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Abstract: The use of drones in agriculture is becoming a valuable tool for crop monitoring. There are
some critical moments for crop success; the establishment is one of those. In this paper, we present
an initial approximation of a methodology that uses RGB images gathered from drones to evaluate
the establishment success in legumes based on matrixes operations. Our aim is to provide a method
that can be implemented in low-cost nodes with relatively low computational capacity. An index
(B1/B2) is used for estimating the percentage of green biomass to evaluate the establishment success.
In the study, we include three zones with different establishment success (high, regular, and low) and
two species (chickpea and lentils). We evaluate data usability after applying aggregation techniques,
which reduces the picture’s size to improve long-term storage. We test cell sizes from 1 to 10 pixels.
This technique is tested with images gathered in production fields with intercropping at 4, 8, and 12 m
relative height to find the optimal aggregation for each flying height. Our results indicate that images
captured at 4 m with a cell size of 5, at 8 m with a cell size of 3, and 12 m without aggregation can be
used to determine the establishment success. Comparing the storage requirements, the combination
that minimises the data size while maintaining its usability is the image at 8 m with a cell size of 3.
Finally, we show the use of generated information with an artificial neural network to classify the
data. The dataset was split into a training dataset and a verification dataset. The classification of the
verification dataset offered 83% of the cases as well classified. The proposed tool can be used in the
future to compare the establishment success of different legume varieties or species.

Keywords: chickpea; lentil; vegetation index; artificial neural network; aggregation

1. Introduction

Nowadays, agriculture is suffering under the extreme pressure to increase its produc-
tivity to feed the population while reducing its environmental impacts. The predictions
indicate an intense population increment [1]. This increase jeopardises food security in
many regions, pushing the farmers to maximise productivity. Two options are arising:
agroecological practices and monitoring technologies as part of precision agriculture. Both
aim to manage the inputs better and to reduce impact while preserving productivity.

The use of sensing technologies in agriculture has become a useful tool for monitoring
crops. Among them, remote sensing based on Unmanned Aerial Vehicles (UAVs) is one of
the most used ones to determine the crop status, and its implementation will increase in
the next decades [2]. Even though we can find professional drones with hyperspectral and
ultrahigh-resolution cameras, non-professional drones (with RGB and lower resolution
cameras) can still offer valuable information for assessing the current status of crops.
Non-professional UAVs present lower-cost, which facilitates their use by farmers.
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According to Tsouros et al. in [3], the most common uses of drones in agriculture
are for mapping and the management of weed, monitoring vegetation growth, and esti-
mating yield. The cameras are generally used to distinguish between different crops and
weeds. Tsouros et al. also claim that the Agisoft Photoscan and the Pix4D are the most
used software tools for image processing in agriculture. In the same paper, the authors
indicate the most used vegetation indexes and highlight the Excess Greenness Index and
Normalized Difference Index as the most used RGB indexes. Tsouros et al. has pointed
out that photogrammetry and machine learning are the most used methods for growth
monitoring with RGB cameras.

In some rainfed crops and leguminous crops such as lentils or chickpeas, the qual-
itative estimation of the establishment success of seeds is essential in areas with large
plots in order to estimate the yield or the required phytosanitary products. Chickpea
is characterized by irregular germination, which causes irregular establishment success
compared with lentils or broad beans [4]. This causes several heterogeneity problems in
the fields, affecting the management of the crops and causing the proliferation of weed
plants. The weed presence has a great impact on the chickpea yield [5]. Particularly, this
has a great effect, as chickpea has less tolerance to pre-emergence herbicides compared to
post-emergence products [6]. Thus, it is essential to estimate its establishment success to
have optimal crop management, evaluate if weed might appear, and estimate the yield.

Even though it is important to estimate the establishment success in the first stages of
the crop, fewer methodologies have been developed or applied for this purpose than for
other issues. Most remote sensing applications focus on plant vigour [7], weed detection [8],
yield estimation [9], and irrigation management [10]. For germination estimation (or
establishment success), tools based on vegetation indexes can be applied in combination
with artificial intelligence, as indicated in [3] for vegetation vigour tools. The current
solutions for measuring the establishment success, mainly based on machine vision, relies
on recognising and counting the plants. This quantitative approach can be beneficial under
certain scenarios. Nonetheless, many rural areas might suffer from difficulties in terms
of internet access to allow cloud computing. In addition, the existing solutions, furtherly
discussed in Section 2, are adapted to other crops. Their application in legumes is not
ensured. Therefore, a methodology adapted to legumes that can provide in situ information
to farmers is necessary.

