
applied
sciences

Article

Automatic Ontology-Based Model Evolution for Learning
Changes in Dynamic Environments

Roua Jabla 1,2,* , Maha Khemaja 3 , Félix Buendia 1 and Sami Faiz 4

����������
�������

Citation: Jabla, R.; Khemaja, M.;

Buendia, F.; Faiz, S. Automatic

Ontology-Based Model Evolution for

Learning Changes in Dynamic

Environments. Appl. Sci. 2021, 11,

10770. https://doi.org/10.3390/

app112210770

Academic Editor: Diana Kalibatiene

Received: 20 October 2021

Accepted: 12 November 2021

Published: 15 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Computer Engineering, Universitat Politècnica Valencia, Camino de Vera S/N,
46022 Valencia, Spain; fbuendia@disca.upv.es

2 ISITCom, University of Sousse, Sousse 4011, Tunisia
3 PRINCE Research Lab, ISITCom, University of Sousse, Sousse 4011, Tunisia; maha_khemaja@yahoo.fr
4 LTSIRS Laboratory, University of Tunis El Manar, Tunis 5020, Tunisia; sami.faiz@isamm.uma.tn
* Correspondence: jabla.roua@gmail.com

Abstract: Knowledge engineering relies on ontologies, since they provide formal descriptions of
real-world knowledge. However, ontology development is still a nontrivial task. From the view of
knowledge engineering, ontology learning is helpful in generating ontologies semi-automatically or
automatically from scratch. It not only improves the efficiency of the ontology development process
but also has been recognized as an interesting approach for extending preexisting ontologies with
new knowledge discovered from heterogenous forms of input data. Driven by the great potential of
ontology learning, we present an automatic ontology-based model evolution approach to account
for highly dynamic environments at runtime. This approach can extend initial models expressed as
ontologies to cope with rapid changes encountered in surrounding dynamic environments at runtime.
The main contribution of our presented approach is that it analyzes heterogeneous semi-structured
input data for learning an ontology, and it makes use of the learned ontology to extend an initial
ontology-based model. Within this approach, we aim to automatically evolve an initial ontology-
based model through the ontology learning approach. Therefore, this approach is illustrated using a
proof-of-concept implementation that demonstrates the ontology-based model evolution at runtime.
Finally, a threefold evaluation process of this approach is carried out to assess the quality of the
evolved ontology-based models. First, we consider a feature-based evaluation for evaluating the
structure and schema of the evolved models. Second, we adopt a criteria-based evaluation to assess
the content of the evolved models. Finally, we perform an expert-based evaluation to assess an initial
and evolved models’ coverage from an expert’s point of view. The experimental results reveal that
the quality of the evolved models is relevant in considering the changes observed in the surrounding
dynamic environments at runtime.

Keywords: ontology; OWL; ontology learning; semantic analysis

1. Introduction

Ontologies are playing an increasingly important role in knowledge representation. In
general, they provide a structured knowledge representation in which concepts are stored
together with their properties and the relations between them [1]. However, ontologies
can reflect inaccuracies in dynamic environments due to the fact that they are usually
considered for environments with predictable behaviors. As a result, they are powerless to
deal with unforeseen and new changes in the surroundings, since knowledge encapsulated
in an ontology does not evolve over time. Thus, a considerable issue for using an ontology
is the lack of support of a dynamic environment, in which changes are frequently emerging
at runtime. To take into consideration dynamic environments, unforeseen changes have to
be reflected in the ontologies at runtime. Therefore, ontologies must be used, and during
their period of use, the knowledge on which they rely needs to be updated. Nevertheless,
developing ontologies is deemed to be time-consuming and often expensive, but updating

Appl. Sci. 2021, 11, 10770. https://doi.org/10.3390/app112210770 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0001-9328-8717
https://orcid.org/0000-0002-6262-8528
https://orcid.org/0000-0003-3646-4264
https://doi.org/10.3390/app112210770
https://doi.org/10.3390/app112210770
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app112210770
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app112210770?type=check_update&version=2

Appl. Sci. 2021, 11, 10770 2 of 30

them is even more expensive, which usually constitutes the potential limit for addressing
the rapid changes occurring in dynamic environments.

One way to overcome the issue of irrelevant knowledge stored in ontologies within
dynamic environments and the increasing costs associated with adapting them to environ-
ment changes is the use of an approach known as ontology learning. The ontology learning
approach refers to the process of deriving relevant knowledge such as concepts, proprieties,
and relations, as well as the occasional axioms from input data to build a new ontology
or to enrich the preexisting one. That notwithstanding, ontology learning is not without
issues due to the variety of changes that can arise in the enclosed environment at runtime.
Hence, this cannot be manually performed effectively by experts, since they are not able to
foresee all aspects of a change. Moreover, it also struggles to fully automate the learning
process. Thus, most works in ontology learning require a minimum expert contribution and
insight at runtime. For example, some works start building an ontology semi-automatically
from scratch [2,3], requiring expert intervention at runtime. Furthermore, other works
start enriching preexisting ontologies from scratch [4,5] based on expert contributions. To
address these issues, we focus on proposing an automatic ontology-based model evolution
approach to support dynamic environments at runtime through the evolution of an initial
model expressed as an ontology. The aim of this proposed approach is twofold: (1) to
analyze heterogeneous semi-structured input data for learning an ontology and (2) to use
the learned ontology for extending and improving an initial ontology-based model to
accommodate the changes that occur in its closed dynamic environment. The process of
ontology-based model evolution is driven by the task of ontology learning and proceeds
automatically with a non-expert contribution at runtime to deal with environment changes.
In addition, we cover the implementation details and a case study to illustrate the proposed
approach. Finally, we perform feature-based, criteria-based, and expert-based evaluation
approaches to assess the quality of the proposed approach’s results.

The remainder of the paper is structured as follows. Section 2 discusses related work
and highlights our contributions. In Section 3, we present in detail an ontology-based model
evolution approach. Section 4 describes a proof-of-concept prototype implementation and
a case study. A validation of the proposed approach is given through evolved ontology-
based model evaluation, which is introduced in Section 5. Section 6 presents the evaluation
results to demonstrate the potential of the evolved ontology-based models. In Section 7,
we conduct discussions about the main results achieved. Finally, Section 8 concludes with
directions toward future work.

2. Related Work

In this section, we take a look at previous works that were interested in ontology learn-
ing approaches. Then, we end this section with a brief description of a comparative study.

2.1. Ontology Learning Approaches

For dynamic ontology-based model evolution, ontology learning approaches can offer
evolution support. Ontology learning is defined as the automatic or semi-automatic process
for building an ontology from scratch, enriching or adapting a preexisting ontology to the
arisen changes, and the consistent management of these changes [6]. By going through
the literature and several surveys in this area [7–9], numerous approaches have been
proposed to support ontology learning in the scope of ontology building or preexisting
ontology evolution.

A couple of approaches for ontology learning have been proposed in the scope of
building ontologies from scratch. In this sense, Jablonski et al. [10] introduced an approach
that deals with learning ontologies from tabular data (TD) in CSV format. The proposed
approach relies on two-level data transformation from the CSV data to a “pivot” model
and then to an ontology. To this end, a mapping process is introduced to first transform a
CSV document into an XML format. Then, the transformation from the XML format to the
ontology is performed using Extensible Stylesheet Language Transformation (XSLT). We

Appl. Sci. 2021, 11, 10770 3 of 30

also cite the work of Völker and Niepert [11], which described an approach for ontology
building directly from DBpedia. The presented approach uses statistical methods and
association rules for finding alignments. The novelty of this approach comes from the
fact that it is one of the early works which creates ontologies from a Linked Open Data
(LOD) dataset. Another work that has considered ontology building based on ontology
learning is that of Bohring and Auer [12]. This work proposed a tool called xml2owl,
which covers both the schema and data levels. Xml2owl offers the possibility to create an
OWL ontological model from an XML schema and to convert XML data to OWL instances.
This conversion is performed using XSLT. Moreover, Krataithong et al. [3] proposed a
semi-automatic framework that provides a support system for users in transforming TD
in spreadsheet format (i.e., CSV or XSL to RDF format). This framework focused on the
need for automatic schema detection before starting ontology learning from TD. For that,
it provided techniques for data type and nominal type detection for the column fields
in the datasets. Therefore, the proposed approach consists of three processes in which
users are involved: dataset preparation and import, schema detection and verification, and
OWL and RDF data generation. The last process relies on a pivot model that translates
TD into a Relational Database (RDB) and mapping rules for database schema to ontology
transformation. Aside from this, the authors in [13] proposed an approach to create an
ontology from an RDB automatically. First, the presented approach performs relational
schema pre-processing on the input data to determine its components. Then, it analyzes
these components using a set of mapping rules to convert them to corresponding ontology
components. Finally, Sbai et al. [14] proposed a semi-automatic approach to learn OWL
ontologies from RBD by using classification techniques or, more specifically, decision
trees. They introduced an algorithm based on the use of decision trees to automatically
discover the taxonomic relationships between concepts. Then, they invited a domain
expert to semantically validate the generated schema and add a meaningful name to the
ontology concepts.

Apart from these approaches, other approaches in the scope of preexisting ontology
evolution are emerging. For example, Yao et al. [4] proposed a mechanism to transform
semi-structured data—specifically a set of JSON documents provided by Web services—into
a unified ontology. This mechanism extracts JSON data automatically, including concepts,
properties, constraints, and values and builds the ontology. The resulting ontology must
be validated by domain experts. Additionally, Booshehri and Luksch [5] provided an
ontology enrichment approach from text, in which the Web of linked data, particularly
DBpedia, is used. They explored DBpedia as background knowledge alongside the text
in order to discover implicit knowledge regarding the text, from which new ontological
relations, specifically object properties, were inferred. The proposed approach aimed at
recommending only new object properties to ontology engineers, enabling them to create
much more expressive ontologies. This follows previous works in the field of ontology
learning from text with the difference that it also uses the knowledge scattered in DBpedia
to improve the ontology learning output. Moreover, Aggoune [15] introduced a semantic
approach for automatic ontology learning from many heterogeneous RDBs in order to
facilitate their integration. This approach uses WordNet as a lexical database and a semantic
similarity measure to help select the best terms to represent the ontology components.
Finally, Sbissi et al. [16] proposed an approach based on automatic ontology learning from
unstructured text to evolve a preexisting ontology. The process of ontology learning starts
with the analysis of the text. Then, it switches to the extraction of relevant terminology
synonymous with the identification of terms, concepts, concept hierarchy organization,
relationships, and extraction of axioms. Once these elements are extracted, it updates the
preexisting ontology by adding them.

2.2. Comparison Criteria

To provide a comparative study of the discussed approaches, we introduce different
criteria, with some of them arising from previous studies [17,18], as follows:

Appl. Sci. 2021, 11, 10770 4 of 30

• Input. Different inputs are used to learn ontologies. They are grouped as structured,
semi-structured, and unstructured input data;

• Learning element. Learning elements are classified as follows: concept (C), taxonomic
relation (TR), non-taxonomic relation (NTR), datatype property (D), individual (I),
and axiom (A);

• Pivot model. This is a model that behaves as a unification of heterogeneous inputs by
transforming them to an intermediate model during the process of ontology learning;

• Pivot model’s hierarchy. A pivot model can detect and maintain the underlying
hierarchical structure in the input data;

• Ontology Refinement. This is achieved through improving learned ontologies, for ex-
ample, by discovering and integrating new relations using different external resources;

• Ontology Alignment. This is achieved using a process of determining correspondences
between terms in a preexisting ontology and a learned ontology;

• Ontology Merging. This is achieved by extending a preexisting ontology through the
addition of new concepts, relations, properties, individuals, and axioms;

• Automation Degree. The acquisition of knowledge may be performed automatically
or semi-automatically, where it is handled with the help of users or experts.

2.3. Comparison and Discussion

Based on the aforementioned criteria, we classified the ontology learning approaches
as shown in Table 1.

Table 1. Tabular comparison of different ontology learning approaches based on main distinguishing criteria.

