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Abstract

Image filtering is an essential image processing task for almost every computer
vision system where images are used for automatic analysis or for human in-
spection. In fact, noise contaminating an image may be a major drawback
for most other image processing tasks like, for instance, image analysis, edge
detection or pattern and/or object recognition and hence, it should be re-
duced.

In the last years, the interest in using colour images has grown dramati-
cally in a variety of applications. Therefore, colour image filtering has become
an interesting area of research. It has been widely observed that colour im-
ages have to be processed taking into account the existing correlation among
image channels. Probably, the most well-known approach in this sense is the
vector approach. Earliest vector filtering solutions as, for instance, the vector
median filter (VMF) or the vector directional filter (VDF), are based on the
theory of robust statistics and as a consequence, they are able to perform
a robust filtering. Unfortunately, these techniques are non-adaptive to local
image statistics which implies that the processed images are usually blurred
in edges and image details. To overcome this drawback, a number of adaptive
vector processing solutions have been recently proposed.

This PhD dissertation undertakes two main tasks: (i) the study of fuzzy
metrics applicability in colour image filtering tasks and (ii) the design of new
colour image filtering solutions that take advantage of the observed interest-
ing fuzzy metrics and fuzzy logic properties. Extensive experimental results
presented in this dissertation have shown that fuzzy metrics and fuzzy logic
are useful to design both non-adaptive and adaptive filtering techniques which
are competitive with respect to recent state-of-the-art filters. Moreover, as it
is demonstrated in several filter designs introduced in this dissertation, an in-
teresting advantage of fuzzy metrics is that they provide a simple mechanism
to simultaneously handle multiple distance criteria.
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Resumen

El filtrado de imagen es una tarea fundamental para la mayoŕıa de los
sistemas de visión por computador cuando las imágenes se usan para análisis
automático o, incluso, para inspección humana. De hecho, la presencia de
ruido en una imagen puede ser un grave impedimento para las sucesivas
tareas de procesamiento de imagen como, por ejemplo, la detección de bordes
o el reconocimiento de patrones u objetos y, por lo tanto, el ruido debe ser
reducido.

En los últimos años el interés por utilizar imágenes en color se ha visto
incrementado de forma significativa en una gran variedad de aplicaciones. Es
por esto que el filtrado de imagen en color se ha convertido en un área de
investigación interesante. Se ha observado ampliamente que las imágenes en
color deben ser procesadas teniendo en cuenta la correlación existente entre
los distintos canales de color de la imagen. En este sentido, la solución prob-
ablemente más conocida y estudiada es el enfoque vectorial. Las primeras
soluciones de filtrado vectorial, como por ejemplo el filtro de mediana vecto-
rial (VMF) o el filtro direccional vectorial (VDF), se basan en la teoŕıa de la
estad́ıstica robusta y, en consecuencia, son capaces de realizar un filtrado ro-
busto. Desafortunadamente, estas técnicas no se adaptan a las caracteŕısticas
locales de la imagen, lo que implica que usualmente los bordes y detalles de las
imágenes se emborronan y pierden calidad. A fin de solventar este problema,
varios filtros vectoriales adaptativos se han propuesto recientemente.

En la presente Tesis doctoral se han llevado a cabo dos tareas princi-
pales: (i) el estudio de la aplicabilidad de métricas difusas en tareas de proce-
samiento de imagen y (ii) el diseño de nuevos filtros para imagen en color
que sacan provecho de las propiedades de las métricas difusas y la lógica di-
fusa. Los resultados experimentales presentados en esta Tesis muestran que
las métricas difusas y la lógica difusa son herramientas útiles para diseñar
técnicas de filtrado, tanto no adaptativas como adaptativas, que son com-
petitivas respecto a otras técnicas en el estado del arte. Además, como se
demuestra en varios de los filtros diseñados en esta Tesis, una ventaja intere-
sante de las métricas difusas es que proporcionan un mecanismo sencillo para
manejar simultáneamente múltiples criterios de distancia.
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Resum

El filtrat d’imatge és una tasca fonamental per a la majoria dels sistemes
de visió per ordinador quan les imatges s’usen per a l’anàlisi automàtica o, fins
i tot, per a la inspecció humana. De fet, la presència de soroll en una imatge
pot ser un greu impediment per a les successives tasques de processament
d’imatge com, per exemple, la detecció de vores o el reconeixement de patrons
o objectes i, per tant, el soroll ha de ser redüıt.

En els darrers anys l’interés per utilitzar imatges en color s’ha vist in-
crementat de forma significativa en una gran varietat d’aplicacions. És per
açò, que el filtrat d’imatge en color s’ha convertit en una àrea d’investigació
interessant. S’ha observat àmpliament que les imatges en color han de ser
processades tenint en compte la correlació existent entre els distints canals
de color de la imatge. En este sentit, la solució probablement més coneguda
i estudiada és l’enfocament vectorial. Les primeres solucions de filtrat vec-
torial, com per exemple el filtre de mediana vectorial (VMF) o el filtre di-
reccional vectorial (VDF), es basen en la teoria de l’estad́ıstica robusta i, en
conseqüència, són capaços de realitzar un filtrat robust. Desafortunadament,
estes tècniques no s’adapten a les caracteŕıstiques locals de la imatge, la qual
cosa implica que usualment les vores i detalls de les imatges s’esborrallen i
perden qualitat. A fi de resoldre este problema, uns quants filtres vectorials
adaptatius s’han proposat recentment.

En la present Tesi Doctoral s’han dut a terme dos tasques principals: (i)
l’estudi de l’aplicabilitat de mètriques difuses en tasques de processament
d’imatge i (ii) el disseny de nous filtres per a imatge en color que trauen
profit de les propietats de les mètriques difuses i la lògica difusa. Els resul-
tats experimentals presentats en esta Tesi mostren que les mètriques difuses
i la lògica difusa són ferramentes útils per a dissenyar tècniques de filtrat,
tant no adaptatives com adaptatives, que són competitives respecte d’altres
tècniques en l’estat de l’art. A més, com es demostra en alguns dels filtres dis-
senyats en esta Tesi, un avantatge interessant de les mètriques difuses és que
proporcionen un mecanisme senzill per a utilitzar simultàniament múltiples
criteris de distància.





Presentation

Image filtering is probably the most common image processing task. Filtering
an image or a signal means, in general, to transform that image/signal into a
more appropriate one for a particular purpose. Image filtering is commonly
applied to eliminate or reduce the noise that may be present in an image
and that can alter the structured information contained in it. Indeed, noise
filtering is the process of estimating the original image information from
noisy data, what makes that the filtering problem can be seen as a problem
of information interpretation. In fact, noise contaminating an image may be
a grave drawback for most other image processing tasks as, for instance,
image analysis, edge detection or pattern and/or object recognition. As a
consequence, image filtering becomes an essential step in any computer vision
system where images are used for automatic analysis or, even, for human
inspection.

First image filtering solutions were developed for gray-scale, one-channel,
images. These solutions were usually designed to remove a specific type of
noise. Lots of papers can be found in the literature describing image filter
designs that use different approaches to process images. One of the most well-
known approaches are fuzzy filters. Fuzzy sets and fuzzy logic tools are able
to deal with uncertainty and, since images are highly non-stationary in edges
and it is difficult to distinguish between noise and edge pixels, these tools
were proved to be highly appropriate for image filtering tasks. As a result, a
number of fuzzy filtering solutions were published.

In the last years, the interest in using multichannel signals, and in par-
ticular colour images, has impressively grown in a variety of applications.
Therefore, colour image filtering became an interesting area of research. The
earliest solutions to filter colour images were componentwise approaches that
used some gray-scale image filter in each colour channel. In this way, each
channel was processed independently from the other channels. However, it
is known that the existing correlation among the image channels should be
taken into account. Otherwise, many colour artefacts and other undesired
effects may appear in the processed images. This implied the need of specific
colour image filtering solutions.

One of the most studied approaches for colour image processing is the
vector approach. According to this approach, each image pixel is treated as
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a vector comprised of the colour components and the image is treated as a
vector field. Therefore, all image channels are jointly processed and the cor-
relation among the image channels is necessarily taken into account. The first
vector filtering solutions as, for instance, the vector median filter (VMF) or
the vector directional filter (VDF), are based on the theory of robust statis-
tics. These vector filters are able to perform a robust filtering. That is, they
are able to efficiently suppress noise. However, the operation made by these
vector filters in each image location is fixed, i.e., they are non-adaptive to
local image statistics. It has been widely observed that non-adaptive pro-
cessing usually results in blurred edges and image details. To overcome this
drawback, a number of adaptive vector processing solutions have been re-
cently proposed to adapt the filter to varying image characteristics and noise
statistics, and to obtain good performance in real-life applications.