Concerning the increasing use of remote sensing in agriculture, an urgent issue must
be considered before getting to the point in which it becomes a problem. It is crucial to
evaluate the required storage capacity to save it. While ultra-high resolution cameras are
used in most cases, we should consider the future use of the generated information to
evaluate the resolution needs. In other areas such as medicine, the storage capacity required
to store the generated information has already become a problem, and several authors are
proposing solutions [11]. In the case of agriculture, satellite imagery is also becoming a
severe problem in terms of required storage capacity [12]. In the case of images gathered
with drones, this is not yet a problem itself. Nevertheless, as the use of drones is increasing,
we must consider this issue in order to avoid generating a problem related to storage,
transmission, and processing of pictures or generated raster. Aggregation techniques can
be used for several purposes, such as reducing false positives [13]. In addition, they have a
clear advantage in reducing the size of the generated information. Therefore, it is critical to
find the minimum resolution that allows the further use of the generated information to
minimise the required storage capacity. This problem is mentioned by different authors
when referring to the cloud or edge computing [14].

In this paper, we are going to evaluate the RGB images and their reliability as data
to estimate the establishment success of legumes by quantifying the early-season canopy
cover. We have focused on legumes due to the aforementioned problem and select a
low-cost drone. The main objective of this paper is to propose a methodology that can
be executed by low-cost nodes, such as Raspberry, with relatively low computational
capacity. This allows the processing of images in situ, which facilitates the transference
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of information to the farmers. Our secondary objective is to find the combination of
cell size and flying height that allows the classification of sub-zones into three classes
and reduces the size of generated information. We took pictures in the “Finca el Encin”
of the IMIDRA facilities where legumes were sowed. Images were taken at 4, 8, and
12 m in relative height. We include two legume species (lentil and chickpea). Regarding
chickpea, we include two zones, one with regular establishment success and a specific
zone in which the establishment success was low. Initially, a vegetation index is calculated,
and an aggregation technique is applied. Artificial Neural Network (ANN) is used to
evaluate whether data is suitable for classifying the sub-zones. Thus, we demonstrate if
the generated data (with different resolutions) can classify the images. This paper is under
the framework of GO TecnoGAR an operative group for the technification of chickpea.

The rest of the paper is structured as follows; Section 2 outlines the related work. The
materials and methods are described in Section 3. Following, Section 4 details the obtained
results regarding the data usability. Then, the results are discussed in Section 5. Finally,
Section 6 summarises the conclusions and future work.

2. Related Work

As far as we are concerned, no paper describes a methodology to assess the establish-
ment success in legumes that can operate regardless of internet access and with relatively
low computation capacity (only operating with matrixes). This section describes solutions
for general agriculture and assessing the plant density and sowing performance.

2.1. Use of Vegetation Indexes and Histograms Processing for General Purposes in Agriculture

Rezende Silva et al. in [15] presented the use of images captured by a drone with a
multi-spectral camera to define management zones inside a single plot. They selected the
Normalised Difference Vegetation Index (NDVI) to assess the plant vigour and generate
the management zones. The results were filtered and equalised, generating five zones of
management. Nonetheless, the authors do not apply any verification to their obtained
results. The use of NDVI was also proposed to estimate the yield of chickpea in [16] by
Ahmad et al. The authors calculated the Soil-Adjusted Vegetation Index (SAVI) with images
gathered by the drone and NDVI with the images from Landsat. Their results indicated a
higher correlation between yield and SAVI than between yield and NDVL

Manggau et al. [17] described using histograms of drone imagery in rice exploitations
to evaluate crop growth. The authors used a DJI Phantom to collect the images. Their
results indicated that RGB histograms could be used for this purpose. Nonetheless, the
authors did not indicate the specific use of histograms for determining crop growth and no
verification was done. In Ref. [18], Marsujitullah et al. combined the histograms with SVM
to determine rice growth. The verification indicated accuracies of 89%.

The estimation of above-ground biomass was shown in Ref. [19] by Shankar Panday
et al. The authors presented the monitoring of wheat grown. Both above-ground biomass
and yield were estimated by using linear regression models. RGB data and plant height
(measured in the field) were included as inputs in their models. Several verification
processes were carried out, offering accuracies between 88% and 95%.

2.2. Image Processing to Estimate the Vegetation Density and Sowing Success

In this subsection, proposals with similar objectives to this paper are presented. The
evaluation of establishment success can also be considered under the perspective of param-
eters of plant density or the sowing performance.

In Ref. [20], Murugan et al. proposed the classification of sparse and dense fields
based on drone data. Images included in the study were collected in a region in which
sugarcane was cropped. The authors included a vegetation mask and a separability index.
Their results, verified with data of Landsat 8, and had an accuracy of 73% in the validation.
Similar work has been developed by Agarwal et al. in [21]. They evaluated the classification
of analysed areas into bare land, dense, and sparse vegetation. Sentinel images were
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combined with drone imagery. The authors compared the classification performance of
different techniques; Support Vector Machine (SVM) had the most accurate results.

Quantitative solutions are presented in [22] to [26]. In these cases, the objective was to
evaluate the number of plants certain period after sowing. In Ref. [22], X. Jin et al. proposed
calculating plant density (n° of plants/m?) in wheat crops. The authors used a camera
with a resolution of 6024 x 4024 pixels. The drone relative flying heights were between
3 and 7 m. Initially, images were classified using a vegetation index (2G-2B-2.4R) and a
threshold. Then, the MATLAB function bwlabel was used to identify the objects. Finally, a
supervised classification to evaluate the number of plants was performed, and SVM was
used. Their results were very accurate, with correlation coefficients of 0.8 to 0.89 in the
validation. Although this method offers good results and will be helpful in several cases, it
cannot be applied under our restrictions of having low computational capacity. Moreover,
this method is calibrated and validated for another type of crop. The nascence of chickpea
is different in terms of the shape of leaves and the homogeneity.