Input Learning
Element

Pivot
Model

Pivot
Model’s

Hierarchy

Ontology
Refinement

Ontology
Align-
ment

Ontology
Merging

Automation
Degree

Jablonski et al. [10] Semi-Structured:
CSV I XML data x x x x Automatic

Völker and Niepert [11] Strucured:
DBpedia C + NTR + I x x x x x Automatic

Bohring and Auer [12] Semi-Structured:
XML

C + NTR + D + I
+ A x x x x x Automatic

Krataithong et al. [3] Semi-Structured:
CSV or XSL C + NTR + D RDB

schema x x x x Semi-Automatic

Lakzaei and Shmasfard [13] Structured: RBD C + TR + NTR +
D + I + A x x x x x Automatic

Sbai et al. [14] Structured:
RBD C + TR x x x x x Semi-Automatic

Yao et al. [4] Semi-Structured:
JSON C + NTR + D + I x x Predefined

Rules
√ √

Semi-Automatic

Booshehri and Luksch [5] Unstructured:
Text NTR x x LOD with

DBpedia x
√

Semi-Automatic

Aggoune [15] Structured:
RBD C + NTR + D + I x x x x

√
Automatic

Sbissi et al. [16] Unstructured:
Text

C + TR + NTR +
D+I + A x x x x

√
Automatic

Our approach
Semi-Structured:

CSV, JSON or
XML

C + TR + NTR +
D + I + A

XML
schema+

data

√
LOD with
DBpedia +
WordNet

+
Metadata

√ √
Automatic

√
: Supported; x: Not supported.

The comparative table shows that a large number of approaches, such as those
in [4,5,10–16], have a single input format. For example, Volker and Niepert [11] built
an ontology from LOD (DBpedia). However, our approach is capable of handling a semi-
structured input with varying formats, including CSV, JSON, and XML. In addition, almost
all approaches aimed to return one or a few specific learning elements. For example,
Booshehri and Luksch [5] extracted only non-taxonomic relations, while Aggoune [15]
included four learning elements such as concepts, non-taxonomic relations, datatype prop-
erties, and individuals. In contrast to these common approaches, we cover the six different
kinds of learning elements that can be appended to a learned ontology. Moreover, apart
from the works of Jablonski et al. [10] and Krataithong et al. [3], where an input is trans-
formed to an ontology on two levels using an intermediate XML data and RDB schema,

Appl. Sci. 2021, 11, 10770 5 of 30

respectively, a one-level transformation was applied in the remaining approaches. In this
work, similar to [10], we propose a two-level transformation, since we support heteroge-
nous formats of input. Therefore, a semi-structured input is transformed to an ontology
on two levels, going through a pivot used as an intermediate model in order to represent
all input formats in the same formalism. Transformation on the first level refers to the
transformation of a semi-structured input to a pivot model in XML schema. On the second
level, it refers to the transformation of the pivot model itself to an ontology. Moreover, the
XML hierarchy was overlooked in the reviewed approaches that used XML as an input [12]
or as a pivot model [10]. These approaches tended to flatten out the XML hierarchical
structure. As a result of the XML hierarchy’s absence, the quality of the ontology learning
results could worsen, since an ontology should have a hierarchy structure. To address this
absence, we considered the XML hierarchy structure in pivot models by exploiting the
hierarchy imposed by the XML language. Furthermore, none of the reviewed approaches
dealt with ontology refinement through coupling several methods to answer the missing
knowledge during ontology learning. They usually used DBpedia as in [5] or predefined
rules as in [4] to extract missing knowledge for refining learned ontologies. Contrary to
this, we spent more effort on improving the refinement phase. Therefore, LOD such as
DBpedia, WordNet, and lexico-syntactic patterns in metadata will be applied as references
to accomplish the refinement phase. In contrast to [11], we do not learn an ontology from
LOD; however, we make use of LOD, WordNet, and metadata as background knowledge
for refining a learned ontology. Finally, this comparative study highlights that the previ-
ously discussed approaches in the scope of preexisting ontology evolution [4,5,12,13] did
not consider the ontology alignment, in contrast to the ontology merging. Indeed, close
to [4], we consider an evolution process that is driven by the task of ontology learning.
The proposed evolution process includes alignment and merging activities to consider the
evolution of an initial ontology-based model using learning elements resulting from the
learning process.

Following the above discussion, we aim to close gaps within the related works by
proposing an ontology-based model evolution approach that follows ontology learning
to evolve an initial ontology-based model to answer the changes encountered in dynamic
environments at runtime. In addition, we take into consideration the requirement for
hierarchical XML pivot models to reorganize and improve the learned ontology repre-
sentation. Furthermore, we focus on improving the ontology refinement phase, which
relies on using different external background knowledge such as DBpedia, WordNet, and
metadata. To sum up, the main strengths of the proposed approach are fivefold: (1) the
fully automatic ontology-based model evolution guided by ontology learning once changes
in the surrounding environments occur at runtime; (2) the support of heterogeneous input
data; (3) the use of a hierarchical XML pivot model to maintain the input’s hierarchy and
to construct the learned ontology’s hierarchy; (4) the use of multiple pieces of background
knowledge together with a pattern-based semantic analysis, including simple patterns
such as regular expressions to ensure the refinement of the learned ontologies; and (5) the
neglect of expert intervention.

3. Ontology-Based Model Evolution Approach

This section presents an ontology-based model evolution approach based on ontol-
ogy learning. The main challenge of this approach is the automatic evolution of a model
at runtime to deal with the continuous changes of or within the surrounding dynamic
environment. To meet this challenge, it is worth considering the idea of ontology mod-
ularity, where semantic enrichment and evolution come into play. Here and within the
modularity notion, the model grounded on ontology could semantically be enriched in a
flexible way across the runtime environment changes. The major objective of the proposed
approach is to extend an initial modular, ontology-based model through automatically
learning ontology from a semi-structured data source and then enriching and populating
it to conclude in answering to the runtime environment changes. We pursue evolving an

Appl. Sci. 2021, 11, 10770 6 of 30

initial ontology-based model through transforming a semi-structured data source to an
ontology, since the data sources could well represent the changes arising in the enclosing
environments rather than the external knowledge sources, such as, DBpedia or WordNet.
To exhibit a strong evolution, our proposed ontology-based model evolution approach
will not be limited to these external knowledge sources and will rely on the use of semi-
structured data sources, which can be far more extensive and representative for answering
dynamic environments. For fulfilling an ontology-based model evolution, the presented
approach, as illustrated in Figure 1, involves several modules, such as data source selection,
data source format unification, ontology-based model learning, and ontology-based model
integration modules.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 7 of 31

Figure 1. Ontology-based model evolution approach.

The present module is handled by an automated data source search engine. Figure 2
illustrates a simple and general view of three main components of this search engine. The
indexer component is in charge of parsing data sources and collected surrounding envi-
ronment changes to be more efficient and accurate for performing retrieval techniques. It
usually performs lowercase transformation, the removal of stop words, and stemming.
Then, it stores parsed data sources in indexes. The query engine component is responsible
for formulating a query from the parsed environment changes and then running it on the
previously built indexes to get a list of the appropriate data sources that can match with
the changes according to term frequency. The relevance ranker component is in charge of
ranking the retrieved list to select the most useful data source regarding the environment
changes. It first arranges the appropriate data sources by comparing their term frequen-
cies and then selects the data source with the highest frequency.

Figure 2. Data source search engine.

3.2. Data Source Format Unification Module
As we consider heterogeneous semi-structured formats, the main purpose of the data

source unification module is to transform any semi-structured candidate data source to
hierarchical XML data as a pivot model in accordance with the first-level transformation.
Therefore, after selecting the candidate data source, the preprocessing step is started. This

Figure 1. Ontology-based model evolution approach.

3.1. Data Source Selection Module

Once changes occur in the surrounding environment, the data source selection module
aims to retrieve and select a candidate semi-structured data source that can cope with the
captured changes. The candidate data source should be accompanied by its metadata to
go further in the refinement of the learned ontology. The use of metadata is needed to
increase the quality of the learned ontology by finding frequently occurring patterns and
recognizable structures within the textual description of the candidate data source, since a
semi-structured data source may suffer from a slight lack of semantics.

The present module is handled by an automated data source search engine. Figure
2 illustrates a simple and general view of three main components of this search engine.
The indexer component is in charge of parsing data sources and collected surrounding
environment changes to be more efficient and accurate for performing retrieval techniques.
It usually performs lowercase transformation, the removal of stop words, and stemming.
Then, it stores parsed data sources in indexes. The query engine component is responsible
for formulating a query from the parsed environment changes and then running it on the
previously built indexes to get a list of the appropriate data sources that can match with
the changes according to term frequency. The relevance ranker component is in charge of
ranking the retrieved list to select the most useful data source regarding the environment
changes. It first arranges the appropriate data sources by comparing their term frequencies
and then selects the data source with the highest frequency.

Appl. Sci. 2021, 11, 10770 7 of 30

Appl. Sci. 2021, 11, x FOR PEER REVIEW 7 of 31

Figure 1. Ontology-based model evolution approach.

The present module is handled by an automated data source search engine. Figure 2
illustrates a simple and general view of three main components of this search engine. The
indexer component is in charge of parsing data sources and collected surrounding envi-
ronment changes to be more efficient and accurate for performing retrieval techniques. It
usually performs lowercase transformation, the removal of stop words, and stemming.
Then, it stores parsed data sources in indexes. The query engine component is responsible
for formulating a query from the parsed environment changes and then running it on the
previously built indexes to get a list of the appropriate data sources that can match with
the changes according to term frequency. The relevance ranker component is in charge of
ranking the retrieved list to select the most useful data source regarding the environment
changes. It first arranges the appropriate data sources by comparing their term frequen-
cies and then selects the data source with the highest frequency.

Figure 2. Data source search engine.

3.2. Data Source Format Unification Module
As we consider heterogeneous semi-structured formats, the main purpose of the data

source unification module is to transform any semi-structured candidate data source to
hierarchical XML data as a pivot model in accordance with the first-level transformation.
Therefore, after selecting the candidate data source, the preprocessing step is started. This

Figure 2. Data source search engine.

3.2. Data Source Format Unification Module

As we consider heterogeneous semi-structured formats, the main purpose of the data
source unification module is to transform any semi-structured candidate data source to
hierarchical XML data as a pivot model in accordance with the first-level transformation.
Therefore, after selecting the candidate data source, the preprocessing step is started.
This step takes the data source in question as the input and stops when it is cleaned and
arranged in a structured form. Then, the underlying module behaves differently in each
input format. For the TD, the arranged data are being parsed in order to automatically
identify their schema. Then, a deep visit is performed on the parsed data to map them to
the corresponding XML data by choosing an appropriate mapping rule for each tabular
element and generating the corresponding XSD element. In order to achieve this, we
defined a set of mapping rules, detailed in Table 2, for transforming TD, specifically CSV
data, to hierarchical XML data, since existing libraries and tools map a TD to flat XML
data, which can give rise to difficulties while transforming XML data to an ontology. For
the JSON data, the arranged data are being transformed to the corresponding XML data
upon an API-based mapping. For the XML data, the arranged data are analyzed to infer
the related XML schema representation. At the end, this module produces as the output
an XML document along with an XML schema document to be served as the input for the
ontology-based model’s learning module.

Table 2. CSV to XML schema mapping rules.

CSV XML Schema

Table name (group of CSV files) Complex type
Column (non-nominal datatype) Attribute with column datatype as type

Column (nominal datatype) Element inside an anonymous complex type
Column (group of CSV files) Element inside an anonymous complex type

Label column Complex type uses extension

3.3. Ontology-Based Model’s Learning Module

After performing the first level-transformation, the ontology-based model learning
module takes place to apply the second-level transformation and different refinement
methods. Thus, this module starts with the definition of a local ontology in the OWL
language, which is discovered from the XML pivot model, and finishes with some refine-
ments in the local ontology. Hence, both phases are involved: the learning phase and the
refinement phase.

3.3.1. Learning Phase

The learning phase deals with the acquisition of information needed to learn a local
ontology starting from the XML pivot model. The beginning step in this phase is intended

Appl. Sci. 2021, 11, 10770 8 of 30

to parse the earlier generated XML schema for inspecting its features, such as complex
types, elements, attributes, and so on. Then, the parsed schema results are traversed to
transform the pivot model to an OWL local ontology. The implementation of the following
transformation adheres to certain mapping rules, which are introduced in Table 3. These
rules determine how to convert each feature of the XML schema to the corresponding
ontology element. Once this transformation is established, the data carried by the XML
document is transformed to the ontology individuals.

Table 3. XML schema to OWL ontology mapping rules.

