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Abstract: Software risk prediction is the most sensitive and crucial activity of Software Development
Life Cycle (SDLC). It may lead to the success or failure of a project. The risk should be predicted
earlier to make a software project successful. A model is proposed for the prediction of software
requirement risks using requirement risk dataset and machine learning techniques. In addition, a
comparison is made between multiple classifiers that are K-Nearest Neighbour (KNN), Average
One Dependency Estimator (A1DE), Naïve Bayes (NB), Composite Hypercube on Iterated Random
Projection (CHIRP), Decision Table (DT), Decision Table/Naïve Bayes Hybrid Classifier (DTNB),
Credal Decision Trees (CDT), Cost-Sensitive Decision Forest (CS-Forest), J48 Decision Tree (J48), and
Random Forest (RF) achieve the best suited technique for the model according to the nature of dataset.
These techniques are evaluated using various evaluation metrics including CCI (correctly Classified
Instances), Mean Absolute Error (MAE), Root Mean Square Error (RMSE), Relative Absolute Error
(RAE), Root Relative Squared Error (RRSE), precision, recall, F-measure, Matthew’s Correlation
Coefficient (MCC), Receiver Operating Characteristic Area (ROC area), Precision-Recall Curves area
(PRC area), and accuracy. The inclusive outcome of this study shows that in terms of reducing
error rates, CDT outperforms other techniques achieving 0.013 for MAE, 0.089 for RMSE, 4.498% for
RAE, and 23.741% for RRSE. However, in terms of increasing accuracy, DT, DTNB, and CDT achieve
better results.

Keywords: requirements; risk; machine learning; classification

1. Introduction

The development of software consistently faces uncertain occasions that may have
negative impact on the success of software development, such occasions are called software
risks [1]. The risks have a vital impact on software requirements. They turn out to be the
reason for damage to the software or stakeholders [1–3]. The Standish Group research
illustrates an astounding 31.1% of projects terminate before completion while merely 16.2%
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software projects are completed on-time and with-in-the-budget. In bigger organizations,
the result is even worse: only 9% of the projects are deployed on-time and within the
budget. Moreover, in the completed projects, many are no more than a mere shadow
of their original specification requirements. Projects completed by the largest American
companies have only approximately 42% of the originally proposed functionalities [4]. Risk
assessment has basically two strategies, proactive and reactive. According to the literature
the reactive strategy is not a mature strategy to assess the risk, since it increases the budget
schedule and resources but degrades the quality and success of the project. Therefore, a
proactive strategy has been employed using machine learning techniques to reduce the
chances of project failure [5]. Also, the prediction of risks at this stage is more beneficial and
raises the productivity of software. It also helps in reducing the probabilities of software
project failure when risks are managed properly in requirements gathering phase [1].

In our preliminary paper [1], a risk dataset was proposed that is comprised of soft-
ware requirements, risks attributes and relations between them, which are also necessary
for the prediction of risks in the new software projects. The dataset can be used to pre-
dict risks over the Software Requirements Specification (SRS) of a project using machine
learning techniques.

In this study, the main focus is on the empirical analysis of ten Machine Learning
(ML) techniques. These include: K-nearest Neighbors (KNN), Average One Dependency
Estimator (A1DE), Naïve Bayes (NB), Composite Hypercube on Iterated Random Projection
(CHIRP), Decision Tree (DT), Decision Table/Naïve Bayes Hybrid Classifier (DTNB), Credal
Decision Tree (CDT), CS-Forest, J48, and Random Forest (RF). All these techniques are
explored first time for risk prediction and are employed on our previously proposed
dataset [6].

It is relevant to note that although 10 different ML techniques are chosen on the basis
of a pre-selection process where a comparison has been made among these classifiers on
the basis of their effective results such as fast training/build time and accuracy on the
different datasets as shown in Table 1.

Table 1. Selection of for ML Classifiers.

Classifier Dataset Training Time Input Scale Input Data Types Accuracy

- Time to build model

Low: Instances < 1000
Medium: > 1000

Instances < 10,000
High: Instances > 10,000 Numeric, String, Nominal -

KNN
Medical Imaging

Datasets [7] Time < 1 min Large -
Mean ± standard

deviation (0.6 to 0.9)

A1DE UCI Datasets [8] Time < 1 min Medium to Large Numeric, Nominal CCI (56% to 69%)

NB UCI Datasets [8] Time < 1 min Medium to Large Numeric, Nominal CCI (55%)

CHIRP UCI datasets [9] - Medium to Large Numeric, Nominal
Mean standard test

error (−1 to 0)

DT
Online Shopping

Dataset [10] Time < 1 min Medium Numeric, Nominal CCI (76.28 %)