Randelovic et al. [23] proposed a similar methodology for soybean. The authors used a
DJI Phantom 4, but they do not specify the flying height. In their proposal, eight vegetation
indexes, based on RGB data, were applied. After the image processing, R software was used
for estimating plant density. The correlation coefficient of validation was 0.78. Nonetheless,
neither equation nor threshold utilised to estimate plant density were provided. In the
same way, L.N. Habibi assessed the plant density of soybean [24]. In this case, the authors
combined UAV and satellite data, as in [20,21]. Their methodology was divided into three
steps. YOLOvV3 was used to estimate the plant density with the UAV data. Random Forest
(RF) was applied to satellite data in the last step. Their calibration offered a correlation
coefficient of 0.96. As in [22], these methods are based on object recognition which precludes
that they can be applied under our conditions. Again, these methods are specific for a
particular crop, the soybean, and authors do not provide information about the usability of
their results in other crops.

An example for corn is presented by Stroppiana et al. in [25]. First of all, the authors
evaluated the vegetation fractional cover with a SONY cybershot DSC HX20C RGB camera.
The images were classified into two classes, vegetation and soil, using SVM with HARRIS
ENVI software. On the other hand, images from UAV containing information of five
spectral bands were processed with Pix4D to obtain vegetation indexes. NDVI was the one
with the best results. Then, a series of processes were applied to the result of NDVI. Those
processes included modifying its spatial resolution, median filter, applying a threshold,
and computing the value for each 10 x 10 grid cell. Estimating the fractional vegetation
cover had a correlation coefficient of 0.73. This approach is similar to the methodology
proposed in this paper, in which artificial intelligence is used in a prelaminar step for
further classification using a threshold. Nevertheless, this method cannot be applied to our
problem, as it is designed for corn and the system is based on NDVI data, which cannot be
calculated with RGB data. In addition, some key aspects such as relative flying height are
not provided. Finally, the plants included in the paper had a higher height (maximum of
25 cm) than the chickpea in the establishment moment (maximum of 10 cm).

The application of this sort of study in rapeseed is also reported in [26] by B. Zhao
et al. The authors used a DJI Matrice 600 UAV to gather data and Pix4D. A Nikon D800
camera with 7360 x 4912 pixels resolution captured the images at 20 m from the soil. Five
vegetation indexes were calculated. Then, the typical Otsu thresholding method was used
for segmentation. Next, Object Shape Feature Extraction (OSFE) was carried out with
eCognition Developer software. The validation of their results showed a good correlation
coefficient between 0.72 and 0.89. As in previous cases, this methodology cannot be applied
under the established conditions, and the studied crop is different.

We have shown that most of the above-described methods are based on vegetation
indexes to generate new information classified by artificial intelligence (or linear regression).
The main novelty of this paper is that the selected crops to test the methodology are
chickpea and lentils. Moreover, although we use artificial intelligence as ANN for training
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and verification, we can obtain a threshold to be applied in the future, as published in [25].
Thus, the required computational capacity to execute this methodology is lower and can
be archived by low-cost nodes, such as a Raspberry type, facilitating nearly real-time data
processing. Moreover, the trade-off between usability of data and storage requirement is
analysed as the second innovative aspect of the paper.

3. Materials and Methods
3.1. Studied Zone

This paper includes images gathered in the “Finca el Encin” of the IMIDRA facilities
(Lat. 40°31'24.81”; Long. 3°17'44.16"). The region is characterised by short and very hot
summers; and long, dry, and very cold winters. Throughout the year, the temperature
ranges from 1 to 33 °C. It rarely drops below —4 °C or rises above 37 °C. Nonetheless, this
year, we had temperatures of -13 °C and heavy snowfall during January followed by dry
months in February and March

We can find different crops in these facilities, specifically in the studied area, different
legumes were sowed. In the pictures, we can identify two types of legumes: lentil and
chickpea. The establishment success and the canopy cover of the lentils are optimal in
general terms. Meanwhile, the case of chickpea is always a bit worse than for lentils.
Moreover, in a specific zone of the studied area, a significant reduction in the establishment
success of chickpea can be identified. We have classified the lentils as Zone 1, the chickpea
with low establishment success as Zone 2, and the chickpea with regular establishment
success as Zone 3. It must be noted that these zones are classified based on the encountered
differences of establishment success. No external perturbances were added to generate the
differences. Thus, there is no experimental design behind this classification; we base our
study on normal conditions, which can be found in the field where natural heterogeneity
and different species performance generate these differences.

Figure 1a shows the three zones in the picture gathered at 4 m of relative height. The
selected area can be understood as the typical scenarios in which legumes are cropped with
straw of wheat, the previous crop and heterogeneous soil with pebbles. Moreover, we have
some weeds in different points. Meanwhile, Figure 1b is a picture captured during the data
gathering processes in which the differences along the zones can be seen.

