
electronics

Article

Software Components for Smart Industry Based on
Microservices: A Case Study in pH Control Process for the
Beverage Industry

Héctor Serrano-Magaña 1, Apolinar González-Potes 2,* , Vrani Ibarra-Junquera 2, Patricia Balbastre 3 ,
Diego Martínez-Castro 4 and José Simó 3

����������
�������

Citation: Serrano-Magaña, H.;

González-Potes, A.; Ibarra-Junquera, V.;

Balbastre, P.; Martínez-Castro, D.;

Simó, J. Software Components for

Smart Industry Based on Microservices:

A Case Study in pH Control Process

for Beverages Industry. Electronics

2021, 10, 763. https://doi.org/

10.3390/electronics10070763

Academic Editor: Juan M. Corchado

Received: 21 January 2021

Accepted: 18 March 2021

Published: 24 March 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Instituto Tecnológico Nacional de México, Campus Tlajomulco, Jalisco 45640, Mexico;
serranoh239@gmail.com

2 Laboratorio de Bioingeniería, Universidad de Colima, Km. 9 Carretera Colima-Coquimatlán,
Colima 28400, Mexico; vij@ucol.mx

3 Instituto de Automática e Informática Industrial (AI2), Universitat Politècnica de València,
46022 Valencia, Spain; patricia@ai2.upv.es (P.B.); jsimo@disca.upv.es (J.S.)

4 Facultad de Ingeniería, Universidad Autónoma de Occidente, Calle 25 No. 115-85 Km. 2 Vía Cali-Jamundí,
760030 Cali, Colombia; dmartinez@uao.edu.co

* Correspondence: apogon@ucol.mx

Abstract: Modern industries require constant adaptation to new trends. Thus, they seek greater
flexibility and agility to cope with disruptions, as well as to solve needs or meet the demand for
growth. Therefore, smart industrial applications require a lot of flexibility to be able to react more
quickly to continuous market changes, offer more personalized products, increase operational effi-
ciency, and achieve optimum operating points that integrate the entire value chain of a process. This
requires the capture of new data that are subsequently processed at different levels of the hierarchy of
automation processes, with requirements and technologies according to each level. The result is a new
challenge related to the addition of new functionalities in the processes and the interoperability
between them. This paper proposes a distributed computational component-based framework that
integrates communication, computation, and storage resources and real-time capabilities through
container technology, microservices, and the publish/subscribe paradigm, as well as contributing
to the development and implementation of industrial automation applications by bridging the gap
between generic architectures and physical realizations. The main idea is to enable plug-and-play
software components, from predefined components with their interrelationships, to achieve indus-
trial applications without losing or degrading the robustness from previous developments. This
paper presents the process of design and implementation with the proposed framework through
the implementation of a complex pH control process, ranging from the simulation part to its scaling
and implementation to an industrial level, showing the plug-and-play assembly from a definition of
components with their relationships to the implementation process with the respective technologies
involved. The effectiveness of the proposed framework was experimentally verified in a real pro-
duction process, showing that the results scaled to an industrial scale comply with the simulated
design process. A qualitative comparison with traditional industrial implementations, based on
the implementation requirements, was carried out. The implementation was developed in the bever-
age production plant “Punta Delicia”, located in Colima, Mexico. Finally, the results showed that
the platform provided a high-fidelity design, analysis, and testing environment for cyber information
flow and their effect on the physical operation of the pH control.

Keywords: edge computing; software components; distributed industrial automation systems;
Industry 4.0; industrial cyber physical systems

Electronics 2021, 10, 763. https://doi.org/10.3390/electronics10070763 https://www.mdpi.com/journal/electronics

https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0001-6400-4164
https://orcid.org/0000-0001-9458-4083
https://orcid.org/0000-0003-4677-7627
https://doi.org/10.3390/electronics10070763
https://doi.org/10.3390/electronics10070763
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/electronics10070763
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics10070763?type=check_update&version=2

Electronics 2021, 10, 763 2 of 21

1. Introduction

The ANSI/ISA-95 standard was established to facilitate the integration of business
functions and control systems in productive enterprises. This establishes a hierarchical
model to indicate systematically, and through a defined structure, the exchange of in-
formation between the control systems and the management of a plant. A typical CPS
architecture comprises two main layers: a physical layer and a cyber layer; see Figure 1.
The physical layer contains a network of sensors and actuators, which collect information
from the environment and actuate on a given physical system, whereas the cyber layer
represents the decision-making framework and the communication infrastructure [1].

Figure 1. A typical cyber-physical system.

The applications of the fourth industrial revolution require great flexibility on the part
of industrial cyber-physical systems (ICPS) to achieve optimal operating points that in-
tegrate the entire value chain of a process. This requires the capture of new data that
are subsequently processed at different levels of the hierarchy of automation processes,
with requirements and technologies according to each level [2–5]. This presents challenges
related to the incorporation of new functionalities in the processes and the interoperability
between them with the collaboration between distributed nodes. This is easier to achieve
with flat architectures based on services that allow horizontal interaction between compo-
nents based on information.

On the other hand, addressing these solutions based on conventional criteria and
adding new hardware nodes when new functions are required, demands higher implemen-
tation costs, the reconfiguration of systems to support the new data transmitted through
the network without affecting the fulfilment of real-time requirements, and difficulties
in the exchange of information between the platforms of different manufacturers. This
context requires a more flexible approach than adding new nodes, and that is the reconfigu-
ration of existing nodes according to the requirements of new functionalities in the system.
Then, as a consequence of the increase in resources in the hardware nodes, technologies
such as virtualization make the inclusion of new components more flexible at very low
costs, which is very convenient in terms of the flexibility and exchange of information
between components. Obviously, as in traditional approaches, it is necessary to verify
the fulfilment of deadlines in real-time systems.

Small software components have recently emerged as a great possibility to attack com-
plex problems with an interconnection of small functionalities. This is how microservices-
based software architectures have recently been used in a meaningful way to solve a vast

Electronics 2021, 10, 763 3 of 21

variety of software complexity problems that need to adjust to the changing requirements.
A microservice, in terms of [6], is considered as a small application that can be deployed,
scaled, and tested independently, with a single responsibility. The large applications devel-
oped with the monolithic approach can be separated into smaller isolated mini-applications,
providing a specific service, giving the advantage or facility of modifying the services
that are required without affecting other services. The microservice can therefore replace
the monolithic architecture, allowing the development of distributed, lightweight, decou-
pled, and independent service applications working together. Then, because the services
in this architecture can be separately deployed in different nodes or processes there may be
an overhead of communication between them, affecting the performance of the distributed
system, because of the high latency network communication, it is therefore necessary
to provide an effective protocol of network communication.