DTNB UCI datasets [11] - Low to medium Numeric, Nominal
Mean AUC and standard

deviation (0.6 to 1.0)

CDT UCI Datasets [8] Time < 1 min Medium to Large Numeric, Nominal CCI (63 %)

CS-Forest
Brazilian Bank

Dataset [12] - Medium Numeric, Nominal Accuracy (95%)

J48
Liver Disorder

Dataset (UCI) [13] Time < 1 min low Numeric, Nominal Accuracy (97.75%)

RF
Medical University

Hospital [14] - Low Numeric, Nominal Accuracy (95%)

MPL (NN)
Medial Diagnosis

Classification Datasets [15] - Low to Medium Numeric, Nominal
Accuracy (No of correct

predictions/total predictions) 0.9

Moreover, these classifiers are tested and observed on the basis of their CCI on Risk
dataset [1], using 10 cross fold validation test for the selection of further studies. It is
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necessary to mention that the Neural Network-based classifiers were not considered in this
paper. NN-based techniques have some disadvantages, e.g., they usually require a large
size of input, produce unexpected behavior due to the black boxes, learning process may
take long time with no guarantee of success, it is difficult to determine the proper network
structure and it initially depends on format mechanism of the input [16,17]. The NN
typically need thousands or millions of labeled samples [17,18], whereas the risk dataset
contains only 299 instances to train a NN. In fact, in our preliminary selection process the
CCI obtained were not good enough to keep it further in this study, therefore we kept NN
out of this study. The Pre-selection comparison is presented in Table 2.

Table 2. Pre-selection comparison of classifiers.

Classifier CCI%

KNN 58.2
A1DE 91.0

NB 91.0
CHIRP 44.0

DT 98.0
DTNB 98.0
CDT 98.0

CS-Forest 73.2
J48 96.3
RF 83.2

NN (Multi-Layer perceptron) 39.1

The detail experiments are conducted in this study to show which ML technique
outperforms for risk prediction in the earliest phase of SDLC.

The foremost contributions of this research are as follow:

• We selected ten different ML techniques (KNN, A1DE, NB, CHIRP, DT, DTNB, CDT,
CS-Forest, J48, and RF) for Model Evaluation and Comparison.

• We demeanour a series of try-outs on our published dataset [6].
• To reveal insight to the experimental outcomes, evaluation is accomplished using CCI,

MAE, RMSE, RAE, RRSE, precision, recall, F-measure, MCC, ROC Area, PRC Area
and Accuracy.

2. Overview of Risk Prediction

This research aims to resolve the predicament of late identification of risk and their
effect on quality, schedule, and budget of the ongoing software project. Because most recent
risk prediction methodologies have potential to measure software risks in the upcoming
stages, naturally from software design phase or code of the software life cycle, these
methodologies have potential to identify risks but have limited ability in avoiding these
risks from occurring [1]. The risks are caused by several factors during the SDLC, and
can lead to failure of the software project [2–4]. These factors are considered to be one of
the main reasons of software failure causes, they result from the less software engineering
theory principles and techniques. These factors should be resolved as soon as possible to
lessen the unexpected failure of the software project.

As per our previous paper, we concluded that no dataset found that contain essential
attributes for software requirement risks. Therefore, in that paper we introduced a dataset
containing attributes and their relations between software requirements and risks [1].
Moreover, a model is needed to predict risk using the risk dataset using classification
techniques of machine learning.

The core aspects of the software project which need to be improved are quality of
overall project, budget, and schedule by predicting the risk earlier. The risk prediction
model helps to identify risk level of an instance (software requirement) of new project
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using risk dataset. However, the project/risk manager will be able to customize and
manage the overall process of risk prediction. The basic model of the risk prediction
using ML techniques has been introduced. This model contains four main components as
demonstrated in Figure 1 and briefly discussed below.

• Risk Identification: The very first stage of Software Risk Prediction Model is Risk
Identification, where the Risk Manager/Project manager will identify the hazards that
may distract the time, resources, or costs of the project. A hazard is an unfortunate
event if it occurs, and is detrimental to the successful completion of the project. It is
performed using “checklist”. The requirements from SRS with risk threats are marked
checked for further analysis. The checklist is then headed to the next stage [5].

• Risk Analysis: The identified risks then convert into decision-making information. The
probability and the significance of each risk is assessed through risk analysis, the risks
are transform into decision-making information that were identified [5]. Each risk is
then measured and a decision made about the possibility and the seriousness of the
risk. The attribute “Risk Level” in the risk dataset helps to classify the requirements
among five risk levels [1].

