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Abstract: Absolute distance determination in the open air with an uncertainty of a few tenths
of a millimetre is increasingly required in many applications that involve high precision geodetic
metrology. No matter the technique used to measure, the resulting distances must be proven
consistent with the unit of length (SI-metre) as realized in the outdoor facilities traditionally used in
length metrology, which are also known as calibration baselines of reference. The current calibration
baselines of reference have distances in the range of 10 to 1000 m, but at present there is no solution
on the market to provide distances with submillimetric precision in that range. Consequently,
new techniques such as multi-wave interferometry, two-wave laser telemeters or laser trackers are
being developed. A possible alternative to those sophisticated and expensive techniques is the
use of widely used Global Navigation Satellite Systems (GNSS) in order to provide a GNSS-Based
Distance Meter (GBDM). The use of a GBDM as a potential technique for length metrology has been
thoroughly analysed in several European research projects by using the state-of-the-art geodetic
software, such as Bernese 5.2, but no definite conclusions have been drawn and some metrological
questions are considered still open. In this paper, we describe a dedicated approach to build up a
submillimetric GBDM able to be applied in the current calibration baselines of reference, as well as
possible methods to cope with the multipath error of the GNSS signals which is the major limitation
for the practical uptaking of the technique in metrology. The accuracy of the proposed approach
has been tested following the length metrology standards in four experiments carried out in the
Universitat Politècnica de València (UPV). The results demonstrate that the proposed GBDM can
provide an accuracy of a few tenths of a millimetre in the current calibration baselines of reference.

Keywords: Global Navigation Satellite Systems (GNSS); length; metrology; multipath

1. Introduction

Absolute distance determination in the open air with an uncertainty of a few tenths
of a millimetre is increasingly required in fields such as length metrology, high precision
geodetic metrology, deformation monitoring at critical sites or local ties in Fundamental
Geodetic Observatories (FGOs) [1–3].

In the present context, the term absolute refers to the fact that distances have to be
consistent with the metre, the unit of length of the International System of Units (SI) which
is currently defined as the length of the path travelled by light in vacuum during a time
interval of 1/299792458 of a second [4]. This definition of SI-metre is realized by the
National Metrology Institutes (NMIs) with a standard uncertainty U(k=1) = 10−12 by using
laser interferometers with stabilised frequencies, though such a high accuracy can only
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be obtained for short distances, i.e., several metres, under laboratory conditions. Follow-
ing the core concept of metrological traceability, those references or primary standards
are subsequently transferred or disseminated from laboratories to outdoor metrological
facilities that are also known as calibrations baselines. These calibration baselines, whose
inter-pillar lengths usually range from 10 m to 1000 m, are then used as secondary and
working standards for practical purposes [5–7].

The only calibration baseline that has proved stable with a relative standard uncer-
tainty near u(k=1) = 10−8 for more than 70 years is the Nummela Standard Baseline (NSB)
in Finland (864 m), and thus acknowledged as international standard in geodetic metrology.
Such a high accuracy can only be obtained by using the Väisäla interferometer which has
the additional metrologic advantage of being directly traced to SI-metre [8–10]. With this
method being very demanding, the NSB inter-pillar distances are measured only every five
years by the Finnish Geospatial Research Institute (FGI), although its accurate scale can be
traceably transferred to other baselines of reference by using submillimetric Electronic Dis-
tance Meters (EDM) like the Kern Mekometer ME5000 (ME5000) which was manufactured
in the late 1980s [11,12].

Nevertheless, the use of the out-of-production ME5000 entails two problems. Firstly,
only a few units of this type of EDM are still in use, and secondly, having only one carrier
phase (0.628 nm), the air refractivity has to be determined with an accuracy better than
0.1 ppm by using meteorological sensors, which is rather difficult for distances longer than
1 km [12]. Consequently, new techniques such as multi-wave interferometry, two-wave
laser telemeters or laser trackers are currently required to go beyond the ME5000 [13–15].
Yet the research effort is considerable, and it demands joint projects like the current 18SIB01
GeoMetre—large-scale dimensional measurements for geodesy’ which has received fund-
ing from the EMPIR programme co-financed by the participating states and from the
European Union’s Horizon 2020 research and innovation programme [16].

A possible alternative to those expensive techniques is the use of Global Navigation
Satellite Systems (GNSS) to develop a GNSS-Based Distance Meter (GBDM). Some experi-
ments that compare GNSS distances with EDM distances can be found in the literature,
but being most of them based in the use of commercial GNSS software and EDM instru-
ments, the differences between these two techniques can easily reach around 3 mm [17,18].
The GBDM as a potential technique for length metrology was firstly analysed in the EMRP-
JRP 3.1-TP 3 ‘Length’ [19], and subsequently in the EMRP-JRP SIB60 ‘Surveying’ [20].
Most of the studies were performed by using state-of-the-art geodetic software, i.e., the
Bernese 5.2 [21], along with the most advanced geodetic products and models. The re-
porting document for the GBDM technique recommends the use of carrier-phase double
differences (DD), and points out that GNSS signal multipath is the major limiting factor
to get submillimetric accuracy, but no recommendation is given concerning a possible
standard strategy for optimal GNSS processing and some metrological questions such
as uncertainty determination or traceability are considered still open [22]. Consequently,
some criticism still remains for the GNSS to be used as a submillimetric technique for
length metrology.

However, previous research conducted at the Department of Cartographic Engineer-
ing, Geodesy and Photogrammetry of the Universitat Politècnica de València (DICGF-UPV)
showed the potential of GNSS techniques in terms of reproducibility for measuring dis-
tances over several hundred metres with uncertainties below one millimetre by using a
functional model different from the traditional geodetic approach along with robust estima-
tion [1,23,24]. The initial assumptions, the functional models and the intended computing
approach are described in Section 2.

