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Abstract
We provide a complete characterization of the possible sets of periods for Devaney chaotic
linear operators on Hilbert spaces. As a consequence, we also derive this characterization for
linearizable maps on Banach spaces.
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1 Introduction

Let X be a infinite dimensional separable complex Banach space. Let L(X) denote the set
of linear and continuous operators from X to X . Given an operator T ∈ L(X), a vector
x ∈ X\{0} is called n-periodic for T , for some n ∈ N, if T nx = x and Tmx �= x for each
1 ≤ m < n. An integer n ∈ N is a period for T , if T admits an n-periodic vector. The set of
periods for T is denoted by

P(T ) := {n ∈ N : n is a period for T }.
The set of periods of a map is strongly related with its chaotic behavior, as it was firstly

observed by Li and Yorke in [24]. There is a wide study of the periodic structures for chaotic
(and non-chaotic) discrete dynamical systems. The most celebrated result, which was the
starting point for a huge line of research, was the theorem of Šarkovskiı̆ [27] that established
a total order in N ∪ {2∞} so that, for every continuous map f : I → I on an interval I ,
there is n ∈ N ∪ {2∞} with P( f ) = {m ∈ N ; n � m} (where � is Sharkovsky’s order)
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and, for every n ∈ N ∪ {2∞}, there is a continuous map fn : [0, 1] → [0, 1] such that
P( fn) = {m ∈ N ; n �m}. That is, he completely characterized the possible sets of periods
for interval maps.

Šarkovskiı̆’s theorem motivated researchers to characterize the sets of periods for certain
classes of self maps. As a sample of this effort, we mention here the characterizations of the
sets of periods for some polynomials and rational functions on C in the early work [7], for
interval and circle maps [4–6], for continuous self maps of the real lineR [16], for triangular
maps on a cartesian product of arbitrary spaces [2] or of compact intervals [14], for tree maps
[3] and also for different classes of automorphisms [17,18].

Concerning linear operators, the sets of periods for linear operators onCn ,Rn and �2 were
characterized in [1], see also [23], and on a Hilbert space in [15].

We point out that an earlier version of our results was fundamental for the study of the
structure of the set of periods of chaotic strongly continuous semigroups by Muñoz, Seoane
and Weber in [25,26].

According to Devaney a dynamical system, consisting of a continuous map on a metric
space, is said to be chaotic if it is topologically transitive, its periodic points form a dense set
and it has sensitive dependence on the initial conditions. Subsequently, the third condition
was showed to be redundant (see [8]). The concept of chaos was associated to the behavior
of certain nonlinear dynamical systems. However, chaos may occur also in linear systems,
provided they are infinite-dimensional. A theory of the dynamics of linear operators on
infinite-dimensional spaces has been extensively studied for over twenty years. An overview
of the state of the art in the area of linear chaos can be found in the monographs [10,22].

An operator T : X → X on a Banach space X is called topologically transitive if, for any
U , V ⊂ X non-empty open sets there exists n ∈ N such that T n(U ) ∩ V �= ∅. Within this
context, transitivity is equivalent to hypercyclicity, that is, the existence of vectors x ∈ X
whose orbit under T is dense in X . In such a case, x is called a hypercyclic vector for T .
The operator T is said to be Devaney chaotic if it is hypercyclic and admits a dense set of
periodic points.

In the context of operators with a chaotic dynamics, a natural question arises: Is there a
chaotic operator on any separable Hilbert space with a prescribed set of periods? In this
note, we give a positive answer to this question and, as a consequence, we also show how to
extend this result to linearizable maps on Banach spaces.

2 Periodic structure of chaotic operators

It is well-known that whenever an operator T on a complex space admits nontrivial n-
periodic points, then there are eigenvectors whose eigenvalue is an n-root of the unity (see,
for instance, see [13]). In fact, the set of periodic points of T is the vector space span{x ∈
X / ∃n ∈ N , ∃λ ∈ C : λn = 1 , T x = λx}.

Given n ∈ N and λ ∈ C we say that λ is a primitive n-th root of 1 if λn = 1 and λm �= 1
for 1 ≤ m < n. We denote by

�n := {λ ∈ C : λ is a primitiven − th root of 1} ⊂ �n := {λ ∈ C : λn = 1}.

For λ in the unit circle T and ε > 0, we denote by Iλ,ε the open arc of the unit circle of
length ε centered at λ.

The following characterizes the set of periods for a chaotic operator on a separable Hilbert
space. We were inspired by a result of Bayart and Grivaux [9], where they showed that an
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operator on a separable complexBanach spacewith sufficientlymany eigenvectors associated
to eigenvalues of modulus 1 is hypercyclic. As a consequence, they constructed hypercyclic
operators with prescribed unimodular point spectrum, see Theorem 2.11 and Lemma 2.12 in
[9].We notice that (i) belowwas also observed in [1]. Also notice that in [1] the sets of periods
for an operator included always 1 since the vector 0 was also considered to determine the
sets of periods. In our case, for convenience, we only consider periodic vectors x ∈ X\{0}.
This is a slight difference in (i) below.