In this work, we propose a component-based microservice framework which enables
a series of interconnected components to support flexibility, interoperability, and robustness
in the demanding and flexible applications of Industry 4.0. To maintain a fast and flexible
system reconfiguration and keep the functionality of plug-and-play enabled, the compo-
nents must support reconfiguration and online addition or removal, without losing or
degrading the robustness from previous developments. To achieve the challenges men-
tioned above, component-based microservices integrate communication, computation,
storage resources, as well as real-time capabilities, by using container technologies and
the implementation of microservices, as well as the computational isolation of the microser-
vices between them, and middleware based on the publish/subscribe pattern, which allows
the decoupling of each microservice and defines a constructive pattern of the software
to be developed. An important aspect to take into account is that enabling the require-
ments set out above, some strong points are included, such as it allows the development
of applications with code that are easier to maintain because of the separation of the ser-
vices, it can be updated and scaled in different programming languages and even using
diverse middleware stacks and data tiers for different services [6] with the use of a bridge
that integrates the data flow to the data distribution service (DDS) middleware, which
is the communication backbone of this architecture. As a case study, a pH control approach
robust to model uncertainties including the scaling-up of the process is presented. The pH
control is crucial in many chemical and biological processes. The pH automatic control
is mainly implemented by manipulating the flow rate of the titration streams. However
such processes present complicated dynamics with inherent non-linearities, and their
modeling, parameter estimation, and control are challenging tasks.

The main contributions are summarized as follows:

• A holistic framework for automation in the bioprocess industry, with ease of integra-
tion and scalability of software and hardware components by utilizing a data-centric
communication backbone to manage information exchange and reliably orchestrate
system components together.

• A proposed component-based software design pattern that allows associating mi-
croservices with containerization technologies and the data-centric communication
model. The main focus here is to scale applications to industrial implementations.

• As an application design process, a set of components interconnected with each other
are proposed to follow a plug-and-play technique. The connection between compo-
nents supports the data-centric model of the framework. The software components
are mainly oriented to the bioprocess industry; however, it can be a starting point for
other industries.

• Scalability to a wide range of applications in-process monitoring and control, analy-
sis, visualization, etc., mainly oriented to the bioprocess industry, as demonstrated
in a case study.

Finally, from a general aspect, the work contributes to the development and imple-
mentation of industrial automation applications by bridging the gap between generic
architectures and physical realizations through the use of container technologies, the con-

Electronics 2021, 10, 763 4 of 21

cepts of microservices, and the decoupling of each microservice with a middleware based
on the publish/subscribe pattern.

The outline of this paper is as follows. Section 2 presents an overview of related
works, such as other performances and comparative studies. In Section 3 a detailed design
of the architecture, with different components and microservices, is exposed. Section 4
shows the process of design and implementation with the proposed framework through
the implementation of a complex pH control process, ranging from the simulation part to its
scaling and implementation to an industrial level. The validation, results, and discussions
of its implementation at the juice production plant are carried out in Section 5, and finally,
Section 6 concludes this work.

2. Related Works

ICPS is considered an enabling technology for Industry 4.0 [7,8]. Many works about
software architectures have drawn attention to the design and implementation of ICPS.
In [9], a software architecture for the industrial internet of things (IIoT) composed of
four layers (Sensing/THINGS Layer, Data Provider Layer, Fog/Edge Computing Layer,
and Applications/Services Layer) is proposed. It is a conceptual model with a low level
of abstraction, oriented to the design and development of real-time applications for IIoT,
which directly relates to ICPS. A work that contributes to the architectures for industry
4.0 and that reduces the gap between designs and physical implementations is presented
in [10], where a platform that supports the integration of dynamic data-based decision
support systems into real-time mass customization manufacturing environments is dis-
cussed. One of the challenges discussed in this paper is related to data acquisition and
its personalized management; this is achieved by providing interoperability through a mid-
dleware between field devices, enterprise databases, and data-based decision support
systems. Other important works that have been highly considered in the literature [11–13],
which include different aspects of ICPS, such as Cloud, Fog, and Mist computing platforms
for production systems, where the interrelation between the different layers are studied.
Other works focus more on data analysis, knowledge representation and supervisory
models [14–17], however, they mainly reference architectures and do not present details
of implementation or integration with physical systems. To relate our work to the state of
the art, there are three main challenges for the proposed architecture, and they have also
been considered in the literature: scalability, flexibility, and robustness to design, develop
and implement industrial automation applications. To gather these aspects, we focus
mainly on container technology, microservices concepts, and publish/subscribe based on
Data Distribution Services (DDS) middleware.

Container technology has also enabled flexibility and scalability. In [18–20], the
authors focused their work on demonstrating the feasibility from a time constraints point
of view and implementing controllers directly as programmable logic controllers (PLC),
also supporting time constraints and general features for real-time applications. Other
works [21–24] present its great utility on the cloud computing side, showing its applicability
for deployed applications in microservice architecture.

The concept of microservices-based architectures for industrial edges has also been
widely considered in recent years [25–29]. The decomposition of functionalities into small
services has allowed the flexibility and scalability of industrial software [30,31]. Many
of these works present proposals for the integration of microservices with the industrial
world, generally including different layers of abstraction. Another important aspect in mi-
croservices taken into account is implementation using container technology.

Different publish/subscribe system approaches have been addressed depending on
the application domain; one of them is the Data Distribution Service (DDS) specification,
which is provided by the Object Management Group (OMG) [32], and allows developing
distributed applications centered in the data, with asynchronous and decoupled commu-
nications requirements through the publish/subscribe architectural pattern. Some other
works include the publish/subscribe paradigm via the Message Queue Telemetry Trans-

Electronics 2021, 10, 763 5 of 21

port (MQTT) protocol [33,34], which allows to gather security and scalability; however,
performance in some time constraints is difficult to make work with MQTT.

Online new components, without the need for reconfiguring the system, keep temporal
and functional restrictions in industrial automation systems. Many of the works listed
above have some characteristics presented in this paper; however, they are not gathered
in an integrated way. Each of the software components presented, that meet the concept
of microservices, are implemented with container technology and integrated through
the publish/subscribe pattern. Generally, each component or microservice is unknown
to each other, with it being very useful to develop loosely coupled distributed applications,
enabling timely data dissemination from publishers to subscribers, delivering information,
and processing data in diverse application scenarios with specific requirements.

3. Component-Based Microservices for Industrial Automation

Currently, products are becoming more and more personalized, forcing many indus-
trial sectors to produce fewer quantities, making processes much more varied and complex
and compelling production to be modular, flexible, and scalable without losing robustness.
To deal with this, we propose a component-based microservices framework, implemented
in lightweight software containers and interconnected among them through a middleware
oriented to the publication and subscription of messages. The main idea of the proposed
framework is to use components-based microservices, allowing easy implementation, scal-
ability, and fast maintenance, without losing or degrading the robustness of other processes
or even previous developments. The challenge is to maintain the previous conditions
in the face of modified or new developments, this can be possible, with a system based on
microservices, components, containers, and a strong and secure communication pattern.