As previously mentioned, the GNSS signal multipath error is considered the major
limitation to use a GBDM in current metrologic facilities. The traditional geodetic ap-
proach to cope with this problem is to carefully select the GNSS sites and average out
the multipath error by using long observation span times. However, current calibration
baselines of reference [10,25] were mostly set up decades ago, and they do not always
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have favourable conditions for GNSS measurements since they are normally surrounded
by trees or buildings. As a result, L1/E1 DD residuals can easily reach up to several
centimetres with no Gaussian distribution and consequently the obtained distance will be
biased, thus impeding the desired submillimetric accuracy. Therefore, a consistent GBDM
should include some processing strategy for multipath mitigation. Therefore, the last
field experiment was specially designed to investigate and develop possible methods for
multipath mitigation as applied to length metrology. This part of the investigation was
conducted at the Space Geodesy and Navigation Laboratory of the University College
London (SGNL-UCL), and their results are shown in Section 3.

Nonetheless, not only does the GBDM technique have to be proven to be precise but
it must also be accurate according to length metrology standards. Thus, the proposed
GBDM technique was tested in four field experiments conducted at the UPV submilli-
metric calibration baseline from the years 2013 to 2016. Each experiment was a four-day
campaign where both the GNSS and EDM techniques were applied. During the daylight
hours, the inter-pillar distances of the calibration baseline were measured using a ME5000
in accordance to ISO17123-4 [5], and subsequently, GNSS antennas were set up to collect
twelve-hour sessions overnight. The same operational scheme was repeated for four con-
secutive days. The experiment was designed in such a way that the obtained distances can
be traced to the SI-metre.

This paper is organised as follows. In Section 2, the general approach for GNSS
data processing is described. Section 3 is devoted to the methods for multipath detection
and mitigation that were developed and tested. The assessment of the resulting accuracy
by comparison with distances derived from EDM traced to the SI-metre definition in a cali-
bration baseline is explained in Section 4. Finally, some conclusions and future work are
summarised in Section 5.

2. GNSS Data Processing Approach
2.1. Basic Carrier-Phase Equation

Unlike the traditional EDM distance determination, where electromagnetic signal path
travels several hundred metres between both ends of the measured baseline, the GNSS-
based distance has to be indirectly obtained from electronic signals that travel from satellites
to the antennas which involves distances around 22,000 km. The general equation for a
carrier phase observable can be written as follows

Φk
i (t) = ρk

i (ti) +
[
c− ρ̇k

i (ti)
]
dti − cdtk − Ik

i,Φ(t) + Tk
i (t) + λNk

i

+
[
Φi(t0)−Φk(t0)

]
+ δi + δk + δmk

i,Φ(t) + λεk
i (t)

(1)

where:

Φk
i (t) carrier phase measurement collected at receiver time ti, in m

ρk
i (t) geometric distance between the receiver i and the satellite k, in m

c speed of light in vacuum, in m/s
ρ̇k

i (t) topocentric range rate of the satellite k with regard to the receiver i, in m/s
dti receiver clock offset, in s
dtk satellite clock offset, in s
Ik
i,Φ(t) ionospheric delay evaluated at epoch ti, in m

Tk
i (t) tropospheric delay evaluated at epoch ti, in m

λ carrier phase wavelength, in m
Nk

i integer ambiguity for the carrier phase observable, in cycles
Φi(t0) initial carrier phase offset for the receiver i, in m
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Φk(t0) initial carrier phase offset for the satellite k, in m
δi receiver hardware delay, in m
δk satellite hardware delay, in m
δmk

i (t) carrier phase multipath error, in m
εk

i (t) random noise, in cycles

For the sake of simplicity, the notation assumes the use of only one constellation
(e.g., GPS).

2.2. Initial Assumptions

Our approach to investigate the capabilities of GNSS for length determination with
submillimetric accuracy relies on four initial assumptions: First, modern receivers provide
carrier phase observations with submillimetre level noise. Secondly, distances determined
by GNSS are highly stable at a global scale. Thirdly, the modulus of a vector between
two GNSS receiver antennas can be more precisely determined than its corresponding
components. Finally, the increasing number of operational GNSS satellites allows one to
optimise the selection of satellites to improve length determination. These four assumptions
are discussed below.

Regarding the noise of the GNSS carrier phase signal, it used to be assumed as a ran-
dom error of 1% of the carrier wavelength, but recent literature shows that modern GNSS
receivers can provide enhanced performance [26,27]. The random noise of a GNSS signal
depends on the electronics of the receivers, but also on the quality of the signal. Therefore,
a different noise should be expected for each constellation and even for each individual
satellite. A standard method to assess the overall random noise of a GNSS receiver is to
perform a zero baseline test, which consists of processing the double differences of phase
observations of two receivers that are connected to the same antenna by means of a signal
splitter (see Figure 1).

Figure 1. Global Navigation Satellite System (GNSS) measurement at the Universitat Politècnica de
València (UPV) calibration baseline using a 3D choke-ring antenna equipped with a signal splitter
and two receivers collecting the same signals.

Figure 2 shows the double difference residuals obtained using two multi-constellation
Leica GS10 receivers. The overall root mean square (RMS) value obtained for L1 double
difference residuals was 0.7 mm, thus confirming our first initial assumption that they
are currently below 1 mm × 2, that is, as we assumed, less than 1 mm of standard error
for a carrier phase observation amplified by a factor of 2 due to the double difference
combination (see e.g., expression (20.67) in Reference [28]).
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Figure 2. Zero-baseline double difference residuals for a pair of multi-constellation Leica GS10 in
July 2015.

Concerning the GNSS scale stability, it is maintained worldwide at the level of
1 ppb = 10−9, which is to say 1 mm over 1000 km. Nonetheless, some open questions still
remain as to whether this high absolute scale accuracy is also applicable to short distance
determination in the existing metrological infrastructures. Moreover, the GNSS scale sta-
bility relies on the accuracy of the precise ephemeris and ultimately on the International
Terrestrial Reference Frame (ITRF) which is used for their determination. Since the ITRF
scale is determined by a combination of Satellite Laser Ranging (SLR) and Very Long Base-
line Interferometry (VLBI) observations whose scale differs by about 10−9 [29], the linkage
between the centre of the instruments used by SLR, VLBI and GNSS at Fundamental Geode-
tic Observatories (FGO), also known as local ties, should be performed with submillimetric
accuracy [2]. Thus, an additional benefit of submillimetric length determination with
an appropriate metrological uncertainty evaluation based on traceable instruments and
methods would be to improve the ITRF scale and consequently the accuracy of the precise
ephemeris of GNSS satellites.