."\( 2 % "
£ Zone 2: Chickepea

i Low establishment success

Zone 3: Chickepea
| Regular establishment

(b)
Figure 1. Example of the three zones in the image gathered at 4 m of relative height (a) and a picture of the data gathering
process (b).
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3.2. Used Drone

Concerning the drone, as we want to develop a low-cost and scalable solution for the
farmers, we focus on low-cost drones. We have to select a drone that allows gathering
RGB images in a nadir mode. The drone we have selected is the Parrot Bebop 2 Pro [27],
which can be seen during data gathering and after landing in Figure 2. This drone has
an average flying autonomy of 20 min in normal conditions. Its weight is 504 g, which is
relatively low considering that it has two cameras (the nadir and the frontal one). The nadir
camera allows gathering RGB and thermal images. Although the gathered images have
1080 x 1440 pixels and 24-bit colour, we have reduced them to 8-bit colour to minimise
their size in order to allow better storage.

Figure 2. Images of the drone in different moments of the data gathering process.

Images there captured at a different height. It is important to note that a higher height
allows covering the same surface with fewer images. Moreover, it has a positive impact on
flying time and energy consumption. The selected relative heights for the captured picture
are 4, 8, and 12 m (606, 610, and 614 m of altitude). We have selected these heights based
on [28].

3.3. Experimental Design and Statistical Analysis

The three zones defined in the previous subsection are divided into five subzones,
having a total of 15 subzones. In Figure 3, we can see the included zones (and subzones)
for the three flying heights. It is important to note that certain parts of the pictures might
not be included to ensure similar establishment success conditions along the zones. More
specifically, in the picture captured at 12 m, not all the image is used, as the establishment
success is not homogenous for the upper part of the picture for Zone 1. This lack of
homogeneity might be explained by differences in soil characteristics and problems in
sowing or seeds. It is important to remark that classification into different zones are done
based on the characteristics of the establishment success due to differences in species,
sowing process, and field characteristics. We identified the zones with similar performance
to create the three zones. The different zones can be seen in different colour (Zone 1 = black,
Zone 2 =red, and Zone 3 = blue). Vertical lines of the same colours delimit the subzones.
We generate the zones following this process to have a scenario as similar as possible to
real conditions, in which it will be necessary to evaluate the establishment’s success and
identify the areas with low performance.
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Subzone 1

Zone 1§

Flying height=4 m Flying height=8m

Subzons 3 Sulzene 4 Subzone b Subzone 1 Zubzone 2 Subzone 3 Sulzone 4 Sulzons &

Zone 1088

— —n 175 Flying height=12 m I o —rr

Subzone 1 Subzone2 Subzons 3 Sulzone 4 Subzone S

Zonel

0 650 1.300 2.600

T I L2705

Figure 3. The division into zones and subzones of the used images with scale and text bar.

Data for the different zones were subjected to factorial analyses of variance (ANOVAs)
to test the effects of the three factors (flying height, cell size, and zone) in the percentage (%)
of green plants. The procedure to have the % of the green plant is defined in the following
subsection. Once we have confirmed that the zone affects the % of green plants of each sub-
zone, we will use a single-factor ANOVA. This single-factor ANOVA is used to determine
which aggregation cell (defined in the following section) ensures the use of data. We
assume that data can be used as far as the ANOVA procedure differentiates data into three
groups. If the result of the ANOVA is a p-value higher than 0.005 or the data is divided into
two groups, we assume that generated information is not useful. The creation of groups is
achieved using the Fishers Least Significant Difference (LSD). All the statistical analyses
are performed with Statgraphics Centurion XVII [29].

3.4. Image Processing

To select image processing techniques, we based on the scheme used in the past to
determine the presence of weed plants: application of an index and aggregation technique
for the obtained results of the index [30]. The ArcMAP software was selected [31], but when
the method is applied in the node, Python programming engine will run the operations
with matrixes. A summary of the scheme can be seen in Figure 4. In this case, a simple index
that combining the information of green and red bands differentiates between (i) green
vegetation and (ii) soil and non-green vegetation is used. The remaining straw residuals,
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pebbles, soil or shadows are classified as the second type of coverage. The index can
be seen in Equation (1). Based on the properties of the generated raster, only integer
values are allowed. All the pixels of the resultant raster with value = 0 are considered

green vegetation.
Index = B1/B2 D

Original picture:
B1=Red Band
B2=Green Band
B3=Blue Band

Index

Operator selection: Cell size selection:

x3 heights
Summation 1 (no aggregation) e
. Visual Best 3 Reclassification
Maximum i
Mean | comparison [NeJel=El{e]¢ 5 0=1
Minimum | of results [EEEED] 10 Else=0

Flying height = All
Defined parameters

Cell size =5
Flying height = 4m

Summation of
pixels =1in
each sub-zone

Defined parameters
Operator = Selected

Comparison of
Result: storage Best cell size
Operator Best requirements for LeTICETS B comparison of
Cell size onlelliElileal each combination height results (% of
Flying height cell size and flying selected pixels = 1)

height

Figure 4. Summary of the methodology followed in this paper.