The adaptive processing of colour images have been approached using
different techniques and tools. The most recent approaches can be classi-
fied according to the technique used to approach adaptiveness. Among these
techniques we can find (i) techniques based on weighting coefficients, (ii) tech-
niques that perform a multiple filtering, (iii) switching filtering techniques,
(iv) techniques for Gaussian noise smoothing, and (v) fuzzy filtering tech-
niques.

This PhD thesis aims at developing new colour image filtering solutions
based on the usage of fuzzy logic and fuzzy metrics. Fuzzy metrics is a math-
ematical tool that has been extensively studied from the theoretical point
of view. However, despite their interesting theoretical properties they have
been few times used in real applications. The main objectives pursued by
this PhD thesis are two: First, to study the applicability of fuzzy metrics in
colour image filtering tasks and to determine in which cases fuzzy metrics
may present some advantages over classical metrics; and second, to design
new colour image filtering solutions that use fuzzy metrics and fuzzy logic
and that take advantage of the observed interesting fuzzy metrics properties.

In order to achieve these objectives the work done within this PhD thesis
has been divided into two stages: First, we have implemented some variants
of vector filters that use some fuzzy metric instead of the classical metrics or
measures they originally used. By analyzing both the proposed vector filters
and the observed performance differences in front of their classical versions,
we will conclude in which cases and from which viewpoints fuzzy metrics may
be more appropriate; second, new colour image filters using fuzzy metrics
will be developed. The novel filtering solutions will exploit the interesting
properties of fuzzy metrics in order to take full advantage of their usage.

This dissertation is divided into three parts where each part consists of
several chapters. Please note that each chapter is followed by the bibliographic
references used in it.

Part I includes preliminaries concerning the area of research of this dis-
sertation. Chapter 1 describe the state-of-the-art of colour image filtering.
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Chapter 2 introduces some basic concepts about fuzzy sets and fuzzy logic
intended to illustrate the reader who is unfamiliar with the fuzzy theory. In
addition, Chapter 2 also includes the state-of-the-art of fuzzy topology and
fuzzy metrics stressing the importance of the concept of fuzzy metric due to
George and Veeramani which is used in this dissertation.

Part II presents the contributions made in this PhD thesis. The novel
filtering designs and techniques proposed in this dissertation are presented
as a set of articles/contributions that have been published/submitted in/to
international journals or conferences. Each contribution, that is included
as a chapter of this dissertation in Chapters 4-12, is a self-contained pa-
per that presents the proposed filtering technique, the realized experiments,
the achieved results and the drawn conclusions. Notice that due to the self-
contained nature of the papers, probably some contents may be repeated
along the document. However, in spite of this, we have preferred to include
the original content of each published/submitted paper for the best under-
standing of the reader. Previously to the contributions, Chapter 3 includes a
summary of all the contributions presented in Chapters 4-12 where the main
content of each contribution is briefly explained.

Finally, Part III presents the conclusions obtained and some possible fu-
ture research lines.
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Part I

Preliminaries





1 State-of-the-art of vector filtering for colour
images

In any digital colour image, some pixel colour values may have been altered
due to the presence of noise. The general objective of the different noise
filtering structures is to eliminate the wrong observations or, at least, to
reduce their influence, without affecting those colours that have not been
perturbed by noise.

Commonly, two noise types that may corrupt colour images are considered
(see Section 1.6). On the one hand, the noise associated to the camera sensor,
also called thermal noise, and, on the other hand, the noise that may be
introduced during the image transmission through a noisy channel [45]. The
camera sensor noise is usually modelled as additive white Gaussian noise.
Transmission noise is commonly modelled as impulsive noise. Impulsive noise
corruption process affects only some image pixels by changing one or more
colour components of the affected pixel by values which usually significantly
deviates from the originals.

Several filtering techniques have been proposed over years of research.
Among the proposed techniques, we can find some linear processing tech-
niques which are mathematically simple and can be designed and imple-
mented easily. These techniques have been used during years due to their
simplicity and sufficient performance in several applications. Most of these
techniques operate under the assumption that the signal under processing
can be represented by means of a stationary model and so, they try to opti-
mize the appropriate parameters for such a model. However, many problems
in the area of image processing cannot be efficiently solved by using linear
techniques. Unfortunately, linear processing techniques have some lacks for
image processing tasks because they cannot deal with the non-linearities of
the image formation model and they cannot take into account the non-linear
features of human visual system (HVS) [41].

Image signals are composed of flat regions and sharp edges which bear
important information for visual perception. Filters which are able to pre-
serve image borders and details are highly appropriate for image filtering and
enhancement. Unfortunately, most of linear signal processing techniques tend
to blur borders and degrade other image details [45].
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1.1 Nonlinear filtering techniques

The need of dealing with complex nonlinear systems, joint with the avail-
ability of a higher computational capacity, implied the reevaluation of con-
ventional filtering techniques. New algorithms and techniques that take ad-
vantage of the higher computational capacity and that manage more realistic
assumptions were needed. To this end, nonlinear signal processing techniques
have been introduced. Theoretically, nonlinear techniques are able to suppress
non-gaussian noise, to preserve borders and image details and to eliminate
image defects that were introduced during image formation or transmission
through nonlinear channels. In spite of the recent growth of this kind of tech-
niques and the appearance of new theoretical results, tools and applications,
nonlinear filtering techniques still lack a unifying theory. Instead of that,
each class of non-linear operators has its own mathematical tools that pro-
vide a reasonably good performance analysis. As a result, multiple nonlinear
signal processing techniques have appeared in the literature. Nowadays, the
following classes of nonlinear processing techniques can be identified [45]:

– Polynomial based techniques
– Homomorphic techniques
– Mathematical morphology based techniques
– Order statistics based techniques

Polynomial filters, specially second order Volterra filters (quadratic fil-
ters), have been used for colour image filtering, non-linear channels modelling
in telecommunications and for multichannel geophysical signal processing.

Homomorphic filters and their extensions are one of the firsts non-linear
filtering classes and have been used in digital image and signal processing.
This class of filters has been used in several applications such as dependent
multiplicative noise suppression, colour image processing and multichannel
satellite image processing. Their basic feature is that they use nonlinearities,
mainly logarithms, to transform nonlinearly related signals to additive signals
and then they process them with lineal filters. The linear filter output should
be transformed according to the inverse nonlinear operation.

Mathematical morphology can be geometrically described in terms of the
made actions or the applied operators over binary, monochrome or colour
images. The geometric description depends on small synthetic images named
structural elements. This form of mathematical morphology, sometimes called
structural morphology, is useful for image processing and analysis. Morphol-
ogy filters can be found in image processing and analysis applications. Specif-
ically, its applications areas include image filtering, image enhancement and
edge detection.

In the following section, the family of the order statistics filters is de-
scribed. This family of filters is probably the most popular family of nonlin-
ear filters and this is the family of filters involved in the work carried out in
this dissertation.
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1.2 Order statistics filtering techniques

The theoretical basis of order statistics filters is the theory of robust statistics
[11]. There exist a number of filters for colour images within this family where
the most well-known filter is the vector medial filter (VMF) [3]. The idea
behind this approach is that unrepresentative or outlying observations in sets
of colour vectors can be seen as contaminating the data and thus they may
represent a drawback for further processing tasks. Therefore, order statistics
filters provide a tool for interpreting and classifying outliers and methods for
managing them by rejecting them or by applying procedures to reduce their
influence. Outliers can be defined as scalar (univariate) data samples tough
outliers exist in multivariate data such as colour vectors. The basic notion
of outlier is an statistically unexpected observation in terms of some basic
model that can be extended to multivariate data and, in particular, to colour
images. However, the expression of this notion and the determination of the
appropriate procedures to identify and adequate outliers are not direct when
the operation is made over multivariate data, mainly due to the fact that an
outlier in multivariate data does not have a simple representation as a sample
that deviates the maximum from the rest of the samples.

In univariate data analysis, there exists a natural data ordering that makes
possible extreme values to be identified and the distance from these extreme
values to the center can be computed easily. In this way, the problem of
identifying and isolating any individual values which are atypical with respect
to the rest of the set is simple. Because of this, numerous filtering techniques
which are based on univariate data ordering have been introduced in the
literature.

The popularity and extensive use of scalar order statistics filters lead to
the introduction of similar techniques for the analysis of multivariate data
and multichannel signals, as colour vectors and colour images. However, in
order to design this sort of filters, the problem of multivariate data ordering
should be solved.