The third assumption is that GNSS distance may be better determined than the in-
dividual components of the corresponding vector. Double difference processing usually
yields precise vectors whose components ∆X, ∆Y, ∆Z are subsequently used to compute
the distance

D =
√

∆X2 + ∆Y2 + ∆Z2 (2)

Fortunately, correlation usually leads to σD <
√

σ2
∆X + σ2

∆Y + σ2
∆Z (and even σD < σ∆X

and σD < σ∆Y, σD < σ∆Z) because in the expression

σ2
D = (

∆X
D

)2σ2
∆X + (

∆Y
D

)2σ2
∆Y + (

∆Z
D

)2σ2
∆Z

+ 2
∆X
D

∆Y
D

σ∆X∆Y + 2
∆X
D

∆Z
D

σ∆X∆Z

+ 2
∆Y
D

∆Z
D

σ∆Y∆Z (3)

the covariances may be positive or negative depending on the relative geometry between
the baseline and the observed satellites. Thus, a proper selection of observables may lead
to a reduction in the standard error of the obtained GNSS distance.

Finally, a multi-constellation approach has clear advantages for length determination
if compared to a single-constellation one, i.e., only GPS. A large number of satellites in view
allows the inclusion in the system of normal equations of only those double differences
whose impact on the baseline is lower than an assumed threshold as well as to eliminate
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those satellites whose phase observables contain a strong multipath error. As an illustration,
in the last GNSS campaign that was carried out at the UPV calibration baseline in July 2015,
the number of satellites registered in a time span of eight hours was the following: 21 GPS,
19 GLONASS and 4 Galileo. Thus, the inclusion of the new and emerging constellations
gives rise to new possibilities for precise GNSS length determination.

2.3. Functional Model for the Initial Coordinates

The GBDM technique starts with the determination of the absolute coordinates
of the ends of the measured distance. This initial solution has to provide three-dimensional
coordinates with an accuracy of a few centimetres in the same coordinate reference frame
as the precise ephemerides used in the second step. This requirement is not very diffi-
cult to fulfil, and can be achieved by using different strategies, but we recommend the
use of a common Precise Point Position (PPP) solution. This approach, which is based
on an epoch-wise processing strategy that uses an ionosphere-free combination with float-
ing ambiguities, is relatively easy to implement or can be alternatively obtained from online
services like CSRS-PPP [30].

Some advantages of this straightforward approach are that the bulk of the iono-
sphere error is removed, slow changes of the tropospheric delays can be easily absorbed by
parametrization, the receiver clock offsets are well determined and the obtained ionosphere-
free residuals are expected to be mostly multipath error and possible antenna calibra-
tion mismodelling.

Concerning the functional model, a widely used equation for receiver i and satellite k
is (see, e.g., [31])

hΦIF = ρk
i + cδi + Ak

i + mG(θ
k
i )Tzwd

+mG(θ
k
i ) cot(θk

i )[GN cos ψk
i + GE sin ψk

i ]
(4)

where:

hΦIF ionosphere-free combination (m)
ρk

i modelled geometric range (m)
c speed of light in vacuum (m/s)
δi receiver clock offset (s)
Ak

i non-integer ambiguity term (m)
θk

i , ψk
i elevation and azimuth angles (rad)

Tzwd zenith wet troposphere delay (m)
mG() Global Mapping Function (GMF)
GN , GE north and east troposphere gradients

The non-integer ambiguity term Ak
i comprises the integer ambiguity, the initial phase

offsets for both frequencies, and the hardware delays. The vector of Kalman filter states
that are estimated is

~x = (Xi Yi Zi cδi Tzwd GN GE A1
i · · · Am

i )
T (5)

Taking into account the implemented PPP approach, the obtained ionosphere-free
residuals are expected to be mostly multipath error and possible antenna calibration
mismodelling [32].

2.4. Functional Model for the Double Differences

The functional model used in our approach is specifically tailored to length determina-
tion and differs from the corresponding geodetic approach in four ways: only L1/E1 double
differences are processed, ambiguity determination is not required, and both ionospheric
and tropospheric corrections are not included.
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Since L1/E1 carrier phase observables are less noisy than L2, L5, E5a or E5b observ-
ables, or any combination of them [33], double differences of L1/E1 carrier phase are
the preferred equations to obtain the final solution.

A free ambiguity approach reduces the number of unknowns to determine thus
strengthening the model [34]. The only requirement for using the free-ambiguity method
is a prior determination of the absolute coordinates of both ends with an accuracy of a few
centimetres, which can be achieved by means of a PPP static processing, thus obtaining
(X(0)

i , Y(0)
i , Z(0)

i ) and (X(0)
j , Y(0)

j , Z(0)
j )

Given the double difference equation

λϕkl
ij = ρkl

ij + λNkl
ij + εkl

ij (6)

for substraction with the order

ϕkl
ij = (ϕl

j − ϕl
i)− (ϕk

j − ϕk
i ) = ϕl

j − ϕl
i − ϕk

j + ϕk
i (7)

and expanding around (X(0)
j , Y(0)

j , Z(0)
j ) with (X(0)

i , Y(0)
i , Z(0)

i ) held fixed, Equation (6) can
be rewritten as

λϕkl
ij − ρkl

ij

λ
=

1
λ

∂ρkl
ij

∂Xj
dXj +

1
λ

∂ρkl
ij

∂Yj
dYj

+
1
λ

∂ρkl
ij

∂Zj
dZj + Nkl

ij +
1
λ

εkl
ij (8)

which can be subsequently arranged as

λϕkl
ij − ρkl

ij

λ
− int(

λϕkl
ij − ρkl

ij

λ
) =

1
λ

∂ρkl
ij

∂Xj
dXj +

+
1
λ

∂ρkl
ij

∂Yj
dYj +

1
λ

∂ρkl
ij

∂Zj
dZj +

1
λ

εkl
ij (9)

where the only unknowns to be solved are dXj, dYj, dZj.
Regarding tropospheric delays, our current model assumes that they are negligible

for distances below 1 km. Note that existing metrological facilities are small and points
of interest are usually at about the same altitude. Consequently, the path taken by a GNSS
signal through the atmosphere to each end of a baseline is almost the same, especially for
those satellites with higher elevation. In addition, we collected GNSS data in the night-
time. Thus, only residual atmospheric delay errors with minor influence on the distance
are expected.