The Component-Based Data Distribution Service (CBDDS) is a commercial term for
the comprehensive, integrated suite of the following seven OMG open standards and sup-
ports architecture development at a higher level of abstraction. We have adopted CBDDS
to represent our architecture with a superior level of detail because CBDDS addresses
five architectural tenets: Open Architecture (OA), Model Driven Architecture (MDA),
Component-Based Architecture (CBA), Service Oriented Architecture (SOA), and Event-
Driven Architecture (DOA). Figure 2 represents container communication and the connec-
tion of different components between them, using the publish/subscribe pattern supported
through DDS. Five different message structures have been considered to represent commu-
nication between microservices (see Table 1).

Table 1. General data model.

topic1.idl topic2.idl topic3.idl topic4.idl topic5.idl

struct topic1 struct topic2 struct topic3 struct topic4 struct topic5
{string id; {string id; {string id; {string id; {string id;
bool onoff; bool onoff;} string time; bool onoff; int32 data1;
int32 data;} float64 data;} int32 data1; int32 data2;}

float64 data2;}

In Figure 2 and Table 1, the organization of the components is focused on the general
requirements in the bioprocess industry; however, in a conceptual way it is a good starting
point for many other possible industries, the constituent elements serve as guidelines for
the development of control and automation systems. Clearly, from a plug-and-play concept,
all sensor components (analog and digital) communicate with the controller components,
HMI, alarms, and Data Base (BD), the controller must receive HMI data (references set by
users) although they may come from elsewhere, sensor data and publish control actions.

Electronics 2021, 10, 763 6 of 21

Figure 2. General component-based DDS architecture.

4. Procedure for Developing the Software Components

Recently, research has been carried out to standardize implementations for Industry
4.0. However, if, on the one hand, conceptual architectures lack a physical implementation,
special implementations often cannot be generalized to other systems, and it still lacks
a physical realization of a generic architecture. Thus, generic proposals focus on reference
architectures and specific ones on use cases. To show the process of designing an applica-
tion with this framework, initially a presentation of a case study is made to contextualize
the problem and the need for development. In terms of the control process for the bev-
erages industry, the simulation model needed to be created first. The implementation of
an industrial process must be linked to the requirements of the system—in this case, com-
pliance with Industry 4.0 generalities and particular requirements of the control process are
presented. As a design process to follow a plug-and-play based technique of the proposed
components in this framework, the following steps must be followed:

1. Application must be decomposed into microservices with the associated data model.
2. Identify the containers that will host the services.
3. Associate in each container whether the service is offered or required with a publica-

tion or subscription.
4. Identify non-functional requirements.

In this step, it is important to identify the nature of the data and identify it with the data
model supported by the framework. Once the above steps are completed, a process design
can be generated according to the design pattern based on the components presented
in previous sections. Thus, a mapping from microservices to DDS can be established—i.e.,
an offered microservice is mapped to a publication and required microservice to a subscrip-
tion. With the design achieved, the implementation characteristics for its scalability must
be presented. Among others, hardware, programming languages, containers, etc. must be
specified. The process scaled to the industrial level can be verified with simulation-level de-
sign. A comparison with the traditional standardized model for industrial implementations
based on compliance with system design and implementation requirements is performed.

Electronics 2021, 10, 763 7 of 21

4.1. pH Control for Beverages Industry as a Case Study

At the Punta Delicia juice production plant , located in Colima, México, different types
of drinks are produced. There are mainly juices such as banana, soursop, and raspberry;
water in alkaline presentations, with and without gas; formulated drinks with flavors
and alcohol; as well as products and formulations for third parties. Different processes
are addressed in the production plant, however, to demonstrate the process of using
the framework, implementation, and results, we will only focus on the part of the process,
where the juice is finally stored at a certain temperature in tanks of 15,000 L until the desired
conditions are obtained, then it is processed in two tanks according to a final formulation.
Within the formulation processes for a final drink, the product must be stabilized at a certain
pH value depending on its formulation, this is carried out in a mixing tank with a capacity
of 2000 L. This means that the pH reference values can range from 4 to 9 and will depend
on the future product characteristics. From an industrial point of view, these considerations
demand and require a very robust controller and implementation.

4.2. pH Control Approach

For the final formulation process of any of the products made at Punta Delicia and
mentioned above, pH control is crucial and each of the products to be processed has its own
requirements, characteristics, and considerations. In addition, such processes present com-
plicated dynamics with inherent non-linearities, and their modeling, parameter estimation,
and control are challenging and delicate tasks. Thus, the design of high-performance
model-based control algorithms for bioprocesses is frequently hampered by its complex-
ity, which can include poorly understood nonlinear functions, due to the limited process
knowledge, nonlinearities, unmodeled dynamics, unknown internal and external noises,
environmental influences, and time-varying parameters. Hence, the problem considered
in this work was an easily scalable pH controller that forces the process measurements
to follow a desired time-varying reference, despite uncertainties like scaling-up processes.
The control algorithm implemented is based on a master-slave synchronization, where
the real process is the slave, while the master is generated by the real-time simulation of
the closed-loop mathematical model of the process. Then the objective is the pH control
with minimal process information, considering a time-varying reference ranging between
the basic and acid region. This algorithm forces the process measurements to follow
a desired time varying reference, despite uncertainties like scaling-up processes. For this
purpose, a master–slave synchronization scheme is used derived by [35,36]. The design of
a high-performance model-based control algorithms is frequently hampered by its complex-
ity. Moreover, the poor understanding of nonlinear functions, due to the limited process
knowledge, nonlinearities, environmental influences, and time-varying parameters, lead
to hardly controlled problems that certainly can be tackled by data-based alternatives, such
as intelligent ones [37–39]. However, the need of easily implemented solutions, robust
to unmodeled dynamics, unknown internal and external noise, could be tackled by simple
robust nonlinear controller that can be easily implemented. The advantages of this concept
are that the syntonisation can easily be performed for a simplified model and the controller
can be designed such that the real process is synchronized with the master in spite of the
bounded unknown dynamics and perturbations in the real plant.

Ẋ = f (X) +
m

∑
i=1

gi(X)ui (1)

ż = f (z) + ∆ f (z) + (
m

∑
i=1

gi(z) +
m

∑
i=1

∆gi(z))u (2)

y = h(z) (3)

where x represents the states of the system of Equation (1) and takes values of x ∈ Rn;
in the same way, z represents the states of the system of Equation (2) and takes values of

Electronics 2021, 10, 763 8 of 21

z ∈ Rn. u and ui are the control inputs and take values of u ∈ Rm. y represents the system
output and takes values of y ∈ Rm. f (·) ∆ f (·), gi(·), ∆gi(·) are smooth vector fields on
an open set U ∈ Rn.

The initial model was taken from Ali nejati et al. [40], in which a pH neutralization
process is considered, where the flow rate of the acid and the buffer, base, and effluent flow
rates are given by q1, q2, q3, and q4 respectively. It is assumed that the mixing of the process
is perfect, the volume (V) of the tank is constant and that there is complete solubility of
the ions. The dynamic equation is given by:

ẋi =
q1

V
(w1i − xi) +

q2

V
(w2i − xi) +

q3

V
(αi − xi) (4)

i = 1, 2, 3

where q1 and q3, are the control inputs. The model parameter identification is developed
in Ali Nejati et al. [40].