In the following, we present some basic techniques to approach the prob-
lem of multivariate data ordering and some classical vector filters that use
these ordering techniques.

1.3 Multivariate data ordering scheme

A multivariate signal is a signal where each sample has multiple components.
This kind of signal is also called vector valued, multichannel or multispectral
signal. Colour images are typical examples of multichannel signals. A digi-
tal colour image is usually represented by the three primaries in the RGB
colour space as a two-dimensional three-variate (three-channel) signal. Let
X denote a p-dimensional random variable and X = [X1,X2, . . . , Xp]τ a p-
dimensional vector of random variables and let x1,x2, . . . ,xn denote n ran-
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dom samples in X. Each sample xi is a vector of p-dimensional observations
xi = [xi1, xi2, . . . , xip]τ . The objective is to order the n values (x1,x2, . . . ,xn)
according to some ordering scheme.

The concept of data ordering that is natural in the univariate case cannot
be directly extended to the multidimensional case since there is no unam-
biguous, universally accepted, way to order n multivariate samples. However,
there are some ways to order the data which are called sub-ordering prin-
ciples in multivariate data [5, 6]. Sub-ordering principles are categorized in
four types:

– Marginal ordering or M-ordering
– Conditional ordering or C-ordering
– Partial ordering or P-ordering
– Reduced (aggregated) ordering or R-ordering

1.3.1 M-ordering

According to the marginal ordering or M-ordering scheme, samples are or-
dered along each of the p-dimensions independently, so obtaining:

x1(1) ≤ x1(2) ≤ . . . ≤ x1(n) (1.1)
x2(1) ≤ x2(2) ≤ . . . ≤ x2(n) (1.2)

· · · · · · (1.3)
xp(1) ≤ xp(2) ≤ . . . ≤ xp(n) (1.4)

where xi(k) denotes the value of the i-th channel that is ranked in k-th
position.

Accordingly, the vector x1 = [x1(1), x2(1), . . . , xp(1)]τ consists of the min-
imal elements in each dimension and the vector xn = [x1(n), x2(n), . . . , xp(n)]τ

consists of the maximal elements in each dimension, where τ denotes trans-
pose matrix. The marginal median is defined as xν+1 = [x1(ν + 1), x2(ν +
1), . . . , xp(ν + 1)]τ for n = 2ν + 1. Notice that this vector may not corre-
spond to any original data. However, in the scalar case, there is a one-to-one
correspondence between the original samples xi and the order statistics x(i).

1.3.2 C-ordering

In the conditional ordering case or C-ordering, multivariate data samples are
ordered conditionally on one of the sets of marginal observations. Thus, one of
the marginal components is ranked and the other components of each vector
are listed according to the position of their ranked component. Assuming
that the first dimension is ranked, the ordered samples would be represented
as follows:
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x1(1) ≤ x1(2) ≤ . . . ≤ x1(n) (1.5)
x2[1] ≤ x2[2] ≤ . . . ≤ x2[n] (1.6)

· · · · · · (1.7)
xp[1] ≤ xp[2] ≤ . . . ≤ xp[n] (1.8)

where x1(i), i = 1, 2, . . . , n are the marginal order statistics of the first
dimension, and xj [i], j = 1, 2, . . . , p, i = 1, 2, . . . , n are the quasi-ordered sam-
ples in dimensions j = 2, . . . , p conditionally on the marginal ordering of the
first dimension. Indeed, these components are not ordered, but simply listed
according to their ordered component in each case. In the two dimensional
case, the second non-ordered dimension is called concomitant with respect to
the first, ordered, dimension.

The main advantage of C-ordering is its simplicity, since only one scalar
ordering has to be computed. The disadvantage is that, since only the infor-
mation in one of the colour channels is used, it is assumed that most of the
information is borne by the used channel. If this assumption is not fulfilled
then important information will be lost. For instance, we can consider the
problem of ordering signals in the YIQ colour space. If a C-ordering is realized
on the luminance channel Y then the chromatical information in channels I
and Q is ignored for the ordering. Therefore, any advantages of identifying
outliers using chromatical information would be lost.

1.3.3 P-ordering

According to the P-ordering scheme, subsets of the data are grouped forming
minimal convex hulls. The first convex hull is formed such that the perimeter
contains a minimum number of points and the resulting hull contains all
other points in the given set. The points along this perimeter are denoted as
p-order group 1. These points form the most extreme group. The perimeter
points are then discarded and the process repeats. The new perimeter points
are denoted as p-order group 2 and then removed in order to the process
to be continued. P-ordering procedure can be used to isolate outliers but
this ordering does not provide any ordering within the groups and thus it
is not easily expressed in analytical terms. In addition, the determination
of the convex hull is conceptually and computationally difficult, specially
when working with high-dimensional data. Therefore, P-ordering is rather
infeasible for implementation in colour image processing.

1.3.4 R-orden

In the R-ordering or reduced (aggregated) ordering, each multivariate obser-
vation xi is associated to a scalar value by means of some combination of the
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component sample values. Then univariate ordering can be realized over the
resulting scalar values. Thus, the set x1,x2, . . . ,xn can be ordered in terms
of the associated scalar values Ri = R(xi), i = 1, 2, . . . , n.

In contrast to M-ordering, the aim of R-ordering is to carry out some
overall ordering among the original multivariate data. By means of this or-
dering, the multivariate ordering is reduced to a simple ordering operation
in a transformed data set. This ordering cannot be interpreted as the clas-
sical ordering between scalar data because there is no sample that can be
considered as the minimum or maximum of the data. Since the multivariate
ordering is based on the use of a reduction function R(.), points that diverge
from the center in opposite directions may be in the same order ranks. In ad-
dition, by utilizing a reduction function to realize the multivariate ordering,
useful information may be lost. Due to the fact that distance functions have a
natural mechanism for identification of outliers, the reduction function most
frequently used is the generalized (Mahalanobis) distance [6].

R(x, x, Γ ) = (x − x)τΓ−1(x − x) (1.9)

where x is a location parameter for the data set, or underlying distri-
bution, in consideration and Γ is a dispersion parameter with Γ−1 used
to apply a differential weighting to the components of the multivariate ob-
servation inversely related to the population variability. Parameters of the
reduction function may take arbitrary values, such as x = 0 and Γ = I or
can be assigned the true mean µ or dispersion S settings. If these values are
unknown their standard estimates given by

x =
1
n

n∑
i=1

xi (1.10)

and

S =
1

n − 1

n∑
i=1

(xi − x)(xi − x)τ (1.11)

can be used instead.
Depending on the location parameter used in the ordering procedure the

following schemes can be distinguished:

a)Mean R-ordering:
Given a set of n multivariate samples xi, i = 1, 2, . . . , n in a processing
window and given x the sample mean, the mean R-ordering is defined as:

(x(1),x(2), . . . ,x(n) : x) (1.12)

where (x(1),x(2), . . . ,x(n)) is the ordering defined by d2
i = (xi−x)τ (xi−x)

and (d2
(1) ≤ d2

(2) ≤ . . . ≤ d2
(n)).
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b)Marginal median R-ordering:
Given a set of n multivariate samples xi, i = 1, 2, . . . , n in a processing
window and given xm the marginal mean of the considered data set, the
marginal mean R-ordering is defined as:

(x(1),x(2), . . . ,x(n) : xm) (1.13)

where (x(1),x(2), . . . ,x(n)) is the ordering defined by d2
i = (xi −xm)τ (xi −

xm) and (d2
(1) ≤ d2

(2) ≤ . . . ≤ d2
(n)).

c) Center sample R-ordering:
Given a set of n multivariate samples xi, i = 1, 2, . . . , n in a processing
window and given xc the center sample in the window, the center sample
R-ordering is defined as:

(x(1),x(2), . . . ,x(n) : xc) (1.14)

where (x(1),x(2), . . . ,x(n)) is the ordering defined by d2
i = (xi − xc)τ (xi −

xc) and (d2
(1) ≤ d2

(2) ≤ . . . ≤ d2
(n)).

The R-ordering scheme is specially useful for the detection of outliers in
multivariate data samples. Moreover, unlike the M-ordering, data are treated
as vectors instead of processing each component separately. Unlike the C-
ordering, the R-ordering scheme gives the same importance to each colour
channel. Finally, the R-ordering is simpler than the P-ordering and easier to
implement. Therefore, the R-ordering is the most used sub-ordering princi-
ple in multivariate data analysis and, in particular, in multichannel image
processing.

