µβ(2f [A]) thus the diagram (4.2) is commutative.
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Theorem 4.3. Let η and µ be as above. Then the triple I = (2−, η, µ) forms
a monad in the category Gy CH.

Proof. It remains to prove that equalities in (4.1) hold. Let α be an object in
Gy CH Since(η2−)α = η2α , we have that µα ◦η2α : 2X 3 A 7→ A ∈ 2X , which
gives µ ◦ η2− = 12− . Also, (2−η)α = 2−(ηα) = 2ηα , and µα ◦ 2ηα : 2X 3 A 7→
A ∈ 2X , which shows µ ◦ 2−η− = µ ◦ η2− = 12− . Finally, since (µ2−)α = µ2α

and (2−µ)α = 2−(µα), we have

(µ ◦ µ2−)α = µα ◦ µ2α = µα ◦ 2µα = (µ ◦ 2−µ)α,

thus µ ◦ µ2− = µ ◦ 2−µ and (2−, η, µ) is a monad. �
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