
Original Paper

Subphenotyping of Mexican Patients With COVID-19 at
Preadmission To Anticipate Severity Stratification: Age-Sex
Unbiased Meta-Clustering Technique

Lexin Zhou1, BSc; Nekane Romero-García1, MD; Juan Martínez-Miranda2, PhD; J Alberto Conejero3, PhD; Juan M

García-Gómez1, PhD; Carlos Sáez1, PhD
1Biomedical Data Science Lab, Instituto Universitario de Tecnologías de la Información y Comunicaciones, Universitat Politècnica de València,
Valencia, Spain
2Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada, Mexico
3Instituto Universitario de Matemática Pura y Aplicada, Universitat Politècnica de València, Valencia, Spain

Corresponding Author:
Carlos Sáez, PhD
Biomedical Data Science Lab
Instituto Universitario de Tecnologías de la Información y Comunicaciones
Universitat Politècnica de València
Camino de Vera s/n
Valencia, 46022
Spain
Phone: 34 963877000 ext 75278
Email: carsaesi@upv.es

Abstract

Background: The COVID-19 pandemic has led to an unprecedented global health care challenge for both medical institutions
and researchers. Recognizing different COVID-19 subphenotypes—the division of populations of patients into more meaningful
subgroups driven by clinical features—and their severity characterization may assist clinicians during the clinical course, the
vaccination process, research efforts, the surveillance system, and the allocation of limited resources.

Objective: We aimed to discover age-sex unbiased COVID-19 patient subphenotypes based on easily available phenotypical
data before admission, such as pre-existing comorbidities, lifestyle habits, and demographic features, to study the potential early
severity stratification capabilities of the discovered subgroups through characterizing their severity patterns, including prognostic,
intensive care unit (ICU), and morbimortality outcomes.

Methods: We used the Mexican Government COVID-19 open data, including 778,692 SARS-CoV-2 population-based
patient-level data as of September 2020. We applied a meta-clustering technique that consists of a 2-stage clustering approach
combining dimensionality reduction (ie, principal components analysis and multiple correspondence analysis) and hierarchical
clustering using the Ward minimum variance method with Euclidean squared distance.

Results: In the independent age-sex clustering analyses, 56 clusters supported 11 clinically distinguishable meta-clusters (MCs).
MCs 1-3 showed high recovery rates (90.27%-95.22%), including healthy patients of all ages, children with comorbidities and
priority in receiving medical resources (ie, higher rates of hospitalization, intubation, and ICU admission) compared with other
adult subgroups that have similar conditions, and young obese smokers. MCs 4-5 showed moderate recovery rates (81.30%-82.81%),
including patients with hypertension or diabetes of all ages and obese patients with pneumonia, hypertension, and diabetes. MCs
6-11 showed low recovery rates (53.96%-66.94%), including immunosuppressed patients with high comorbidity rates, patients
with chronic kidney disease with a poor survival length and probability of recovery, older smokers with chronic obstructive
pulmonary disease, older adults with severe diabetes and hypertension, and the oldest obese smokers with chronic obstructive
pulmonary disease and mild cardiovascular disease. Group outcomes conformed to the recent literature on dedicated age-sex
groups. Mexican states and several types of clinical institutions showed relevant heterogeneity regarding severity, potentially
linked to socioeconomic or health inequalities.

Conclusions: The proposed 2-stage cluster analysis methodology produced a discriminative characterization of the sample and
explainability over age and sex. These results can potentially help in understanding the clinical patient and their stratification for
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automated early triage before further tests and laboratory results are available and even in locations where additional tests are
not available or to help decide resource allocation among vulnerable subgroups such as to prioritize vaccination or treatments.

(JMIR Public Health Surveill 2022;8(3):e30032) doi: 10.2196/30032
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Introduction

In mid-January 2020, Mexico reported the first cases of
COVID-19. In early March 2020, disease caused by
SARS-CoV-2 was declared by the World Health Organization
(WHO) as a pandemic [1]. As of August 13, 2020, a total of
20,439,814 confirmed cases of COVID-19 had been reported
to the WHO, and 744,385 lives had been lost [2].

The COVID-19 pandemic has led to an unprecedented global
health care challenge for both medical institutions and
researchers. They have been making a huge effort to describe
specific COVID-19 risk factor associations and severity
outcomes, and personalized therapeutic options for COVID-19
patients are yet under investigation [3-5]. Recognizing different
COVID-19 subphenotypes—the division of populations of
patients into more meaningful subgroups driven by clinical
features [6,7]—and their severity characterization may assist
clinicians during the clinical course, research efforts, and the
surveillance system. However, the availability of information
to investigate such subphenotypes and consequent
decision-making often varies both according to the stage at
which patients are in the COVID-19 clinical workflow (eg,
before admission, at admission, or during hospitalization) and
according to hospital access possibilities (eg, hospitalized versus
ambulatory patients), especially in locations where
hospitalization is difficult. In addition, the patient age and sex
entail a potential correlation between subgroup characterization
and their severity characterization, which requires prudent usage
in machine learning (ML) models.

Several studies have suggested potential COVID-19
subphenotypes, mainly within specific comorbidities such as
pulmonary diseases or diabetes [8,9] or related to distinct genetic
variants [10]. However, the Mexican population has its own
particularity due to a high prevalence of comorbidities, like
hypertension, diabetes—a leading cause of death in 2020
[11]—and obesity, which is leading the population to having
undesirable risks for severe COVID-19 outcomes, higher than
many other high-income countries [12]. Since distinct target
populations often present with heterogeneous clinical
characterization and severity outcomes, it remains crucial to
gain a transparent understanding regarding the characterization
of COVID-19 subphenotypes in Mexican patients to help
anticipate individuals' prognostic outcomes if one gets infected
and evaluate subphenotypic severity presentations.