1.3.5 An appropriate vector ordering procedure for colour image
processing

The sub-ordering principles above explained can be used to rank any sort of
multivariate data. However, to define an ordering scheme which is attractive
for colour image processing, this should be focused to the ordering of colour
image vectors. Such an ordering should satisfy the following criteria [45]:

1. The proposed scheme should be useful from a robust estimation point of
view, allowing the extension of the scalar order statistics filters to the
multivariate domain.

2. The scheme should preserve the notion of varying levels of extremeness
that was present in the scalar ordering case.

3. The proposed ordering should take into account the sort of multivariate
data to process. Thus, since the RGB colour space will be commonly used,
equal importance should be given to the three channels and all the infor-
mation contained in each channel has to be considered.
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On the basis of these three criteria, the ordering scheme that has been
proposed and extensively used in the literature is a variation of the R-ordering
that utilizes some appropriate measure of distance or similarity between
colour vectors [3, 20, 26, 27, 45, 56]. For each sample in the set xi, an ag-
gregated measure with respect to all other samples in the set is defined as
follows:

Ra(xi) =
n∑

j=1

R(xi,xj) (1.15)

This aggregated measure Rai = Ra(xi) is used to define the vector order-
ing, so that:

Ra1 ≤ Ra2 ≤ . . . ≤ Ran (1.16)
x(1) ≤ x(2) ≤ . . . ≤ x(n) (1.17)

Using this ordering scheme, ordered samples x(i) have a one-to-one corre-
spondence with respect to the original samples. This is an important differ-
ence with respect to the M-ordering. In addition, all sample components are
given equal importance, unlike the C-ordering.

The proposed ordering scheme is focused to take into account the in-
terrelations among the multivariate samples since the distance or similarity
between each couple of samples in the data set is used. The output of the
ordering procedure depends critically on both the data set and the function
R(xi,xj) used to compute the distance or similarity between each pair of
samples.

1.4 Classical vector filtering techniques

Classical vector filtering methods are based on the above ordering scheme
to rank the data samples by using different distance or similarity functions.
These methods are briefly described in the following.

1.4.1 Vector medial filter VMF [3]

Let I denote a multichannel image and W a processing window of finite length
n. Image vector within the window W are denoted as Ij , j = 1, ..., n. The
distance between two vectors Ii, Ij is denoted as ρ(Ii, Ij) where ρ is usually
a classical metric. For each vector in the filtering window, an aggregated
distance with respect to all other vectors in the window is computed. The
scalar value Ri =

∑n
j=1 ρ(Ii, Ij), is the distance associated to the vector Ii.

The ordering of the Ri’s:
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R(1) ≤ R(2) ≤ ... ≤ R(n), (1.18)

where R(k) denotes the value ranked in the k-th position, implies the
ordering of the vectors Ii’s:

I(1) ≤ I(2) ≤ ... ≤ I(n) (1.19)

Given this order, the output of the VMF is IV MF = I(1).
In the design of the VMF, the distance between two colour vectors is com-

monly measured using some distance measure derived from the generalized
Minkowski metric or Lγ norm which is defined as:

ρ(Ii, Ij) =

(
m∑

k=1

|Ii(k) − Ij(k)|γ
) 1

γ

(1.20)

where γ characterizes the used metric. Minkowski metric includes the
city-block distance (γ = 1) or L1 metric, the Euclidean metric (γ = 2) or 2

metric and the chess-board distance (γ = ∞) or L∞ norm. Other commonly
used distance and similarity measures are reviewed in [26, 45].

Since the VMF output is the sample associated to the minimum aggre-
gated distance, VMF minimizes the distance to other vector samples in the
filtering window. VMF can be derived either as a maximum likelihood es-
timate (MLE) when the underlying probability densities of input samples
are bi-exponential or by using vector order-statistics techniques. Thus, the
VMF is scale, translation and rotation invariant [45]. As well, if the vector
dimension is 1 then the VMF reduces to the scalar median. Since the im-
pulse response of the VMF is zero, it excellently suppresses impulsive noise
[3, 26]. Other approaches have been introduced with the aim of speeding up
the VMF by using a linear approximation of the Euclidean distance [7] and
by designing a fast algorithm when using the L1 norm [8]. On the other hand,
the VMF has been extended to fuzzy numbers in [10] by means of certain
fuzzy distances.

1.4.2 Extended vector median filter EVMF [3, 58]

The combination of the VMF with linear techniques has been used to improve
its performance in the suppression of gaussian noise [3, 58]. The filter built
as a combination of the VMF and the arithmetic mean filter (AMF) is the
so called extended vector median filter (EVMF) [3, 45, 58]. This filter selects
between the VMF output IV MF and the AMF output I according to the
following rule:

IEV MF =
{

I if
∑n

j=1 ρ(I, Ij) ≤
∑

j = 1nρ(IV MF , Ij)
IV MF otherwise

}
(1.21)
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where I denotes the AMF output is computed as I = 1
n

∑n
j=1 Ij . As

in the VMF case, different distance measures between colour vectors can be
considered. The EVMF performs so that near edges or areas with high details
it behaves like the VMF. Thus, it avoids the blurring that would be generated
by the AMF in these cases. In the smooth parts of the image, it more often
chooses the mean vector to be the output value what results in improved noise
attenuation, above all, from the Gaussian noise reduction point of view.

1.4.3 Basic vector directional filter BVDF [56]

Directional filtering employs a vector ordering technique that uses the angle
between two colour vectors as the distance criterion for the ordering. Since
vectors are multichannel samples, they are characterized by their magnitude
and direction. These characteristics can be used for designing multichannel
image filters.

In the BVDF each vector is associated to an aggregated angular distance
measure

αi =
N∑

j=1

A(Ii, Ij) i = 1, 2, . . . , N, (1.22)

where

A(Ii, Ij) = arccos

(
Ii · Ij

|Ii| · |Ij |
)

(1.23)

represents the angle between the vectors Ii and Ij .
Using αi as ordering criterion:

α(1) ≤ α(2) ≤ . . . ≤ α(N), (1.24)

the ordering of the samples in the window is

I(1) ≤ I(2) ≤ . . . ≤ I(N) (1.25)

The lowest rank that is associated to the lowest aggregated angular distance
represents the BVDF output IBV DF = I(1).

Since BVDF outputs the sample in the set which is the closest one to
the other vectors in the set in terms of the angular distance used, and since
directionality is associated to chromaticity in the RGB colour space, the
BVDF may outperform the VMF in terms of chromaticity preservation.

1.4.4 Generalized directional distance filter GVDF

The set of the r lowest ranked samples in the BVDF ordering constitutes the
generalized vector directional filter scheme which is defined as follows:
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IGV DF = {I(1), I(2), . . . , I(r)} (1.26)

The GVDF output is a set of r samples whose angle difference αi, i =
1, 2, . . . , N is relatively low so that vectors with atypical directions, and thus
atypical chromaticities, are removed from the set. In order to choose the final
filter output, GVDF should be used in conjunction with some other filter
processing vectors according to its magnitude. Usually, GVDF is used as a
second level filter so that its output is an input for some other filter that
computes the final output.

1.4.5 Directional distance filter DDF [20]

The directional distance filtering (DDF) technique uses simultaneously both
distance criteria employed by VMF and BVDF. This implies that this fil-
tering technique is much more computationally demanding than the VMF
and BVDF. On the other hand, because of the use of both magnitude and
angular distances the DDF outperforms the VMF and BVDF since it is able
to reject vectors with atypical magnitude and vectors with atypical direction
from the data set and so, it is able to generate a more robust output.

The distance criterion used by the DDF is expressed as a weighted product
of the aggregated Minkowski distances and the aggregated angular distances
as follows:

Ωi =

 N∑
j=1

(
m∑

k=1

|Ii(k) − Ij(k)|γ
) 1

γ

1−p

·
 n∑

j=1

A(Ii, Ij)

p

(1.27)

for i = 1, 2, . . . , n and p ∈ [0, 1]. DDF output is the sample I(1) associated
to the minimum Ω(1) so that Ω(1) ≤ Ω(2) ≤ . . . Ω(N). In the above expression
p is a parameters that tunes the importance given to the magnitude criterion
in front of the angular criterion. If p = 0, DDF behaves as VMF whereas for
p = 1 DDF nehaves as BVDF.

1.4.6 Hybrid Filters

The introduction of the DDF was based on a set of heuristic filters that
tried to simultaneously minimize the distance functions employed by VMF
and BVDF. Directional hybrid filters HVFs [45] operate on direction and
magnitude of vectors independently and then they apply a combination to
generate the output.