Once the results of the index is obtained, we apply the aggregation technique. As an
aggregating technique, we will compare the following operators: summation, maximum,
mean, and minimum. Moreover, we include different cell sizes: 1 (no aggregation), 3, 5,
and 10 pixels. We will compare the results of the different operators to select the best one
using a single cell size and a single height.

Once the best operator is defined, we apply this operator with different cell sizes and
heights. The rasters are then reclassified. For the reclassification, the pixel with a value
of “0” (green plants) are classified as “1”, while the pixels with other values are classified
as “0”. Following, each subzone’s summation of pixels with value = “1” is carried out to
obtain the value that summarises each subzone. This value is used in the statistical analysis.
We use an ANOVA procedure to compare the results and define which cell size and height
combination is suitable. We select the combination that, maximising the cell size, allows
the correct differentiation of the three groups in the ANOVA.

Finally, we compare the required storage capacity in Kbytes to store the resultant
images of a given surface. We select a given surface of 1 Ha, representing 1154, 284, and
128 pictures for 4, 8, and 12 m of relative flying height.

4. Results

This section describes the obtained results in detail, both for the image processing and
the classification with statistical analyses and ANN.

4.1. Selection of Best Operator and Cell Size

First and foremost, the comparison of usability of the aggregation operator is analysed.
Figure 5 depicts different aggregation methods for the image gathered at 4 m with a cell
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size = 5. We can see the image in true colour (RGB image) the results of applying the index
and the four rasters after the aggregation technique with different operators. The pixels
with value = 0, black pixels, indicate the presence of vegetation.

RGB image valve  Result of Bandl/Band 2

High: 25

Low:0

Valee  Summation Value Maximum

Value Value Minimum
High:2 High: 1

Low:0 Low:0

Figure 5. Resultant raster after aggregation technique with different operators with cell size = 5 and
relative flying height = 4 m.

At first sight, we can see that mean and minimum are not optimal, as they generate
several false positives. We have considered as false positives the pixels with value = 0
(the value assigned for green vegetation) composed mainly by pixels of soil or other types
of surface that are not green vegetation. To make this comparison, different portions of
the picture in each zone are observed, comparing the index’s output and the output after
aggregation. The operator equal to minimum was the one with the highest % of false
positives followed by the operator equal to mean, summation and maximum. As we want
to create a tool based on the most restrictive index, to avoid as much as possible the false
positives, the operator maximum is selected.

Once the best operator is defined, we need to evaluate the cell size. We can see that as
the pixel size increase, the range of possible values for the pixel (0 to 25 initially) decrease,
reaching a range from 0 to 13 for cell size = 10. The portion of pixels with high values
increase with the cell size too. In order to facilitate the observation of these results, Figure 6
is included. In Figure 6, we can see the results after the raster reclassification for every
flying height and cell size. In brown, we can see the pixels with a value = 0. Meanwhile,
the pixels with value = 1 (vegetation) are represented in green. In white rectangles are
indicated the area covered in the image gathered at 4 m.
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No aggregation (aggregation = 1); Aggregation =3 Aggregation =5 Aggregation = 10

—_—
7 = ]

Height=4m

L o
s ety

Height=8 m

Height=12 m

Figure 6. Resultant raster after reclassification for all relative flying height and cell sizes.
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In order to define the best cell size for each flying height, we calculate the % of pixels
with value =1 in each of the 15 subzones defined in the previous section. As we identify in
Figure 6, the higher the height, the lower the % of pixels with value = 1. The same trend is
observed when the aggregation cell size increases, finding in some cases sub-zones without
any pixels with value = 1. This effect at 4 m is only seen with aggregation cell size = 10 for
the Sub-zone 2. Meanwhile, for 8 and 12 m, we can identify this effect for an aggregation
cell size of 5 for Sub-zone 2. This effect appears for all the sub-zones with an aggregation
cell size of 10 and images gathered at 12 m.

After checking the results, we identify that some sub-zones identified initially as
sub-zone 2 cannot be used, as the establishment success is similar to Sub-zone 3. Therefore,
the values of these three sub-zones (1 sub-zone for a relative flying height of 8§ m and two
sub-zones of relative flying height of 12 m) are not included in the statistical analysis.

Following, in Figure 7, we outline the results of ANOVA and represent the variation
of mean values for each combination of flying height and cell size. We can identify in a
visual graphic the trends aforementioned (decrease of % of pixels = 1 as increase the flying
height and the cell size). On the other hand, we present the p-value of the ANOVAs and
the group creation. Our objective is that tool can distinguish between the three zones. The
other values must be interpreted as not accurate enough. Our results indicate that for
images collected at 4 m, the cell size of 1, 3, and 5 offered good performance. Meanwhile,
images gathered at 8 m only offers acceptable performance for aggregation sizes of 1 and
3. Images at 12 m only can be used without aggregation, which means cell size = 1.