• Risk Prioritization: This is the output stage of the Model, where the analyzed Risks
are Prioritized. The requirements having high “risks level” are transferred above in
the list and the requirements having low “risks level” drop to the bottom.

• Requirement risk Dataset: The Dataset contains Risk measures for software require-
ments are available on Zenodo datasets [6]. The risk dataset comprises of the attributes
that are related to risks and requirements of software project [1].

Figure 1. Requirement risk prediction model.

In the proposed model, the requirement set is input to the model to produce the risk
level of the requirements, by which the project manager/domain expert can easily plan
and mitigate the risks at earlier stages.
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3. The Research Framework

The risk dataset is comprised of the attributes that are related to risks and requirements
of software project [1]. These risks have a negative impact on the success of the software
development. In the proposed model, the requirement set is input to the model to produce
the risk level of the requirements, by which the project manager/domain expert can easily
plan and mitigate the risks at earlier stages.

The research has two main phases, i.e., risk prediction model for software requirements
and Model Evaluation and Comparison. The risk-oriented dataset and its filtration was
necessary for our proposed model since that is done in our preliminary work [1], The
dataset is openly available for further exploration and improvement. The proposed research
framework is demonstrated in Figure 2.

Figure 2. Proposed research framework.

The first step of the research is Preparation of the Model for requirement risk predic-
tion; here we have chosen the classifiers on the basis of Table 1. The second step is Model
Evaluation and Comparison, here in this step we evaluated model on chosen classifiers
using Risk dataset for comparison to choose best suitable classifier. In the third step the
Proposed model is validated using new set of requirements. The last step contains the
results of Model Validation.

4. Model Evaluation and Comparison

In this phase, KNN, A1DE, NB, CHIRP, DT, DTNB, CDT, CS-Forest, J48, and RF are
employed on the risk dataset. We trained these models on WEKA (Waikato Environment
for Knowledge Analysis) Tool and the parameters of every algorithm were tuned to take
best output into consideration and validated these using 10-cross fold with the discrete
dataset [1], and supplied a sample set of 299 instances to the model. The 10-fold cross-
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validation test is applied to every classifier to assess its performance. The provided learning
set is break up into 10 distinct subsets of a similar size. The “fold” here is referred to as
the number of subsets created. These subsets then are used as one for training and others
for testing and this loop is performed until every subset is being trained and tested by
the model [19]. We applied minimum and maximum number of k folds to the dataset,
but they mostly decrease the efficiency due to change in the percentage of training and
testing. Whereas the 10-fold cross validation performed better as compared to any other
selection of k folds. Therefore, the 10-fold cross validation method is selected to validate
the models and to avoid over fitting and under fitting during the training process [19]. The
evaluation is done on the basis of CCI, MAE [20,21], RMSE [20–22], RAE [23], RRSE [23],
precision [21,24], recall [21], F-measure [21], MCC [25,26], ROC Area [27], PRC Area [28]
and Accuracy [27,29,30]. The results are presented in Section 5.

4.1. Requirement Risk Dataset

The dataset is taken from [1] which is collected through different SRS of different open
source projects that include,

• Transaction processing system: This SRS has 118 requirements collectively.
• Management information system: That contains the E-Store product features. This

SRS collectively contains 87 Requirements.
• Enterprise system: This SRS identifies requirements focused on medical records and

the associated diagnostics. This SRS has 59 requirements.
• Safety critical system: The intelligent Traffic Expert Solution for road traffic control

System offers the ability to acquire real-time traffic information. It has 35 requirements.

The dataset contains 299 instances (Requirements) collectively as mentioned in Table 3.

Table 3. Projects and number of instances.

Project Instances

Transaction Processing System 118
Management Information System 87

Enterprise System 59
Safety Critical System 35

Total 299

The data types of the attributes were assigned according to nature and value set of the
data which were achieved from Boehm’s risks management [1,31,32] as shown in Table 4.

Table 4. Risk dataset template.

Attributes Data Types

Requirements String
Project Category Nominal

Requirement Category Nominal
Risk Target Category Nominal

Probability Numeric
Magnitude of Risk Nominal

Impact Nominal
Dimension of Risk Numeric

Affecting No Modules Numeric
Fixing Duration Numeric

Fix Cost Numeric
Priority Numeric

Risk Level Nominal
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4.2. K-Nearest Neighbour

KNN classifiers are instance-based learning techniques where the training feature vec-
tors forecast the class of an unidentified trial data. Classification of trial data is grounded on
main stream division of its neighbours (training models). Therefore, trial data is allocated
to the class label of training models that ambiances it in majority [3,7,33]. Tables 5 and 6,
respectively, present the error rate and accuracy outcomes achieved by KNN using several
numbers of k and presented best outcome of results among them. In Table 6, the first rows
present the accuracy measures while rows 2–5 present the individual outcomes of each
assessment measure. The percentage of CCI is considered to be the outcome of accuracy.