Using a single control input, Equation (4) can be represented by:
For the pH control system, Equation (1) can be represented as follows:

ẋ1 =
q1

V
(w11 − x1) +

q2

V
(w21 − x1) +

(
α1 − x1

V

)
u

ẋ2 =
q1

V
(w12 − x2) +

q2

V
(w22 − x2) +

(
α2 − x2

V

)
u (5)

ẋ3 =
q1

V
(w13 − x3) +

q3

V
(w23 − x3) +

(
α3 − x3

V

)
u

Similarly, Equation (2) is rewritten as follows:

ẋ1 =
q2

V
(w21 − x1) +

α1 − x1

V
u1 +

w11 − x1

V
u2

ẋ2 =
q2

V
(w22 − x2) +

α2 − x2

V
u1 +

w12 − x2

V
u2 (6)

ẋ3 =
q2

V
(w23 − x3) +

α3 − x3

V
u1 +

w13 − x3

V
u2

Finally, Equation (3) represents the output of the system; for the pH control, the output
is the pH value and for this case it is represented in the following way [40]:

h(x, y) = −x1 + x2 − x3Cx3 + 10−y − 10y−pKw = 0 (7)

where Cx3 is a function of pH and the dissociation constants for the ith species and for
anions of diprotic weak acid (H2A) are described as follows [41]:

Cx3 =
2 + 10pK2−y

1 + 10pK2−y + 10pK1+pK2−2y (8)

y = pH, pKw is the dissociation constant of water, 10−14, pK1 and pK2 are the equilib-
rium constants for the chemical reactions in the system.

4.3. Controller Design

Consider the nonlinear affine system described by:

ẋ = f (x) + g(x)u, y = h(x) (9)

Here, the feedback linearization method is used to transform the nonlinear pH systems
shown in Equations (5) and (6) into linear systems in order to apply linear control techniques
such as PD, PI, PID, and others. The objective is that by means of differential geometry

Electronics 2021, 10, 763 9 of 21

we can generate a differential equation that relates the output y to a new input v. The system
has relative degree of r if the following conditions are satisfied:

LgLi
f y = 0 ≤ i ≤ r− 2 (10)

LgLi
f y 6= 0

where L f is the Lie derivate in direction of f . Assume that the above system is linearizable
and has the relative degree of r. The result of the input transformation:

u =
v− Lr

f y

LgLr−1
f y

(11)

is a linear relation between y and v given by:

yr = v (12)

The Lie derivatives of Equation (5) with respect to Equation (7) and Equation (6) with
respect to Equation (7) are given by:

Lgy =
dy
dx
· g(x) = −∂h/∂x

∂h/∂y
· g(x) = −hx

hy
· g(x)

Lg1 y =
−10−y + 10y−pKw + α1 − α2 + Cx3α3

V · hy
(13)

Lg2 y =
−10−y + 10y−pkw + w11 − w12 + w13Cx3

V · hy
(14)

and

L f y =
∂y
∂x
· f (x) =

[
hx

V · hy

]
[f (x)]

QW = q1 · w11 + q2 · w21 − q1 · w12 − q2 · w22

L f1 y =
(q1 + q2)

(
−10−y + 10y−pkw

)
+ QW + q1w13 · Cx3 + q2w23 · Cx3

hyV
(15)

L f2 y =
q2
(
−10−y + 10y−pkw

)
+ q2w21 − q2w22 + q2w23Cx3

V · hy
(16)

It can be shown that Lgy 6= 0 if 0 ≤ y ≤ 14, therefore the relative order ir one
and the linearization relation is as (10).

Now, if v is output of a PI controller, then it can be written as:

v = KCe + KI

∫
e + ẏd (17)

where e = yd− y, KC and KI are constants.
Figures 3 and 4 show the control structure for both cases: simulated and with a

real plant.

Electronics 2021, 10, 763 10 of 21

Figure 3. Control structure: master–slave synchronization in a simulation.

Figure 4. Control structure: master–slave synchronization in a real plant.

4.4. Requirements for pH Control Process Implementation

Industrial bioprocesses require advanced modularity, flexibility, and scalability of
production and must be able to maintain the reliability of many interconnected elements
and devices. In addition to the requirements imposed by the pH control approach and
complying with the above, requirements from the implementation should be added as
follows:

1. The architecture of components should be designed to promote scalability. (scale-out)
2. Features should be completely isolated from each other in time and space.

Electronics 2021, 10, 763 11 of 21

3. Innovation should not be constrained concerning supporting new input kinds, new
target platforms, new visualization, new strategies, etc. Additionally, functionalities
should be implemented in the most effective programming language.

4. The design should not be limited to new types of inputs, new destination platforms,
data visualization techniques, new strategies, new drivers, etc.

5. The platform should be as modular as possible to facilitate the individual func-
tionalities updates and upgrades. Additionally, adding new features should be as
transparent as possible for the currently running system.

6. The minimum required execution in the fastest processes must be at least 1 s of
performance.

7. All the data such as sensors, control values, references, etc. must be stored in real
time.

The fulfilment of these requirements will allow the scale up of the pH control process
to an industrial level. The basic framework presented in the previous section allows
guiding the design from the defined components. Thus, making a functional identification
of the components and the different services offered and required by each component,
with their respective functionality, allows obtaining a model of the implementation.

The Table 2 lists the different containers needed for the implementation, the different
services offered and required, the type of service (non-functional), and the data model to be
used among the different ones provided by the framework.

Table 2. Relationship of implementation features with containers, topics, services, and their
data structure.

Container (id) Topic Type Service Data Model

Recipe_Sensors error Event Offer topic2.idl
rec_pHm Periodic (1 s) Offer topic3.idl

Peri_pump1 error Event Offer topic2.idl
acid_pH Event Requires topic1.idl

Peri_pump2 error Event Offer topic2.idl
basic_pH Event Requires topic1.idl

PH_Control rec_pHm Event Requires topic3.idl
acid_pH Periodic (1 s) Offer topic1.idl
basic_pH Periodic (1 s) Offer topic1.idl

pH_visualization rec_pHm Event Requires topic3.idl
error_type Event Requires topic1.idl
ref_alarm Event Offer topic1.idl
set_points Periodic (1 s) Offer topic3.idl

Alarms error Event Requires topic2.idl
error_type Event Offer topic1.idl
ref_alarm Event Requires topic1.idl

DB_Recipes rec_pHm Event Requires topic3.idl
error_type Event Requires topic1.idl
ref_alarm Event Requires topic1.idl
set_points Event Requires topic3.idl

4.5. Component-Based Microservices for pH Control Process Implementation

In large industrial control systems, the cyber layer is typically composed of a Supervi-
sory Control and Data Acquisition (SCADA) system [42]. The architecture of the case study
implemented is presented in Figure 5, where one can see the assembly of the different com-
ponents, which are integrated through the different connections between them. The I/O
block is made up of three containers, Recipe_sensors, publishes an error_topic in case there

Electronics 2021, 10, 763 12 of 21

is a reading error in the pH sensor and also publishes the topic rec_pHm periodically,
the components Peri_pump1 y Peri_pump2 publishes error topics in the case of problems
with Modbus network connections, acid_pH, and basic_pH are data subscriptions with
the control values and allow us to act directly on the respective peristaltic valves. Similarly,
the controllers block in this case is built with a single container subscribing to the services of
rec_pHm (pH sensor) and set_points (the reference). DataBase (DB) implements a container
with the necessary resources to store the data of this application, thus, each application can
implement its DB distributed and independent. In Table 2, we can see the relationship of
the different type topics, with their data structure, the topics used, and implementation
requirements, relating the application with the general structure of components presented
in Figure 5.