XML Schema OWL Ontology

xsd:complexType: xsd:element, containing other elements or
having at least one attribute owl:Class, coupled with owl:ObjectProperty

xsd:attribute owl:DataProperty with a range depending on the attribute type
xsd:element, inside an anonymous complex type owl:ObjectProperty

xsd:complexType, which uses extensions owl:Class as an owl:subClassOf “base type”

3.3.2. Refinement Phase

After attaining the local ontology, it is necessary to expand its quality borders through
the accreditation of a refinement phase. Therefore, uncovering missing concepts as well as
relations and identifying a concept hierarchy are considered ontology refinement methods.
For this, DBpedia, WordNet, and metadata knowledge bases are considered references for
refining the local ontology, since they are widely used and cover broad resources from
different domains. Indeed, coupling several knowledge bases could answer missing knowl-
edge during ontology refinement and improve the inexpressive local ontology through
exploiting the different linguistic patterns, hyponym-hypernym relationships contained in
WordNet, and concept hierarchy retrieved from DBpedia.

The first refinement method, “missing concepts refinement”, is used to compensate
for the missing concepts from the learning phase. More specifically, this method follows
the main steps outlined in Algorithm 1. In this algorithm, the beginning step is intended to
collect all datatype properties included in the local ontology. Next, the retrieved datatype
properties are traversed to extract their corresponding domains. Then, the candidate
metadata are processed for each datatype property sequentially in three steps. First, each
sentence that contains the datatype property is extracted. Second, Parts of Speech (POS) tags
are induced over each extracted sentence to prepare them for analysis. Third, a collection
of lexico-syntactic patterns (LSPs), presented in Table 4, is exploited over the POS tags to
extract the related domain to the datatype property. These LSPs are issued from different
works published in the literature, such as [19–21], to perform a semantic analysis on any
textual metadata and to identify missing concepts through the datatype properties. Once
these steps are established, the domain of the datatype property is updated to represent
the missing concepts.

The second refinement method, “taxonomic relation refinement”, identifies the concept
hierarchy to organize learned and new covered concepts into the local ontology through
subsumption relations. Therefore, this method focuses on exploring the benefits from
coupling WordNet, metadata, and DBpedia to learn new taxonomic relations among the
concepts represented in the partially refined local ontology.

Appl. Sci. 2021, 11, 10770 9 of 30

Algorithm 1. The Proposed Missing Concepts Refinement Algorithm

Input: LocalOntology, Metadata, LSPs
Output: PartiallyRefined_LocalOntology
1. DataTypePropertiesSet = GetAllDatatypeProperties (LocalOntology)
2. For each DatatypeProperty ∈ DataTypePropertiesSet do
3. Domain = GetDomain (DatatypeProperty)
4. SentencesSet = FindSentences (DatatypeProperty, Metadata)
5. For each Sentence ∈ SentencesSet do
6. Sentence = PartsOfSpeechTagging(Sentence, POS)
7. NewDomain = matches (Sentence, LSPs)
8. If NewDomain 6= ∅ then
9. PartiallyRefined_LocalOntology = UpdateMissingConcept (DatatypeProperty,Domain,NewDomain)
10. End If
11. End For
12. End For
13. End.

Table 4. LSPs for missing concept acquisition.

LSP Example Relation

Property|ies | characteristic|s |
attribute|s of NP<class> be [PARA]

[(NP<property>,) * and] NP<property>
Attributes of an accelerometer are X, Y, and Z Datatype properties: X, Y, Z

Class or domain: accelerometer

NP<class> be [(AP<property>,) *] and
AP<property>

Metals are lustrous, malleable, and good
conductors of heat and electricity

Datatype property: lustrous
Class or domain: metal

NP<class> have NP<class> A car has a color Datatype property: color
Class or domain: car

NN with|without DT? RB? JJ? ATTR A pizza with some cheese. Datatype property: cheese
Class or domain: pizza

DT ATTR of DT? RB? JJ? NN The color of the car Datatype property: color
Class or domain: car

NP: noun phrase; AP: adjectival phrase; NN: noun; DT: determiner; RB: adverb; JJ: adjective; ATTR: attribute; PARA: paralinguistic symbols,
like colons; *: repetition.

Indeed, the most novel idea in this method is to compose several steps that maximize
the performance of the concept hierarchy refinement by taking into consideration (1) the
verb hyponym and hypernym relationships contained in WordNet, (2) the behavior of
different linguistic patterns by extracting hyponym-hypernym pairs from the metadata
accompanied by the candidate data source, and (3) the concept hierarchy retrieved from DB-
pedia predicates, such as rdfs:subClassOf, umbel:superClassOf, and geo-ont:parentFeature.
Another possibility to improve the taxonomic relation refinement from the metadata is to
combine the Hearst [22,23] and Aguado de Cea [19] patterns for hyponym and hypernym
extraction, given that this combination has been proven to improve the precision and
recall, since Hearst patterns allow for finding all possible taxonomic relationships with
high precision but low recall, and in contrast, Aguado de Cea patterns produce high recall
but low precision [24]. Table 5 shows a part of Hearst and Cea’s patterns that are used to
acquire new taxonomic relations in the partially refined local ontology.

The “taxonomic relation refinement” method is outlined in Figure 3, where the basic
steps are displayed. At the initial step of this method, the candidate metadata is scanned for
instances of distinguished Hearst and Cea patterns that are useful for detecting hyponym
and hypernym relations for each concept included in the partially refined local ontology to
identify new assumption relations. These patterns occurred frequently across the textual
metadata and summarized the most common ways of expressing hyponyms and hyper-
nyms. An example of these patterns that could be detected in a sentence like “Activities
such as changing clothes, having guests, or cleaning are considered” is “NP {,} such as {NP,}
* {and|or} NP”, where the first NP denotes a super concept (e.g., “activity”) of the next
NPs (e.g., “changing clothes”, “having guests”, and “cleaning”). Then, a set of hyponyms

Appl. Sci. 2021, 11, 10770 10 of 30

and hypernyms covered by WordNet is gathered for each concept. Finally, this method
finishes by checking each concept for the DBpedia predicates, such as “rdfs:subClassOf”,
“umbel:superClassOf”, or “geo-ont:parentFeature”, to discover unrecognized assumption
relations among concepts using DBpedia.

Table 5. Hearst and Cea’s patterns for hyponym and hypernym relation extraction.

Pattern Group Pattern

Hearst’s patterns
NP {,} such as {NP,} * {and|or} NP

NP {,} including {NP,} * {and|or} NP
NP {,} especially {NP,} * {and|or} NP

Cea’s patterns

[(NP<subclass>,) * and] NP<subclass> be [CN]
NP<superclass>

[(NP<subclass>,) * and] NP<subclass> (classify
as) | (group in|into|as) | (fall into) | (belong

to) [CN] NP<superclass>
There are CD | QUAN [CN] NP<superclass>
PARA [(NP<subclass>,) * and] NP<subclass>

NP: noun phrase; CN: class name; CATV: verbs of classification; PARA: paralinguistic symbols like colons; *: repetition.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 11 of 31

the textual metadata and summarized the most common ways of expressing hyponyms
and hypernyms. An example of these patterns that could be detected in a sentence like
“Activities such as changing clothes, having guests, or cleaning are considered” is “NP {,}
such as {NP,} * {and|or} NP”, where the first NP denotes a super concept (e.g., “activity”)
of the next NPs (e.g., “changing clothes”, “having guests”, and “cleaning”). Then, a set of
hyponyms and hypernyms covered by WordNet is gathered for each concept. Finally, this
method finishes by checking each concept for the DBpedia predicates, such as “rdfs:sub-
ClassOf”, “umbel:superClassOf”, or “geo-ont:parentFeature”, to discover unrecognized
assumption relations among concepts using DBpedia.

Figure 3. Taxonomic relation refinement method.

The third and last refinement method, “non-taxonomic relation refinement”, is based
on associating concepts by representing hidden connections between them and identify-
ing their non-taxonomic relations, specifically the object properties. This method focuses
on investigating the DBpedia and the metadata as background knowledge for discovering
and automatically labeling the non-taxonomic relationships from the candidate sentences
to refine the inexpressive concepts in the partially refined local ontology, as depicted in
Figure 4. Within this method, the DBpedia and the metadata are considered to find new
non-taxonomic relations related to different concepts existing in the partially refined local
ontology. First, the comments about every partially refined local ontology’s concept
founded under “rdfs:comment” are explored in DBpedia. Next, the metadata are looped
to extract all the sentences containing any partially refined local ontology concept. Then,
a semantic analysis of the candidate comments and sentences is performed to locate their
main components, such as, nouns, verbs, and so on. For this purpose, the candidate com-
ments and sentences are analyzed with the aid of POS tags to identify verbs that will be
used to label non-taxonomic relations.

Figure 3. Taxonomic relation refinement method.

The third and last refinement method, “non-taxonomic relation refinement”, is based
on associating concepts by representing hidden connections between them and identifying
their non-taxonomic relations, specifically the object properties. This method focuses on
investigating the DBpedia and the metadata as background knowledge for discovering
and automatically labeling the non-taxonomic relationships from the candidate sentences
to refine the inexpressive concepts in the partially refined local ontology, as depicted
in Figure 4. Within this method, the DBpedia and the metadata are considered to find
new non-taxonomic relations related to different concepts existing in the partially refined
local ontology. First, the comments about every partially refined local ontology’s concept
founded under “rdfs:comment” are explored in DBpedia. Next, the metadata are looped to
extract all the sentences containing any partially refined local ontology concept. Then, a
semantic analysis of the candidate comments and sentences is performed to locate their
main components, such as, nouns, verbs, and so on. For this purpose, the candidate
comments and sentences are analyzed with the aid of POS tags to identify verbs that will
be used to label non-taxonomic relations.

Appl. Sci. 2021, 11, 10770 11 of 30
Appl. Sci. 2021, 11, x FOR PEER REVIEW 12 of 31

Figure 4. Non-taxonomic relation refinement method.

3.4. Ontology-Based Model Integration Module
The ontology-based model integration module is targeted toward updating an initial

ontology-based model through a refined local ontology, which is constructed by analyz-
ing a semi-structured data source that answers the arisen changes in the surrounding en-
vironment. This module is run every time the knowledge stored in the initial ontology-
based model is not enough to fit with the arisen changes at runtime. To fulfill the integra-
tion, we take the two ontologies as inputs, and we carry out two important steps. First,
we discover the correspondences between the different ontologies based on the similarity
calculation. Second, we merge the new terms into the initial ontology-based model in or-
der to obtain an evolved ontology-based model. To this end, we provide a twofold process
involving an alignment phase and a merging phase.

3.4.1. Alignment Phase
To handle the ambiguity associated with formalization before the evolution of initial

ontology-based model evolution, an alignment is essential to discover the correspond-
ences between the refined local ontology and the initial ontology-based model. Therefore,
the relations among the terms, which can be concepts, relations, properties, or individuals,
should be mined before the merging activity as much as possible. For this purpose, we
propose an automatic alignment approach consisting of two stages: an initial syntactic
similarity measure followed by a semantic similarity measure. In the first stage, a simple
distance computation between two strings labeling two terms is performed. Secondly, a
semantic similarity is used to compute the extent of similarity between the term pairs re-
garding the likeliness of their meaning. This opens the door to exploring WordNet as a
way of finding semantic similarities, since WordNet can determine the semantic distance
between two terms’ names by considering synonyms or the relation between the hyper-
nym and hyponym. Given two terms 𝑇ଵ and 𝑇ଶ, their similarity sim (𝑇ଵ, 𝑇ଶ) is calculated
according to the following equation:

𝑠𝑖𝑚(𝑇ଵ, 𝑇ଶ) ൌ ൝1, 𝑖𝑓 𝑡ℎ𝑒 𝑡𝑒𝑟𝑚 𝑇ଵ 𝑖𝑠 𝑝𝑎𝑟𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑦𝑛𝑠𝑒𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑡𝑒𝑟𝑚 𝑇ଶ 𝑜𝑟 𝑣𝑖𝑐𝑒 𝑣𝑒𝑟𝑠𝑎0.5 𝑖𝑓 𝑇ଵ 𝑖𝑠 𝑎 ℎ𝑦𝑝𝑒𝑟𝑛𝑦𝑚 𝑜𝑟 𝑎 ℎ𝑦𝑝𝑜𝑛𝑦𝑚 𝑜𝑓 𝑇ଶ 𝑜𝑟 𝑣𝑖𝑐𝑒 𝑣𝑒𝑟𝑠𝑎0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 , (1)

In this work, the combination of both syntactic similarity and the semantic similarity
between terms intends to improve the overall alignment performance. At the end, the
alignment activity provides a set of matches between the terms extracted from the refined
local ontology and the initial ontology-based model according to the chosen strategy. This
matching is defined in the form of triplets (𝑇ଵ,𝑇ଶ, 𝑟), where 𝑇ଵ and 𝑇ଶ are the terms of the
two ontologies and r is a type of relation such as equality, generalization, or specialization.