For longer distances, ionospheric delay can be determined using a combination of car-
rier waves [28] and subsequently use them to correct L1/E1 carrier phase observables.
On the contrary, the influence of residual tropospheric delays should be taken into account
when both ends of the measured baseline have a substantial height difference which can
happen in some local ties or geodetic control networks. Since the tropospheric errors
expected in the double difference equations are very small and also dependant on local
meteorological parameters, global models may not be accurate enough for submillimetric
length determination.

3. GNSS Multipath Mitigation

The GNSS multipath error arises from the fact that the signal from a satellite arrives
at the antenna via multiple paths due to reflection and diffraction. These indirect-path
signals can distort the received signal by up to one quarter-cycle and this error does not
cancel or mitigate when forming the double difference combination. Therefore, GNSS
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multipath becomes a critical source of error in high precision applications [28,35], and even
more for length metrology because most of the current calibration baselines of reference,
which were set up decades ago before the advent of the space geodesy era, are surrounded
by objects such as trees, buildings or other facilities.

Multipath interference can be separated into near-field and far-field effects, which
do have different properties. Near-field multipath results from the closest vicinity of
the antenna, i.e., the first 50 cm around the antenna, and mainly leads to a systematic
bias that can be prevented by creating identical near-field situation in all stations which
involves the same type of pillars, GNSS antenna model, antenna mounting, and routing
of the antenna cable. However, the near-field can also change the electronic properties of the
antenna and thus, individual antenna calibrations can be considered accurate as long as the
actual near-field situation was reproduced during the calibration procedure. Nonetheless,
this refinement is not usually included in the calibration process due to size and weight
limitations and it would only make sense if each calibrated antenna was always setup
in the same pillar [22,35–37].

On the other hand, far-field effects arise from reflecting surfaces in the environment
of the antenna such as trees or buildings, and for static surveys, which is the case at hand,
lead to short periodic errors. Following the traditional geodetic approach, the far-field mul-
tipath is generally assumed to average out by sufficiently long observation times [35,38,39].
In consequence, this approach is particularly valid for permanent GNSS stations which have
a favourable observational environment and 24-h sessions but cannot always be applied to
calibration baselines and short time spans. Our initial approach to cope with multipath
was based on the use of the signal-to-noise ratio flag and global robust estimation [40].

Interestingly for our study, the trees surrounding the UPV calibration baseline, which
were young in 2012, are increasing in size as the years go by. As a consequence, our former
approach to cope with multipath, based on the use of the signal-to-noise ratio flag and
global robust estimation [40], cannot be successfully applied under these new conditions.
To give a picture of the problem, some DD residuals which were obtained in our experiment
are plotted in Figure 3. It can be clearly seen that the L1 DD residuals range from 0.04 m
to −0.05 m and they cannot be considered Gaussian. Therefore, the obtained distance will
be biased. In addition, the L2 DD residuals are bigger, as expected, and follow a different
pattern than the L1 DD residuals. Similar residuals were found in other DD combinations.

Over the last 10 years, the Space Geodesy and Navigation Laboratory of University
College London (UCL) have developed and successfully applied techniques for GNSS
multipath detection and mitigation, some of them suitable for GNSS processing for distance
determination [31,32,41,42]. Specifically, we have now implemented the observation-
domain sidereal filtering technique and the signal-to-noise ratio (SNR) estimator.

The sidereal filtering technique [31,32] takes advantage of the consecutive passes
of each satellite to predict the multipath error. As long as both azimuth and elevation repeat
for the same satellite, the multipath effect can be considered similar, and subsequently
corrected. For GPS satellites, the repeating time is one sidereal day, which makes the
technique attractive to use if data from consecutive days are available, whereas for Galileo
satellites the repeating time increases to 10 sidereal days and the use of the technique would
require GNSS observation sessions 10 days apart, which is impractical. In what follows,
we will restrict the application of the sidereal filtering technique to GPS observations only.

In contrast, the SNR estimator does not provide a value for the multipath error [41].
By differencing SNR measurements on different frequencies and comparing the result with
that obtained in a low-multipath environment, multipath can be detected. The result is
a number that can be used, in theory, to identify the presence of multipath.
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Figure 3. Example of double difference (DD) residuals that were obtained using Bernese 5.2.

To characterize a low-multipath environment, we opted for the VALE permanent
station. It is only 100 m away from the UPV calibration baseline and its equipment (Leica
GR10 receiver and Leica AR25.R3 antenna) is very similar to the equipment used in our
experiment described in the next section. Figure 4 shows the SNR estimator for the Galileo
satellite that was selected as a low-multipath reference. The line in black is the expected
value, and in green, orange and red are respectively the 1σ, 2σ and 3σ thresholds. If the
estimator is clearly above the red line, multipath is considered to be present.

Figure 4. Low-multipath function used as reference to compute the SNR estimator for Galileo satellites.

Both techniques, sidereal filtering and SNR estimator, may be complementary. This is
important since each technique may on certain occasions yield null values even when
multipath is present. Conversely, depending on some aspects of the PPP implementation,
e.g., cycle-slip detection and correction strategies, the residuals obtained could be abnor-
mally high with no relation to multipath. However, matching residuals by using azimuth
and elevation has clear advantages over time. First, the technique is independent of the
value of multipath and does not need to rely on the identification of the correct satellite
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repeat period (a significant problem so far, as pointed out in Reference [43]). Second,
the multipath model could be eventually parameterised in terms of azimuth and elevation
even for the satellites with low multipath.