Table 5. CCI and Error Rates details achieved via KNN.

KNN

CCI 174 (58.194%)
MAE 0.170
RMSE 0.405
RAE% 60.638
RRSE% 108.363

We have applied 10-fold cross validation on the Risk Dataset using KNN, and CCI
achieved 174 (58.194%), The MAE is 0.170, RMSE is 0.405, RAE is 60.638 and RRSE
is 108.363.

Table 6. KNN accuracy details.

Class Precision Recall F-Measure MCC ROC Area PRC Area

1 0.480 0.429 0.453 0.401 0.718 0.293
2 0.701 0.711 0.706 0.461 0.743 0.651
3 0.494 0.547 0.519 0.348 0.688 0.392
4 0.537 0.489 0.512 0.430 0.709 0.341
5 0.231 0.188 0.207 0.168 0.586 0.088

Weighted Average 0.578 0.582 0.579 0.406 0.713 0.476

4.3. Average One Dependency Estimator

A1DE is a probabilistic technique, recycled for habitual classification complications.
It shows enormously accurate classification by being an average of all-encompassing of a
slight space of different Naive Bayes (NB)-like models that have punier independence possi-
bilities than NB. A1DE was essentially planned to address the attribute-independence prob-
lems of a standard NB technique. It was intended to address the attribute-independence
issues of the predominant NB classifier [34]. Table 7 presents the error rate details with
CCI, while Table 8 presents the overall accuracy outcomes achieved via A1DE.

Table 7. CCI and Error Rates details achieved via AIDE.

AIDE

CCI 271 (90.635%)
MAE 0.048
RMSE 0.169
RAE% 17.045
RRSE% 45.181

We have applied 10-fold cross validation on the dataset usin AIDE, the CCI achieved
271 (90.635%) and The MAE is 0.048, RMSE is 0.169, RAE is 17.045 and RRSE is 45.181.
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Table 8. AIDE accuracy details.

Class Precision Recall F-Measure MCC ROC Area PRC Area

1 0.929 0.929 0.929 0.921 0.998 0.985
2 0.954 0.926 0.940 0.892 0.989 0.989
3 0.880 0.880 0.880 0.840 0.978 0.946
4 0.886 0.867 0.876 0.855 0.959 0.875
5 0.714 0.938 0.811 0.807 0.994 0.822

Weighted Average 0.910 0.906 0.907 0.872 0.983 0.952

4.4. Naïve Bayes

The NB classifier is a probabilistic statistical classifier. The term “naive” indicates a
restrictive independence among attributes or features. The naive supposition decreases
computation convolution to a simple multiplication of likelihoods. One main advantage
of the NB classifier is its speed of use. That is because it is the greenest technique amid
classification techniques. As an effect of this openness, it can punctually contract with an
informational index with abundant abilities [35,36]. The CCI and error rate achieved by
NB are presented in Table 9 as well, while all the accuracy outcomes are listed in Table 10.

Table 9. CCI and Error Rates details achieved via NB.

NB

CCI 272 (90.970%)
MAE 0.042
RMSE 0.160
RAE% 14.993
RRSE% 42.876

We applied 10-fold cross validation on the dataset using Naive Bayes, and CCI
achieved 272 (90.970%). The MAE is 0.042, RMSE is 0.160, RAE is 14.993 and RRSE
is 42.876.

Table 10. NB accuracy details.

Class Precision Recall F-Measure MCC ROC Area PRC Area

1 0.813 0.929 0.867 0.854 0.995 0.948
2 0.976 0.896 0.934 0.887 0.984 0.987
3 0.877 0.947 0.910 0.880 0.985 0.906
4 0.889 0.889 0.889 0.869 0.973 0.952
5 0.824 0.875 0.848 0.840 0.944 0.783

Weighted Average 0.914 0.910 0.911 0.877 0.982 0.947

4.5. Composite Hypercube on Iterated Random Projection

CHIRP pulsation solidity procedure transforms a long period frequency-coded pulse
into a narrow pulse of significantly improved generosity. It is a technique used in radar
and sonar systems for the reason that it is a method whereby a narrow pulse with high
peak power can be derived from a long duration pulse with low peak power. It can also
reduce the hardware demands [9]. Tables 11 and 12, respectively, show the error rate and
accuracy details accomplished via CHIRP.
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Table 11. CCI and Error Rates details achieved via CHIRP.