Figure 5. Component-Based DDS architecture design for pH control.

4.6. Implementation Details

The implementation begins with hardware architecture, mainly with the selection and
location of equipment and interconnection between them. Wireless and wired equipment
is installed, computers for sensing and actuation are wired for the greater certainty of
communication, and other equipment such as displays and manual commands can be
implemented in both wired and wireless ways. In the embedded-PC platform, we set up
devices with the following characteristics: Intel Celeron J3060 1.60 GHz, 2 GB in RAM and
32 GB of emmc, 2 PC’s with web services, controllers and monitoring functions Intel Xeon
E3-1225V5 3.30 GHz, 32 GB DDR4, and a server with Intel Xeon C620, 32× 284 DDR4 and

Electronics 2021, 10, 763 13 of 21

15.36 TB to store the different databases. Additionally Access Point, switches and routers
for network management, 4 display monitors for HMI functions located in the control
room, and finally a series of mobile devices that allow the visualization and execution
of commands from any space in the industrial plant. Figure 6 shows the distribution of
the hardware used so far for the control and current operation of processes implemented
in the juice and beverage production plant at Punta Delicia.

Figure 6. Embedded Personal Computer (PC) and devices platform hardware for industrial automa-
tion process in Punta Delicia Plant.

In particular, for the implementation of pH control and all the functionalities specified
in Table 2, only the tank area and the control room are required. Singular containershave
been used for this implementation, and other containers can be implemented. However,
from the point of view of size and ease of migration, we have adopted singular ones
instead of others. As shown in the Figure 7, Recipe_Sensors is implemented in industrial
PC3, Peri_pump1, and Peri_pump2 on industrial PC4, pH_Control and Alarms on PC1,
HMI on PC2, and finally, DB_Recipes on the DB server, understanding, that the containers
can be copied and executed like any other file. In the same way that is justified in [43],
open-source software presents a great opportunity and minimal costs for the development
of industrial platforms. The programming languages used are C and C++ for access
to physical drivers (Modbus, serials, and others), low footprint, DB writing, and general
operations management. Python was used for the controller implementation because
of its mathematical benefits. Python is suitable for mathematical expressions, plus it
has a large developer community for a wide range of libraries and data science analysis,
and others such as javascript for WEB HMI. Finally, in Figure 8, we can see the real tank
and KKTS peristaltic pumps with a stepper motor and a capacity of up to 1600 mL/min
as actuators.

Electronics 2021, 10, 763 14 of 21

Figure 7. Embedded PC and devices platform hardware for control pH process.

Figure 8. Mixing tank for preparation of formulations in the Punta Delicia plant.

5. Results and Discussions

In this section, we present the verification of the case study developed with the pro-
posed framework and a qualitative comparison with traditional implementations. It
is worth mentioning that the focus in this case study was not on the robustness and op-
timization of the control algorithm but on the functionality of the framework for testing
the system under study, as well as compliance with design and implementation require-
ments.

As can be seen from the results of this case study below, the developed framework suc-
ceeded in providing a consistent integration between a hardware/software infrastructure
and an industrial-scale control process. Through this integration, the effect of the control

Electronics 2021, 10, 763 15 of 21

logic, which was implemented in Python drivers, and access to the Database in C++, vi-
sualization tools in HTML and Javascript, was tested and the response of the industrial
process with the simulated process control logic was analyzed and compared.

The parameters, values, and answers for this test can be as follows. In Tables 3 and 4,
the parameters and values used in the tests of the simulated control process and the scaling
to the industrial level can be observed.

Table 3. Parameters for simulation tests.

Parameter Value Parameter Value

Volume 1000 mL αi 0.0255

KC 0.0510 KI 0.05165

pKw 10−14 q1 0.966 mL/s

q2 0 w1i 0.15

w2i 0 pK1 6.34

pK2 10.25

Table 4. Parameters for industrial tests.

Parameter Value Parameter Value

Volume 1000–2000 L αi 0.0255

KC 0.0510 KI 0.05165

pKw 10−14 q1 0.966 mL/s

q2 0 w1i 0.15

w2i 0 pK1 6.34

pK2 10.25

Table 5 shows the different concentrations of acid and base in each test, as well
as the volume of product used in tests carried out in a real agitated tank.

Table 5. Concentrations and volume for tests in agitated tank.

Test Acid Base Volume

1 Citric acid at 0.19 M Sodium hydroxide at 0.9 M 1500 L

2 Citric acid at 0.19 M Sodium hydroxide at 0.9 M 1500 L

3 Citric acid at 0.15 M Sodium hydroxide at 0.7 M 1000 L

A set of references in a container publishing the current value every second have
been additionally implemented for comparative purposes with simulation in the different
tests, a step every 10 min in growth and then in decrease, with references ranging from
pH 5 to 9 was established, according to the usual operating region of the processes in the
production plant. Both, simulated pH process control and scaled industrial process then
have the same reference.

Figure 9 shows the tracking of a trajectory where the reference value changes every
10 min. As result, it can be seen how the slave (in this case the real tank) reaches the refer-
ences and stabilizes the solution in the tank to the reference value, showing the robustness
of the controller for an industrial-scale pH control problem. It is important to mention
that the industrial process presents the signals with some noise that can be eliminated
with filters, however, it is not the objective of this work to address that aspect. Figure 10

Electronics 2021, 10, 763 16 of 21

consisted of maintaining the value of the reference the whole time, also showing that
the slave is synchronized with the master, regardless of some operating conditions.

(a)

(b)

Figure 9. The figure shows the result of the pH control for simulated and real processes, respectively,
by master–slave synchronization, in a stirred tank with a volume of 1500 L for scaled industrial pro-
cess. (a) pH reference and pH measured for simulation, (b) pH reference and pH measured for
industrial-scaled process.

Comparing the Figure 9 of the simulated process with of the scaled process at the indus-
trial level, it is observed that while the simulated process reaches the reference on average
between 2 and 4 min, the industrial scale-up process takes approximately 4 to 6 min on
average. Tables 3 and 4 show the parameters for both processes and the principal difference
is the Volume of the tank, while for the simulated case it is 1 L, for the industrial case,
the Volume is between 1000 and 2000 L, which is evidence that this controller can be scaled
up to industrial level with a minimum effort.