Unsupervised ML is well-known for its usefulness in finding
patterns in data [13,14]. We describe the results of an
unsupervised ML meta-clustering approach to identify potential
subphenotypes of COVID-19 patients in Mexico based on
previously existing comorbidities, habits, and demographic

features (ie, age and sex). Stratification on sex and age groups
was included for 3 primary reasons: (1) to reduce potential ML
models’ biases in best representing the majority (eg, young
adults) but not underrepresenting other groups (eg, children and
older adults) [15]; (2) to reduce potential confounding factors
from age and sex, which are highly correlated with
comorbidities, habits, and mortality (ie, age-sex clusters may
help reveal more well-detailed patterns and phenotypical
descriptions); and (3) to reduce interpretation biases (eg, if one
healthy cluster presents a mortality rate of 98.5% but includes
patients from all ages, this specific mortality rate may vary
across 2 patients from the same cluster whose age differ
significantly [eg, children versus adults]). See section 1 of
Multimedia Appendix 1 for further details. In addition, we
assessed the clusters’ source variability, namely the variability
by Mexican states and types of clinical institutions (TCIs), to
discern what types of clusters are prone to be in certain Mexican
states or TCIs.

By using a population-based cohort of more than 700,000
patient-level cases, this is probably the largest cluster analysis
about coronavirus patient-level cases to date. Other studies
proposed unsupervised ML methods for aggregated population
data [16], computed tomography image analyses [17,18],
molecular-level clustering [19], or coronavirus-related scientific
texts [20]. To date, several studies have provided results from
unsupervised ML on patient-level epidemiological data [21-28].
To our knowledge, however, no characterized age-sex
subphenotypes nor population-based studies with solely
phenotypical information available at preadmission to aid
automated risk stratification have been conducted, and neither
characterized the Mexican population, which is generally more
vulnerable due to its particularity of a high prevalence of
comorbidities.

Performing accurate triage upon admission, especially in
ambulatory settings, is often challenging, significantly
depending on the patient information available to the physicians.
This work, therefore, aimed to characterize age-sex unbiased
COVID-19 subphenotypes that may potentially establish target
groups for triage systems to assist clinicians in efficiently
allocating limited resources and prioritize vaccination among
subgroups who are more vulnerable when they get infected
during the pandemic. As these subphenotypes are based on
easily available data, such as previous disease and lifestyle
habits, rather than COVID-19–related symptoms (eg, fever and
nausea), vital signs, or biomarkers that are not often available
in the first days of COVID-19 infection or difficult to obtain
due to limited resources, our work therefore could support early
triage prior to further tests and laboratory results and even
provide guidance in areas where such tests are not available.
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Methods

Data Collection and Processing
We used the data set collected by the General Epidemiology
Directorate of the Mexican Ministry of Health, which is an
open-source data set comprised of daily updated data from
suspected COVID-19 cases (in public and private hospitals from
all over the country), of which the positive cases were confirmed
by laboratory tests for SARS-CoV-2 [29]. The data set is
anonymized, open-access, and published by the Mexican
government. The use of data followed the MX terms of free use
of the Open Data of the Mexican Government [30]. As of
November 2, 2020, the data set was comprised of a total of
2,414,882 cases, including patient-level demographic,
comorbidity, habit, and prognosis data, for both positive and
nonpositive cases. Noteworthy, the official website does not
explicitly mention the source (each public and private health
institution) for some of the information. Consulting with
different health professionals, we concluded that it is more likely
that every lab-confirmed patient with COVID-19 took a
questionnaire in which the patients initially self-reported their

comorbidities, and only those who were hospitalized were given
a battery of tests to detect or confirm the highest-risk
comorbidities, such as diabetes and hypertension.

We performed a series of data quality assessments such as
detecting missing data and outliers, between-date inconsistency,
erroneous data, and nonplausible data, and we also assessed
potential temporal biases using temporal variability statistical
methods [31]; no significant temporal changes were found
(section 2 of Multimedia Appendix 1). However, we found that
95.28% of patients lost their lives within 31 days after the
infection, which led us to remove the patients with symptom
onset less than 31 days prior to the moment the data set was
collected (ie, patients who showed symptoms after September
30, 2020) since these patients’ survival status in the future was
still “unknown” (section 3 of Multimedia Appendix 1). Thus,
patients infected after September 30, 2020, were excluded.

Figure 1 describes the study inclusion and exclusion criteria
and the data quality assessment process outcomes in a
CONSORT-like flowchart. The final sample included 778,692
positive cases.

Figure 1. Data set preprocessing flowchart for data in Mexico from January 13, 2020 to September 30, 2020.

JMIR Public Health Surveill 2022 | vol. 8 | iss. 3 | e30032 | p. 3https://publichealth.jmir.org/2022/3/e30032
(page number not for citation purposes)

Zhou et alJMIR PUBLIC HEALTH AND SURVEILLANCE

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Study Measures
We derived 6 outcome variables related with the prospective
patient’s severity. The first was the patient outcome (deceased
or not) from the date of death record. The second was the
number of days from symptom onset to hospital admission.
Third, we categorized 2 variables describing the overall survival
at 15 days and 30 days after symptom onset. Lastly, we
categorized 2 variables that also described the overall survival

at 15 days and 30 days after symptom onset but only for the
deceased patients.

Table 1 shows the list of studied variables. Sections 4 to 6 in
Multimedia Appendix 1 describe additional information on the
original data set, baseline characteristics of the COVID-19
patients alongside descriptive statistics in age-sex groups of the
study sample, and association between pregnancy and outcomes.
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Table 1. List of variables contained in the data set for the study cases; they were originally coded in Spanish and translated into English by the authors
for this work. Section 4 in Multimedia Appendix 1 provides the description of the original data set.