Combination flying 4 m 4m 4m 4m
06 Height=4m | height and cell size 1 pixel 3 pixel 5 pixel 10 pixel
05 7 p-value 0.0001 0.0003 0.0010 0.0097
E 4 | Ne of groups 3 3 3 2
o | Zone1l c c c B
sl | zone2 A A A A
; i Zone 3 B B B AB
06 ] 3 Combination flying 8m 8m 8m 8m
05| Height =8 m | height and cell size  1pixel 3 pixel 5 pixel 10 pixel
04 . p-value 0.0000 0.0000 0.0002 0.0012
é 03 7 N2 of groups 3 3 2 2
5 L | Zone1 c c B B
) 0': i ,, L Iﬁ | Zzone2 A A A A
06 = = Zone 3 B B A A
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Figure 7. Summary of ANOVA and visual representation of means.

To conclude this subsection, we have identified six combinations of flying height and
aggregation cell size that offer results accurate enough to accomplish our requirements
based on ANOVA results. We select maximum as the most appropriate operator for the
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aggregation technique. We will analyse which flying height and cell size combination
minimise the storage requirements in the following subsection.

4.2. Comparison of Pairs of Flying Heigh and Cell Size

To analyse the balance between accuracy and resolution, we consider the size of the
picture after the aggregation with different cell sizes. The sizes are 1.48 MB, 168.75 KB,
60.75 KB, and 15.19 KB for the aggregations’ cell sizes of 1, 3, 5, and 10. Next, we have to
consider the number of pictures required to cover the given area. We assume 1154, 284,
and 128 pictures to cover the surface of 1 Ha for 4, 8, and 12 m of relative flying height.
With this data, we can calculate the storage requirements to store the resultant raster.

Figure 8 depicts the storage capacity needed to save the generated raster for a given
area. The red “x” indicates the combinations that address the accuracy requirements,
allowing subzones’ classification into three defined zones. Considering the required storage
capacity for each of the aforementioned combinations, the one that minimises this capacity
is 8 m and the cell size of 3 pixels. While the required storage for the images gathered at
8 m + cell size of 3 is 47.6 MB, for the other combinations are 68.45 KB (4 m + cell size = 5)
and 104.1 KB (12 m + cell size = 1).

B 7cc-1 [ Aes=3 ) Aes=5 | Age=10 X Accuracy is OK

10,000

1000

Fequired storage (Mbyes)

10

4 a 12

Cell size (pixel)

Figure 8. Required storage capacity for each pair of flying height and cell size for 1 Ha. The x in red
indicates what images can be used to differentiate the three zones.

Although this capacity seems small and might question the need for losing resolution
to save storage capacity, the use of aggregation with a cell size of 5 has supposed a reduction
of more than 95% of the required space compared with the original picture. For the field of
1 Ha monitored 4 m without aggregation techniques, the required storage capacity reaches
1667.8 MB compared with the 47.6 MB that we identify as the best combination.

4.3. ANN as An Alternative Classification Method

We include the generated data as input of ANN. With this analysis, we can evaluate
the classification performance of data with different characteristics (aggregation and flying
height). Moreover, this analysis is essential to endow our tool with a more powerful
classification method. It must be noted that even that this is an artificial intelligence
technique when the node will perform the method, the threshold established in this paper
will be included, and no ANN should be processed.

Thus, the first step is to create the ANN formed by three input neurons (aggregation
cell size, flying height, and % of pixels with value = 1) and three output neurons (high
establishment success, mean establishment success, and low establishment success). These
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establishment success levels correspond to Zone 1, 3, and 2, respectively. We need to
remark that the cases excluded in the statistical analysis are not included in the ANN. Thus,
a total of 168 cases are included.

We have selected 120 aleatory cases to train the ANN and 48 cases to verify its accuracy.
Table 1 shows the % of cases correctly classified in the training dataset. We can identify that
the most common erroneous classifications are between Zone 1 and 3. In general terms,
we have a correct classification of 80.83%. Zone 1 is the group with the highest number of
cases used for the training (47), and Zone 2 is the one with the lowest number (33). This
sharp difference is caused by the reduced number of observations for Zone 2. Regarding
the % of correct classification of each zone, Zone 2 is the one with the highest % of correct
classifications, and Zone 3 has the lowest %.

Table 1. Percentage (%) of cases correctly classified in the training dataset.

. Classified as
Zone Group Size 1 ) 3
1 47 39 (82.98%) 0 (0.00%) 8 (17.02%)
2 33 0 (0.00%) 28 (84.85%) 5 (15.15%)
3 40 8 (20.00%) 2 (5.00%) 30 (75.00%)

According to the parameters defined in the training dataset, we classify the verification
dataset. In this case, see Table 2, 83.33% of the cases are correctly classified with a percentage
of 100% for Zone 1 and Zone 2. Zone 3 was wrongly classified as Zone 1 in 10% of cases
and as Zone 3 in 30% of cases.

Table 2. Percentage (%) of cases correctly classified in the verification dataset.