Theorem 1 (i) If A ⊂ N is a set of periods for an operator on a Banach space X, then A
contains the least common multiple (lcm) of each pair of elements in A.

(ii) If A ⊂ N is infinite and contains the lcm of each pair of elements in A, then there exists
a chaotic operator T ∈ L(�2) such that P(T ) = A.

Proof (i) Suppose that A = P(T ) for some operator T ∈ L(X). Let n,m ∈ A, p =
lcm(m, n), and x1, x2 ∈ X be n and m periodic vectors, respectively. These vectors can be
expressed as a linear combination of eigenvectors corresponding to n-roots and m-roots of
unity, see e.g. [[13], Sec.3]:

x1 =
kn∑

i=1

αi yi , αi �= 0, i = 1, . . . , kn,

x2 =
km∑

j=1

β j z j , β j �= 0, j = 1, . . . , km .

Let λi ∈ �n be the eigenvalue of yi , i = 1, . . . kn , and let λ′
j ∈ �m be the eigen-

value of z j , j = 1, . . . , km . We have that there are ni ,m j ∈ N, such that λi ∈ �ni
and λ′

j ∈ �m j , for i = 1, . . . , kn , j = 1, . . . , km . Since x1 is n-periodic and x2
is m-periodic, we get n = lcm(n1, . . . , nkn ) and m = lcm(m1, . . . ,mkm ). We define
x := ∑kn

i=1 yi + ∑km
j=1 z j , where we identify yi = z j if λi = λ′

j for some i and j . Finally,
since p = lcm(n1, . . . , nkn ,m1, . . . ,mkm ), we deduce that x is a p-periodic vector for T
and p ∈ A.
(ii) Fix θ ∈]1, 4/3[\Q. We select a non decreasing sequence (nm)m of positive integers such
that limm

nm
m = θ/2 andm/2 < nm < 4m/6 for allm > 4. A well-known easy consequence

of the Prime Number Theorem and the fact that (nm)m is non decreasing and unbounded
yields that, for every ε > 0, there is mε ∈ N such that, if m ≥ mε , then there is a prime
number p satisfying nm < p < (1 + ε)nm . Applying this result to (1/k)k , k ∈ N, we get an
increasing sequence of positive integers (mk)k , with m1 > 4, such that for each k ∈ N and
for m ∈ N with mk ≤ m < mk+1, there exists a prime number pk,m satisfying

nm < pk,m < (1 + 1

k
)nm .

Now define

pm :=
{
1 if 1 ≤ m < m2

pk,m if mk ≤ m < mk+1 for k ≥ 2

to get a sequence of integers (pm)m , with pm prime for m ≥ m2, such that limm
pm
m = θ/2.

We observe that pm andm are coprime form ≥ m2. Otherwise either pm = m or pm ≤ m/2,
which yields a contradiction with the selection of (nm)m . This shows that ηm := e2π i

pm
m ∈

�m , m ∈ N. Moreover, limm ηm = eπθ i ∈ T\eiπQ.
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For convenience, sort positive integers not in A in increasing order and denote them as

Ac := N\A = { j1 < j2 < . . . } .

Claim: There exists a sequence {Uk}k with the following properties:

1. ∪∞
k=1Uk consists of a countable union of pairwise disjoint open arcs in T, not sharing

endpoints, where all endpoints have the form eiφπ with φ ∈]0, 2[\Q,
2. ∪∞

k=1� jk ⊂ ∪∞
k=1Uk ,

3. ηm /∈ ∪∞
k=1Uk for m �= jk and k ∈ N.

We prove the claim by induction. Since eiθπ /∈ � j1 and � j1 is finite, set δ = d(eiθπ ,� j1)

and find M1 ∈ N such that

ηm ∈ B(eiθπ , δ/2), m > M1.

Compute

ε1 = min{d(λ, μ), λ, μ ∈ � j1 , λ �= μ},
ε2 = min{d(λ, ηm), λ ∈ � j1 , 1 ≤ m ≤ M1, m �= j1},

and take 0 < ε < min{δ, ε1, ε2}/2. For eachλ ∈ � j1 we associate an open arc Iλ,ε containing
λ, with diameter ε, and with the property that both endpoints of the arc have the form eiφπ

with φ ∈]0, 2[\Q. By construction, the family of open arcs {Iλ,ε, λ ∈ � j1} is pairwise
disjoint and no endpoint is shared by two arcs.

Suppose we have a sequence {Ui }k−1
i=1 with the following properties:

1. ∪k−1
i=1Ui consists of a finite union of pairwise disjoint open arcs not sharing endpoints

where all endpoints have the form eiφπ with φ ∈]0, 2[\Q,
2. ∪k−1

i=1� ji ⊂ ∪k−1
i=1Ui ,

3. ηm /∈ ∪k−1
i=1Ui for m �= ji and 1 ≤ i ≤ k − 1. In order to complete the induction process

we have to construct Uk . Since eiθπ /∈ ∪k
i=1� ji , set δk = d(eiθπ ,∪k

i=1� ji ) and find
Mk ∈ N such that

ηm ∈ B(eiθπ , δ/2), m > Mk .