In summary, the whole process to mitigate multipath in the context of GBDM consists
of the following four steps

1. To obtain a PPP solution for each site and for every day using an ionosphere-free
combination.

2. To match the ionosphere-free observation residuals on successive days using azimuth
and elevation in order to obtain a site-specific and time-specific multipath model for
an ionosphere-free combination.

3. To form ionosphere-free DDs using the obtained multipath models with the same DD
scheme that will be eventually used in the final L1/E1 solution.

4. To determine the L1/E1 DD multipath corrections from the previous values by us-
ing DD residuals from an independent DD solution and the same ionosphere-free
combination that was used to obtain the PPP solution.

In the first step, the PPP solution is obtained with an epoch-wise processing strategy
that uses an ionosphere-free combination with floating ambiguities. Some advantages
of this straightforward approach are that the bulk of the ionosphere error is removed,
the multipath error is amplified with respect to that of the original observed frequencies,
and it can be implemented in real-time if desired.

Nevertheless, part of the multipath error could slip into other parameters and errors
caused by the imperfect modelling of other parameters (receiver clock, troposphere delay,
phase ambiguities) could be wrongly considered as multipath. For that reason, it is relevant
to look for a repeating pattern in the second step. Only the residuals that follow a sidereal
pattern can be considered as multipath error. Once the consecutive days are matched using
azimuth and elevation, the median of the residuals is retained as multipath error. The result
is a site-specific and time-specific multipath model for the combination used in the PPP
solution. Interestingly, the model formed may contain some possible antenna calibration
mismodelling since this error also repeats with azimuth and elevation.

In the third step, the site-specific and time-specific models that were built up for
each satellite are combined to form the required ionosphere-free DD residuals. This
combination largely cancels those components of the residuals which originate in the
satellites, such as orbits and clocks, those related to the receiver clock offsets and possible
residual atmospheric errors.

Finally, the L1/E1 DD multipath corrections are obtained for each day by using the
ionosphere-free DD corrections and the corresponding DD residuals from an independent
DD auxiliary solution. For that independent DD solution several frequencies such as L2,
L5, E5a or E5b can be used as long as they were employed in the PPP solution. Obviously,
the noise of the new multipath-corrected DD equation is higher then the original one,
but that is not a problem for the case at hand as long as the multipath error is mitigated in
such a way that the resulting distance is not biased.

The observation-domain sidereal filtering for GPS Precise Point Positioning (PPP)
developed at the SGNL-UCL [31] uses the ionosphere-free linear combination L3 with the
following combination factors

α = 77λ3
λ1

=
f 2
1

f 2
1− f 2

2
= 2.5457277801631

β = − 60λ3
λ2

= − f 2
2

f 2
1− f 2

2
= -1.5457277801631

Please note we have chosen the notation L3, which is used in the Bernese software,
to be consistent with L1 and L2.

The formed L3 combination has a wavelength
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λ3 =
λ1λ2

77λ2 − 60λ1
' 0.006 m

and with standard noise values σL1 = σL2 = 2 mm, the resulting L3 noise is

σL3 =
√

α2σ2
L1
+ β2σ2

L2
= 0.006 m

Nonetheless, modern receivers can measure the carrier phase with better precision and
from our experience the values σL1 = σL2 = 1 mm are more realistic so that the resulting
noise for the L3 combination can be considered around 3 mm.

Since the noise of the ionosphere-free combination is σL3 ≈ 3 mm, the obtained DD
residuals are expected to have a theoretical noise σDDL3 ≈ 6 mm that could hamper the
determination of a L1 site-specific multipath model by using a PPP approach. Surprisingly,
if DDL1 residuals are obtained straight from the DDL3 residuals by substracting the corre-
sponding DDL2 residuals, the resulting residuals have a noise σDDL1 ≈ 2 mm. The reason
is that the coefficients are smaller than one.

L1 =
1
α

L3 −
β

α
L2 (10)

and therefore,

σ2
L1

=

(
1
α

)2
σ2

L3
+

(
β

α

)2
σ2

L2
≈ 2 mm (11)

Figure 5 illustrates the PPP ionosphere-free phase residuals for pillar 3 (PL3A) (see
Figure 1) and satellite G12 after the matching process. As can be seen, the residuals
from the four consecutive days of the experiment are consistent and show a clear sidereal
pattern. Therefore, the initial assumption for the PPP residuals to be mostly multipath error
is confirmed. When the residuals from the consecutive days are compared with each other,
the differences are normally below 5 mm, thus confirming the correctness of the functional
model used in the PPP implementation and its suitability for this application. Nevertheless,
in some cases the PPP residuals differ by up to 1 cm, possibly due to a slightly different
satellite trajectory, different humidity of the ground or technicalities of the particular PPP
implementation. In those cases, there is still some consistency between days, and normally
only one day at a maximum is different from the rest, so that retaining the median as
the multipath value for the model usually solves the problem.

Figure 5. Example of Precise Point Positioning (PPP) residuals from four consecutive days after matching using azimuth
and elevation. The GPS time is referred to the first day (2016 DOY 319). The obtained multipath model is shown in black.
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The figure above is a zoomed-in excerpt from Figure 6, which shows the residuals
and the multipath model for the entire observation time for this particular satellite, that
is, the approximately 6.5 h the satellite has been with an elevation above 10º. Evidently,
the observations of low elevation are strongly affected by multipath and should not be
used for precise positioning.

Figure 6. PPP residuals from four consecutive days after matching using azimuth and elevation for the entire observation
session. The GPS time is referred to the first day (2016 DOY 319). The obtained multipath model is shown in black.

Now let us focus on the impact on DD processing. In Figures 7–9 the difference
between the initial L1 DD residuals obtained from the Bernese solution (blue) and the L1
DD multipath correction given by the proposed multipath mitigation method (green) are
plotted (red) for three different DD combinations and days. In the three examples, the L1
DD multipath error is mitigated and the new observed minus computed value is lower
than one centimetre on average. The three examples also show that the proposed method
seems to work independently of the elevation of the satellites, and even in the presence
of data gaps.