Electronics 2021, 10, 763 17 of 21

(a)

(b)

Figure 10. The figure shows the result of the pH control for the simulated and real processes,
respectively, maintaining the value of the reference the whole time, with a reference value of pH = 6
for simulation and pH = 7 in a stirred tank with a volume of 1500 L for scaled-industrial process.
(a) pH reference and pH measured for simulation, (b) pH reference and pH measured for industrial-
scale process.

In [44], a review of control system applications in industrial processes and [45] a review
of pH neutralization process control, where most of the bioreactors are supplied with
traditional Programmable Logic Controller (PLC)-based automation implementations and
most of the PLC supports only PID controllers, are presented. Now, we present a qualitative
comparison with traditional implementations, based on requirements from the pH control
implementation that indicate the grade of flexibility and scalability of the framework.
The next requirements are used for this comparison:

1. The implementation should promote scalability (scale-out).

Electronics 2021, 10, 763 18 of 21

2. The application must be decentralized and the different elements must be able to com-
municate directly with each other.

3. Features should be completely isolated from each other in time and space.
4. pH controller should be compatible between different platforms.
5. Innovation should support new target platforms, new visualization, new strategies,

etc.
6. Implementation must be able to be performed in the most effective programming

language.
7. The design should not be limited to new types of inputs, new strategies, new drivers,

etc.
8. The platform should be as modular as possible to facilitate the individual functionali-

ties updates and upgrades.
9. New features should be as transparent as possible for the currently running system.
10. The minimum required execution in the fastest processes must be at least 1 s of

performance.
11. All data, such as sensors, control values, references, etc., must be stored in real-time.

In Table 6, it can be seen that traditional implementations do not meet many re-
quirements of modern industry and can be a complex task with high development costs.
However, with the application construction model presented in this paper, commissioning
the service of control is fully feasible, without altering previous developments or those that
are currently operating. Finally, rgw experimental results correspond to the formal results
obtained from the simulation model, which indicates that the platform implemented ful-
filled the requirements of the control system and advanced modularity, flexibility, and scal-
ability of production.

Table 6. Comparison with traditional implementations based on the requirements of design.

Requeriment This Work Traditional Im-
plementations

Comments

1 Complies Partial Traditional implementations usu-
ally require additional hardware

2 Complies Does not com-
ply

Traditional implementations use
the client-server model.

3 Complies Does no comply Traditional implementations are
monolithic

4 Complies Does no comply Specialized and robust controllers
are still platform-dependent

5 Complies Partial Traditional implementations usu-
ally require additional hardware

6 Complies Does no comply Traditional implementations use
well-defined programming lan-
guages

7 Complies Partial Traditional implementations have
their own drivers

8 Complies Does not com-
ply

Traditional implementations are
monolithic

9 Complies Partial Traditional implementations are
private

10 Complies Complies

11 Complies Complies

Electronics 2021, 10, 763 19 of 21

6. Conclusions

The development and implementation of processing plants have particular relevance
due to their intensification, since they help to avoid the high costs associated with automa-
tion and production processes. To achieve coordination between distributed industrial
devices, plug-and-play software components based on the microservice architecture are
adopted by the industry. In this work, we have presented a flexible, scalable, and ro-
bust framework based on software components, container technology, microservices, and
the publish/subscribe paradigm.

This paper contributes to the development and implementation of industrial automa-
tion applications, closing the gap between generic architectures and physical realizations
through the use of container technologies, the concepts of microservices, and the decou-
pling of each microservice with a middleware based on the publish/subscribe pattern.
To demonstrate the applicability of the architecture proposed, a case study is developed
and implemented at the juice production plant, Punta Delicia, located in Colima, Mexico.
We have shown the implementation of a complex process, such as pH control process,
ranging from the simulation part to its scaling and implementation on an industrial scale,
showing the plug-and-play assembly from a definition of components with their relation-
ships, to the implementation process with technologies involved. Finally, the experimental
results correspond with the formal results obtained from the simulation model, which
indicates that the platform implemented fulfilled the requirements of the control system.
The validation of this process allows demonstrating that each development carried out can
be treated independently until the processes are scaled up to their ideal point, reducing the
development and final application costs.

Author Contributions: Conceptualization, A.G.-P., V.I.-J.; methodology, A.G.-P.; software, A.G.-P.;
validation, H.S.-M., and A.G.-P.; formal analysis, H.S.-M., A.G.-P., V.I.-J., D.M.-C., P.B.; investigation,
H.S.-M., A.G.-P., V.I.-J., D.M.-C., P.B., J.S.; resources, A.G.-P., P.B., J.S.; All authors have read and
agreed to the published version of the manuscript.

Funding: This research received no external funding.

Acknowledgments: This work has been supported by for research cooperation between Universidad
de Colima (Mexico), Universidad Autónoma de Occidente (Colombia), Universitat Politècnica de
València (Spain) and the juice production plant Punta Delicia located in Colima, Mexico.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

q1 flow rate of acid, mL/s
q2 flow rate of buffer, mL/s
q3 flow rate of base, mL/s
V volume of the mixing tank, mL
y value of pH
yd value of pH reference
u flow rate of base stream, mL/s
u1 flow rate of base stream, mL/s
u2 flow rate of acid stream, mL/s
pKw dissociation constant of water
KC controller gain
KI controller gain
v linearization input
w1i concentration of the ith species in the acid stream, mol/L
w2i concentration of the ith species in the buffer stream, mol/L
αi concentration of the ith species in the base stream, mol/L
xi reaction invariant of ith species, mol/L

Electronics 2021, 10, 763 20 of 21

References
1. Rajkumar, R.R.; Lee, I.; Sha, L.; Stankovic, J. Cyber-physical systems: The next computing revolution. In Proceedings of the 47th

Design Automation Conference (DAC), ACM, Anaheim, CA, USA, 13–18 June 2010; pp. 731–736. [CrossRef]
2. Khan, W.Z.; Ahmed, E.; Hakak, S.; Yaqoob, I.; Ahmed, A. Edge computing: A survey. Future Gener. Comput. Syst. 2019,

97, 219–235. [CrossRef]
3. Jaskó, S.; Skrop, A.; Holczinger, T.; Chován, T.; Abonyi, J. Development of manufacturing execution systems in accordance

with Industry 4.0 requirements: A review of standard- and ontology-based methodologies and tools. Comput. Ind. 2020, 123.
[CrossRef]

4. Belman-Lopez, C.E.; Jiménez-García, J.A.; Hernández-González, S. Análisis exhaustivo de los principios de diseño en el contexto
de Industria 4.0. Rev. Iberoam. Autom. Inform. Ind. 2020, 17, 432–447. [CrossRef]

5. Hizam-Hanafiah, M.; Soomro, M.A. The Situation of Technology Companies in Industry 4.0 and the Open Innovation. J. Open
Innov. Technol. Mark. Complex. 2021, 7, 34. [CrossRef]