. Classified as
Zone Group Size 1 ) 3
1 13 13 (100.00%) 0 (0.00%) 0 (0.00%)
2 15 0 (0.00%) 15 (100.00%) 0 (0.00%)
3 20 2 (10.00%) 6 (30.00%) 12 (60.00%)

5. Discussion

In this section, we are going to discuss our results. First, we discuss using our data
in conjunction with ANN to help farmers evaluate their legumes’ establishment success.
Then we analyse the limitations of this study and its usefulness in the framework of the
project GO TecnoGAR.

5.1. Further Use of the Results of ANN

The use of ANN in agriculture is not a new issue, and we can find several examples.
Specifically, in image processing, it has been used for many purposes, such as identifying
plant diseases [32] or yield estimations based on canopy cover and other parameters [33].
Nonetheless, the combined use of ANN with RGB images to compare the establishment
success is no found. Examples in which graphical information generated from ANN is
given to farmers to manage their lands can be found in [34,35].

To demonstrate the usefulness of the ANN and the generated data, we include an
example. In Figure 9, we show the output for the ANN, or the classification, in a graphical
form that can be used to classify other cases. Specifically, we represent the output for a
relative flying height of 8 m, in which a given combination of % of pixels and cell size used
can be combined to estimate the establishment success (high, medium, or low). This figure
illustrates the possibility of classifying other pictures gathered at 8 m for different cell sizes
according to their % of pixels = 1 (following the proposed methodology). It can be helpful
when no ANN can be conducted by the device that gathers and processes the data, as in
this proposal. This graphical classification includes the thresholds to be considered. In
this case, for 8 m, ANN suggests using 0.6 and 0.17%. The images with less than 0.6% of
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pixels = 1 zones represent low establishment success, images between 0.6 and 0.17% zones
with medium establishment success, and images above 17% zones with high establishment
success. Another advantage of this graphic is that data has been extrapolated to predict the
thresholds for other combinations.

. High establishment success (lentil) Medium establishment success (chickpea) .Low establishment success (chickpea)

0.6 = T T T T T T T T T T T T T T T T T T T ]

0.5 —

04 —

03—

0.2 —

% of pixels =1 (%)

01—

o_l s L s 1 s s L 1 L L s 1 s L s L L ]

4 6
Cell size (pixel)

Figure 9. Classification of ANN according to the % of pixels = 1 including variable cell size and fixed
relative flying height of 8 m.

Concerning the success of the classification in the verification dataset, it is similar
to the success obtained by other authors in the related work. In [18], the authors classify
correctly 89% of cases based on histograms to estimate the plant growth. In a recent survey
about machine learning in agriculture, most of the identified accuracies are between 80 and
100% [36]. Thus, our method has acceptable accuracy. This information is further exploited
in Section 5.3.

5.2. Limitations of the Performed Study

The present paper has based on the pictures acquired during the initial period of
leguminous crops growth. In this initial stage, it is difficult to differentiate between
different species of legumes by their colour. Nonetheless, the establishment success itself
is different, being the lentils, compared to chickpea, the one with the highest, fastest and
more uniform establishment success. The present index cannot be used to differentiate
between legumes species or varieties, but it can be used to compare the establishment
success of different areas regardless of the species.

The major limitation of this study is that to keep the experimentation stage as operative
as possible, we have reduced the flying high to three different values (4, 8, and 12 m).
Moreover, the selected drone has a limited resolution, which is fixed given our low-cost
objective. These analyses must be repeated with drones with better cameras and higher
costs to obtain results for scenarios where no limitations are encountered. Thus, it can be
evaluated if a camera with higher resolution and more flying height and cell size can find a
new combination that reduces the storage requirements.

The second limitation of this study is that images are gathered in a single location,
which means a reduced variability in the soil. Based on interviews with farmers performed
under the GO TecnoGAR framework, we can identify a considerable variability in soil
types. This variability might interfere with the correct classification of pixels. Nonetheless,
we do not expect further problems related to the soil, as even with the huge variability
(with and without straw, with and without pebbles, different organic matter contents, etc.)
not one of the observed fields had green components that can be classified as vegetation.
The weed plants might be a problem in some cases. This study includes weed plants,
specifically in Zone 1, Sub-zone 3 and 2, and Zone 2 Sub-zone 4 (at 4 m, in other cases,
check Figure 3), and no problems are detected. Nevertheless, in cases with a very high
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presence of weed plants, false-positive might affect the results of this tool. Thus, it is
essential to find an index capable of differentiating the weed plants and crops.

Based on the presented data, the proposed tool is the preliminary version that will be
enhanced by adding more scenario diversity and a higher range of establishment success
performances. Other tools that use more powerful methods might be more accurate, as
mentioned in the previous subsection. Nonetheless, for the purpose of this initial test,
the archived accuracy (83% or accuracy) is high enough. The last limitation, which is
justified based on our approach, is the conventional image processing instead of using
machine vision techniques for the classification. We aimed to develop a simple tool that can
operate in scenarios with no internet access and relatively low computation requirements
(low-cost nodes).