The filter HV F1 makes a non-linear combination of VMF and BVDF
according to the following rule:
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IHV F1 =

{
IV MF if IV MF = IBV DF(

|IV MF |
|IBV DF |

)
IBV DF otherwise

}
(1.28)

where IV MF denotes the VMF output, IBV DF denotes the BVDF output
and | · | denotes the vector magnitude.

Another more complex hybrid filter HV F2 [45] that also uses the AMF
is designed as follows:

IHV F2 =


IV MF if IV MF = IBV DF

Iout1 if
∑N

i=1 |xi − Iout1| ≤
∑N

i=1 |xi − Iout2|
Iout2 otherwise

 (1.29)

where

Iout1 =
( |IV MF |
|IBV DF |

)
IBV DF , (1.30)

Iout2 =
( |IAMF |
|IBV DF |

)
IBV DF (1.31)

and IAMF denotes the AMF output.
The HV F1 and HV F2 hybrid filters are able to outperform VMF and

BVDF since they generate a vector output that is appropriate both from
the point of view of vector magnitude and from the point of view of vector
direction. However, they are much more computationally expensive since they
need to compute the outputs from VMF, BVDF and AMF in the HV F2 case.

1.5 Adaptive colour image filters

Classical vector filters mentioned in the previous section have the drawback
that the operations made in any image location are fixed, i.e. they are non-
adaptive to local features. It has been widely observed that non-adaptive
processing usually results in blurred edges and image details. To overcome
this drawback, a number of vector processing solutions have been proposed
to adapt the filter to varying image characteristics and noise statistics, and
to obtain good performance in real-life applications such as microarray image
processing, television image enhancement, virtual restoration of artworks, and
colour video processing. Some recent overviews on vector processing schemes
can be found in [26, 27, 28, 45]. In this section we summarize some of the
most well-known and/or recent colour image adaptive filters that are more
closely related to the content of this PhD thesis.

The adaptive processing of colour images have been approached using dif-
ferent techniques. The most recent approaches can be classified according to
the technique used to approach adaptiveness. Among these techniques we can
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find (i) techniques based on weighting coefficients, (ii) techniques that per-
form a multiple filtering, (iii) switching filtering techniques, (iv) techniques
for Gaussian noise smoothing, and (v) fuzzy filtering techniques. In the fol-
lowing sections we comment the state-of-the-art works that belong to these
classes.

1.5.1 Techniques based on weighting coefficients

Some recent adaptive techniques are based on computing weights that are
associated to each pixel in the filtering window. Afterwards, the computed
weights are used to compute the output so that the noise is reduced and the
original signal structures, such as edges and fine details are preserved. The
output is usually calculated either as a weighted average of the vectors in the
window or as the output of a weighted vector median procedure.

The main difference between the methods based on weighting coefficients
is the technique used to compute the weights. The technique in [24] uses an
off-line optimization algorithm to compute appropriate weights. The works
in [30, 29, 34, 54] use different statistics to compute the weights. Polynomial
functions are used in [4]. The work in [25] computes the weights in order to
achieve a better chromaticity preservation and the method in [35] calculates
the weights by means of evolutionary computation.

The filtering techniques based on weighting coefficients are appropriate
when noise statistics and image characteristics are unknown since these tech-
niques can adapt for removing different types of noise.

1.5.2 Techniques using multiple filtering

Some filtering techniques aim at computing the filter output by using differ-
ent sub-filters simultaneously or by dividing the filtering procedure in two or
more steps. Instead of trying to find a method able to provide an appropri-
ate output in any circumstance, these techniques use different sub-filtering
methods or filtering phases and their particular outputs are used to compute
the final output.

Within this approach, the methods in [40, 22, 23, 57] propose to simul-
taneously use several sub-filters in each image location. Then, in [40], the
filter output is computed by choosing the most appropriate sub-filter output,
and in [22, 23, 57] by fusing the sub-filter outputs. The works [22, 23] use a
rational function to perform the fusion and the work in [57] uses a genetic
algorithm. The method in [38] analyzes similarities between the neighboring
colour vectors in a two-step impulse detection procedure and, a three-step
procedure including robust estimation, vector partition and weighted filter-
ing, has been recently introduced in [39].

Since a flexible performance is achieved by using the different sub-filtering
techniques or filtering steps, this kind of filters may also be used when the
noise and image characteristics are unknown.
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1.5.3 Switching filtering techniques

A type of noise that frequently contaminates digital images is the so called
impulsive, or fat-tailed, noise (see Section 1.6). Impulsive noise corruption
process affects only some pixels in the image while leaving other pixels un-
changed.

The switching filtering techniques aim to affect only the noisy pixels while
keeping the desired image structures (edges and fine details) unchanged.
When the images are contaminated with impulsive noise the switching ap-
proaches are widely used due to its sufficient performance and proven compu-
tational simplicity. Existing switching vector filters use different approaches
to identify impulses. For example, the solution in [1] performs a cluster anal-
ysis of the pixel neighbourhood and detects as noisy those pixels whose mem-
bership degree to the clusters is low. The t-student test vector median filter
(tTVMF) [9] assumes that the neighbors of the colour under processing fol-
low some multi-normal distribution. Each colour component is checked to
belong to the corresponding distribution with a high confidence level. If at
least one of the components does not belong to the distribution then the
corresponding colour pixel is considered as noisy. The work in [18] uses a
fuzzy inference system which takes as inputs some statistical measures of the
pixel under processing and its neighbourhood. The method in [31] checks the
difference between the input vector and the mean of several lowest ranked
vectors. The method in [32] performs the detection by using the input vector,
the vector median, the vector mean and their aggregated distances to other
vectors inside the filter window. The work in [33] extends the former work in
[32] by utilizing the variance approximation in the multivariate case. The so-
lution presented in [34] uses center weighting coefficients and the methods in
[38, 51, 52] use a similarity based vector ordering to increase the importance
of the pixel under consideration in the impulse detection process.

The peer group concept in [12, 16, 21] has also been used to detect and
filter out impulsive noise. The filters introduced in [12, 21] use the difference
between the peer group of the pixel under consideration and other peer groups
in its neighbourhood to form the detection rule. The work in [17] proposes to
use windows of different size to determine the peer region of each pixel and
then check the peer region size and shape. In the approach introduced in [53]
for a pixel to be declared as noise-free it is required to have a peer group of
a determined size around it.

As commented above, the switching approaches are very useful to process
images contaminated with impulsive noise since they are computationally
simple and they can provide successful results. However, this filtering is usu-
ally not appropriate for suppressing other types of noise such as, for instance,
Gaussian noise.
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1.5.4 Techniques for Gaussian noise smoothing

The so called Gaussian noise is other type of noise that usually corrupts
digital images. Additive Gaussian noise, which is usually introduced during
the acquisition process, is characterized by adding to each image pixel channel
a random value from a zero-mean Gaussian distribution. The variance of this
distribution determines the intensity of the corrupting noise. The zero-mean
property allows to remove such noise by locally averaging pixel channel values
(see Section 1.6).

Ideally, removing Gaussian noise would involve to smooth the different
areas of an image without degrading neither the sharpness of their edges
nor their details. Classical linear filters, such as the Arithmetic Mean Filter
(AMF) or the Gaussian Filter, smooth noise but blur edges significantly.
Adaptive nonlinear methods have been used to approach this problem. The
aim of the methods proposed in the literature is to detect edges by means
of local measures and smooth them less than the rest of the image to better
preserve their sharpness. A well-known method is the anisotropic diffusion
introduced in [43]. In this technique, local image variation is measured at
every point and pixels from neighborhoods whose size and shape depend
on local variation are averaged. Diffusion methods are inherently iterative
since the use of differential equations is involved. A non-iterative interesting
method, is the bilateral filter (BF) studied in [55]. The output of the BF at a
particular location is a weighted mean of the pixels in its neighborhood where
the weight of each pixel depends on the spatial closeness and photometric
similarity respect to the pixel in substitution. The BF has been proved to
perform effectively in Gaussian noise suppression and it has been the object
of further studies [13, 15, 48]. In the works in [13, 15, 48] other techniques
are proposed to compute the weights used in the averaging.

The above mentioned techniques are specifically designed for the reduc-
tion of Gaussian noise and, therefore, they are not able to reduce other kinds
of noise such as, for instance, impulsive-like noise.

1.5.5 Fuzzy filtering techniques

Since the images are highly non-stationary in edges and due to the difficulty
in distinguishing between noise and edge pixels, fuzzy sets, that are able to
deal with uncertainty, are highly appropriate for image filtering tasks. Indeed,
the ability of managing uncertainty which is inherently adaptive implies that
fuzzy filtering are useful for the suppression of different kinds of noise.