6. Pahl, C.; Jamshidi, P.; Zimmermann, O. Microservices and Containers. In Software Engineering 2020; Felderer, M., Hasselbring, W.,
Rabiser, R., Jung, R., Eds.; Gesellschaft fur Informatik: Bonn, Germany, 2020. [CrossRef]

7. Januário, F.; Cardoso, A.; Gil, P. A Distributed Multi-Agent Framework for Resilience Enhancement in Cyber-Physical Systems.
IEEE Access 2019, 7, 31342–31357. [CrossRef]

8. El Hariri, M.; Youssef, T.; Saleh, M.; Faddel, S.; Habib, H.; Mohammed, O.A. A Framework for Analyzing and Testing
Cyber–Physical Interactions for Smart Grid Applications. Electronics 2019, 8, 1455. [CrossRef]

9. Ungurean, I.; Gaitan, N.C. A software architecture for the industrial internet of things—A conceptual model. Sensors 2020,
20, 5603. [CrossRef] [PubMed]

10. Coito, T.; Martins, M.S.; Viegas, J.L.; Firme, B.; Figueiredo, J.; Vieira, S.M.; Sousa, J.M. A Middleware Platform for Intelligent
Automation: An Industrial Prototype Implementation. Comput. Ind. 2020, 123, 103329. [CrossRef]

11. Beregi, R.; Pedone, G.; Mezgár, I. A novel fluid architecture for cyber-physical production systems. Int. J. Comput. Integr. Manuf.
2019, 32, 340–351. [CrossRef]

12. Chen, G.; Wang, P.; Feng, B.; Li, Y.; Liu, D. The framework design of smart factory in discrete manufacturing industry based on
cyber-physical system. Int. J. Comput. Integr. Manuf. 2020, 33, 79–101. [CrossRef]

13. Merdan, M.; Hoebert, T.; List, E.; Lepuschitz, W. Knowledge-based cyber-physical systems for assembly automation.
Prod. Manuf. Res. 2019, 7, 223–254. [CrossRef]

14. Sanin, C.; Haoxi, Z.; Shafiq, I.; Waris, M.M.; Silva de Oliveira, C.; Szczerbicki, E. Experience based knowledge representation for
Internet of Things and Cyber Physical Systems with case studies. Future Gener. Comput. Syst. 2019, 92, 604–616. [CrossRef]

15. Peres, R.S.; Dionisio Rocha, A.; Leitao, P.; Barata, J. IDARTS – Towards intelligent data analysis and real-time supervision for
industry 4.0. Comput. Ind. 2018, 101, 138–146. [CrossRef]

16. Lass, S.; Gronau, N. A factory operating system for extending existing factories to Industry 4.0. Comput. Ind. 2020, 115, 103128.
[CrossRef]

17. Boyes, H.; Hallaq, B.; Cunningham, J.; Watson, T. The industrial internet of things (IIoT): An analysis framework. Comput. Ind.
2018, 101, 1–12. [CrossRef]

18. Goldschmidt, T.; Hauck-Stattelmann, S.; Malakuti, S.; Grüner, S. Container-based architecture for flexible industrial control
applications. J. Syst. Archit. 2018, 84, 28–36. [CrossRef]

19. Hofer, F.; Sehr, M.; Sangiovanni-Vincentelli, A.; Russo, B. Industrial Control via Application Containers: Maintaining determinism
in IAAS. arxiv 2020, arXiv:2005.01890v1.

20. González-Nalda, P.; Etxeberria-Agiriano, I.; Calvo, I.; Otero, M.C. modular CPS architecture design based on ROS and Docker.
Int. J. Interact. Des. Manuf. 2017, 11, 949–955. [CrossRef]

21. Wan, X.; Guan, X.; Wang, T.; Bai, G.; Choi, B.Y. Application deployment using Microservice and Docker containers: Framework
and optimization. J. Netw. Comput. Appl. 2018, 119, 97–109. [CrossRef]

22. Abeni, L.; Balsini, A.; Cucinotta, T. Container-Based Real-Time Scheduling in the Linux Kernel. ACM SIGBED Rev. 2019, 16.
[CrossRef]

23. Anjali, F.N.U.; Caraza-Harter, T.; Swift, M.M.Blending Containers and Virtual Machines: A Study of Firecracker and GVisor; Association
for Computing Machinery: New York, NY, USA, 2020. [CrossRef]

24. Kozhirbayev, Z.; Sinnott, R.O. A performance comparison of container-based technologies for the Cloud. Future Gener.
Comput. Syst. 2017, 68, 175–182. [CrossRef]

25. Aheleroff, S.; Xu, X.; Lu, Y.; Aristizabal, M.; Pablo Velásquez, J.; Joa, B.; Valencia, Y. IoT-enabled smart appliances under industry
4.0: A case study. Adv. Eng. Inf. 2020, 43, 101043. [CrossRef]

26. Chen, B.; Wan, J.; Shu, L.; Li, P.; Mukherjee, M.; Yin, B. Smart Factory of Industry 4.0: Key Technologies, Application Case, and
Challenges. IEEE Access 2017, 6, 6505–6519. [CrossRef]

27. Dai, W.; Wang, P.; Sun, W.; Wu, X.; Zhang, H.; Vyatkin, V.; Yang, G. Semantic Integration of Plug-and-Play Software Components
for Industrial Edges Based on Microservices. IEEE Access 2019, 7, 125882–125892. [CrossRef]

28. Alam, M.; Rufino, J.; Ferreira, J.; Ahmed, S.H.; Shah, N.; Chen, Y. Orchestration of Microservices for IoT Using Docker and Edge
Computing. IEEE Commun. Mag. 2018, 56, 118–123. [CrossRef]

http://doi.org/10.1145/1837274.1837461
http://dx.doi.org/10.1016/j.future.2019.02.050
http://dx.doi.org/10.1016/j.compind.2020.103300
http://dx.doi.org/10.4995/riai.2020.12579
http://dx.doi.org/10.3390/joitmc7010034
http://dx.doi.org/10.18420/SE2020_34
http://dx.doi.org/10.1109/ACCESS.2019.2903629
http://dx.doi.org/10.3390/electronics8121455
http://dx.doi.org/10.3390/s20195603
http://www.ncbi.nlm.nih.gov/pubmed/33007860
http://dx.doi.org/10.1016/j.compind.2020.103329
http://dx.doi.org/10.1080/0951192X.2019.1571239
http://dx.doi.org/10.1080/0951192X.2019.1699254
http://dx.doi.org/10.1080/21693277.2019.1618746
http://dx.doi.org/10.1016/j.future.2018.01.062
http://dx.doi.org/10.1016/j.compind.2018.07.004
http://dx.doi.org/10.1016/j.compind.2019.103128
http://dx.doi.org/10.1016/j.compind.2018.04.015
http://dx.doi.org/10.1016/j.sysarc.2018.03.002
http://dx.doi.org/10.1007/s12008-016-0313-8
http://dx.doi.org/10.1016/j.jnca.2018.07.003
http://dx.doi.org/10.1145/3373400.3373405
http://dx.doi.org/10.1145/3381052.3381315
http://dx.doi.org/10.1016/j.future.2016.08.025
http://dx.doi.org/10.1016/j.aei.2020.101043
http://dx.doi.org/10.1109/ACCESS.2017.2783682
http://dx.doi.org/10.1109/ACCESS.2019.2938565
http://dx.doi.org/10.1109/MCOM.2018.1701233