Type (value/format)DescriptionVariable

Discrete (Male, Female)Sex of the person (defined in the metadata published by the Mexican govern-
ment)

Sex

Numerical integerAge in years at the time of the admissionAge

Discrete (Yes, No)Presence of pregnancyPregnant

Discrete (Yes, No)Presence of obesityObesity

Discrete (Yes, No)Presence of smoking habitSmoke

Discrete (Yes, No)Presence of pneumoniaPneumonia

Discrete (Yes, No)Presence of diabetesDiabetes

Discrete (Yes, No)Presence of chronic obstructive pulmonary diseaseCOPDa

Discrete (Yes, No)Presence of asthmaAsthma

Discrete (Yes, No)Presence of immunosuppressionINMUSUPRb

Discrete (Yes, No)Presence of hypertensionHypertension

Discrete (Yes, No)Presence of chronic kidney diseaseCKDc

Discrete (Yes, No)Presence of cardiovascularCardiovascular

Discrete (Yes, No)Presence of other diseasesOther disease

Discrete (Yes, No)Whether a patient was hospitalized or ambulantHospitalized

Discrete (Yes, No)Whether a patient was intubatedIntubated

Discrete (Yes, No)Whether a patient had been in an intensive care unitICUd

Discrete (Yes, No)Whether a patient was detected to have contact with other coronavirus casesOther case contact

Discrete (Positive SARS-CoV-2,
Non-Positive SARS-CoV-2, Pend-
ing, Inadequate result, Not Applied)

Coronavirus test resultResult_lab

Date (dd/mm/yyyy)The date when a patient attended the care unit (not necessarily hospitalized)Admission_date

Date (dd/mm/yyyy)The date of symptom onsetSymptoms_date

Date (dd/mm/yyyy)The date of deathDeath_date

DiscreteThe state where a patient received attention from a medical unitEntity_um

DiscretefThe type of institution in the National Health System that provided medical
care

TCIe

Discrete (Deceased, Non-Deceased)Death result of the patient (we used this to calculate mortality and recovery
rate)

Outcomeg

Discrete (Yes, No)Whether a patient survived more than 15 days from symptoms onsetSurvival>15daysg

Discrete (Yes, No)Whether a patient survived more than 30 days from symptoms onsetSurvival>30daysg

Discrete (Yes, No)Whether a deceased patient survived more than 15 days from symptom onsetSurvival>15days_deceasedg

Discrete (Yes, No)Whether a deceased patient survived more than 30 days from symptom onsetSurvival>30days_deceasedg

Numerical integerThe days that it took between symptom onset and hospitalizationFrom Symptom to Hospital daysg

aCOPD: chronic obstructive pulmonary disease.
bINMUSUPR, immunosuppression.
cCKD: chronic kidney disease.
dICU, intensive care unit.
eTCI: type of clinical institution.
fIMSS (Mexican Institute of Social Security), SSA (Secretariat of Health), ISSSTE (Institute for Social Security and Services for State Workers),
PRIVATE, PEMEX (Mexican Petroleum Institution), STATE, SEMAR (Secretariat of the Navy), SEDENA (Secretariat of the National Defense),
IMSS-BIENESTAR, UNIVERSITARY, MUNICIPAL, RED CROSS, DIF (National System for Integral Family Development).
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gVariables that were created by combining or transforming other variables in the original data set.

Meta-Clustering Methodology
We applied a 2-stage subgroup discovery approach (Figure 2
summarizes the full methodology). In both stages, we used the
Ward minimum variance method with Euclidean squared
distance [32] to perform hierarchical clustering fed by a
dimensionality reduction algorithm—principal component
analysis (PCA) or multiple correspondence analysis (MCA)
[33,34]—that took as input 11 variables including 9
comorbidities—pneumonia, diabetes, chronic obstructive
pulmonary disease (COPD), asthma, immunosuppression,

hypertension, chronic kidney disease (CKD), cardiovascular
disease, and other diseases—alongside 2 unhealthy habits,
namely obesity and smoking. In order to select the most
representative PCA and MCA components to feed the
hierarchical clustering, we considered values with an eigenvalue
higher than the average. Dimensionality reduction is known to
help in the process of clustering by compressing information
into a smaller number of variables, making unsupervised
learning less prone to overfitting [35], as well as to facilitate
further visual analytics to prevent the potential ML black-box
issue [36].

Figure 2. Research methodology flowchart. LOESS: locally estimated scatterplot smoothing; MCA: multiple correspondence analysis; PCA: principal
component analysis.

In the first stage, we used the entire data set—778,692
patients—since unsupervised ML does not require splitting the
data into training and test data [13,14]. We applied individually
hierarchical clustering analyses, taking as the input the MCA
scores fed by comorbidities and habits for the stratified groups
according to sex and age (<18, 18-49, 50-64, and >64 years) to
reduce potential biases and confounding factors, since age and
sex are highly correlated with comorbidities, habits, and
mortality. Then, we applied PCA and a locally estimated
scatterplot smoothing (LOESS) model [37] to the resultant
age-sex clusters’ features to visually explain their correlations
and severity relationships. We created a cluster heat map to help
understand the characteristics of each age-sex cluster.

In the second stage, in a population description providing a
wider perspective, we performed a hierarchical clustering again
fed by PCA scores obtained via the resultant age-sex clusters,
taking as input their comorbidities and habits ratios. Then, we
quantified the features of the resultant meta-clusters (MCs) via
a table and summarized these quantified features into a
qualitative table to help interpret the main features of the
resultant MCs.