CHIRP

CCI 131 (43.960%)
MAE 0.224
RMSE 0.474
RAE% 80.046
RRSE% 126.751

We have applied 10-fold cross validation on the dataset using CHIRP, and CCI
achieved 131 (43.960%). The MAE is 0.224, RMSE is 0.4735, RAE is 80.046 and RRSE
is 126.751.

Table 12. CHIRP accuracy details.

Class Precision Recall F-Measure MCC ROC Area PRC Area

1 0.250 0.036 0.063 0.062 0.512 0.100
2 0.676 0.526 0.592 0.331 0.659 0.570
3 0.400 0.480 0.436 0.225 0.619 0.323
4 0.200 0.289 0.236 0.072 0.542 0.165
5 0.294 0.667 0.408 0.400 0.791 0.213

Weighted Average 0.475 0.440 0.440 0.243 0.624 0.385

4.6. Decision Table

Decision tables are used to model complicated logic. They can make it easy to see that
all possible combinations of conditions were considered and when conditions are missed, it
is easy to see those. In a DT model, a categorized structure, which contains two features at
each level, is constructed. Moreover, it contains three components: condition rows, action
rows, and rules [11,37]. Here, the best performance of DT in terms of reducing error rate is
listed in Table 13 while accuracy details are presented in Table 14.

Table 13. CCI and Error Rates details achieved via DT.

Decision Table

CCI 293 (97.993%)
MAE 0.037
RMSE 0.096
RAE% 13.122
RRSE% 25.552

We applied 10 Cross to Decision Table on the Risk Dataset, and CCI achieved 293
(97.993%). The MAE is 0.037, RMSE is 0.096, RAE is 13.122 and RRSE is 25.552.

Table 14. DT accuracy details.

Class Precision Recall F-Measure MCC ROC Area PRC Area

1 1.000 1.000 1.000 1.000 1.000 1.000
2 1.000 0.993 0.996 0.993 0.993 0.996
3 0.961 0.987 0.974 0.965 0.990 0.960
4 0.955 0.933 0.944 0.934 0.984 0.898
5 0.938 0.938 0.938 0.934 0.983 0.853

Weighted Average 0.980 0.980 0.980 0.975 0.991 0.965
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4.7. Decision Table/NaïVe Bayes Hybrid Classifier

DTNB is a class for building and using a Decision Table/Naïve Bayes hybrid classifier.
At every plug in the search, the algorithm assesses the quality of apportioning the attributes
into two separate subsets: one for the DT, and the other for NB. A frontward selection
search is used, where at each step, selected attributes are demonstrated by NB and the
residue by the DT, and all attributes are demonstrated by the DT initially. At each step,
the algorithm likewise reflects releasing an attribute exclusively from the model [11]. In
this research the outcome in terms of reducing error rate along with CCI are presented in
Table 15 while the accuracy details are presented in Table 16.

Table 15. CCI and Error Rates details achieved via DTNB.

DTNB

CCI 293 (97.993%)
MAE 0.037
RMSE 0.096
RAE% 13.021
RRSE% 25.683

We have applied 10 Cross to DTNB on the Risk Dataset, and CCI achieved 293
(97.993%). The MAE is 0.037, RMSE is 0.096, RAE is 13.021 and RRSE is 25.683.

Table 16. DTNB Accuracy Details.

Class Precision Recall F-Measure MCC ROC Area PRC Area

1 1.000 1.000 1.000 1.000 1.000 1.000
2 1.000 0.993 0.996 0.993 0.993 0.996
3 0.961 0.987 0.974 0.965 0.990 0.953
4 0.955 0.933 0.944 0.934 0.983 0.885
5 0.938 0.938 0.938 0.934 0.987 0.813

Weighted Average 0.980 0.980 0.980 0.975 0.991 0.959

4.8. Credal Decision Trees

CDT is a technique used to enterprise classifier beached on inaccurate opportunities
and implausibility measures. All the way through the formation process of a CDT, to
bypass producing a too-problematical decision tree, a new standard was presented: stop
once the total improbableness increases due to splitting of the decision tree. The function
used in total improbability dimension can be fleetingly articulated [38,39]. Here, Table 17
shows the error rates details along with CCI results while Table 18 presents the accuracy
details achieved via CDT.

Table 17. CCI and Error Rates details achieved via CDT.

CDT

CCI 293 (97.993%)
MAE 0.013
RMSE 0.089
RAE% 4.498
RRSE% 23.741

We applied 10 Cross to CDT on the Risk Dataset, and CCI achieved 293 (97.993%). The
MAE is 0.013, RMSE is 0.089, RAE is 4.498 and RRSE is 23.741.
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Table 18. CDT accuracy details.