Electronics 2021, 10, 763 21 of 21

29. Pontarolli, R.P.; Bigheti, J.A.; Fernandes, M.M.; Domingues, F.O.; Risso, S.L.; Godoy, E.P. Microservice Orchestration for Process
Control in Industry 4.0. In Proceedings of the 2020 IEEE International Workshop on Metrology for Industry 4.0 and IoT, MetroInd
4.0 and IoT 2020—Proceedings, Roma, Italy, 3–5 June 2020; pp. 245–249. [CrossRef]

30. Benayache, A.; Bilami, A.; Barkat, S.; Lorenz, P.; Taleb, H. MsM: A microservice middleware for smart WSN-based IoT application.
J. Netw. Comput. Appl. 2019, 144, 138–154. [CrossRef]

31. Krämer, M.; Frese, S.; Kuijper, A. Implementing secure applications in smart city clouds using microservices. Future Gener.
Comput. Syst. 2019, 99, 308–320. [CrossRef]

32. Ren, H.L.; Jiao, Y.P. Study on the Distributed Real-Time and Embedded System Middleware Based on the DDS. In Advanced
Materials Research; Materials Science and Information Technology; Trans Tech Publications Ltd.: Bach, Switzerland, 2012;
Volume 433, pp. 7522–7525.

33. Amoretti, M.; Pecori, R.; Protskaya, Y.; Veltri, L.; Zanichelli, F. A Scalable and Secure Publish/Subscribe-based Framework for
Industrial IoT. IEEE Trans. Ind. Inf. 2020, 17, 3815–3825. [CrossRef]

34. Calabretta, M.; Pecori, R.; Vecchio, M.; Veltri, L. MQTT-Auth: A Token-based Solution to Endow MQTT with Authentication and
Authorization Capabilities. J. Commun. Softw. Syst. 2018, 14, 320–331. [CrossRef]

35. Ibarra-Junquera, V.; Jørgensen, S.; Virgen-Ortíz, J.; Escalante-Minakata, P.; Osuna-Castro, J. Following an optimal batch bioreactor
operations model. Chem. Eng. Process. Process Intensif. 2012, 62, 114–128. [CrossRef]

36. González-Potes, A.; Mata-López, W.A.; Ibarra-Junquera, V.; Ochoa-Brust, A.M.; Martínez-Castro, D.; Crespo, A. Distributed
multi-agent architecture for real-time wireless control networks of multiple plants. Eng. Appl. Artif. Intell. 2016, 56, 142–156.
[CrossRef]

37. Kwan, C.; Lewis, F.; Yeung, K. Adaptive control of induction motors without flux measurements. Automatica 1996, 32, 903–908.
[CrossRef]

38. Kwan, C.; Lewis, F.L. Robust backstepping control of nonlinear systems using neural networks. IEEE Trans. Syst. Man Cybern.
Part A Syst. Hum. 2000, 30, 753–766. [CrossRef]

39. Polycarpou, M.; Zhang, X.; Xu, R.; Yang, Y.; Kwan, C. A neural network based approach to adaptive fault tolerant flight control.
In Proceedings of the 2004 IEEE International Symposium on Intelligent Control, Taipei, Taiwan, 2–4 September 2004; pp. 61–66.
[CrossRef]

40. Nejati, A.; Shahrokhi, M.; Mehrabani, A. Comparison between backstepping and input–output linearization techniques for pH
process control. J. Process Control 2012, 22, 263–271. [CrossRef]

41. Wright, R.A.; Kravaris, C. On-line identification and nonlinear control of an industrial pH process. J. Process Control 2001,
11, 361–374. [CrossRef]

42. Ali, S.; Qaisar, S.; Saeed, H.; Khan, M.; Naeem, M.; Anpalagan, A. Network challenges for cyber physical systems with tiny
wireless devices: A case study on reliable pipeline condition monitoring. Sensors 2015, 15, 7172–7205. [CrossRef] [PubMed]

43. Nguyen, T.; Chidambara, V.A.; Andreasen, S.Z.; Golabi, M.; Huynh, V.N.; Linh, Q.T.; Bang, D.D.; Wolff, A. Point-of-care devices
for pathogen detections: The three most important factors to realise towards commercialization. TrAC Trends Anal. Chem. 2020,
131, 116004. [CrossRef]

44. Juneja, P.K.; Sunori, S.K.; Sharma, A.; Sharma, A.; Pathak, H.; Joshi, V.; Bhasin, P. A Review on Control System Applications
in Industrial Processes. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1022, 012010. [CrossRef]

45. Abdullah, N.H.S.; Karsiti, M.N.; Ibrahim, R. A review of pH neutralization process control. In Proceedings of the 2012 4th
International Conference on Intelligent and Advanced Systems (ICIAS2012), Kuala Lumpur, Malaysia, 12–14 June 2012; Volume 2,
pp. 594–598. [CrossRef]

http://dx.doi.org/10.1109/MetroInd4.0IoT48571.2020.9138228
http://dx.doi.org/10.1016/j.jnca.2019.06.015
http://dx.doi.org/10.1016/j.future.2019.04.042
http://dx.doi.org/10.1109/TII.2020.3017227
http://dx.doi.org/10.24138/jcomss.v14i4.604
http://dx.doi.org/10.1016/j.cep.2012.08.003
http://dx.doi.org/10.1016/j.engappai.2016.08.017
http://dx.doi.org/10.1016/0005-1098(96)00012-X
http://dx.doi.org/10.1109/3468.895898
http://dx.doi.org/10.1109/ISIC.2004.1387659
http://dx.doi.org/10.1016/j.jprocont.2011.08.001
http://dx.doi.org/10.1016/S0959-1524(00)00003-2
http://dx.doi.org/10.3390/s150407172
http://www.ncbi.nlm.nih.gov/pubmed/25815444
http://dx.doi.org/10.1016/j.trac.2020.116004
http://dx.doi.org/10.1088/1757-899X/1022/1/012010
http://dx.doi.org/10.1109/ICIAS.2012.6306084

	Introduction
	Related Works
	Component-Based Microservices for Industrial Automation
	Procedure for Developing the Software Components
	pH Control for Beverages Industry as a Case Study
	pH Control Approach
	Controller Design
	Requirements for pH Control Process Implementation
	Component-Based Microservices for pH Control Process Implementation
	Implementation Details

	Results and Discussions
	Conclusions
	References