Figure 4. Non-taxonomic relation refinement method.

3.4. Ontology-Based Model Integration Module

The ontology-based model integration module is targeted toward updating an initial
ontology-based model through a refined local ontology, which is constructed by analyzing
a semi-structured data source that answers the arisen changes in the surrounding environ-
ment. This module is run every time the knowledge stored in the initial ontology-based
model is not enough to fit with the arisen changes at runtime. To fulfill the integration, we
take the two ontologies as inputs, and we carry out two important steps. First, we discover
the correspondences between the different ontologies based on the similarity calculation.
Second, we merge the new terms into the initial ontology-based model in order to obtain
an evolved ontology-based model. To this end, we provide a twofold process involving an
alignment phase and a merging phase.

3.4.1. Alignment Phase

To handle the ambiguity associated with formalization before the evolution of initial
ontology-based model evolution, an alignment is essential to discover the correspondences
between the refined local ontology and the initial ontology-based model. Therefore, the
relations among the terms, which can be concepts, relations, properties, or individuals,
should be mined before the merging activity as much as possible. For this purpose, we
propose an automatic alignment approach consisting of two stages: an initial syntactic
similarity measure followed by a semantic similarity measure. In the first stage, a simple
distance computation between two strings labeling two terms is performed. Secondly,
a semantic similarity is used to compute the extent of similarity between the term pairs
regarding the likeliness of their meaning. This opens the door to exploring WordNet as a
way of finding semantic similarities, since WordNet can determine the semantic distance
between two terms’ names by considering synonyms or the relation between the hypernym
and hyponym. Given two terms T1 and T2, their similarity sim (T1, T2) is calculated
according to the following equation:

sim(T1, T2) =


1, i f the term T1 is part o f the synset o f the term T2 or vice versa

0.5 i f T1 is a hypernym or a hyponym o f T2 or vice versa
0, otherwise

, (1)

In this work, the combination of both syntactic similarity and the semantic similarity
between terms intends to improve the overall alignment performance. At the end, the
alignment activity provides a set of matches between the terms extracted from the refined
local ontology and the initial ontology-based model according to the chosen strategy. This
matching is defined in the form of triplets (T1, T2, r), where T1 and T2 are the terms of the
two ontologies and r is a type of relation such as equality, generalization, or specialization.

Appl. Sci. 2021, 11, 10770 12 of 30

3.4.2. Merging Phase

After the alignment phase, a merging phase is required to merge the refined local
ontology with the initial ontology-based model. In our work, the merging phase is seen
as the process that updates an initial ontology-based model through the addition of new
terms such as concepts, properties, relations, and individuals from a refined local ontology
to obtain a more complete ontology that can cover the environment’s changes emerging at
runtime. In other words, the initial ontology-based model is enriched and populated using
the refined local ontology, taking into account the set of matchings defined in the previous
phase. Based on the found alignments, similar terms are merged into a single one in the
initial ontology-based model, whereas the terms considered dissimilar are directly copied
into the initial ontology-based model. Finally, an evolved view of the initial ontology-based
model is computed from the refined local ontology.

4. Proof of Concept and Case Study

In this section, we describe a prototypical implementation of the proposed approach.
Furthermore, we present a case study to validate the proof of concept.

4.1. Proof of Concept

A proof of concept was implemented to verify the feasibility of the presented approach.
In our proof of concept implementation, an application for assisting engineers was used
to evolve users’ initial ontology-based models regarding arisen changes in the users’
surrounding environments at runtime. The presented application consisted of two distinct
layers, called frontend and backend. The frontend layer consisted of an Angular-based
web application for engineers, while the backend layer dealt with the automatic ontology-
based model evolution. This layer was accessible from the frontend layer via RESTful
Web services. All of the approach’s modules were implemented as RESTful Web services,
developed using Spring Boot and Java technologies. We adopted Spring Boot as the basic
framework to simplify the work, since it is an open-source Java-based framework that
makes the development of RESTful Web services simple.

To accomplish the backend layer implementation, we made use of Apache Lucene [25]
to select the most useful semi-structured data source that could answer the changes oc-
curring in the user’s surrounding environment. We opted for Apache Lucene, as it is a
powerful information retrieval tool that provides Java-based indexing and search technol-
ogy. For the data source format unification, the set of mapping rules described in Table 2
was written in Java to transform the tabular data to XML data. In addition, a common
JSON parsing API named Jackson, which converts JSON to XML data, and Trang API,
which produces XML schema from an XML data input, were used. For the learning phase,
an XML-Schema Object Model (XSOM) parser was utilized to parse the generated XML
schema and inspect the elements and attributes in it. Moreover, the set of mapping rules
defined in Table 3, together with the Jena API, were integrated to build the local ontology
and then fill it via concepts, relations, properties, and individuals. Then, for the refine-
ment phase as well as the evolution module, we used the extended Java WordNet Library
(extJWNL), DBpedia, and Matcher Java regex classes.

4.2. Case Study

A case study was conducted to show how the proof of concept behaved in a realistic
setting. This case study considered two scenarios. The first scenario covered moving from
an ordinary apartment to a smart apartment, and the second covered moving from a smart
apartment to a smart home.

• Scenario 1: Moving from an ordinary apartment to a smart apartment.

In this scenario, the user lives in an ordinary apartment during the years of study (t0).
The surrounding environment in which he or she lives contained only sensors commonly
found in his or her smartphones, as shown in Figure 5a. Obviously, the user’s initial ontology-

Appl. Sci. 2021, 11, 10770 13 of 30

based model t0 answered to his or her surrounding environment as depicted in Figure 6.
Then, after he or she graduated from the university, the user decided to move to a smart
apartment equipped with sensors. At t1, this new environment, described in Figure 5b, was
visited by the user. As illustrated in Figure 5b, a range of sensors from magnetic to electric,
flush, PIR, and pressure sensors were available in the new user’s smart apartment.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 14 of 31

ontology-based model 𝑡଴ answered to his or her surrounding environment as depicted in
Figure 6. Then, after he or she graduated from the university, the user decided to move to
a smart apartment equipped with sensors. At 𝑡ଵ, this new environment, described in Fig-
ure 5b, was visited by the user. As illustrated in Figure 5b, a range of sensors from mag-
netic to electric, flush, PIR, and pressure sensors were available in the new user’s smart
apartment.

(a) (b)

Figure 5. User’s surrounding environments (a) at 𝑡0 and (b) at 𝑡1.

Figure 6. An excerpt of the user’s initial ontology-based model at 𝑡0.

Consequently, the initial ontology-based model, previously presented in Figure 6,
would answer to the new environment illustrated in Figure 5b. To provide a strong an-
swer, the data source selection service applied the automated data source search engine
to select the appropriate data source using Apache Lucene. Figure 7 shows that it adopted
the Ordonez dataset [26] for the evolution of the user’s model at 𝑡ଵ. It contained 20,358
observations in CSV format conducted with 14 sensors. These sensors captured about 10
basic activities. The candidate dataset was accompanied by metadata, a sample fragment
of which is depicted in Figure 8.

Figure 5. User’s surrounding environments (a) at t0 and (b) at t1.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 14 of 31

ontology-based model 𝑡଴ answered to his or her surrounding environment as depicted in
Figure 6. Then, after he or she graduated from the university, the user decided to move to
a smart apartment equipped with sensors. At 𝑡ଵ, this new environment, described in Fig-
ure 5b, was visited by the user. As illustrated in Figure 5b, a range of sensors from mag-
netic to electric, flush, PIR, and pressure sensors were available in the new user’s smart
apartment.

(a) (b)

Figure 5. User’s surrounding environments (a) at 𝑡0 and (b) at 𝑡1.

Figure 6. An excerpt of the user’s initial ontology-based model at 𝑡0.

Consequently, the initial ontology-based model, previously presented in Figure 6,
would answer to the new environment illustrated in Figure 5b. To provide a strong an-
swer, the data source selection service applied the automated data source search engine
to select the appropriate data source using Apache Lucene. Figure 7 shows that it adopted
the Ordonez dataset [26] for the evolution of the user’s model at 𝑡ଵ. It contained 20,358
observations in CSV format conducted with 14 sensors. These sensors captured about 10
basic activities. The candidate dataset was accompanied by metadata, a sample fragment
of which is depicted in Figure 8.

Figure 6. An excerpt of the user’s initial ontology-based model at t0.

Consequently, the initial ontology-based model, previously presented in Figure 6,
would answer to the new environment illustrated in Figure 5b. To provide a strong answer,
the data source selection service applied the automated data source search engine to select
the appropriate data source using Apache Lucene. Figure 7 shows that it adopted the
Ordonez dataset [26] for the evolution of the user’s model at t1. It contained 20,358 obser-
vations in CSV format conducted with 14 sensors. These sensors captured about 10 basic
activities. The candidate dataset was accompanied by metadata, a sample fragment of
which is depicted in Figure 8.

Appl. Sci. 2021, 11, 10770 14 of 30Appl. Sci. 2021, 11, x FOR PEER REVIEW 15 of 31

Figure 7. Candidate data source selection at 𝑡ଵ, the Ordonez dataset.

Figure 8. A sample fragment of the Ordonez metadata.

Next, the second and third modules used the Ordonez dataset together with the set
of background knowledge to learn and refine a local ontology model. The output of the
third module was the refined local ontology, an excerpt of which is shown in Figure 9.

Figure 7. Candidate data source selection at t1, the Ordonez dataset.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 15 of 31

Figure 7. Candidate data source selection at 𝑡ଵ, the Ordonez dataset.

Figure 8. A sample fragment of the Ordonez metadata.

Next, the second and third modules used the Ordonez dataset together with the set
of background knowledge to learn and refine a local ontology model. The output of the
third module was the refined local ontology, an excerpt of which is shown in Figure 9.

Figure 8. A sample fragment of the Ordonez metadata.

Next, the second and third modules used the Ordonez dataset together with the set of
background knowledge to learn and refine a local ontology model. The output of the third
module was the refined local ontology, an excerpt of which is shown in Figure 9.

Appl. Sci. 2021, 11, 10770 15 of 30
Appl. Sci. 2021, 11, x FOR PEER REVIEW 16 of 31

Figure 9. Ontology-based model learning at 𝑡ଵ, the refinement phase, showing an excerpt of the refined local ontology.

After the refinement, the last module updated the user’s initial ontology-based
model. As a result, at 𝑡ଵ , an evolved ontology-based model was generated, an excerpt of
which is depicted in Figure 10.

Figure 10. Ontology-based model evolution at 𝑡ଵ, showing an excerpt of the evolved ontology-based model at 𝑡ଵ.

• Scenario 2: Moving from a smart apartment to a smart home.
In this scenario, the user lived in a smart apartment at 𝑡ଵ. This apartment encom-

passed a set of sensors, which is represented in Figure 11a. Obviously, the user’s initial
ontology-based model answered to his or her surrounding environment as depicted in

Figure 9. Ontology-based model learning at t1, the refinement phase, showing an excerpt of the refined local ontology.

After the refinement, the last module updated the user’s initial ontology-based model.
As a result, at t1, an evolved ontology-based model was generated, an excerpt of which is
depicted in Figure 10.

• Scenario 2: Moving from a smart apartment to a smart home.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 16 of 31

Figure 9. Ontology-based model learning at 𝑡ଵ, the refinement phase, showing an excerpt of the refined local ontology.

After the refinement, the last module updated the user’s initial ontology-based
model. As a result, at 𝑡ଵ , an evolved ontology-based model was generated, an excerpt of
which is depicted in Figure 10.

Figure 10. Ontology-based model evolution at 𝑡ଵ, showing an excerpt of the evolved ontology-based model at 𝑡ଵ.

• Scenario 2: Moving from a smart apartment to a smart home.
In this scenario, the user lived in a smart apartment at 𝑡ଵ. This apartment encom-

passed a set of sensors, which is represented in Figure 11a. Obviously, the user’s initial
ontology-based model answered to his or her surrounding environment as depicted in

Figure 10. Ontology-based model evolution at t1, showing an excerpt of the evolved ontology-based model at t1.