For each subgroup analysis, we implemented cluster analyses
from 2 through 12 clusters. The proper number of subgroups
was obtained by combining a quantitative approach using the
silhouette coefficient [38]—which measures the tightness and
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separation of the objects within clusters, reflecting how similar
an object is to its own cluster compared with other clusters—and
a qualitative cluster analysis audited by the authors of this work,
including medical, health informatics, and ML experts from
Spain and Mexico. We first selected the group of clusters that
showed relatively better silhouette coefficient values, then
adjusted the number for the most reasonable and clinically
distinguishable groups regarding clinical phenotypes. This
process was supported by the pipelines and exploratory tool we
developed in previous work [39,40].

Finally, we performed a source variability assessment [41] using
heat maps to analyze the severity tendency among different data
sources based on the clusters’ probability distributions between
Mexican states and several TCIs where patients received medical
attention.

Data processing and analyses were performed using RStudio
(version 3.6) and Python (version 3.8). Temporal and source
variability—data quality analyses—were performed using the
EHRtemporalVariability [31] and EHRsourceVariability [41-43]
packages. Further information about the methods and codes that
support the findings of this study are available in section 7 of
Multimedia Appendix 1.

Results

Age-Sex Cluster Analysis
After evaluating the stratified clustering results, we selected the
following number of clusters (k) for each specific age-sex group:
<18-Male: k=5; <18-Female: k=4; 18-49-Male: k=7;
18-49-Female: k=7; 50-64-Male: k=9; 50-64-Female: k=8;
>64-Male: k=8; >64-Female: k=8. This resulted in 56 age-sex
clusters in total. Section 8 of Multimedia Appendix 1 provides
the number of individuals for each age-sex cluster. The
second-stage meta-clustering analysis uncovered 11 clinically
distinguishable MCs among the 56 age-sex clusters.

Figure 3 describes the relationships among different
comorbidities and habits in the original 56 age-sex clusters

through the first 2 principal components (Figure 3A). It also
provides the correspondence to their assigned MCs (Figure 3B)
and their LOESS delineations for distinct severity outcomes
(Figure 3C, Figure 3D, Figure 3E, Figure 3F, Figure 3G, and
Figure 3H).

The PCA uncovered noticeable patterns and characterizations
among the clusters representing different ages in both sexes.
Young adults are prone to asthma and habitual smoking, whereas
older adults are prone to many comorbidities such as
hypertension, diabetes, obesity, COPD, pneumonia, and CKD.
The results also show that obesity and habitual smoking—both
positively correlated—are strongly separated from
immunosuppression and other diseases, which are both
positively correlated.

The LOESS models showed that children had fewer days
between symptom onset and hospitalization and higher rates of
intensive care unit (ICU) admission, intubation, and
hospitalization than adults with similar conditions (Figure 3D,
Figure 3E, Figure 3G, and Figure 3H). In contrast, MC3 (a
young obese cluster with moderate asthma and smoking rates)
behaved inversely.

Inspecting the relationship between the PCA and LOESS models
showed that CKD was significantly associated with a shorter
survival length among deceased patients and an increase in
intubation rates (Figure 3E, Figure 3D). Mortality constantly
increased from children to older adults, but the most severe
zones were those for pneumonia, CKD, and COPD (Figure 3C),
independent of the age groups.

Figure 4 describes and quantifies the features of the 56 age-sex
clusters and relates them to their MCs. Figure 4 reinforces that
children had a faster time from symptom onset to hospitalization
and were prone to ICU admission despite presenting with a
similar clinical condition as adults (eg, cluster <18M3 versus
50-64F5). Regarding sex discrepancies, female patients showed
a better recovery rate (RR) despite presenting with similar
clinical conditions as male patients (eg, >64M1 versus >64F1).
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Figure 3. Principal component analysis (PCA) of the 56 age-sex clusters, meta-clustering results, and locally estimated scatterplot smoothing
(LOESS)–based delineations for 7 severity ranges: (A) PCA from 56 age-sex stratified clusters; (B) scatterplot of the 11 meta-clusters (MCs) defined
from the 56 clusters; (C) LOESS scatterplot for mortality; (D) LOESS scatterplot for intensive care unit (ICU) admission; (E) LOESS scatterplot for
intubation; (F) LOESS scatterplot for survival at 15 days among deceased patients; (G) LOESS scatterplot for hospitalization; and (H) LOESS scatterplot
for days from symptom onset to hospitalization. All the scatter plots share coordinates. Each subgroup is denoted using the following abbreviation:
[AgeGroup][Sex][ClusterID].
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Figure 4. Heat map showing the quantified characteristics among 56 age-sex–specific clusters of the 11 meta-clusters (MCs) of data collected in Mexico
between January 13, 2020 and September 30, 2020.; the size of each cluster (n) was categorized into 6 ranges. CKD: chronic kidney disease; COPD:
chronic obstructive pulmonary disease; ICU: intensive care unit; RR: recovery rate.

Meta-Clustering Analysis
Table 2 represents the quantified features of the 11 resultant
MCs. Figure 5 summarizes the main features of the 11 resultant
MCs. Variable values were categorized according to clinical
meaningful thresholds proposed by the authors as defined in
the table legend. Next, we describe the clinically distinguishable
main epidemiological findings for each MC.

MC1 included the 2 healthiest clusters per each age-sex group,
with a very high RR (90%). Most deceased patients in MC1
with pneumonia were older patients (Figure 4). MC2 included

children and young individuals (mean age 18 years) with healthy
habits and little incidence of relevant diseases (13%
immunosuppression, 17% cardiovascular disease, 4% CKD),
albeit the RR was very high (91%). In addition, MC2 had the
highest ICU admission rate (9%), driven by 3 child clusters
whose ICU rates varied from 13.41% to 18.45%. MC3 included
young adults (mean age 40 years) with significant obesity and
smoking as well as a low incidence of other diseases and very
high RR (95%). Despite the similarly high RRs in MC1 to MC3,
MC1 and MC3 showed a low incidence of pneumonia, while
one-third of the patients in MC2 had pneumonia.
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Table 2. Distribution of age, features, and comorbidities with the quantitative description of demographic features, treatment, and epidemiological
characteristics among the 11 meta-clusters (MCs) based on the arithmetic mean presuming that each age-sex cluster is representative of its population;
thus, the size (n) of each age-sex cluster was ignored.