Class Precision Recall F-Measure MCC ROC Area PRC Area

1 1.000 1.000 1.000 1.000 1.000 1.000
2 1.000 0.993 0.996 0.993 0.995 0.996
3 0.974 0.987 0.980 0.973 0.991 0.984
4 0.935 0.956 0.945 0.935 0.979 0.890
5 0.933 0.875 0.903 0.898 0.964 0.825

Weighted Average 0.980 0.980 0.980 0.975 0.990 0.968

4.9. Cost-Sensitive Decision Forest

CS-Forest performs a cost-sensitive clipping as a supernumerary of the clipping used
by C4.5. C4.5 clips a tree if the credible number of mis-classifications for upcoming minutes
does not increase dramatically due to the clipping. However, CS-Forest clips a tree if the
credible classification cost for upcoming minutes does not increase dramatically due to
the clipping. Moreover, unlike Cost-Sensitive Decision Tree (CS-Tree) CS-Forest endures a
tree to first absolutely develop and then get clipped [40]. Tables 19 and 20 correspondingly
present the error rates detail along with CCI outcomes and accuracy details succeeded
by CS-Forest.

Table 19. CCI and Error Rates details achieved via CS-Forest.

CS-Forest

CCI 219 (73.244%)
MAE 0.254
RMSE 0.326
RAE% 90.526
RRSE% 87.220

We applied 10 Cross to CS-Forest on the Risk Dataset, and CCI achieved 219 (73.244%).
The MAE is 0.254, RMSE is 0.326, RAE is 90.526, and RRSE is 87.220.

Table 20. CS-Forest Accuracy Details.

Class Precision Recall F-Measure MCC ROC Area PRC Area

1 1.000 1.107 0.194 0.313 0.917 0.842
2 0.691 0.993 0.815 0.653 0.982 0.976
3 0.793 0.613 0.692 0.614 0.964 0.872
4 0.794 0.600 0.684 0.645 0.959 0.838
5 0.900 0.563 0.692 0.700 0.998 0.949

Weighted Average 0.772 0.732 0.699 0.613 0.969 0.915

4.10. J48 Decision Tree

J48 is an improved version of C4.5. The method of this algorithm is to use the divide-
and-conquer technique. It practices the clipping method to construct a tree. It is a corporate
method which is used in information gain or entropy measures. Thus, it is similar to a
tree structure with root node, intermediate, and leaf nodes. Node holds the decision and
helps to obtain the outcome [40,41]. The results of error rate details and accuracy details
achieved via J48 are presented in Tables 21 and 22 respectively.
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Table 21. CCI and Error Rates details achieved via J48.

J48

CCI 288 (96.321%)
MAE 0.018
RMSE 0.120
RAE% 6.516
RRSE% 32.091

We applied 10-fold cross validation to J48 Decision Tree on the Risk Dataset, and CCI
achieved 288 (96.321%). The MAE is 0.018, RMSE is 0.120, RAE is 6.516, and RRSE is 32.091.

Table 22. J48 accuracy details.

Class Precision Recall F-Measure MCC ROC Area PRC Area

1 1.000 0.929 0.963 0.960 0.964 0.935
2 0.985 0.985 0.985 0.973 0.986 0.979
3 0.948 0.973 0.961 0.947 0.986 0.952
4 0.932 0.911 0.921 0.908 0.977 0.890
5 0.882 0.938 0.909 0.904 0.964 0.794

Weighted Average 0.964 0.963 0.963 0.952 0.981 0.945

4.11. Random Forest

RF categorizes all trees in the forest in the classification procedure by arrangement of
the expectation of the tree structure, each appraised according to the same dissemination
and the random vector values. random forest algorithm creates decision trees on data
samples and then gets the prediction from each of them and finally selects the best solution
by means of voting. It is an ensemble method which is better than a single decision tree
because it reduces the over-fitting by averaging the result [42–44]. Table 23 presents the
CCI outcomes of RF along with error rates details while the accuracy details are presented
in Table 24. In each of table presenting CCI details, the percentage of each individual CCI
achieved via individual technique is considered to be the accuracy of that technique.

Table 23. CCI and Error Rates details achieved via RF.

RF

CCI 249 (83.278%)
MAE 0.191
RMSE 0.265
RAE% 68.211
RRSE% 70.995

We applied 10-fold cross validation to RF on the Risk Dataset, and CCI achieved 249
(83.278%). The MAE is 0.191, RMSE is 0.265, RAE is 68.211, and RRSE is 70.995.

Table 24. RF accuracy details.