Over the last years a huge amount of fuzzy-based noise reduction meth-
ods for gray-scale images were developed [42], e.g. the histogram adaptive
fuzzy filter (HAF) [59, 60], the fuzzy impulse noise detection and reduction
method (FIDRM) [46], the iterative fuzzy control based filter (IFCF) [14], the
adaptive fuzzy switching filter (AFSF) [61], the fuzzy similarity-based filter
(FSB) [19], the fuzzy random impulse noise reduction method (FRINRM)
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[47] and so on. These fuzzy filters were developed for images corrupted with
fat-tailed noise like impulse noise. They use fuzzy adaptive approaches that
outperform rank-order filter schemes (such as the median filter). Although
these filters are especially developed for grey-scale images, they can be used
to filter colour images by applying them on each colour component separately.
However, this approach generally introduces many colour artefacts mainly on
edge and texture elements.

To overcome these problems several fuzzy filtering approaches for colour
images were successfully introduced. The vector median operations are ex-
tended to fuzzy numbers in [10]. In [2] a fuzzy rule based system determines
the filter output. In [18] a fuzzy inference system (FISF) for detecting im-
pulses in colour images is combined with a switching scheme to select between
an identity filter output and the output from a proposed L-filter design. This
L-filter is designed to exploit the ordering techniques of the vector median
filters. The final output is calculated by using the optimal magnitude and di-
rection of the vectors. The vector median and some fuzzy measures are used
in [?, 49, 50] for calculating the fuzzy coefficients to determine the output
as a weighted average of the inputs. In [36, 37] fuzzy coefficients determine
the filter output by selecting the most representative input vector or as the
combination of the vectors inside the filter window. The fuzzy impulse noise
detection and reduction method for colour images (FIDRMC), studied in [?],
is one alternative colour method which does not use vectors at all. The result
of the detection method, which is applied on each colour component sepa-
rately, is used to calculate the noise-free colour component differences of each
pixel. These differences are then used by the noise reduction method so that
the colour component differences are preserved.

1.6 Objective assessment of colour image filters
performance

In addition to visual inspection which is inherently subjective, some objective
evaluation of filtering performance is needed in order to assess a particular
filtering method. A commonly used procedure to objectively assess the per-
formance achieved by any filtering technique is the following.

First, some appropriate test colour image is selected for the processing.
Images presenting some interesting characteristics such as the presence of
sharp borders, fine details or textured areas can be considered as appropriate
for the tests. Figure 1.2 shows several test images, some of them very well-
known, that are used by the scientific community and that are also used in
this PhD thesis.

Second, the introduction of some kind of noise in the image is simu-
lated. For this, some noise model is used in the simulation. Mainly, two noise
types that may corrupt colour images are considered. On the one hand, the
noise associated to the camera sensor, also called thermal noise, and, on the
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Noise
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Noise-free image Noisy image

Noise
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Objective evaluation

PSNR= 29.92
NCD= 0.53
MAE= 0.95

Numerical value

Fig. 1.1. Scheme of a procedure to objectively evaluate a particular filtering
method.

other hand, the noise that may be introduced during the image transmission
through a noisy channel [45].

The noise associated to the camera sensor or thermal noise is modelled as
additive white Gaussian noise having the following probability distribution
in each colour channel:

p(xn) =
1

(2πσ)
1
2
e

−x2

2σ2 (1.32)

where σ denotes the standard deviation of the distribution. This noise is
introduced independently in each colour channel however, it can be assumed
that all three colour channels have the same average noise magnitude with
constant noise variance over the entire image plane.

Transmission noise is commonly modelled as impulsive noise. Impulsive
noise corruption process affects only some pixels in the image while leaving
other pixels unchanged. Typically, the noise process changes one or more
colour components of the affected pixel by replacing its original values with
the values which usually significantly deviates from the originals. The most
common impulsive noise models consider that the impulse is either an extreme
value in the signal range or a random uniformly distributed value within the
signal range. For RGB images, these possibilities are represented with the
following two well-known models.

In the so-called impulsive noise type I or fixed-value impulsive noise
model, the corruption is modeled as follows:
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(a) (b) (c)

(d) (e) (f)

(g) (h)

(i) (j) (k)

Fig. 1.2. Some classical test images used for filter assessment: (a) Lenna (256×256),
(b) Baboon (256 × 256), (c) Peppers (512 × 512), (d) Microscopic (50 × 50), (e)
Parrots (256 × 384), (f) Bright Rose(287 × 200), (g) House (256 × 256), (h) Artic
Hare (135 × 200), (i) Pills (130 × 200), (j) Boat (576 × 720), and (k) Bird image
(900 × 600).
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F∗ =


{d1, FG, FB} with probability p · p1 ,
{FR, d2, FB} with probability p · p2 ,
{FR, FG, d3} with probability p · p3 ,

{d1, d2, d3} with probability p ·
(
1 −∑3

i=1 pi

)
.

(1.33)

where F = {FR, FG, FB} denotes the original pixel, F∗ denotes the pixel
corrupted by the noise process and d1, d2, d3 are independent values equal to
0 or 255 with equal probability. The symbol p is the probability of the noise
appearance and pi, i = 1, 2, 3 determine the probability of appearance of the
noise in the image channels.

In the so-called impulsive noise type II or random-value impulsive noise
model, F∗ = {d1, d2, d3} is obtained using d1, d2, d3 which are random uni-
formly distributed independent integer values in the interval [0, 255] with
probability p.

Finally, the corrupted image is filtered using the filtering procedure to be
assessed and the processed image is compare with the original noise-free image
in order to measure the degree in which the output image is similar to the
original image. Different functions can be used to measure this similarity. In
order to properly assess the quality of the filtering both the noise suppression
and the detail preserving abilities have to be evaluated. The Mean Absolute
Error (MAE) is the most used function to approach the detail-preserving
assessment and the Peak Signal to Noise Ratio (PSNR) is the function usually
used to express the noise suppression ability. In addition, the Normalized
Colour Difference (NCD) measure is also used since it approaches the human
perception [53]. These three objective quality measures have been also used
in this dissertation. The mentioned objective quality measures are defined as
follows [45]:

MAE =

N ·M∑
i=1

Q∑
q=1

∣∣∣F q
i − F̂ q

i

∣∣∣
N · M · Q (1.34)

PSNR = 20 log

 255√
1

NMQ

N ·M∑
i=1

Q∑
q=1

(
F q

i − F̂ q
i

)2

 (1.35)

where M , N are the image dimensions, Q is the number of channels of
the image (Q = 3 for colour images), and F q

i and F̂ q
i denote the qth com-

ponent of the original image vector and the filtered image, at pixel position
i, respectively, and
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NCDLab =

N ·M∑
i=1

∆ELab

N ·M∑
i=1

E∗
Lab

(1.36)

where ∆ELab = [(∆L∗)2 + (∆a∗)2 + (∆b∗)2]
1
2 denotes the perceptual

colour error and E∗
Lab = [(L∗)2 +(a∗)2 +(b∗)2]

1
2 is the norm or magnitude of

the original image colour vector in the L∗a∗b∗ colour space.
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2 Fundamentals of fuzzy sets, fuzzy logic,
fuzzy topology and fuzzy metrics

2.1 Concept of fuzzy set

A fuzzy set is a set with a smooth boundary. Fuzzy set theory generalized
classical set theory to allow partial membership. Let us introduce fuzzy sets
by analyzing the following limitation of classical sets. A set in classical set
theory always has a sharp boundary because membership in a set is a black-
and-white concept, i.e., an object either completely belongs to the set or does
not belong to the set at all. Even though some sets have sharp boundaries
(e.g., the set of married people), many others to not have sharp boundaries
(e.g. the set of happily married couples or the set of good graduate schools).
Fuzzy set theory addresses this limitation by allowing membership in a set to
be a matter of degree. The degree of membership in a set is expressed by a
number between 0 and 1; 0 means entirely not in the set, 1 means completely
in the set and a number in between means partially in the set. In this way,
a smooth and gradual transition from the regions outside the set to those in
the set can be described.