In this scenario, the user lived in a smart apartment at t1. This apartment encompassed
a set of sensors, which is represented in Figure 11a. Obviously, the user’s initial ontology-
based model answered to his or her surrounding environment as depicted in Figure 10.
Then, after a period of time, the user moved out of his or her smart apartment and into

Appl. Sci. 2021, 11, 10770 16 of 30

an independent smart home with more advanced sensors. At t2, this new and different
pervasive environment, described in Figure 11b, was visited by the user. As illustrated in
Figure 11b, a range of sensors including distance, sonar, force, temperature, photocell, and
contact to infrared (IR) were available in the user’s new smart home.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 17 of 31

Figure 10. Then, after a period of time, the user moved out of his or her smart apartment
and into an independent smart home with more advanced sensors. At 𝑡ଶ, this new and
different pervasive environment, described in Figure 11b, was visited by the user. As il-
lustrated in Figure 11b, a range of sensors including distance, sonar, force, temperature,
photocell, and contact to infrared (IR) were available in the user’s new smart home.

(a) (b)

Figure 11. User’s surrounding environments (a) at 𝑡1 and (b) at 𝑡2.

Consequently, the initial ontology-based model, previously presented in Figure 10,
would answer to the new pervasive environment illustrated in Figure 11b. To provide a
strong answer, the data source selection service applied the automated data source search
engine to select the appropriate data source using Apache Lucene. Figure 12 shows that it
adopted the ARAS dataset [27] for the evolution of the user’s model at 𝑡ଶ, since this da-
taset had a stronger tendency for having the same features of the new smart home. The
ARAS dataset is well-known in the literature for having collected and published a home
automation dataset for daily living in smart homes. It contains 5,184,000 observations in
CSV format conducted with 20 sensors. These sensors captured about 27 different activi-
ties. The candidate dataset was accompanied by metadata, a sample fragment of which is
depicted in Figure 13.

Next, the data source format unification service concerning the generation of a hier-
archical XML pivot model from the candidate dataset was performed. It started by parsing
the candidate ARAS dataset after performing the preprocessing and preparation step to
extract its schema information as depicted in Figure 14. Then, the set of mapping rules
previously described in Table 2 was explored to transform the parsed candidate dataset
to XML data. The output was a hierarchical XML pivot model including an XML docu-
ment together with an XML schema document, whose results are represented in Figure
15.

Then, the previously generated XML schema was traversed to parse its elements and
attributes using the XSOM parser. The output of XSOM is an object model document rep-
resenting the different retrieved elements and attributes with their values as outlined in
Figure 16. For instance, the “SuperElem_Activity” feature was defined as a simple type,
while the “Going Out” and “Having Shower” features were defined as a complex type
with a complex content extension.

Figure 11. User’s surrounding environments (a) at t1 and (b) at t2.

Consequently, the initial ontology-based model, previously presented in Figure 10,
would answer to the new pervasive environment illustrated in Figure 11b. To provide a
strong answer, the data source selection service applied the automated data source search
engine to select the appropriate data source using Apache Lucene. Figure 12 shows that
it adopted the ARAS dataset [27] for the evolution of the user’s model at t2, since this
dataset had a stronger tendency for having the same features of the new smart home. The
ARAS dataset is well-known in the literature for having collected and published a home
automation dataset for daily living in smart homes. It contains 5,184,000 observations in
CSV format conducted with 20 sensors. These sensors captured about 27 different activities.
The candidate dataset was accompanied by metadata, a sample fragment of which is
depicted in Figure 13.

Next, the data source format unification service concerning the generation of a hierar-
chical XML pivot model from the candidate dataset was performed. It started by parsing
the candidate ARAS dataset after performing the preprocessing and preparation step to
extract its schema information as depicted in Figure 14. Then, the set of mapping rules
previously described in Table 2 was explored to transform the parsed candidate dataset to
XML data. The output was a hierarchical XML pivot model including an XML document
together with an XML schema document, whose results are represented in Figure 15.

Then, the previously generated XML schema was traversed to parse its elements and
attributes using the XSOM parser. The output of XSOM is an object model document
representing the different retrieved elements and attributes with their values as outlined in
Figure 16. For instance, the “SuperElem_Activity” feature was defined as a simple type,
while the “Going Out” and “Having Shower” features were defined as a complex type
with a complex content extension.

Appl. Sci. 2021, 11, 10770 17 of 30Appl. Sci. 2021, 11, x FOR PEER REVIEW 18 of 31

Figure 12. Candidate data source selection at 𝑡ଶ of the ARAS dataset.

Figure 13. A sample fragment of the ARAS metadata.

Figure 12. Candidate data source selection at t2 of the ARAS dataset.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 18 of 31

Figure 12. Candidate data source selection at 𝑡ଶ of the ARAS dataset.

Figure 13. A sample fragment of the ARAS metadata. Figure 13. A sample fragment of the ARAS metadata.

Appl. Sci. 2021, 11, 10770 18 of 30
Appl. Sci. 2021, 11, x FOR PEER REVIEW 19 of 31

Figure 14. Data source format unification at 𝑡ଶ with an example of a parsed candidate data
source.

Figure 15. Data source format unification at 𝑡ଶ with an example of the XML schema (XSD).

Figure 14. Data source format unification at t2 with an example of a parsed candidate data source.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 19 of 31

Figure 14. Data source format unification at 𝑡ଶ with an example of a parsed candidate data
source.

Figure 15. Data source format unification at 𝑡ଶ with an example of the XML schema (XSD). Figure 15. Data source format unification at t2 with an example of the XML schema (XSD).

Appl. Sci. 2021, 11, 10770 19 of 30
Appl. Sci. 2021, 11, x FOR PEER REVIEW 20 of 31

Figure 16. Ontology-based model learning at 𝑡ଶ in the learning phase, an example of a parsed XML
schema.

After that, the third module used this output as an input together with the set of
mapping rules defined in Table 3 to generate a local ontology model using the Jena API.
The second output of the third process was the resulting local ontology, where an excerpt
of the local ontology is shown in Figure 17. Thus, for example, the two complex type ele-
ments “Going Out” and “Having Shower” were mapped to ontology sub-concepts, whose
super concept was the “SuperElem_Activity” simple type element.

Figure 17. Ontology-based model learning at 𝑡ଶ in the learning phase, an excerpt of the local ontology.

Subsequently and secondly, this module allowed for refining the local ontology and
generating new elements if necessary. In this case, a taxonomic refinement was performed
where, internally, the Hearst and Cea patterns and Matcher Java regex classes were used
to recognize sentences that were included in the ARAS metadata and match them with

Figure 16. Ontology-based model learning at t2 in the learning phase, an example of a parsed XML schema.

After that, the third module used this output as an input together with the set of
mapping rules defined in Table 3 to generate a local ontology model using the Jena API.
The second output of the third process was the resulting local ontology, where an excerpt of
the local ontology is shown in Figure 17. Thus, for example, the two complex type elements
“Going Out” and “Having Shower” were mapped to ontology sub-concepts, whose super
concept was the “SuperElem_Activity” simple type element.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 20 of 31

Figure 16. Ontology-based model learning at 𝑡ଶ in the learning phase, an example of a parsed XML
schema.

After that, the third module used this output as an input together with the set of
mapping rules defined in Table 3 to generate a local ontology model using the Jena API.
The second output of the third process was the resulting local ontology, where an excerpt
of the local ontology is shown in Figure 17. Thus, for example, the two complex type ele-
ments “Going Out” and “Having Shower” were mapped to ontology sub-concepts, whose
super concept was the “SuperElem_Activity” simple type element.

Figure 17. Ontology-based model learning at 𝑡ଶ in the learning phase, an excerpt of the local ontology.

Subsequently and secondly, this module allowed for refining the local ontology and
generating new elements if necessary. In this case, a taxonomic refinement was performed
where, internally, the Hearst and Cea patterns and Matcher Java regex classes were used
to recognize sentences that were included in the ARAS metadata and match them with

Figure 17. Ontology-based model learning at t2 in the learning phase, an excerpt of the local ontology.

Subsequently and secondly, this module allowed for refining the local ontology and
generating new elements if necessary. In this case, a taxonomic refinement was performed
where, internally, the Hearst and Cea patterns and Matcher Java regex classes were used to
recognize sentences that were included in the ARAS metadata and match them with such

Appl. Sci. 2021, 11, 10770 20 of 30

patterns for identifying missing taxonomic relations as shown in Figure 18a. For instance,
the second sentence matched well with Hearst’s pattern “NP {,} such as {NP,} * {and|or}
NP”, and a new taxonomic relation was identified between the “Going Out” concept and
“Activity” concept, since “Activity” is a hypernym of “Going Out”. Consequently, the
“aras:SuperElem_Activity” was replaced by the “aras:Activity” concept. Additionally,
extJWNL was exploited to accomplish the taxonomic refinement as shown in Figure 18b.
Thus, a new taxonomic relation was suggested between the “aras:Place” concept and
“aras:Location” concept. Therefore, a definition of the “aras:Location” concept was created,
and the suggested relation was built. Figure 19 presents an excerpt of the partially refined
local ontology where all the taxonomic refinements are illustrated.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 21 of 31

such patterns for identifying missing taxonomic relations as shown in Figure 18a. For in-
stance, the second sentence matched well with Hearst’s pattern “NP {,} such as {NP,} *
{and|or} NP”, and a new taxonomic relation was identified between the “Going Out” con-
cept and “Activity” concept, since “Activity” is a hypernym of “Going Out”. Conse-
quently, the “aras:SuperElem_Activity” was replaced by the “aras:Activity” concept. Ad-
ditionally, extJWNL was exploited to accomplish the taxonomic refinement as shown in
Figure 18b. Thus, a new taxonomic relation was suggested between the “aras:Place” con-
cept and “aras:Location” concept. Therefore, a definition of the “aras:Location” concept
was created, and the suggested relation was built. Figure 19 presents an excerpt of the
partially refined local ontology where all the taxonomic refinements are illustrated.

(a) (b)

Figure 18. Ontology-based model learning at 𝑡ଶ in the refinement phase. (a) An example of taxonomic refinement using
LSPs. (b) An example of taxonomic refinement using WordNet.

Figure 19. Ontology-based model learning at 𝑡ଶ in the refinement phase, an excerpt of a partially refined local ontology
after taxonomic refinements.

Afterward, non-taxonomic relation refinement was accomplished, since the hidden
connections between all the learned super concepts were missing. In this case, for exam-
ple, the metadata was looped to extract all the sentences that contained the label of the
“aras:Sensor” concept. Then, analysis of the structure and dependencies of the candidate
sentence was performed, and as illustrated in Figure 20, the <”Sensor”, “has”, “Place”>
triplet was extracted, where the “has” verb was an indicator for a non-taxonomic relation
and used to label the new non-taxonomic relation between the “aras:Sensor” and

Figure 18. Ontology-based model learning at t2 in the refinement phase. (a) An example of taxonomic refinement using
LSPs. (b) An example of taxonomic refinement using WordNet.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 21 of 31

such patterns for identifying missing taxonomic relations as shown in Figure 18a. For in-
stance, the second sentence matched well with Hearst’s pattern “NP {,} such as {NP,} *
{and|or} NP”, and a new taxonomic relation was identified between the “Going Out” con-
cept and “Activity” concept, since “Activity” is a hypernym of “Going Out”. Conse-
quently, the “aras:SuperElem_Activity” was replaced by the “aras:Activity” concept. Ad-
ditionally, extJWNL was exploited to accomplish the taxonomic refinement as shown in
Figure 18b. Thus, a new taxonomic relation was suggested between the “aras:Place” con-
cept and “aras:Location” concept. Therefore, a definition of the “aras:Location” concept
was created, and the suggested relation was built. Figure 19 presents an excerpt of the
partially refined local ontology where all the taxonomic refinements are illustrated.

(a) (b)

Figure 18. Ontology-based model learning at 𝑡ଶ in the refinement phase. (a) An example of taxonomic refinement using
LSPs. (b) An example of taxonomic refinement using WordNet.

Figure 19. Ontology-based model learning at 𝑡ଶ in the refinement phase, an excerpt of a partially refined local ontology
after taxonomic refinements.

Afterward, non-taxonomic relation refinement was accomplished, since the hidden
connections between all the learned super concepts were missing. In this case, for exam-
ple, the metadata was looped to extract all the sentences that contained the label of the
“aras:Sensor” concept. Then, analysis of the structure and dependencies of the candidate
sentence was performed, and as illustrated in Figure 20, the <”Sensor”, “has”, “Place”>
triplet was extracted, where the “has” verb was an indicator for a non-taxonomic relation
and used to label the new non-taxonomic relation between the “aras:Sensor” and

Figure 19. Ontology-based model learning at t2 in the refinement phase, an excerpt of a partially refined local ontology
after taxonomic refinements.