Class Precision Recall F-Measure MCC ROC Area PRC Area

1 1.000 0.286 0.444 0.516 0.998 0.983
2 0.851 0.993 0.908 0.832 0.995 0.995
3 0.843 0.933 0.886 0.847 0.994 0.985
4 0.756 0.756 0.756 0.712 0.987 0.919
5 1.000 0.188 0.316 0.423 0.993 0.902

Weighted Average 0.851 0.833 0.805 0.766 0.994 0.975



Electronics 2021, 10, 168 13 of 19

5. Analysis of Experimental Results

In this study, ten different classification techniques are employed to find the best
classifier in terms of reducing the error rate and increasing the accuracy for RPM. Each
technique is evaluated on different evaluation measures in which MAE, RMSE, RAE%, and
RRSE% are used to evaluate the error rate while precision, recall, F-measure, MCC, ROC
area, PRC area, and CCI are used to evaluate the accuracy of each individual technique.
This section is divided into two subsections that are analysis phase 1 and analysis phase 2.
In the first section, all error rate measures are analysed while the second section presents
the analysis of all accuracy measures.

5.1. Analysis Phase 1

In this phase, each technique evaluated using error rate measures is analysed. Table 25
shows the MAE, RMSE, RAE, and RRSE results accomplished via each individual technique.
In the table, the second column represents the list of techniques while rest of the columns
represent the error measures. The outcomes of this table show that CDT outperforms the
other techniques by reducing the error rate. For better understanding, these analyses are
also presented in Figures 3 and 4, respectively, with standard deviation bar. Standard
Deviation (SD) is a quantity of distribution of the data commencing the mean. It is a
possession of the variable that bounces an impression of the assortment in which the
values scatter (dispersal of the data). Error bars of ten symbolize one SD of indecision.
The magnitudes are not the same and so the extent carefully chosen should be specified
explicitly in the graph or supporting text. Archetypally, error bars are used to display
the SD. The artless thing that we can do to enumerate variability is to calculate the SD.
Essentially, this articulates us how much the values in each cluster incline to deviate from
their mean.

Table 25. Error Rates analysis of each employed technique.

S. No. Technique MAE RMSE RAE% RRSE%

1 KNN 0.170 0.405 60.638 108.363
2 0ADE 0.048 0.169 17.045 45.181
3 NB 0.042 0.160 14.993 42.876
4 CHIRP 0.224 0.473 80.046 126.751
5 DT 0.037 0.096 13.122 25.552
6 DTNB 0.036 0.096 13.021 25.683
7 CDT 0.013 0.089 4.498 23.741
8 CS-Forest 0.254 0.326 90.526 87.220
9 J48 0.018 0.120 6.516 32.091
10 RF 0.191 0.265 68.211 70.995

Figure 3. MAE and RMSE analysis of individual techniques along with SD Bar.
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Figure 4. RAE% and RRSE% analysis of individual techniques along with SD Bar.

5.2. Analysis Phase 2

In this phase, all accuracy measures are analyzed. Table 26 presents the performance of
each technique evaluated via precision, recall, and F-measure. In this table, the first column
represents the evaluation measures while the second column represents the employed
techniques. The rest of the columns in the table present the outcome of each individual
technique evaluated through each measure. The outcomes show that DT, DTNB, and CDT
beat the rest of the employed techniques and produce the same results with each evaluation
measure, i.e., 0.980. For better understanding, these results are also presented in Figure 5
through columns and SD bars.

Table 26. Precision, Recall and F-Measure analysis of each employed technique.

S. No. Technique Precision Recall F-Measure

1 KNN 0.578 0.582 0.579
2 AIDE 0.910 0.906 0.907
3 NB 0.914 0.910 0.911
4 CHIRP 0.475 0.440 0.440
5 DT 0.980 0.980 0.980
6 DTNB 0.980 0.980 0.980
7 CDT 0.980 0.980 0.980
8 CS-Forest 0.772 0.732 0.699
9 J48 0.964 0.963 0.963
10 RF 0.851 0.833 0.805

Figure 5. Precision, Recall and F-Measure analysis of individual technique along with SD Bar.

The evaluation through MCC, ROC area, and PRC area are presented in Table 27.
These outcomes show that evaluating each technique through MCC, DT, DTNB and CDT



Electronics 2021, 10, 168 15 of 19

outperforms the other techniques and generates the same results that is 0.975. However,
On ROC area and PRC area RF outperforms other employed techniques and generates
0.994 and 0.975 results respectively for ROC area and PRC area. The columns in Figure 6
elaborates the analysis of this phase.

Table 27. MCC, ROC Area and PRC Area analysis of each employed technique.