Figure 7. The result of L1 DD multipath mitigation for satellites G15 and G20 (2016 DOY322). DD L1-BRN and DD
L1-Model denote the DD L1 residuals obtained by means of Bernese and the use of the Model, respectively.
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Figure 8. The result of L1 DD multipath mitigation for satellites G12 and G10 (2016 DOY319). DD L1-BRN and DD L1-Model
denote the DD L1 residuals obtained by means of Bernese and the use of the Model, respectively.

Figure 9. The result of L1 DD multipath mitigation for satellites G24 and G18 (2016 DOY321). DD L1-BRN and DD L1-Model
denote the DD L1 residuals obtained by means of Bernese and the use of the Model, respectively.

As it can be seen Figure 7, the range of the obtained differences is 5 mm on average.
However, some values at around 20.6 h have an absolute value of about 2 cm with residuals
peaking −5 cm. Even in that case, the influence of the multipath error is largely dimin-
ished in the new observed-minus-computed-term, and the overall impact on the distance
obtained can still be considered unbiased.

The example in Figure 8 shows higher residuals that reach up to 8 cm. In this case,
the bandwidth of the differences is over 1 cm, and slightly higher if compared to the previ-
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ous example. Again, the differences seem to be randomly distributed around zero and no
impact is expected in the subsequent obtained distance.

Finally, the example given in Figure 9 has been chosen because the differences between
the initial L1 DD residuals and the multipath corrections seem to be not so well centred
as other DD combinations. In this case, although the overall range of the differences is
over 8 mm, it can be seen that it is wider and slightly biased when both satellites are at
a low elevation.

4. Assessment of the GNSS-Based Distances Accuracy
4.1. The UPV Calibration Baseline of Reference

To validate the accuracy of the GNSS-based distances they have to be compared with
distances accurately traced to SI-metre in an outdoor metrological infrastructure. For prac-
tical reasons, we opted for the UPV calibration baseline. This baseline, which was set up
in November 2007 by the Department of Cartographic Engineering, Geodesy and Pho-
togrammetry (DICGF), was originally planned to evaluate the uncertainty of geodetic
instruments according to ISO 17123 series [44]. In 2012, absolute scale was transferred from
de Nummela Standard Baseline (NSB) by the Finnish Geospatial Research Institute (FGI)
so as to carry out the experiment to validate the accuracy of the GNSS-based distances.

As shown in Figure 10, the UPV metrological infrastructure is a triangle-shaped test
field with seven observation pillars which includes an Heerbrugg-type EDM calibration
baseline [12]. Oriented north–west, the calibration baseline consists of six observation
pillars (No.1 to No.6) approximately in line at 0, 28, 94, 198, 282 and 330 m.

Figure 10. UPV submillimetric calibration test field.

The pillars have a diameter of 22 cm and height 1.20 m above ground level made
of two insulated steel pipes. The inner one covers a concrete structure with an square metre
foundation that extends to a depth of 60 cm. The outer steel pipe prevents the inner pillar
from differential dilations due to meteorological effects. To install measuring instruments
on the top they have a double forced-centring mount system: the standard 5/8” fixing
screw and a Kern-type trivet system.

Three measurement campaigns were carried out from December 2007 to February 2008
using the following total stations: Topcon GTS605, Leica TPS 1200+ and Leica TDA5005.
All of them proved to be compatible within a combined least squares adjustment and
the coordinates given in Table 1 were adopted as first set of approximate local coordinates.
The coordinates are referred to a local right handed Cartesian system whose origin is
the top of the pillar No.1, the x-axis points to pillar No.6 and z-axis is positive upwards.
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Table 1. Set of approximate 3D local coordinates (2008) and their standard deviations. The third
coordinate z refers to the height at the top of the pillar relative to the top of pillar 1.

Pillar x(m) σx (mm) y(m) σy (mm) z(m) σz (mm)

1 0.0000 0.0 0.0000 0.0 0.0000 0.0
2 28.3780 0.4 0.1603 2.7 0.0187 0.3
3 94.3948 0.4 0.1118 1.9 0.2010 0.3
4 198.0027 0.4 0.1322 2.1 0.2060 0.4
5 282.7853 0.4 0.0683 3.2 0.4489 0.4
6 330.0030 0.4 0.0000 0.0 0.3129 0.4
7 144.8110 0.5 43.4056 1.8 0.0424 0.3

The horizontal and vertical stability of the pillars over time has been periodically mon-
itored [45–47]. Since no significative displacement was detected, this first set of coordinates
have been safely regarded for geometrical reduction computations in subsequent cam-
paigns.

The field campaign to transfer scale from the Nummela Standard Baseline (NSB)
in 2012 was carried out from 28 May to 1 June by the Finnish Geospatial Research Institute
(FGI). The measurements were done using the Kern ME5000 No. 357094 of the Aalto Uni-
versity along with the reflector No.374414 which were calibrated at Nummela before and
after the transferring campaign. Dry and wet temperatures were measured using calibrated
Thies Clima Assmann-Type psycrhometers with an estimated ±0.3 ◦C uncertainty and
air pressure was measured using two calibrated Thommen 3B4.01.1 aneroid instruments
with an estimated ±0.3 hPa uncertainty. The EDM and the reflector were installed in
the 5/8” fixing screws of the pillars using Leica GDF321 tribrachs. As the observational
scheme consisted in four sets of ‘double-in all-combinations’distances, every distance was
consequently measured 16 times. This observational scheme was strictly repeated in the
subsequent four field campaigns.

Therefore, the traceability chain for the UPV baseline distances that were to be use
as ground truth was: SI definition of the metre, quartz gauge bar, Väisälä interferometer,
FGI Nummela Standard Baseline, FGI Mekometer ME5000 and UPV calibration baseline.
The resulting nominal distances were obtained with expanded total uncertainties Uk=2
of 0.1–0.3 mm (Table 2).

Table 2. Calibrated slant distances traced to SI-unit metre through the Nummela Standard Baseline
and their expanded uncertainties U (k = 2).