Afterward, non-taxonomic relation refinement was accomplished, since the hidden
connections between all the learned super concepts were missing. In this case, for exam-
ple, the metadata was looped to extract all the sentences that contained the label of the
“aras:Sensor” concept. Then, analysis of the structure and dependencies of the candidate
sentence was performed, and as illustrated in Figure 20, the <”Sensor”, “has”, “Place”>
triplet was extracted, where the “has” verb was an indicator for a non-taxonomic rela-
tion and used to label the new non-taxonomic relation between the “aras:Sensor” and

Appl. Sci. 2021, 11, 10770 21 of 30

“aras:Place” concepts. Figure 21 shows an excerpt of the refined local ontology, where all
the non-taxonomic refinements are illustrated.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 22 of 31

“aras:Place” concepts. Figure 21 shows an excerpt of the refined local ontology, where all
the non-taxonomic refinements are illustrated.

Figure 20. Ontology-based model learning at 𝑡ଶ in the refinement phase, an example of non-taxo-
nomic refinements.

Figure 21. Ontology-based model learning at 𝑡ଶ in the refinement phase, an excerpt of a partially refined local ontology
after non-taxonomic refinements.

After the refinement phase, the last module supported the evolution of the user’s
initial ontology-based model. For this, the syntactic and semantic similarities were applied
to find out the similarities between the ontology terms during the alignment activity. Fig-
ure 22 shows a part of the alignment findings. For example, the “aras:Location”, “aras:Sen-
sor”, and “aras:Activity” concepts were equivalent to the “conon:Location”, “sosa:Sen-
sor”, and “conon:Activity” concepts, respectively. Finally, the user’s initial ontology-
based model evolved based on the alignment results. The output of this process was the
user’s evolved ontology-based model at 𝑡ଶ, an excerpt of which is depicted in Figure 23.
For instance, in the case of equivalent concepts with similar labels, such as “aras:Activity”
and “conon:Activity”, the original concept “conon:Activity” was kept, while in the case

Figure 20. Ontology-based model learning at t2 in the refinement phase, an example of non-
taxonomic refinements.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 22 of 31

“aras:Place” concepts. Figure 21 shows an excerpt of the refined local ontology, where all
the non-taxonomic refinements are illustrated.

Figure 20. Ontology-based model learning at 𝑡ଶ in the refinement phase, an example of non-taxo-
nomic refinements.

Figure 21. Ontology-based model learning at 𝑡ଶ in the refinement phase, an excerpt of a partially refined local ontology
after non-taxonomic refinements.

After the refinement phase, the last module supported the evolution of the user’s
initial ontology-based model. For this, the syntactic and semantic similarities were applied
to find out the similarities between the ontology terms during the alignment activity. Fig-
ure 22 shows a part of the alignment findings. For example, the “aras:Location”, “aras:Sen-
sor”, and “aras:Activity” concepts were equivalent to the “conon:Location”, “sosa:Sen-
sor”, and “conon:Activity” concepts, respectively. Finally, the user’s initial ontology-
based model evolved based on the alignment results. The output of this process was the
user’s evolved ontology-based model at 𝑡ଶ, an excerpt of which is depicted in Figure 23.
For instance, in the case of equivalent concepts with similar labels, such as “aras:Activity”
and “conon:Activity”, the original concept “conon:Activity” was kept, while in the case

Figure 21. Ontology-based model learning at t2 in the refinement phase, an excerpt of a partially refined local ontology
after non-taxonomic refinements.

After the refinement phase, the last module supported the evolution of the user’s initial
ontology-based model. For this, the syntactic and semantic similarities were applied to find
out the similarities between the ontology terms during the alignment activity. Figure 22
shows a part of the alignment findings. For example, the “aras:Location”, “aras:Sensor”,
and “aras:Activity” concepts were equivalent to the “conon:Location”, “sosa:Sensor”, and
“conon:Activity” concepts, respectively. Finally, the user’s initial ontology-based model
evolved based on the alignment results. The output of this process was the user’s evolved
ontology-based model at t2, an excerpt of which is depicted in Figure 23. For instance, in the
case of equivalent concepts with similar labels, such as “aras:Activity” and “conon:Activity”,
the original concept “conon:Activity” was kept, while in the case of dissimilar classes,

Appl. Sci. 2021, 11, 10770 22 of 30

such as “ordonez:Pressure” and “aras:Temperature”, the new concept “aras:Temperature”
was copied, and the old one, “ordonez:Pressure”, was overlooked. In addition, for the
case of relations, the “aras:PerformedAt” relation was neglected, since there existed a
relation “conon:locatedIn” that held between the concept “conon:Activity” and the con-
cept “conon:Location”. By contrast, the new relation “aras:hasPlace” was copied into the
evolved ontology-based model to relate between the old concept “sosa:Sensor” and the
new concept “aras:Place”.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 23 of 31

of dissimilar classes, such as “ordonez:Pressure” and “aras:Temperature”, the new con-
cept “aras:Temperature” was copied, and the old one, “ordonez:Pressure”, was over-
looked. In addition, for the case of relations, the “aras:PerformedAt” relation was ne-
glected, since there existed a relation “conon:locatedIn” that held between the concept
“conon:Activity” and the concept “conon:Location”. By contrast, the new relation
“aras:hasPlace” was copied into the evolved ontology-based model to relate between the
old concept “sosa:Sensor” and the new concept “aras:Place”.

Figure 22. Ontology-based model evolution at 𝑡ଶ in the alignment phase, an example of the main
alignment findings.

Figure 23. Ontology-based model evolution at 𝑡ଶ in the merging phase, an excerpt of the evolved ontology-based model
at 𝑡ଶ.

Figure 22. Ontology-based model evolution at t2 in the alignment phase, an example of the main alignment findings.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 23 of 31

of dissimilar classes, such as “ordonez:Pressure” and “aras:Temperature”, the new con-
cept “aras:Temperature” was copied, and the old one, “ordonez:Pressure”, was over-
looked. In addition, for the case of relations, the “aras:PerformedAt” relation was ne-
glected, since there existed a relation “conon:locatedIn” that held between the concept
“conon:Activity” and the concept “conon:Location”. By contrast, the new relation
“aras:hasPlace” was copied into the evolved ontology-based model to relate between the
old concept “sosa:Sensor” and the new concept “aras:Place”.

Figure 22. Ontology-based model evolution at 𝑡ଶ in the alignment phase, an example of the main
alignment findings.

Figure 23. Ontology-based model evolution at 𝑡ଶ in the merging phase, an excerpt of the evolved ontology-based model
at 𝑡ଶ.
Figure 23. Ontology-based model evolution at t2 in the merging phase, an excerpt of the evolved ontology-based model at t2.

Appl. Sci. 2021, 11, 10770 23 of 30

5. Evaluation

In this section, we aim to evaluate the quality of the evolved ontology-based models
from different perspectives. For this purpose, the evaluation is threefold, where feature-
based, criteria-based, and expert-based evaluation approaches are applied.

5.1. Feature-Based Evaluation

Feature-based evaluation is generally oriented toward evaluating the structural and
schema aspects of ontologies to draw conclusions about their structure and schema quality.
This evaluation has been adopted by different techniques, such as OntoClean, ONTOQA,
and OntoMetrics. For our evolved ontology-based models, OntoMetrics [28] was used as a
feature-based evaluation framework. It is a Web-based tool that consists of diverse metrics,
such as base, schema, class, knowledge base, and graph metrics. In this work, we aimed to
reuse two main metrics from OntoMetrics, called schema metrics and graph metrics, to
determine the structure and schema quality with respect to the concepts, relations, and
inheritance levels of the evolved ontology-based models. An overview of these metrics is
discussed as follows:

• The schema metrics assess the design of ontologies by calculating and comparing
statistics about the concepts, inheritance levels, relation types, properties, and other
elements. They stand for searching for schema-related errors such as recursive def-
initions, unconnected concepts, missing domains or ranges, and missing inverse
relations. The most essential and significant metrics of the schema category are the
following: the Inheritance Richness (IR), Relationship Richness (RR) and Inverse
Relations Ratio (IRR).

The IR is a way to measure the overall levels of the distribution of concepts of the
ontology’s inheritance tree. It is known as the average number of sub-concepts
per concept to describe how the concepts are distributed across the different
levels of the ontology and thus distinguish shallow from deep ontologies. A
relatively low IR result would correspond to a deep or vertical ontology that
covers its targeted environment in a very detailed way, while a high result, by
contrast, would reflect a shallow or horizontal ontology that tends to represent a
wide range of general concepts with fewer levels.

The RR examines the existing relations within an ontology to reflect the diversity
of relationships. It is calculated as the fraction of the number of non-taxonomic
relations, specifically the object properties, and the total number of sub-concepts
and non-taxonomic relations in the ontology. The RR result is a number between
0 and 1, where a high value closer to 1 indicates that the ontology is rich and
contains a variety of non-taxonomic relations, while a small RR value closer to 0
indicates that the ontology mostly consists of subsumption relations.

The IRR illustrates the ratio between the inverse non-taxonomic relations and all
non-taxonomic relations. Lower values for this metric indicate a deficiency in
the definition of inverse non-taxonomic relations in the ontology.

• Graph metrics are also known as structural metrics, where the taxonomy of ontologies
is analyzed. These metrics calculate the cardinality and depth of the ontology structure
in terms of the absolute and average depth, breadth, and so on. The depth metric
that consists of an absolute and average is associated with the cardinality of the paths.
The breadth metric, which is represented by the absolute and average, expresses the
cardinality of the levels. The value of these different parameters in the graph metrics
depicts the effectiveness of an ontology structure.

5.2. Criteria-Based Evaluation

The criteria-based evaluation measures the quality of the ontology content using
common criteria that are identified in the ontology evaluation literature [29,30], such as
consistency, conciseness, and so on. In our case, this evaluation was mainly concerned

Appl. Sci. 2021, 11, 10770 24 of 30

with the content quality of an evolved ontology. Thus, this evaluation was carried out by
evaluating the content of our evolved ontology-based models against particular criteria:
(1) consistency, (2) completeness, and (3) conciseness. These criteria with their descriptions
are presented in Table 6. We considered using the evaluation tool OOPS! [31], which stands
for Ontology Pitfall Scanner, to check the consistency, completeness, and conciseness of the
evolved models. OOPS! is a web-based evaluation tool for evaluating ontologies against
a set of common design pitfalls. These potential pitfalls are classified into three levels
of importance: critical, important, and minor. Minor pitfalls do not cause any severe
problems, but their correction can improve the quality of the ontology. Important pitfalls
refer to problems that are not critical to the consistency of the ontology but are considered
important to correct. Critical pitfalls give rise to severe problems that may affect the
consistency or reasoning of the ontology.

Table 6. Basic criteria for evolved ontology-based models’ content evaluation.

Criteria Description Related OOPS! Pitfalls

Consistency
To ensure that the evolved ontology-based

models do not contain any inconsistencies (e.g.,
contradictory or conflicting output results).

P05: Define incorrect inverse relationship.
P06: Involve cycles in hierarchy.

P07: Merging dissimilar concepts in the same concept.
P19: Swapping intersection and union.

P24: Using recursive definition.

Completeness
To ensure that all output results that are

supposed to be in the evolved ontology-based
models are explicitly presented.

P04: Creating unconnected ontology elements.
P11: Missing domain or range in properties.

P12: Missing equivalent properties.
P13: Inverse relationships not explicitly declared.

Conciseness
To ensure that the evolved ontology-based
models do not include redundancies (e.g.,
irrelevant or redundant output results).

P02: Creating class synonyms.
P03: Creating “is” relationship place of

“rdfs:subClassOf”, “rdf:type”, or “owl:sameAs”.
P21: Using a miscellaneous concept.

5.3. Expert-Based Evaluation

In an expert-based evaluation, the quality of the ontologies is judged on the basis of
expert opinion. While this is a subjective evaluation approach, it is frequently considered
a good validation process because it relies on the deep knowledge of external experts
who can explore the quality of an ontology. In our case, expert-based evaluation is more
about assessing the quality of initial and evolved ontology-based models in terms of
coverage of the current surrounding environment. We took into account the coverage of
concepts to capture the sufficiency of the ontology concepts for representing the runtime
changes occurring in the enclosed environment. To this end, an expert was invited that
had a good understanding of ontology development and engineering, such as ontology
learning, alignment, and merging. He is considered an expert in his field since he has
more than 10 years of experience. In this evaluation approach, the initial and evolved
ontology-based models, together with a description of the surrounding environment
changes, were given to the invited expert, who then applied his knowledge to assess the
coverage of the given ontology-based models by checking all their concepts and identifying
uncovered concepts to conclude their coverage in response to the emerging changes in the
dynamic environment.