Compute

ε3k−2 = min{d(λ, μ), λ, μ ∈ � jk , λ �= μ},
ε3k−1 = min{d(λ, eiφπ ), λ ∈ � jk , eiφπ is an endpoint of ∪k−1

i=1 Ui },
ε3k = min{d(λ, ηm), λ ∈ � jk , 1 ≤ m ≤ Mk, m /∈ { j1, j2, . . . , jk}},

and take 0 < ε < min{δk, ε3k−2, ε3k−1, ε3k}/2. For each λ ∈ � jk\∪k−1
i=1 Ui we associate

an open arc Iλ,ε containing λ, with diameter ε, and with the property that both endpoints
of the arc have the form eiφπ with φ ∈]0, 2[\Q. Define

Uk :=
⋃

λ∈� jk \∪k−1
i=1Ui

Iλ,ε,

and the claim is proved. Observe that in the case whereN\A is finite, we have thatUk = ∅
after a finite number of induction steps. Define now U := ∪∞

k=1Uk , which is an open
subset ofT and, by construction,T\U does not have isolated points (i.e., it is a perfect set)
and the primitive roots of the unity μm ∈ T\U if and only if m ∈ A. To finish our proof
we will need the Kalisch operator, that was used for the first time in [9] in the context of
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chaotic properties in linear dynamics. More precisely, let K : L2[0, 2π] → L2[0, 2π]
be defined as

K f (θ) = eiθ f (θ) −
∫ θ

0
ieit f (t)dt, θ ∈ [0, 2π].

It is well known (and easy to see) that, for any λ ∈ T\{1}, λ = eiβ with β ∈]0, 2π[, we
have

ker(K − λI ) = span( fλ), where fλ := 1[β,2π ].

W.l.o.g. we suppose that 1 ∈ U . Otherwise a suitable rotation of K does the job. We
consider the Hilbert space H := span{ fλ ; λ ∈ T\U }, which is K -invariant. Since T\U
is a compact perfect set and, by continuity of the map λ �→ fλ, the set of eigenvectors
of T := K |H associated to roots of unity is dense in H , T is chaotic (see, e.g., [10,
Section 5.5.3] or [20, Fact 3.5]). Moreover, σp(T ) = σ(T ) = T\U , where σ(T ) and
σp(T ) denote the spectrum and the point spectrum of the operator T respectively. Given
m ∈ A, we have that ηm ∈ �m ∩ σp(T ). Since all separable infinite dimensional Hilbert
spaces are equivalent, we replace H by �2 from now on. Let x ∈ �2 be an eigenvector of
T associated to ηm , then x is m-periodic, and A ⊆ P(T ).

On the other hand, if m ∈ P(T ), proceeding as in (i), we find a finite family x1, . . . , xk ∈ �2

of eigenvectors of T such that if λ1, . . . , λk are the respective associated eigenvalues and
m1, . . . ,mk ∈ N are so that xi ∈ �mi , i = 1, . . . , k, then m = lcm(m1, . . . ,mk). If
mi ∈ A, i = 1, . . . , k, then the hypothesis on A imply that m ∈ A. If there was some
m j /∈ A, then λ j ∈ U ∩ σp(T ) which is a contradiction.

Remark 2 The Kalisch type operator K of the proof was used several times in connection
with ergodic theory in linear dynamics (see, e.g., [9,10,20]). In particular, when the spectrum
of T := K |H is perfect, T admits an invariant ergodic measure with full support (see, e.g.,
[10, Section 5.5.3]). Also, Grivaux and Matheron observed in [19, Theorem 1.10] that, in
this case, T is densely distributionally chaotic. As a consequence, we have that, if A ⊂ N

is infinite and contains the lcm of each pair of elements in A, then there exists an operator
T ∈ L(�2) such that P(T ) = A, and T is ergodic and (densely) distributionally chaotic
(therefore, Li-Yorke chaotic). We refer the reader to [11] and [12] for the basic notions and
results on distributional and Li-Yorke chaos, respectively, in linear dynamics.

The most important properties of dynamical systems are preserved under conjugacy, and
so does the set of periods. If we take this into account, and call a continuous map f : X → X
to be linearizable if it is topologically conjugate to an operator T ∈ L(Y ) on a, possibly
different, Banach space Y , one can consider the problem of studying the set of periods for
linearizable maps. A very useful result to face this problem is stated in [21, page 357]. As
a consequence of the Anderson-Kadec Theorem, any separable infinite-dimensional Banach
space is homeomorphic to the Hilbert space �2. Together with our Theorem 1, this shows a
very powerful result for linearizable maps.

Theorem 3 Given any separable infinite-dimensional Banach space X and an infinite set
A ⊂ N, there exists a chaotic linearizable map f : X → X such that P( f ) = A if and only
if A contains the least common multiples of all pairs of elements in A.
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