Line Distance (m) Uk=2 (mm)

1–2 28.38334 0.20
1–3 94.40121 0.21
1–4 198.00786 0.26
1–5 282.78960 0.30
1–6 330.01110 0.33
1–7 151.17235 0.24
2–3 66.01886 0.21
2–4 169.62493 0.24
2–5 254.40681 0.29
2–6 301.62825 0.31
3–4 103.60708 0.22
3–5 188.38847 0.25
3–6 235.61008 0.28
3–7 66.59225 0.20
4–5 84.78211 0.21
4–6 132.00335 0.23
4–7 68.57778 0.19
5–6 47.22197 0.20
6–7 190.22249 0.24
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4.2. Description of the Experiment

To be prove accurate, the GNSS-based distances had to be compared with the SI-
traced distances provided by the FGI in 2012. Furthermore, since accuracy comprises
both repeatability and reproducibility, the comparison had to be done over time with
GNSS measurements carried out under different environmental conditions. Nonetheless,
the SI-traced distances provided by the FGI were realized by the pillars in a specific epoch
(June 2012), and consequently their stability over time has to be considered as a critical
part of the study. Considering the construction features of the pillars, errors due to vibra-
tions and reproducibility of the centre mount can be assumed negligible, but the possible
instability of pillars, which chiefly depends on the grounding and the geological profile,
would diminish the uncertainty of SI-traced distances of reference. The instability of pillars
is normally included in the corresponding uncertainty budget [22], but detecting possible
pillar displacements at submillimetric level requires special instruments like the out-of-
production ME5000 or laser trackers [14,48]. For this reason, the experiment was planned to
be coincident with the deformation monitoring campaigns of the UPV calibration baseline
which were annually carried out from year 2013 to year 2016. In each campaign, the EDM
and GNSS techniques were interlaced in a way that the distances obtained can be assumed
to be done at the same epoch. The EDM distances were measured in daytime, while the
GNSS observations were collected in 12-hour sessions during nighttime. In the following
paragraphs, the operational scheme of both types of measurements are further described.

With regard to the EDM campaigns, an agreement between the UPV and the Universi-
dad Complutense de Madrid (UCM) enabled us to use the Mekometer ME5000 No. 357094
along with reflectors No.374447 and No.374448 to carry out the deformation monitoring
of the UPV baseline [46]. The dates and instruments used in each campaign are shown
in Table 3. Dry and wet temperatures were always measured at both ends by using cali-
brated Thies 4410 Assmann-Type psychrometers with an estimated ±0.3 ◦C uncertainty
and air pressure was measured using two calibrated Thommen 2A4.611 aneroid instru-
ments with an estimated ±0.3 hPa uncertainty. The EDM and the reflector were installed in
the 5/8” fixing screws of the pillars using Leica GDF321 tribrachs. Each campaign consisted
in four series following exactly the same observational scheme as the first campaign carried
out by the FGI in 2012 to transfer absolute scale from Nummela. Since each series of EDM
measurements takes around one day, the total observation time for each campaign is four
days. This observational scheme not only provides the actual EDM distances between
pillars with uncertainties of 0.1–0.3 mm, but also the zero-error for the set distance meter
and reflector, which is determined in accordance to the full procedure of the ISO17123-4.

Table 3. Dates of the four campaigns and results of the calibration process for the Kern RMO5035
reflectors used. All values in mm.

Year Dates ME5000 SN Frequency
(MHz) Reflector SN Zero-Error (mm) σ (mm)

2013 25 June–28 June No.357094 479.35783 No.374448 0.1509 0.0166
2014 24 June–27 June No.357094 479.35778 No.374447 0.1079 0.0146
2015 21 July–24 July No.357094 479.35776 No.374447 0.0868 0.0183

2016 12 November–16
November No.357094 479.35773 No.374448 0.1224 0.0133

The raw distances measured in the four field campaigns were processed following
exactly the same steps that the FGI scale-transferring campaign in 2012. The three correc-
tions that were sequentially applied were: refraction correction, calibration correction and
geometrical reduction.

The information required for computing the refraction correction consists of dry
temperature, wet temperature and air pressure collected at both ends of the beam path
for every measured distance along with the calibration values of the thermometers and
barometers used in the field campaign. The actual refraction index for every single distance
is computed using the precise Ciddor and Hill method [49,50] as recommended by the
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International Association of Geodesy when the scale is required to be better than 1 ppm.
It is worth noting, however, that this formulation has an incorrect sign, as recently pointed
out by [51]. Once obtained the actual refraction index, the three meteorological corrections
recommended for the ME5000 [11] were computed, though only the first speed correction
was retained because the second speed correction and the beam correction were negligible
even for the longest distance (330 m).

The calibration correction was then applied to the slope distances resulting from the
refraction correction. Applying the calibration parameters (zero-error and scale error)
improves the accuracy of the measured distances, though the precision of the resulting
distances decreases as the uncertainty of the calibration parameters has to be taken into ac-
count.

Finally, the geometrical reduction is applied to obtain the distances in Table 4.

Table 4. Electronic Distance Meter (EDM) distances obtained in years 2013–2016 and their corre-
sponding standard deviation and expanded uncertainty U (k = 2).

Year ME5000 Distance σ Uk=2

2013 94.40146 m 0.08 mm 0.21 mm
2014 94.40057 m 0.09 mm 0.22 mm
2015 94.40108 m 0.08 mm 0.21 mm
2016 94.40093 m 0.07 mm 0.21 mm

Concerning the GNSS campaigns, they were carried out in 12-h static sessions during
the nighttime once the daily EDM measurements were finished. Table 5 shows the dates
and other details concerning the GNSS campaigns. Since pillars No.1 and No.3 had better
GNSS observing conditions than the rest, they were selected to conduct the experiment.
Nonetheless, the trees surrounding the baseline had considerably grown from 2013 to 2016,
making the multipath error apparent even for the selected pillars. Therefore, we decided to
reduce the GNSS data interval from 15 s to 1 s in the 2016 campaign so that the methods
to detect and mitigate the multipath error that were being developed at Space Geodesy
and Navigation Laboratory of the University College London (SGNL-UCL), which were
described in the previous section, could be better implemented and tested.