MC11MC10MC9MC8MC7MC6MC5MC4MC3MC2MC1Characteristics

13534738868Age-sex clusters (total n=56), n

119277774055796879239216424228011,195011,353713,826407,005Patients in the MC (total n=778,892), n

Demographics

76.468.266.868.765.356.346.444.839.81843.4Age (years), mean

066.676033.335042.8633.3350505050Female sex, %

Age range (years), %

00000002512.566.6725<18

0000028.5766.67255033.332518-49

033.334033.335042.8633.332537.502550-64

10066.676066.675028.570250025>64

000.0100.010.260.330.80.31.280.49Pregnancy (yes), %

Habits, %

23.9950.5125.9419.0520.1518.8975.5412.0159.8811.780.44Obesity

76.8542.020.2238.034.388.110.770.834.099.670Smoker

Comorbidities, %

31.9661.239520.4576.4435.6257.1439.064.54.420Diabetes

91.8637.462.3643.912.035.100.7304.510COPDa

19.6319.790.0825.720.492.692.031.1518.173.20.37Asthma

00.0300.91040.3801.40.113.030INMUSUPRb

52.9477.8696.3334.3883.7146.7968.7941.157.599.130Hypertension

00.8201.731.8548.6301.220.338.320Other disease

27.7726.515.524.7321.6414.252.172.460.117.520Cardiovascular

1.011.281.921.0481.6731.840.223.8704.270CKDc

Treatment, %

70.4760.1160.857.1770.7258.5644.9142.2214.1546.0819.87Hospitalized

5.625.245.564.814.874.015.064.481.239.821.59ICUd

12.8412.4212.1311.513.3812.128.467.92.189.033.44Intubated

53.6146.848.143.5552.1442.4441.5237.189.083712.36Pneumonia, %

55.9664.4264.9566.4353.9666.9481.382.8195.2291.3790.27Recovery, %

67.2875.3475.2677.165.3776.3487.2788.3997.0193.7393.46Survival >15 days, %

56.9665.8866.3368.255.7168.2682.1483.7495.591.890.74Survival >30 days, %

25.7131.0129.7331.724.828.4631.5931.0936.2128.6430.76Survival >15 days (deceased), %

2.294.244.045.263.824.24.525.795.934.646.61Survival >30 days (deceased), %

4.824.944.924.854.34.485.214.374.873.23.78Time from symptom onset to hospitalization (days), mean

20.892827.5627.8820.927.3936.0436.651.1840.2345.84Other case contact, %

aCOPD: chronic obstructive pulmonary disease.
bINMUSUPR: immunosuppression.
cCKD: chronic kidney disease.
dICU: intensive care unit.
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Figure 5. Main features of the 11 resultant meta-clusters, sorted by recovery, in addition to the thresholds for the different severity outcomes and input
variable categories; based on data collected in Mexico between January 13, 2020 and September 30, 2020. COPD: chronic obstructive pulmonary
disease; ICU: intensive care unit; INMUSUPR: immunosuppression.

MC4 included individuals of all ages with healthy habits, but,
unlike MC1, most patients in MC4 had hypertension (41%) or
diabetes (39%), but not both simultaneously. MC5 included
young adults with obesity (75%), diabetes (57%), or
hypertension (69%). Despite this dissimilarity, MC4 and MC5
still had similarly high RRs, of approximately 80%. From MC4
onwards, all MCs had a 40% to 50% incidence of pneumonia,

as provided on the case report, which does not exclude the
possibility that some patients developed pneumonia days after.
Noteworthy, in MC4 to MC11, more than 70% of the deceased
patients were diagnosed with pneumonia.

The RRs from MC6 and MC8-MC10 were similar (64%-67%).
MC6 included older adults with no obesity nor smoking but
with a high prevalence of diseases including diabetes,
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hypertension, immunosuppression, or others. MC8 included
older adults who habitually smoked, plus hypertension (34%)
or COPD (44%), both smoking-related diseases. Similarly,
MC10 included older adults with obesity (50%) or habitual
smoking (42%), who also had COPD (37%) but with a much
higher incidence of diabetes (61%) and hypertension (78%).
MC9 included older adults with both diabetes (95%) and
hypertension (96%).

MC7 and MC11 had the lowest RRs (54% and 56%,
respectively). MC7 included older adults with common diseases
(diabetes, hypertension, and cardiovascular disease) plus CKD
(81%). CKD stands out as the differential factor between similar
MCs with low RRs, such as MC6 or MC9. MC11 was similar
to MC8 and MC10; the key differences were the higher
prevalence of smoking (78%, which doubles the former) and
COPD (almost all patients, 91%) and a mean age 8 years older
(76 years versus 68 years). In addition, MCs that included older
obese patients who habitually smoked (MC8, MC10, and MC11)
had significantly higher COPD and cardiovascular disease
incidences, associations that did not occur with the young
smokers (MC3).