S. No. Technique MCC ROC Area PRC Area

1 KNN 0.406 0.713 0.476
2 AIDE 0.872 0.983 0.952
3 NB 0.877 0.982 0.947
4 CHIRP 0.243 0.624 0.385
5 DT 0.975 0.991 0.965
6 DTNB 0.975 0.991 0.959
7 CDT 0.975 0.990 0.968
8 CS-Forest 0.613 0.969 0.915
9 J48 0.952 0.981 0.945

10 RF 0.766 0.994 0.975

Figure 6. MCC, ROC Area and PRC Area analysis of individual technique.

CCI is considered to be the accuracy of the individual employed technique. The
dataset used in this research consists of a total of 299 instances. Table 28 presents the list of
all CCI achieved via each individual technique. In the table, the second column shows the
list of all used techniques, third column represents the CCI details while fourth column
shows the accuracy in percentage. The inclusive analysis of the table shows that DT, DTNB,
and CDT beat all the other employed techniques in terms of achieving higher accuracy,
which is 97.993% for DT, DTNB, and CDT. The CCI analysis are further shown in Figure 7
with the help of a bar chart for better understanding.

Figure 7. CCI analysis of individual technique.
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Table 28. CCI Details out of 299 Instances.

S. No. Technique CCI Accuracy%

1 KNN 174 58.194
2 AIDE 271 90.635
3 NB 272 90.970
4 CHIRP 131 43.960
5 DT 293 97.993
6 DTNB 293 97.993
7 CDT 293 97.993
8 CS-Forest 219 73.244
9 J48 288 96.321

10 RF 249 83.278

6. Conclusions and Future Research Directions

Requirement risk prediction is an active research area with increasing contributions
from the research community. This research aims to explore ML techniques for the first
time for the requirement risk predictions using new dataset. This research contributed as
follows. Ten ML techniques were explored for requirements risk prediction. A detailed
comparison of these techniques for the proposed model is performed.

Requirement risk prediction had found great impact on the success or failure of the
software project. To overcome this issue, a new model was needed to predict the risk in the
project early, therefore, a model and optimal classifier is proposed.

Ten different ML techniques are employed and compared in this research and eval-
uated for reducing error rates and increasing accuracy of the proposed model. Among
all these techniques CDT performed well in terms of overall accuracy, higher CCI, Lower
MAE, and RMSE. The experiment shows the results as 0.0126 for MAE, 0.089 for RMSE,
4.498% for RAE, and 23.741% for RRSE. The results achieved are 0.980 for precision, recall
and F-measure, 0.975 for MCC, and 97.993% for accuracy. DT, DTNB, and CDT perform
better using precision, recall, F-measure, MCC, and accuracy

From the experiments conducted in this research, it was observed that CDT was found
to have the lowest error rates that are MAE of 0.013, RMSE of 0.089, RAE of 4.498, and
RRSE of 23.741. We also observed that CDT was found to be the best in terms of CCI, i.e.,
293 and accuracy of 97.993%. These results show that CDT can claim to be the best suitable
and optimal classifier for the prediction of software risks.

The comprehensive outcomes of this study can be used as a reference point for other
researchers. Any assertion concerning the enhancement in prediction through any new
model, technique or framework can be benchmarked and verified. Some future directions
are also listed as the accuracy may further be improved by employing other classification
and pre-processing techniques in the proposed model. Class imbalance matter ought to
be committed on these datasets. Furthermore, to increase the enactment, feature selection
and ensemble learning techniques should also be explored. This research can be further
validated using different assessment measures such as Mean Magnitude of Relative Error
(MMRE), PRED etc. The dataset contains 299 instances from four different sources which
can be enhanced by new requirements from other software project sources. It may also
bring new challenges in the prediction of risks at requirement gathering phase.
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SDLC Software Development Life Cycle
SDBAR Standard Deviation Bar
RPM Risk Prediction Model
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NN Neural Network
ML Machine Learning
CCI Correctly Classified Instances
SPSS Statistical Package for the Social Sciences
WEKA Waikato Environment for Knowledge Analysis
KNN K-nearest Neighbours
A1DE Average One Dependency Estimator
NB Naïve Bayes
CHIRP Composite Hypercube on Iterated Random Projection
DT Decision Tree
DTNB Decision Table/Naïve Bayes Hybrid Classifier
CDT Credal Decision Tree
RF Random Forest
CS-Forest Cost-Sensitive Decision Forest
J48 J48 Decision Tree
MAE Mean Absolute Error
RMSE Root Mean Square Error
RAE Relative Absolute Error
RRSE Root Relative Squared Error
MCC Matthew’s Correlation Coefficient
ROC Receiver Operating Characteristic Area
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