Table 5. GNSS instruments used in every campaign and time interval of data registration.

Year Dates Sessions GNSS Receivers GNSS Antennas Interval (s)

2013 25 Jun–28 Jun (day) 4 Trimble 5700 Leica AR25 R4 15
2014 24 Jun–27 Jun (day) 4 Leica GS10 Leica AR25 R4 15
2015 21 Jul–24 Jun (day) 4 Leica GS10 Leica AR25 R4 15

2016 12 November–16
November (day) 4 Leica GS10 Leica AR25 R4 1

With regard to the GNSS antennas, we always used the same two 3D choke-ring
Leica AR25.R4, which were individually calibrated by the University of Bonn by using the
anechoic chamber method [52,53]. The two antennas were set up carefully oriented towards
the geodetic north which was rigorously realized by benchmarks that are permanently
located near every pillar. The GNSS distances finally obtained are given in Table 6. It is
worth noting that all the DD residuals and testing results in this study are consistent with
the solution by Bernese 5.2 [21].
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Table 6. GNSS-Based Distance Meter (GBDM) distances obtained in years 2013, 2014, 2015 and 2016,
and their corresponding standard deviations.

Year GNSS Distance σ (mm)

2013 94.40133 m 0.036 mm
2014 94.40085 m 0.034 mm
2015 94.40110 m 0.040 mm
2016 94.40126 m 0.052 mm

The corresponding differences among the GBDM distances, the ME5000 distances,
as well as the original calibrated distance traced to the metre-SI (which is displayed
in Table 2) are shown in Table 7.

Table 7. Differences between the ME5000, SI-traced and GNSS distances, and their corresponding
expanded uncertainties U (k = 2).

Year ME5000-SI Uk=2 GNSS-SI Uk=2
GNSS-

ME5000 Uk=2

2013 0.25 mm 0.30 mm 0.12 mm 0.42 mm −0.13 mm 0.42 mm
2014 −0.64 mm 0.30 mm −0.36 mm 0.40 mm 0.28 mm 0.40 mm
2015 −0.13 mm 0.30 mm −0.11 mm 0.45 mm 0.02 mm 0.45 mm
2016 −0.28 mm 0.30 mm 0.05 mm 0.54 mm 0.33 mm 0.54 mm

The GNSS measurements in 2013 were collected using four single-constellation (GPS-
only) Trimble 5700 receivers and two signal splitters. They were performed in the daytime
shortly before the corresponding monitoring campaign using the UCM Mekometer ME5000.
The differences between the computed GNSS distances and their corresponding FGI-
certified and UCM-Mekometer ME5000 were respectively +0.12 mm and−0.13 mm. Taking
into account their respective uncertainty (standard deviation for GNSS), the difference can
be considered statistically negligible. In addition, there is no significant evidence of pillar
displacements from 2012 to 2013.

In 2014, the GNSS measurements were collected using two single-constellation Leica
GS10 receivers and they were performed in the nighttime whereas the corresponding
monitoring campaign using the UCM Mekometer ME5000 was carried out during the
same days in the daylight. The comparison between the GNSS distance and the EDM-
derived for this epoch yielded a difference of 0.28 mm, which can be considered statistically
negligible taking into account their respective uncertainties (standard deviation for GNSS).
In addition, non-significant is the baseline length variation in this epoch with respect to
the previous epoch. This agrees with the conclusion obtained by a dedicated deformation
approach for the entire network [47], which concluded no significant displacements for
the baseline.

The GNSS measurements in 2015 were collected in the nighttime using two multi-
constellation Leica GS10 receivers. The spantime was eight hours and the receivers mea-
sured carrier phase observables for the following number of satellites: 21 GPS, 19 GLONASS
and 4 Galileo. The corresponding monitoring campaign using the UCM Mekometer
ME5000 was carried out during the same days in the daylight. Since both EDM-based
distances, i.e., FGI-certified and the one obtained by using the UCM Mekometer ME5000,
agreed well, it is also concluded that there were no significant displacements. Once again,
the difference between the obtained GNSS distance and the corresponding using the UCM
Mekometer ME5000 is satisfactorily small.

Similarly, the GNSS measurements in 2016 were collected in nighttime by using
two multi-constellation Leica GS10 receivers whereas the measurements using the UCM
Mekometer ME5000 were carried out during the same days in daytime. No significant
discrepancies could also be found among any of the types of distances.

Nevertheless, all these distances constitute but a limited sample so that additional
measurements need to be made to draw definitive conclusions and further research has
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to be conducted in order to assess the validity of this degree of agreement and possibly
reduce the standard deviation of the GNSS distances computed.

5. Conclusions and Future Work

We have proposed and tested new methods to develop a submillimetric GNSS-Based
Distance Meter (GBDM) for application to length metrology in open air for distances up
to 1 km, as an alternative to more expensive approaches to the problem like two-colour
telemeters or laser trackers, which are currently under development. We present the
corresponding functional model as well as specific methods to mitigate the main source
of error in the GBDM determination of length for baselines up to 1 km: the multipath
error. Consistency with the unit of length (SI-metre) has been shown within few tenths
of a millimetre by using a calibration baseline of reference having distances traced to the
SI-metre and a ME5000 distance meter.

The future application of the GBDM to longer baselines, in the range of 1 to 5 km,
can be expected as soon as some difficulties are circumvented: mainly, the correction and
corresponding assessment of uncertainty of the impact on the baseline length of the residual
tropospheric delay, which should not be neglected especially in the case of relatively large
height differences. The evaluation of different absolute antenna calibration models for use
in the problem at hand and the corresponding uncertainty assessment is also a question to
be addressed in the future.

The present study has been realized with the main focus on the GPS constellation,
and the marginal use of satellites from other constellations (Galileo and GLONASS). An op-
timized, fully multi-constellation, approach needs also to be further developed.
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