A fuzzy set is thus defined by a function that maps object in domain of
concern to their membership values in the set. Such a function is called the
membership function. More specifically, the concept of fuzzy set was intro-
duced by Lofti. A. Zadeh [33] in 1965. A fuzzy set is mathematically defined
as an assignment of a value in [0, 1] to each element of a classical set. This
value represents the degree of membership of the element to the fuzzy set.
Formally, given a non-empty set X, every application A : X → [0, 1] is called
a fuzzy set on X. X is named support set of the fuzzy set. The fact that
there is a lot of real-life situations where objects do not have a totally defined
membership criterion motivates the appearance of this concept and suggests
its usefulness. Fuzzy sets have been extensively studied from the theoretical
point of view and the developed fuzzy set theory includes concepts regard-
ing relations between classical and fuzzy sets, operations in fuzzy sets, types
and design of membership functions, properties of fuzzy sets, and so on (see
[19, 31, 32]).
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2.2 Principles of fuzzy logic

The term fuzzy logic has been used in two different senses. In a narrow sense,
fuzzy logic refers to a logical system that generalizes the two-valued logic
for reasoning under uncertainty. In a broad sense, fuzzy logic refers to all of
the theories and technologies that employ fuzzy sets. Even though this broad
sense, we can explain the basics of fuzzy logic by using the following three
basic concepts: (1) the above commented fuzzy sets, (2) linguistic variables
and (3) fuzzy if-then rules.

2.2.1 Linguistic variables

Having introduced the fundamental concept of fuzzy set, it is natural to see
how it can be used. Like a conventional set, a fuzzy set can be used to describe
the value of a variable. For example, the sentence “The amount of trading is
heavy” uses a fuzzy set “Heavy” to describe the quantity of the stock mar-
ket trading in one day. More formally it is expressed as: TradingQuantity is
Heavy. The variable TradingQuantity in this example demonstrates an im-
portant concept in fuzzy logic: the linguistic variable. A linguistic variable
enables its value to be described both qualitatively by a linguistic term (i.e.,
a symbol serving as the name of a fuzzy set) and quantitatively by a cor-
responding membership function (which expresses the meaning of the fuzzy
set). The linguistic term is used to express concepts and knowledge in hu-
man communication, whereas membership function is useful for processing
numeric input data.

A linguistic variable is like a composition of a symbolic variable (a variable
whose value is a symbol) and a numeric variable (a variable whose value is
a number). In our example about stock market trading activities, there are
certainly many other linguistic descriptions about the trading quantity such
as “light”, “moderate”, “heavy”, and so on. All these linguistic, descriptions,
that are indeed unprecise and vague, can be managed using fuzzy sets. In
this way, the numerical value of the variable TradingQuantity is expressed in
terms of its membership degrees to the fuzzy sets used in the representation.
Figure 2.1 shows an example of representation of the linguistic descriptions
of the variable TradingQuantinty using fuzzy sets.

2.2.2 Fuzzy if-then rules

Among all the techniques developed used fuzzy sets, the fuzzy if-then rule
(or, in short, fuzzy rule) is by far the most visible one due to its wide range
of successful applications. Fuzzy rules have been applied to many disciplines
such as control systems, decision making, pattern recognition and system
modelling [4, 31, 32]. Fuzzy rules also play a critical role in industrial ap-
plications ranging from consumer products, robotics, manufacturing, process
control, medical imaging, to financial trading.
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Fig. 2.1. Example of representation of the linguistic descriptions of the variable
TradingQuantinty using fuzzy sets.

Fuzzy rule-based inference can be understood from several viewpoints.
Conceptually, it can be understood using the metaphor of drawing a conclu-
sion using a panel of experts. Mathematically, it can be viewed as an inter-
polation scheme. Formally, it is a generalization of a logic inference called
modus ponens.

In classical logic, if we know a rule is true and we also know the antecedent
of the rule is true, then it can be inferred, by modus ponens, that the con-
sequent of the rule is true. For example, suppose we know that the rule R1
below is true:

Rule 1 R1:
IF the annual income of a person is greater than 120000 Euros

THEN the person is rich

We also know that the following statement is true: Maria’s annual income
is 121000 Euros.

Based on modus ponens, classical logic can deduce that the following state-
ment is also true: Maria is rich.

One limitation of modus ponens is that it cannot deal with partial match-
ing. To illustrate this, let us consider rule R1 and the case of a person whose
income is 119000 Euros. People would say that that person would be some-
what rich however, modus ponens would deduce that that person is not rich.
This problem has two causes: (1) the antecedent of R1 does not represent
a smooth transition into the rich category that is often exhibited in human
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reasoning, and (2) modus ponens cannot deal with a situation where the
antecedent of a rule is partially satisfied.

Viewing such a limitation, fuzzy rule-based inference generalizes modus
ponens to allow its inferred conclusion to be modified by the degree in which
the antecedent is satisfied. This is the essence of fuzzy rule-based inference.

Analogously to the classical logic case, the structure of a fuzzy rule has
two components: an if-part (also referred to as the antecedent) and a then-
part (also referred to as the consequent).

Fuzzy Rule 1 Structure of a fuzzy rule:
IF <antecedent>

THEN <consequent>

Since it is not the aim of this text to explain in detail how the fuzzy
rules and the fuzzy rule-based systems work, in the following, a brief and
informal explanation about the basis of their working procedure is given. The
interested reader can find extensive information in the existing literature, for
instance in [31, 32, 33].

According to above, classical logic, by using a classical rule, is able to
determine whether the consequent of the rule is satisfied or not just by looking
if the antecedent is satisfied or not. In the case of fuzzy logic, by using a fuzzy
rule and when some knowledge about the degree in which the antecedent is
satisfied is available, the degree in which the consequent is satisfied can be
computed by means of a procedure called fuzzy rule-based inference. Any
fuzzy rule-based system commonly uses multiple fuzzy rules. The way in
which fuzzy-rule based systems work can be explained in a simple way as
follows. Let us assume that the fuzzy rule-based system is composed by a set
of input variables, a set of fuzzy rules and a set of output variables whose
values are to be computed by the system. The system working procedure can
be divided in three phases: (1) First, on the basis of the numerical values of
the input variables, the degree in which the antecedents of the fuzzy rules
are satisfied are computed. This phase is named fuzzyfication; (2) Second, the
fuzzy rule-based inference procedure is used to compute the degree in which
the consequents are satisfied; (3) Finally, output variable values, that may
not be fuzzy, are computed by using the degree in which the consequents of
the fuzzy rules are satisfied. This phase is named defuzzyfication.

2.3 Principles of fuzzy topology

In the following, the concept of fuzzy metric is explained within the context
of fuzzy theory.

One of the first research topics that appeared in fuzzy mathematics is
fuzzy topology. The first work on fuzzy topology was done by C. L. Chang
in 1968 [3]. According to Chang, a topology τ in X is a family of fuzzy sets



2.3 Principles of fuzzy topology 31

on X that is closed for unions and for finite intersections. This family should
also contain the constant functions 0 and 1. Notice that this is the most used
concept both in the existing literature and the developed theory, however it is
not the only one. So, from another point of view, R. Lowen [21, 22] requests,
in addition, that τ should contain all constant functions. This topology is
the so-called laminated topology [29]. Therefore, unlike Chang’s topology, a
laminated topology does not constitutes a generalization of the topology in
the classical sense. On the other hand, Goguen [11] and Hutton [16] generalize
the notion given by Chang by replacing the fuzzy range I = [0, 1] by a
complemented lattice L, so implying the so-called concept of L-topology.

One of the most interesting and most studied problems in fuzzy topology
is to obtain an appropriate notion of fuzzy metric space. Recall that the
study of metric spaces is based on the notion of distance between points,
however, in many real situations this distance cannot be exactly determined.
This problem, that belongs to the fuzzy field, was previously approached
from the point of view of the probability theory. Indeed, in 1942 K. Menger
[23] introduced the so-called probabilistic metric spaces. In these spaces, if
d(x, y) is the distance between two points x and y then the distribution
function Fxy(t) represents the probability of the distance between x and y to
be lower or equal than t. Later, Schweizer and Sklar [27, 28] followed with
the study of these spaces and recently many other works have been published
on this issue [2], [24], [25], [26], [27], [30].

It is easy to notice that the notion of fuzzy topology has been studied
from many different points of view and the same is true in almost all fuzzy
concepts that have been studied. Regarding fuzzy metrics, also many authors
have approached this concept from many different points of view. Here we
make a simple classification of these works into two large groups: On the one
hand, a first group would be constituted by those works where a (pseudo-
)metric on X is treated as a function d : Ω × Ω −→ R where Ω ⊂ IX

(I = [0, 1]) that satisfies some axioms which are analogous to the ones of the
classic metrics case. Among these works we point out the works made by Deng
Zi-ke [5], Erceg [8], Hu [15], and Artico and Moresco [1]. The most interesting
problems within this line are: (i) investigating in which way a fuzzy metric
induces a fuzzy (quasi-)uniformity in the sense of [17] and a fuzzy topology
[8, 5, 15], (ii) determining the criteria for (pseudo-)metrization [7, 8, 15], (iii)
defining the properties of the disjunction in metric spaces [8, 1, 15, 6], (iv)
and defining the properties of completion and bounding [1, 6]. On the other
hand, a second group would include those works where the distance between
objects is fuzzy. The most relevant results published in this line are due to
Kaleva and Seikkala [18] and Kramosil and Michalek [20].