This evaluation consisted of calculating three well-known metrics: the precision, recall,
and F-measure. The precision was used to indicate how accurately the concepts identified
in an ontology-based model represented the current surrounding environment, and it was
the number of correct concepts in the ontology-based model relative to the total number of
concepts in the ontology-based model, as shown in Equation (2):

Precision = Nb o f correct concepts in the model/Total Nb o f concepts in the model, (2)

Appl. Sci. 2021, 11, 10770 25 of 30

The recall was used to measure the environment coverage of the ontology-based
model, and it was the number of correct concepts relative to the total number of possible
concepts, as shown in Equation (3):

Recall = Nb o f correct concepts in the model/Total Nb o f possible concepts, (3)

The F-measure was used to measure the accuracy of the ontology-based model, and it
was the harmonic mean that combined both the precision and recall values as shown in
Equation (4):

F-measure = 2× (Precision× Recall)/(Precision + Recall), (4)

6. Results

This section presents the evaluation results obtained from feature-based, criteria-based,
and expert-based evaluation approaches for evolved ontology-based models.

6.1. Evolved Ontology-Based Models’ Overview

To perform the quality evaluation, we proposed assessing five ontology-based models
evolved by our proof of concept. Table 7 shows the number of concepts, the number
relations, and the information about the candidate datasets used for the evolution.

Table 7. Insights in the evolved ontology-based models.

#Concepts #Relations

Candidate Dataset

Name Setting #Dataset
Size

#Dataset
Observation

Evolved ontology-based model 1 68 80 ARAS [27] Smart home 47 5,184,000

Evolved ontology-based model 2 37 54 Ordonez [26] Smart
apartment 24 20,358

Evolved ontology-based model 3 26 38 HHAR [32] Ordinary
apartment 16 43,930,250

Evolved ontology-based model 4 22 31 RCD [33] Smart room 14 250,000

Evolved ontology-based model 5 139 167 ExtraSensory [34] Outdoor or
indoor 127 300,000

6.2. Feature-Based Evaluation Results

With regard to the evolved models, the mean results of the schema metrics are given
in Figure 23. From Figure 24, it can be seen that we achieved a mean value for the IR equal
to 0.903. This IR result proved that the evolved models were deep or vertical ontologies
due to the fact that they offered several levels of inheritance, where each concept had
at least two sub-concepts. Aside from this, the mean result of the RR was about 0.081.
We can note that this result is close to zero, indicating that most relations defined in the
evolved models were subsumption relations. It is obvious that the evolved models brought
minimal non-taxonomic relations, which could be determined from the mean result of the
RR. Furthermore, the obtained mean result of the IRR was equal to 0, which means there
was a deficiency of inverse relations in the evolved models.

The mean results of the graph metrics are scattered in Figure 25. As this figure shows,
the evolved models had a mean absolute depth of 135 and a mean average depth of 2.177.
Thus, the depth metric results obtained can confirm the verticality of the evolved models
as assessed by the previously obtained mean IR metric result. In turn, the evolved models
presented a mean absolute breadth of 62 and a mean average breadth of 7.75. Thus, the
breadth metric results reinforced the vertical hierarchical design of the evolved models.

Appl. Sci. 2021, 11, 10770 26 of 30
Appl. Sci. 2021, 11, x FOR PEER REVIEW 27 of 31

Figure 24. Mean results of schema metrics for the evolved ontology-based models using the On-
toMetrics tool.

The mean results of the graph metrics are scattered in Figure 25. As this figure shows,
the evolved models had a mean absolute depth of 135 and a mean average depth of 2.177.
Thus, the depth metric results obtained can confirm the verticality of the evolved models
as assessed by the previously obtained mean IR metric result. In turn, the evolved models
presented a mean absolute breadth of 62 and a mean average breadth of 7.75. Thus, the
breadth metric results reinforced the vertical hierarchical design of the evolved models.

Figure 25. Mean results of graph metrics for the evolved ontology-based models using the OntoMet-
rics tool.

6.3. Criteria-Based Evaluation Results
A Web-based evaluation via OOPS! was performed, and its outcome is shown in Ta-

ble 8. This table points out the different pitfalls that were encountered in the evolved mod-
els using OOPS! along with their specific descriptions. As reported in Table 8, the detected
pitfalls did not affect the consistency or conciseness of the evolved models. On the con-
trary, OOPS! showed normal consistency and conciseness in the evolved models. Thus,
the evolved models met both of these standards because they did not contain irrelevant
or redundant output results and did not include any inconsistencies. By contrast, for com-
pleteness, a minor pitfall was returned regarding the inverse relationships not being ex-
plicitly declared. This pitfall was the evolved models omitting the declaration of inverse
relationships. Thus, we can observe that the completeness pitfalls result correlated with
the above-discussed mean result of the IRR to show that the evolved models were not
complete. To fix the detected pitfall, the OOPS! guidelines proposed explicitly declaring
inverse relationships in the evolved models.

Table 8. Pitfalls in evolved ontology-based models detected by OOPS!

Criteria Detected Pitfall Affects to
OOPS! Importance

Level Satisfaction

Consistency - - Normal
Yes, no contradictory or conflicting output re-
sults can be inferred by reasoners since OOPS!

shows no errors for all evolved models.

Completeness
P13: Inverse rela-
tionship not ex-
plicitly stated

Non-taxonomic
relations Minor

No, the evolved models are not completed well
since inverse relationships were not explicitly

defined as determined by OOPS!

0
0.2
0.4
0.6
0.8
1

IR RR IRR

0

50

100

150

Depth Breadth

Absolute Average

Figure 24. Mean results of schema metrics for the evolved ontology-based models using the Onto-
Metrics tool.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 27 of 31

Figure 24. Mean results of schema metrics for the evolved ontology-based models using the On-
toMetrics tool.

The mean results of the graph metrics are scattered in Figure 25. As this figure shows,
the evolved models had a mean absolute depth of 135 and a mean average depth of 2.177.
Thus, the depth metric results obtained can confirm the verticality of the evolved models
as assessed by the previously obtained mean IR metric result. In turn, the evolved models
presented a mean absolute breadth of 62 and a mean average breadth of 7.75. Thus, the
breadth metric results reinforced the vertical hierarchical design of the evolved models.

Figure 25. Mean results of graph metrics for the evolved ontology-based models using the OntoMet-
rics tool.

6.3. Criteria-Based Evaluation Results
A Web-based evaluation via OOPS! was performed, and its outcome is shown in Ta-

ble 8. This table points out the different pitfalls that were encountered in the evolved mod-
els using OOPS! along with their specific descriptions. As reported in Table 8, the detected
pitfalls did not affect the consistency or conciseness of the evolved models. On the con-
trary, OOPS! showed normal consistency and conciseness in the evolved models. Thus,
the evolved models met both of these standards because they did not contain irrelevant
or redundant output results and did not include any inconsistencies. By contrast, for com-
pleteness, a minor pitfall was returned regarding the inverse relationships not being ex-
plicitly declared. This pitfall was the evolved models omitting the declaration of inverse
relationships. Thus, we can observe that the completeness pitfalls result correlated with
the above-discussed mean result of the IRR to show that the evolved models were not
complete. To fix the detected pitfall, the OOPS! guidelines proposed explicitly declaring
inverse relationships in the evolved models.

Table 8. Pitfalls in evolved ontology-based models detected by OOPS!

Criteria Detected Pitfall Affects to
OOPS! Importance

Level Satisfaction

Consistency - - Normal
Yes, no contradictory or conflicting output re-
sults can be inferred by reasoners since OOPS!

shows no errors for all evolved models.

Completeness
P13: Inverse rela-
tionship not ex-
plicitly stated

Non-taxonomic
relations Minor

No, the evolved models are not completed well
since inverse relationships were not explicitly

defined as determined by OOPS!

0
0.2
0.4
0.6
0.8
1

IR RR IRR

0

50

100

150

Depth Breadth

Absolute Average

Figure 25. Mean results of graph metrics for the evolved ontology-based models using the OntoMet-
rics tool.

6.3. Criteria-Based Evaluation Results

A Web-based evaluation via OOPS! was performed, and its outcome is shown in
Table 8. This table points out the different pitfalls that were encountered in the evolved
models using OOPS! along with their specific descriptions. As reported in Table 8, the
detected pitfalls did not affect the consistency or conciseness of the evolved models. On the
contrary, OOPS! showed normal consistency and conciseness in the evolved models. Thus,
the evolved models met both of these standards because they did not contain irrelevant
or redundant output results and did not include any inconsistencies. By contrast, for
completeness, a minor pitfall was returned regarding the inverse relationships not being
explicitly declared. This pitfall was the evolved models omitting the declaration of inverse
relationships. Thus, we can observe that the completeness pitfalls result correlated with
the above-discussed mean result of the IRR to show that the evolved models were not
complete. To fix the detected pitfall, the OOPS! guidelines proposed explicitly declaring
inverse relationships in the evolved models.

Appl. Sci. 2021, 11, 10770 27 of 30

Table 8. Pitfalls in evolved ontology-based models detected by OOPS!

Criteria Detected Pitfall Affects to OOPS!
Importance Level Satisfaction

Consistency - - Normal

Yes, no contradictory or
conflicting output results

can be inferred by
reasoners since OOPS!
shows no errors for all

evolved models.

Completeness
P13: Inverse

relationship not
explicitly stated

Non-taxonomic relations Minor

No, the evolved models are
not completed well since

inverse relationships were
not explicitly defined as
determined by OOPS!

Conciseness - - Normal

Yes, no unnecessary or
redundant output results

were contained in the
evolved models according

to OOPS!

6.4. Expert-Based Evaluation Results

In the first round of the expert-based evaluation, the invited expert explored the changes
occurring in the surrounding environment and then navigated across the initial and evolved
ontology-based models. In the second round, he evaluated both models’ quality in terms of
environment coverage. Consequently, the precision, recall, and F-measure of the initial and
evolved ontology-based models were computed as shown in Table 9.

Table 9. Initial and evolved ontology-based models’ coverage results.

Precision Recall F-Measure

Initial ontology-based model 0.69 0.48 0.57
Evolved ontology-based model 0.80 0.65 0.72

Considering the results presented in Table 9, it is clear that the evolved model achieved
a precision score of 0.80 and a recall score of 0.65. In addition, we obtained a quite good
result for the F-measure of 0.72, knowing that the F-measure’s best value is at 1 and its
worst value is at 0. As a whole, the evolved model’s coverage results were promising and
showed considerable precision, recall, and F-measure values. According to these results, we
observe that the evolved model could fit well with the surrounding environment changes,
since it showed a higher coverage level than the initial model.

7. Discussion

In this section, we discuss the main obtained results after completing the evaluation
process. For simplifying the discussion of the results, they are explained in the following
according to each applied evaluation approach.

From the feature-based evaluation perspective, the schema metrics’ results, particu-
larly for the RR and IRR, reflected a relatively minimal amount of non-taxonomic relations
in the evolved ontology-based models due to incompleteness in terms of the non-taxonomic
relations and their inverses. In addition, the IR result underlined a vertical hierarchy in
the evolved models with a large number of inheritance levels. In accordance with the
IR result, the graph metrics emphasized the verticality of the evolved ontology-based
models and guaranteed the structure’s effectiveness. At the end, the obtained feature-
based evaluation results could ensure the structure and schema quality of the evolved
ontology-based models.

Appl. Sci. 2021, 11, 10770 28 of 30

From the criteria-based evaluation perspective, the results showed that evolved
ontology-based models could assure good consistency and conciseness. Conversely, the
requirement for completeness was not met as well, since the evolved ontology-based mod-
els did not explicitly represent inverse relationships. Despite the noted issue, the obtained
criteria-based evaluation results could confirm appropriate content quality for the given
evolved ontology-based models.

From the expert-based evaluation perspective, the results indicated that the evolved
ontology-based model exceeded in terms of environment coverage, which was proven by
the higher scores for precision and recall. The improvement in the recall score was higher
than that for precision, which reveals that the evolved ontology-based model was better in
coverage against the initial ontology-based model. Therefore, the coverage requirement of
the evolved ontology-based model was considered acceptable, since the evolved ontology-
based model had the advantage of producing high precision and good recall. Despite this,
there was room for improvement regarding the coverage requirement through providing
minor enrichments, since the score of the F-measure led to around 0.72. Therefore, the
expert stressed, in an attempt to achieve a higher coverage, the need for slight enrichments
of the evolved ontology-based model with additional knowledge to foster the expert’s
coverage agreement.