5.3. Usefulness of Proposed Tool for the GO TecnoGAR

The main use of this methodology is the comparison of the establishment success
performance of different varieties of chickpea or even between legumes based on their
canopy cover in an early stage. In the case of GO TecnoGAR, during the coming years 2022
and 2023, we will have experimental plots with different chickpea varieties with several
management settings (biostimulants, sowing patterns, etc.). This method aims to have
a fast and trustable tool designed for legumes to compare the establishment success to
evaluate the performance of different tested varieties. The proposed methodology will be
implemented in a node with a camera similar to the one used in this paper and mounted
in a drone. It will help to evaluate and compare the establishment success of the varieties
without requiring high computational capacity or storage capacity. The tool can be operated
in a Raspberry-type node without needing internet access for cloud computing, as the data
will be computed in the edge. It will only require operating with matrixes and applying a
threshold based on the results of the ANN analysis presented in this paper. These processes
will be running in the node.

Table 3 depicts a comparison between the related work and the proposed approach.
In this table, we summarise the main characteristics of our proposed solution and the
existing ones. Thus, we can see that existing methodologies are adapted to other crops. The
methods proposed in [20,21] followed a similar approach, Qualitative Classification (QIC).
However, they were applied to a higher height, and considering the low coverage and slow
growth of chickpea, they cannot be used. Another group of existing solutions [22-24,26]
offered Quantitative Classifications (QnC), but requires higher computational capacity.
Finally, Ref. [25] is based on a similar methodology, vegetation index and a threshold and
offer quantitative results. However, it is based on data from a multi-spectral camera, and
the price of the used sensor is up to EUR 6.700. The drone used to gather the pictures of
this paper costs less than EUR 600. The provided accuracies can be based on the results of
the classification or on linear regressions. In the second case, R?, is included to indicate
that accuracy is based on the correlation coefficient.

The proposed methodology can be applied to pictures captured through a diverse
range of devices. In most cases, images will be obtained with drones. Nonetheless, among
the plots included in GO TecnoGAR we find several areas where drones cannot be operated
due to legal restrictions. In these regions, farmland structures such as pivots will be used
to install cameras.
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Table 3. Comparative performance and methodology of existing solutions.
Ref. Parameter OnC/QIC Crop Information Source Distance Image Processing Accuracy
[20] Plant density QIC Sugarcane Landsat 8 + DJI Phantom 100 m Index + Threshold 73%
. Sentinel 2 + Mask + SVM 76%
[21] Plant density QIC Sugarcane DJI Phantom 3 100 m Mask + ANN 729,
. Hexacopter Index + function bwlabel 5
[22] Plant density QnC Wheat by Atechsys 3to7m +SVM R =0.8t0 0.89
[23] Plant density QOnC Soybean DJI Phantom 4 NIA * Index + Machine learning R?2=0.76
[24] Plant density QnC Soybean PlanetScope + DJI Phantom 4 Pro NIA * YOLO;S 221;6{1{3: +RF R?=0.95
[25] Plant density QnC Corn Sentienl 2 + DJI phantom 3 100 m NDVI + Threshold R?2=0.73
Sowing . Index + Threshold + 5
[26] success OnC Rapeseed Matrice 600 UAV 20 m OSFE R*=0.71 to 0.89
This Establishment Index + Aggregation o
paper success QIC Legumes Parrot Bebop 2 Pro 4to12m + Threshold 83%

* NIA = no information available.

There is no other specific tool for comparing or estimating establishment success in
legumes or in other crops. Therefore, it was necessary to generate a specific methodology to
estimate the establishment success before starting the experimental plans of the next years.

6. Conclusions

In this paper, we evaluate the possibility of using drone images with a simple image
processing (index, aggregation technique, and threshold) to estimate the establishment
success of legumes. The methodology is based on previous proposals in the field, designed
to identify weed plants, and was adapted to detect vegetation in contrast with soil. Three
zones with different establishment success are used to calibrate our tool. We include
images gathered at 4, 8, and 12 m with different aggregation cell sizes in order to find
the combination of the aforementioned parameters, which minimises the required storage
capacity to save the data.

Our results indicate that the proposed methodology can differentiate regions of the
picture with different establishment success performances correctly. Moreover, we identify
the combination that, maintaining the accuracy, reduces the storage requirements. This
combination is 8 m and aggregation cell size of 3 pixels. Finally, we show the usefulness of
the proposed tool combined with ANN to establish a threshold that will be applied for the
classification of the establishment success of the area.

Future work will include more flying height and aggregation cell size combinations
with better cameras to evaluate if other combinations improve the required storage ca-
pacity established in this paper. Moreover, applying the proposed method to compare
the establishment success of different chickpea varieties as a fast method to evaluate the
performance of these varieties along with the cropping periods under the framework of
GO TecnoGAR will be carried out. Thus, it will generate more images that will be used to
improve the operation of the method by having a qualitative approach with more classes
or even assess if it is possible to have a quantitative approach. After enhancing the method,
comparison of its performance with other proposals based on artificial intelligence will be
presented. Finally, the inclusion of more locations will nurture our database with a higher
soil variability, enhancing the robustness of the proposed method.
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