Assessment of Clusters’ Source Variability
Regarding state variability, half of the Mexican states were
prone to higher probabilities of healthy clusters with better RRs,
lower hospitalization rates, lower ICU rates, and lower
intubation rates among each age-sex group (Figure 6A; eg,

18F2, 18M1, 18-49F1, 18-49M1, 50-64F1) and MCs (Figure
6B), whereas another one-half behaved inversely. Hidalgo, Baja
California, and Morelos represented the healthiest groups, in
contrast to Oaxaca, Coahuila de Zaragoza, and Durango, which
represented the less healthy. Surprisingly, Mexico City showed
a significantly higher probability of having healthier clusters
than the State of Mexico, albeit the populations of their main
urban areas are close, and both have similar resources and
economic development levels.

Regarding variability in the TCIs (Figure 7A, Figure 7B), the
Secretariat of Health (SSA), the National System for Integral
Family Development (DIF), private institutions, and the Red
Cross were more likely to have healthier, young patients. This
pattern occurred inversely in other TCIs, especially the Mexican
Petroleum Institution, for which the probabilities of severe
clusters were generally higher. The clinical institutions of the
armed forces (Secretariat of the Navy [SEMAR], Secretariat of
the National Defense [SEDENA]) were mostly healthy,
intuitively with a higher probability of male patients.
Noteworthy, among the 3 primary TCIs in Mexico, the public
health system (SSA) had more mild comorbidities and relatively
higher probabilities of having healthy clusters among each
age-sex group, mostly in MC1 (57%) and MC3 (16%), whereas
in the 2 main social security systems (Mexican Institute of Social
Security [IMSS], Institute for Social Security and Services for
State Workers [ISSSTE]), the situation was just the opposite.

JMIR Public Health Surveill 2022 | vol. 8 | iss. 3 | e30032 | p. 12https://publichealth.jmir.org/2022/3/e30032
(page number not for citation purposes)

Zhou et alJMIR PUBLIC HEALTH AND SURVEILLANCE

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 6. Heat maps of the probability distribution of the (A) 56 age-sex specific clusters and (B) 11 meta-clusters (MCs) for each Mexican state where
patients received treatment or medical attention, using data collected in Mexico between January 13, 2020 and September 30, 2020. Rows represent the
clusters, and columns represent the states and are arranged according to a hierarchical clustering of their values. We compared the clusters' distribution
within each age range to circumvent any correlation or association with comorbidities and habits.

JMIR Public Health Surveill 2022 | vol. 8 | iss. 3 | e30032 | p. 13https://publichealth.jmir.org/2022/3/e30032
(page number not for citation purposes)

Zhou et alJMIR PUBLIC HEALTH AND SURVEILLANCE

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 7. Heat maps of the probability distribution of the (A) 56 age-sex specific clusters and (B) 11 MCs for each type of clinical institution (TCI),
using data collected in Mexico between January 13, 2020 and September 30, 2020. Rows represent the clusters, and columns represent the TCIs and
are arranged according to a hierarchical clustering of their values. We compared the clusters' distribution within each age range to circumvent any
correlation or association with comorbidities and habits. DIF: National System for Integral Family Development; IMSS: Mexican Institute of Social
Security; ISSSTE: Institute for Social Security and Services for State Workers; PEMEX: Mexican Petroleum Institution; SEDENA: Secretariat of the
National Defense; SEMAR: Secretariat of the Navy; SSA: Secretariat of Health.

JMIR Public Health Surveill 2022 | vol. 8 | iss. 3 | e30032 | p. 14https://publichealth.jmir.org/2022/3/e30032
(page number not for citation purposes)

Zhou et alJMIR PUBLIC HEALTH AND SURVEILLANCE

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Discussion

Meta-Clustering

Main Findings
Previous literature has reported isolated risk factors and their
association with severe progression of several diseases.
However, the use of such information to improve clinical
decision-making is potentially limited. In this work, no single
clinical variable nor lifestyle habit was enough to characterize
the COVID-19 subphenotypes, a typical phenomenon when the
data set has many categorical variables. This reflects the reality
of clinical practice: Patients do not usually fall into subgroups
of “all good” or “all bad” outcomes, and neither of the patient
outcomes can be concluded by a single variable. However, when
considering the variables together, our study uncovered 11
clinically distinguishable MCs among 56 plausible age-sex
clusters; these MC-defined subphenotypes alongside age-sex
stratification may represent different disease mechanisms and
outcomes.

Each of the 11 MCs shows clinical consistency: Their group
outcomes can be potentially predicted from the proposed input
variables, according to the literature published to date. From an
outcome perspective, a dividing line can be clearly drawn
between MCs 1-5 and MCs 6-11. Although the former had high
RRs, the latter had low RRs. Several factors can explain these
findings, mainly age, habits, and comorbidities. Since all MCs
were 30%-60% women within their input age-sex clusters, the
association between sex and mortality is hard to see based only
on MCs. However, the age-sex cluster analysis showed clearly
better outcomes in female patients despite presenting with
similar conditions as male patients. Therefore, considering both
age-sex clusters and MCs is essential for better characterization
that reveals more relevant detailed information in COVID-19
subphenotypes.

Hereinafter, we discuss our results in accordance with both MCs
and age-sex clusters and relate them with supporting literature
to discuss the clusters’ clinical consistency through the
associated risk factors, including age, habits, and comorbidities,
as well as on the clusters’ sources. Finally, we present
recommendations based on this study and discuss possible
limitations.

Age
The 2 groups with very high RRs were MC2 and MC3, which
included children and young adults. Age may play a protective
role against the disease for 2 reasons. First, as proven by MC3
versus all single-aged groups (MCs 6-11), the incidence of
pneumonia was lower in young healthy groups; hence, a good
RR could be attributable to mild disease caused by
SARS-CoV-2. Second, as shown by the good RRs in MC2
(children with severe disease), response to treatment is probably
also better at younger ages.