To conclude, the overall results were promising and largely showed an appropriate
quality of content, schema, and structure in the evolved ontology-based models. They
reflected a considerable consistency, conciseness, and coverage, whereas the completeness
was not met that well. These findings highlight the quality of the evolved ontology-based
models for answering changes arising in the surrounding environments at runtime and
achieving the purpose of the ontology-based model evolution approach.

8. Conclusions

Regarding the main concerns associated with the dynamic environment changes over
time, we have presented an automatic ontology-based model evolution approach that takes
advantage of ontology learning to answer dynamic environments’ changes at runtime. The
chief aim of the presented approach is to analyze heterogeneous, semi-structured input
data for learning an ontology that will be used to extend an initial ontology-based model
at runtime. This approach led to obtaining a more relevant picture of an ontology-based
model regarding the surrounding environment changes without expert contributions
at runtime. Therefore, evolved ontology-based models were evaluated through three
evaluation approaches under different parameterizations. First, we provided a feature-
based evaluation to assess the design and structure of the evolved ontology-based models.
Secondly, we conducted a criteria-based evaluation of the evolved ontology-based models
in terms of content through analyzing the evolved ontology-based models’ consistency,
conciseness, and completeness. Third, we used an expert-based evaluation to assure the
initial and evolved ontology-based models’ coverage in the current enclosed environment.
These evaluation findings reflected the quality of the evolved ontology-based models in
supporting environments’ changes at runtime. However, we found that the results were
still insufficient, because we did not assess the relevance of the data sources according
to the environment changes. In this sense, we plan to further improve the evaluation
and assess the evolved ontology-based models from the point of view of data source
relevance. Additionally, an advancement beyond the deficiency of inverse relationships
among concepts is intended to be considered to enhance the presented approach.

Author Contributions: Conceptualization, R.J.; methodology, R.J.; software, R.J.; validation, R.J.;
formal analysis, R.J.; investigation, R.J.; writing—original draft preparation, R.J.; writing—review
and editing, R.J., M.K. and F.B.; visualization, S.F.; supervision, M.K. and F.B. All authors have read
and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Appl. Sci. 2021, 11, 10770 29 of 30

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Echarte, F.; Astrain, J.J.; Córdoba, A.; Villadangos, J.E. Ontology of Folksonomy: A New Modelling Method. SAAKM 2007,

289, 36.
2. Rani, M.; Dhar, A.K.; Vyas, O. Semi-automatic terminology ontology learning based on topic modeling. Eng. Appl. Artif. Intell.

2017, 63, 108–125. [CrossRef]
3. Krataithong, P.; Buranarach, M.; Hongwarittorrn, N.; Supnithi, T. Semi-automatic framework for gener-ating RDF dataset from

open data. In International Symposium on Natural Language Processing; Springer: Cham, Switzerland, 2016; pp. 3–14.
4. Yao, Y.; Liu, H.; Yi, J.; Chen, H.; Zhao, X.; Ma, X. An automatic semantic extraction method for web data interchange. In

Proceedings of the 2014 6th International Conference on Computer Science and Information Technology (CSIT), Amman, Jordan,
26–27 March 2014; IEEE: Washington, DC, USA, 2014; pp. 148–152.

5. Booshehri, M.; Luksch, P. An Ontology Enrichment Approach by Using DBpedia. In Proceedings of the 5th International Conference
on Web Intelligence, Mining and Semantics, Larnaca, Cyprus, 13–15 July; ACM Press: New York, NY, USA, 2015; pp. 1–11.

6. Gómez-Pérez, A.; Manzano-Macho, D. A survey of ontology learning methods and techniques. OntoWeb Deliv. D 2003, 1.
7. Asim, M.N.; Wasim, M.; Khan, M.U.G.; Mahmood, W.; Abbasi, H.M. A survey of ontology learning techniques and applications.

Database 2018, 24, 2018. [CrossRef] [PubMed]
8. Lehmann, J.; Voelker, J. An introduction to ontology learning. Perspect. Ontol. Learn. 2014, 18, 7–14.
9. Ma, C.; Molnár, B. Use of Ontology Learning in Information System Integration: A Literature Survey. In Machine Learning and

Knowledge Discovery in Databases; Springer: Vienna, Austria, 2020; pp. 342–353.
10. Jablonski, S.; Lay, R.; Meiler, C.; Muller, S.; Hümmer, W. Data logistics as a means of integration in healthcare applications. In

Proceedings of the 2005 ACM symposium on Applied computing—SAC’ 05, Santa Fe, NM, USA, 13–17 March 2005; ACM Press:
New York, NY, USA, 2005; p. 236.

11. Völker, J.; Niepert, M. Statistical Schema Induction. In Proceedings of the 8th Extended Semantic Web Conference, Heraklion,
Crete, Greece, 29 May–2 June 2011; Springer: London, UK, 2011; pp. 124–138.

12. Bohring, H.; Auer, S. Mapping XML to OWL ontologies. In Marktplatz Internet: Von e-Learning bis e-Payment, Leipziger Informatik-
Tage (LIT 2005); Gesellschaft für Informatik e. V.: Berlin, Germany, 2015.

13. Lakzaei, B.; Shmasfard, M. Ontology learning from relational databases. Inf. Sci. 2021, 577, 280–297. [CrossRef]
14. Sbai, S.; Chabih, O.; Louhdi, M.R.C.; Behja, H.; Zemmouri, E.M.; Trousse, B. Using decision trees to learn ontology taxonomies

from relational databases. In Proceedings of the 2020 6th IEEE Congress on Information Science and Technology (CiSt), Agadir-
Essaouira, Morocco, 5–12 June 2021; IEEE: Washington, DC, USA, 2020; pp. 54–58.

15. Aggoune, A. Automatic ontology learning from heterogeneous relational databases: Application in alimenta-tion risks field. In
Proceedings of the IFIP International Conference on Computational Intelligence and Its Applications, Oran, Algeria, 8–10 May
2018; Springer: Cham, Switzerland, 2018; pp. 199–210.

16. Sbissi, S.; Mahfoudh, M.; Gattoufi, S. A medical decision support system for cardiovacsular disease based on ontology learning. In
Proceedings of the 2020 International Multi-Conference on: “Organization of Knowledge and Advanced Technologies” (OCTA),
Tunis, Tunisia, 6–8 February 2020; IEEE: Washington, DC, USA, 2020; pp. 1–9.

17. Shamsfard, M.; Barforoush, A.A. The state of the art in ontology learning: A framework for comparison. Knowl. Eng. Rev. 2003,
18, 293–316. [CrossRef]

18. Khadir, A.C.; Aliane, H.; Guessoum, A. Ontology learning: Grand tour and challenges. Comput. Sci. Rev. 2021, 39, 100339. [CrossRef]
19. de Cea, G.A.; Gomez-Perez, A.; Montiel-Ponsoda, E.; Suárez-Figueroa, M.C. Natural Language-Based Approach for Helping in

the Reuse of Ontology Design Patterns. In Proceedings of the Computer Vision, Acitrezza, Catania, Italy, 29 September–3 October;
Springer: New York, NY, USA, 2008; pp. 32–47.

20. Almuhareb, A. Attributes in Lexical Acquisition. Ph.D. Thesis, University of Essex, Essex, UK, 2006.
21. Sowa, J.F. Knowledge Representation: Logical, Philosophical and Computational Foundations; Brooks/Cole Publish-ing Co.: Pacific

Grove, CA, USA, 1999.
22. Hearst, M.A. Automatic acquisition of hyponyms from large text corpora. In Proceedings of the 14th Conference on Computational

Linguistics, Nantes, France, 23–28 August 1992; Volume 2, pp. 539–545.
23. Hearst, M. WordNet: An Electronic Lexical Database and Some of Its Applications. Automated Discovery of WordNet Relations.

1998. Available online: https://direct.mit.edu/books/book/1928/WordNetAn-Electronic-Lexical-Database (accessed on 9
November 2021).

24. Cederberg, S.; Widdows, D. Using lsa and noun coordination information to improve the recall and precision of automatic hy-
ponymy extraction. In Proceedings of the Seventh Conference on Natural Language Learning at HLT-NAACL 2003, Stroudsburg,
PA, USA, 31 May 2003; pp. 111–118.

25. Apache Lucene Core. Available online: https://lucene.apache.org/core (accessed on 2 October 2021).

http://doi.org/10.1016/j.engappai.2017.05.006
http://doi.org/10.1093/database/bay101
http://www.ncbi.nlm.nih.gov/pubmed/30295720
http://doi.org/10.1016/j.ins.2021.06.074
http://doi.org/10.1017/S0269888903000687
http://doi.org/10.1016/j.cosrev.2020.100339
https://direct.mit.edu/books/book/1928/WordNetAn-Electronic-Lexical-Database
https://lucene.apache.org/core

Appl. Sci. 2021, 11, 10770 30 of 30

26. Ordóñez, F.J.; De Toledo, P.; Sanchis, A. Activity Recognition Using Hybrid Generative/Discriminative Models on Home
Environments Using Binary Sensors. Sensors 2013, 13, 5460–5477. [CrossRef] [PubMed]

27. Alemdar, H.; Ertan, H.; Incel, O.D.; Ersoy, C. ARAS human activity datasets in multiple homes with multiple residents. In
Proceedings of the 2013 7th International Conference on Pervasive Computing Technologies for Healthcare and Workshops,
Venice, Italy, 5–8 May 2013; IEEE: Washington, DC, USA, 2013; pp. 232–235.

28. Lantow, B. OntoMetrics: Putting Metrics into Use for Ontology Evaluation. In Proceedings of the 8th International Joint
Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management, Porto, Portugal, 9–11 November
2016; SCITEPRESS-Science and Technology Publications: Setubal, Portugal, 2016; pp. 186–191.

29. Gómez-Pérez, A. From Knowledge Based Systems to Knowledge Sharing Technology: Evaluation and Assessment; Knowledge Systems
Lab., Stanford University: Stanford, CA, USA, 1994.

30. Guarino, N.; Welty, C. Evaluating ontological decisions with OntoClean. Commun. ACM 2002, 45, 61–65. [CrossRef]
31. Poveda-Villalón, M.; Gómez-Pérez, A.; Suárez-Figueroa, M.C. Oops! (ontology pitfall scanner!): An on-line tool for ontology

evaluation. Int. J. Semant. Web Inf. Syst. (IJSWIS) 2014, 10, 7–34. [CrossRef]
32. Stisen, A.; Blunck, H.; Bhattacharya, S.; Prentow, T.S.; Kjærgaard, M.B.; Dey, A.; Jensen, M.M. Smart devices are different:

Assessing and mitigatingmobile sensing heterogeneities for activity recognition. In Proceedings of the 13th ACM conference on
embedded networked sensor systems, Seoul, Korea, 1–4 November 2015; pp. 127–140.

33. Morgner, P.; Müller, C.; Ring, M.; Eskofier, B.; Riess, C.; Armknecht, F.; Benenson, Z. Privacy implica-tions of room climate data.
In European Symposium on Research in Computer Security; Springer: Cham, Switzerland, 2017; pp. 324–343.

34. Vaizman, Y.; Ellis, K.; Lanckriet, G. Recognizing Detailed Human Context In-the-Wild from Smartphones and Smart-watches.
arXiv 2017, arXiv:1609.06354.

http://doi.org/10.3390/s130505460
http://www.ncbi.nlm.nih.gov/pubmed/23615583
http://doi.org/10.1145/503124.503150
http://doi.org/10.4018/ijswis.2014040102

	Introduction
	Related Work
	Ontology Learning Approaches
	Comparison Criteria
	Comparison and Discussion

	Ontology-Based Model Evolution Approach
	Data Source Selection Module
	Data Source Format Unification Module
	Ontology-Based Model’s Learning Module
	Learning Phase
	Refinement Phase

	Ontology-Based Model Integration Module
	Alignment Phase
	Merging Phase

	Proof of Concept and Case Study
	Proof of Concept
	Case Study

	Evaluation
	Feature-Based Evaluation
	Criteria-Based Evaluation
	Expert-Based Evaluation

	Results
	Evolved Ontology-Based Models’ Overview
	Feature-Based Evaluation Results
	Criteria-Based Evaluation Results
	Expert-Based Evaluation Results

	Discussion
	Conclusions
	References