In addition, children (MC2) were prioritized for medical
attention compared with adults with similar clinical conditions
in Mexico. After discussion with Mexican clinicians, one
explanation seems to be that, at an early age, decompensation

or deterioration caused by a pulmonary disease is faster in
children than in adults and has a higher risk of death. In adults,
there is often some time margin to evaluate the evolution of the
patient’s condition before intubation or ICU admission, but the
same is not true for children. Furthermore, if, in addition to the
presence of pneumonia, the groups are defined by conditions
such as CKD and cardiovascular issues, a child who already
has those issues could be perceived as having a much higher
risk or being more vulnerable than an older person. These results
are supported by recent literature; for example, a study with a
small cohort from Madrid [44] found 10% of 41 children with
COVID-19 required ICU admission. Another study [45] showed
that severe COVID-19 can also happen in small children and
adolescents, in which risk factors for ICU admission included
age younger than 1 month, male sex, signs of lower respiratory
tract infection, and presence of a pre-existing medical condition.

Regarding the association between older age and outcomes,
MCs 6-11 were exclusively composed of older adults with poor
outcomes. However, overall survival cannot be explained only
by age but also the presence of comorbidities and habits:
Although MC11 had the highest mortality and mean age, MC7
had a similar RR with a mean age approximately 10 years
younger, similar to the groups with better RRs. Besides, as
widely described in the literature [46], older chronological age
is not necessarily linked to higher mortality, but physiological
age can be. MC1 and MC4 support this fact, since, despite
containing the same number of groups of each age, they had
similar RRs to the RRs of groups composed only of young adults
with little incidence of previous disease (MC2, MC3) and groups
composed of young adults with some frequently occurring
diseases, such as diabetes and hypertension (MC5).

Of note, the clustering for the individual age-sex groups with
an age >64 years revealed that centenarians (individuals of over
100 years old) repeatedly fell in the age-sex clusters with better
outcomes. This fact conforms with the well-studied good health
and low frailty scores [47] of this subpopulation.

Habits
The roles of obesity and smoking as risk factors for severe
disease are complex, since they are both associated with the
development of many conditions (eg, COPD [48] or
cardiovascular disease [49]). In our study, the influence of
obesity seems to be clear, by comparing MC4 and MC5;
although both had diabetes, hypertension, and moderate RRs,
they were differentiated by the fact that MC4 included patients
of all ages without obesity and MC5 had mostly young adults
with obesity. This seems to suggest that obese young adults
may behave as “older,” implying higher mortality [46,50].
However, we found just the opposite in young individuals
without pre-existing comorbidities: MC1 and MC3 had similar
RRs, even though MC3 had a significant number of obese
patients or smokers.

These findings suggest the role of habits cannot be considered
alone but always with age, comorbidities, and duration of
unhealthy habits. Our results found that smoking is a risk factor
for severe COPD and cardiovascular disease, primarily in older
patients (MC8, MC10, and MC11). Therefore, it is reasonable
that the longer that one is a smoker, the greater the incidence
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of severe disease. In young patients, however, the evidence of
smoking’s negative influence is not so straightforward. Some
reviews have presented current smoking as a protective factor
versus former smoking, while it is clearly a risk factor versus
never smoking [51]. Our results showed that groups with young
smokers have RRs that are not inferior to age-matched
nonsmoking groups, as proven by the RR of MC3 versus that
of MC2.

Regarding obesity, its influence is not so clear in older groups
since all had a high ratio of certain comorbidities. Still, in young
obese patients without a comorbidity (18-49M5 and 18-49F2),
obesity seems unrelated to mortality.

Comorbidities
Diabetes and hypertension had the highest prevalences among
the recorded comorbidities. Their prevalences seem to explain
the decrease in RRs from MC1 and MC3 to MC4 and MC5, all
of which are young adult groups. In older MCs (6-11), the results
are harder to evaluate independently since both diseases were
present in nearly every group, not specifically characterizing
any cluster except MC9 (older patients with both diseases
simultaneously alongside a low RR). These findings are in
accordance with the current literature that has reported both
diabetes and hypertension are independent risk factors for severe
disease [46,52,53].

Immunosuppressed patients fell mostly within MC6 (older adults
with diabetes, hypertension, immunosuppression, and other
diseases). Of note, immunosuppressed patients were not in the
clusters with the lowest RRs. This conforms with some reports
that described that immunosuppression has not been confirmed
as a relevant factor for disease severity, except for in patients
with cancer [54,55]. MC6 also had few patients with CKD, a
factor that has been studied as a key factor for disease
progression [56,57], and it may be a cause for the
immunosuppression in this group (odds ratio 9.65, 95% CI
9.05-10.28) according to the prevalence of immunosuppression
in patients with CKD versus those without CKD.

MC7 was characterized by a high prevalence of CKD and other
diseases. In this group, the RR was roughly 10% lower than in
other severe subgroups. We found that CKD was highly
associated with mortality and a shorter survival length. This
accords with a report that revealed CKD was the factor that best
explained mortality [58], implying patients with CKD could be
vulnerable.

MC8 was similar to MC10 and MC11 to some extent since they
all had patients with COPD. Most patients with COPD are older
with comorbidities with poor outcomes, which conforms to
several reviews that reported patients with COPD have an
increased risk of severe pneumonia and poor outcomes when
they develop COVID-19 [59,60].

Cardiovascular disease was homogeneously distributed among
the groups, particularly in MC7, MC10, and MC11. Nowadays,
cardiovascular disease may be a double-edged factor, since it
is a proven risk factor for COVID-19 severity, but some of the
treatments used, such as ACE inhibitors, have also proved to
be protective against severe infections from SARS-CoV-2
[61,62].

Assessment of Clusters’ Source Variability: State and
Types of the Clinical Institution
Reliable subphenotype characterization that reflects the
geographical and health care settings from which they are
ascertained is crucial [63]. To date, variability in severity
between Mexican states and TCIs is rarely reported [64-66] nor
is variability assessed independently from age and sex. As an
example, one state (eg, Morelos) may show higher severity if
it includes more older and male patients, but when we compare
age-sex groups, the results showed no difference in the
probability of higher severity within age-sex groups of the same
age range.

The interstate and TCI variability we found may be influenced
by many factors such as the number and type (urban/rural) of
population, sociocultural context, health care policy, quantity
of medical institutions, availability of resources, and virus
transmission level. Some states are more industrialized and have
more economical resources (eg, Mexico City, Jalisco, the State
of Mexico) than others (eg, Oaxaca, Chiapas, Guerrero). The
differences found between Mexico City and the State of Mexico
regarding the distribution of healthy clusters are hard to explain
due to their proximity and similarities in the type of population
and availability of medical resources.

One possible explanation for the differences in severity between
social security institutions (IMSS and ISSSTE) and local public
hospitals (SSA) is that SSA are administrated by the local states
and the resources among states often differ. This phenomenon
could influence these institutions’quality and resources to attend
their populations. Another supportive explanation is that, when
an SSA receives severe patients and has insufficient medical
resources, these patients can be transferred to the IMSS
COVID-19 facilities. Consequently, this may saturate IMSS
and deplete the limited resources due to an increasing number
of patients, making the distribution of resources harder. These
results conform with those of previous studies showing that the
risk of death for an average patient attending IMSS and ISSSTE
is twice the national average and 3 times higher relative to that
of private clinical institutions [64]. In addition, the variability
may also be explained by differences in COVID-19 testing
strategies, rather than actual differences in the epidemiology of
the underlying disease or population in these areas.

Recommendations
Although a young age predisposes a patient to mild disease, we
suggest that a key factor to explain the dividing line between
“high,” “moderate,” and “low” RRs across all ages is using age
in combination with habits and comorbidities. In addition, the
relationship between the patient’s age and duration of unhealthy
habits may help establish more useful prognoses and
correlations.

Regarding the comorbidities that are associated with increased
risk, our findings suggest that diabetes and hypertension are
independent risks for severe disease and are associated with
lower RRs. Patients with CKD could be more vulnerable in
terms of mortality and survival length and are prone to
immunosuppression. Patients with COPD are more likely to
have an increased risk of severe pneumonia and poor outcomes.
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The complex association between severity and patients’ sources
(states or TCIs) implies a crucial socioeconomic and health care
resource-level inequality. Thus, we suggest that future research
should consider both state and TCI combined with MCs and
age-sex subgroups (eg, using the proposed meta-clustering
approach), leading to better subphenotype characterization.

As part of a surveillance system, these findings could help
anticipate patients with potential poorer outcomes and help
decision-making regarding vaccination priority or resource
allocation. This can be important to make use of additional
patient information (habits, comorbidities, sources) as well as
age, in contrast to certain recommendations or policies for
vaccinations based primarily on older age, profession, or social
status, such as in Spain or the United States [67,68]. In fact, in
some cases, such recommendations or policies might be
imprecise (eg, as shown previously, higher chronological age
is not necessarily linked with higher mortality; centenarians
tend have a greater probability of a good outcome, and children
with complex clinical pre-existing conditions may have worse
outcomes than healthy older people).

Limitations
As a possible limitation, we excluded patients who showed
symptoms less than 31 days prior (ie, who were confirmed after
September 30) to avoid a possible effect on the analysis of
survival outcomes, which impeded us from using the most recent
data that could have had changed epidemiological
characteristics. In addition, the analyzed data set is public and
open source, published by the Mexican government, but there
is no clear statement about the source of some of the information
reported by each public and private health institution and
captured by the data system. The fact that more complete or
accurate data might be available for those patients with more
severe illness might result in differential misclassification
reinforcing the clustering of factors with higher severity in some
cases. In addition, requiring the patients to have
laboratory-confirmed infection could result in individuals with
more severe disease or acknowledged comorbidities—or other
risk factors for severe outcomes—to be included in the study;
however, this allowed us to focus on determining subphenotypes

within this more severe population. Furthermore, the data set
did not include additional relevant information about the patients
who were discharged, readmitted, or vaccinated and did not
include the duration of comorbidities and unhealthy habits.
Further studies with population-based data regarding
subphenotype characterization among discharged patients who
underwent posthospitalization surveillance or were readmitted
as well as the vaccinated population are highly needed.

Conclusions
The analysis of COVID-19 subphenotypes from the proposed
2-stage cluster analysis produced a discriminative
characterization and explainability over just age and sex. The
resultant 11 MCs provided the bases for a deep understanding
of the epidemiological and subphenotypic characterization of
COVID-19 patients based on pre-existing comorbidities, habits,
demographic characteristics, patient provenance, and TCIs, as
well as identified the correlations between these characteristics
and possible clinical outcomes of each patient-specific profile.
These unbiased subphenotypes may help establish target groups
for automated stratification or triage systems to support
clinicians with early triage prior to further tests and laboratory
results, especially in those areas where such tests are not
available; prioritize vaccination among the general population;
and provide the bases for planning personalized therapies or
treatments.

The proposed age-sex stratification and meta-clustering
technique have the potential to help design a novel data-driven
model for the stratification of COVID-19 patients. In addition,
the results shed light on robust conclusions about associations
and causality between the subphenotypic presentation and
clinical outcomes. Future studies can explore the treatment and
vaccination implications, to provide guidance on clinical triage
and customize therapy, and also develop clinically robust
subphenotype classification methodologies combined with the
proposed 2-stage cluster analysis. As the concern for efficient
triage and personalized treatment increases, we facilitate further
replicability of the study and generalization to data from other
countries by making our experiment’s codes available.
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