In our work, we use the concept of fuzzy metric space given by George
and Veeramani. This concept is defined as an appropriate modification of the
concept of fuzzy metric from Kramosil and Michalek [20].
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Now we make a chronological summary to show the most relevant results
concerning the theory of fuzzy metrics.

2.4 Probabilistic metric spaces

Previous to the introduction of the fuzzy theory in the field of metric spaces
the study of metrics was associated to probability concepts. In this sense, in
1942 Menger [23] defined the concept of probabilistic metric space as follows.

Definition 2.4.1 Let X be an arbitrary non-empty set. Let Fpq be a family
of distribution functions that satisfy the following:

(M1) Fpq(0) = 0
(M2) If p = q, then Fpq(x) = 1 ∀x > 0
(M3) If p �= q, then Fpq(x) < 1 for some x > 0
(M4) Fpq = Fqp

(M5) Fpr(x + y) ≥ T (Fpq(x), Fqr(y)) ∀p, q, r ∈ X and ∀x, y ∈ R, where
T : [0, 1] × [0, 1] → [0, 1] is a function that satisfies:

(i) T (a, b) = T (b, a)
(ii) T (a, b) ≤ T (c, d) if a ≤ c y b ≤ d
(iii) T (a, 1) > 0 if a > 0, and T (1, 1) = 1

Let us note that a distribution function F : R → [0, 1] is a left-continuous
non-decreasing application so that inf

x∈X
{F (x)} = 0 and sup

x∈X
{F (x)} = 1. The

statistic metric Fpq can be interpreted as the probability of the distance
between two points p and q to be lower than x.

Schweizer and Sklar [28] replaced the above condition (M5) by the follow-
ing:

If Fpq(x) = 1 and Fqr(y) = 1, then Fpr(x + y) = 1

The resulting space is called weak probabilistic metric space and it gen-
eralizes the Menger’s probabilistic spaces.

Schweizer and Sklar, also introduced the concept of continuous t-norm
which has an important relevance in the development of fuzzy metric space
theory.

Definition 2.4.2 A binary operation ∗ : [0, 1]× [0, 1] → [0, 1] is a continuous
t-norm if it satisfies the following conditions:

(i) ∗ is continuous, associative and commutative
(ii) a ∗ 1 = a∀a ∈ [0, 1]
(iii) a ∗ b ≤ c ∗ d if a ≤ c and b ≤ d, a, b, c, d ∈ [0, 1]

From this definition, Schweizer and Sklar defined a probabilistic metric
space as follows.
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Definition 2.4.3 A probabilistic metric space is a pair (X,F ) where X is
an arbitrary set and F is an application on X × X to the set of all possible
distribution functions and satisfies:

(1) Fxy(t) = 1 ∀t > 0 if and only if x = y
(2) Fxy(0) = 0
(3) Fxy = Fyx

(4) If Fxy(t) = 1 and Fyz(s) = 1, then Fxz(t + s) = 1

A Menger space (X,F, ∗) is a probabilistic metric space along with a t-
norm that satisfies the condition

Fxz(t + s) ≥ Fxy(t) ∗ Fyz(s)

2.5 Fuzzy metric spaces of Kaleva and Seikkala

Since the uncertainty regarding the existing distance between two points is
more related to the fuzzy notion than to randomness, Kaleva and Seikkala [18]
extended the concept of metric space to the novel fuzzy theory by associating
the distance between two points to a fuzzy number.

Definition 2.5.1 A fuzzy number is an application x : R → [0, 1] that asso-
ciates a degree of membership to each real number.

A fuzzy number is said to be convex if x(t) ≥ min{x(s), x(r)} where
s ≤ t ≤ r.

For 0 < α ≤ 1 and a fuzzy number x, its α-sets of level [x]α are defined
by

[x]α = {u : x(u) ≥ α}
As a result, x is convex if and only if [x]α is a convex set in R ∀α ∈]0, 1]
Additionally, if it exists an element u ∈ R so that x(u) = 1, then the

fuzzy number x is normal.
A fuzzy number is said to be non-negative if x(u) = 0 ∀u < 0.
The set of all right semi-continuous non-negative normal convex fuzzy

numbers is denoted as G.
Using the above notation Kaleva and Seikkala define the concept of fuzzy

metric space as follows.

Definition 2.5.2 Let X be a non-empty arbitrary set and let d : X×X → G

be an application. Let L,R : [0, 1] × [0, 1] → [0, 1] be two symmetric applica-
tions that are nondecreasing in both arguments and that satisfy L(0, 0) = 0
and R(1, 1) = 1. We denote by

[d(x, y)]α = [λα(x, y), ρα(x, y)] for x, y ∈ X, 0 < α ≤ 1
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The vector (X, d, L,R) is named KS fuzzy metric space and d is a KS
fuzzy metric if the following conditions are satisfied:

(a) d(x, y) = 0 if and only if x = y
(b) d(x, y) = d(y, x) for any x, y ∈ X
(c) for any x, y, z ∈ X,

(1) d(x, y)(s + t) ≥ L (d(x, z)(s), d(z, y)(t))
if s ≤ λ1(x, z), t ≤ λ1(z, y) and s + t ≤ λ1(x, y)
(2) d(x, y)(s + t) ≤ R (d(x, z)(s), d(z, y)(t))
if s ≥ λ1(x, z), t ≥ λ1(z, y) y s + t ≥ λ1(x, y)

Since non-negative real numbers belong to G, if we assume that

L(a, b) = 0 y R(a, b) =
{

0 a = b = 0
1 otherwise

then the usual metric space may be considered as a KS fuzzy metric space.
Additionally, definition 2.5.2 generalizes Menger’s spaces as it is proven in
the following note.

Note 2.5.3 Let (X,F, ∗) a Menger space. We define d : X × X → G as

d(x, y)(t) =
{

0 t < txy = sup{t : Fxy(t) = 0}
1 − Fxy(t) t ≥ txy

If we take R(a, b) = 1−((1 − a) ∗ (1 − b)) and L(a, b) = 0, then (X, d, L,R)
is a KS fuzzy metric space and so, a Menger space can be considered as KS
fuzzy metric space.

In the case that these conditions are fulfilled , then (X,F, ∗) is a Menger
space where a ∗ b = 1 − R(1 − a, 1 − b) for any a, b ∈ [0, 1], x, y ∈ X, s ∈ R,

Fxy(s) =
{

0 s ≤ λ1(x, y)
1 − d(x, y)(s) s ≥ λ1(x, y)

Moreover, (X,F, ∗) is named associated Menger space.

2.6 Fuzzy metric spaces of Kramosil and Michalek

Kramosil and Michalek [20] defined the concept of fuzzy metric space by
generalizing the concept of probabilistic metric space to the fuzzy theory in
the following way:

Definition 2.6.1 [12, 20]
A tern (X,M, ∗) is said to be a fuzzy metric space of Kramosil and

Michalek (KM fuzzy metric space) if X is an arbitrary set, ∗ is a continuous
t-norm and M is a fuzzy set on X ×X × [0,+∞[ that satisfies the following
conditions for any x, y, z ∈ X and t, s > 0:
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(KM1) M(x, y, 0) = 0
(KM2) M(x, y, t) = 1 ∀t > 0 if and only if x = y
(KM3) M(x, y, t) = M(y, x, t)
(KM4) M(x, y, t) ∗ M(y, z, s) ≤ M(x, z, t + s)
(KM5) M(x, y, ·) : [0,+∞[→ [0, 1] is continuous

2.7 Fuzzy metric space of George and Veeramani

The concept of fuzzy metric introduced by George and Veeramani [10, 9]
is the concept that we use in this dissertation. The concept is defined as a
modification of the concept introduced by Kramosil and Michalek as follows.

The tern (X,M, ∗) is a fuzzy metric space if X is a non-empty arbitrary
set, ∗ is a continuous t-norm and M is a fuzzy set on X × X×]0,+∞[ that
satisfies the following axioms for any x, y, z ∈ X, t, s > 0:

(GV1) M(x, y, t) > 0
(GV2) M(x, y, t) = 1 if and only if x = y
(GV3) M(x, y, t) = M(y, x, t)
(GV4) M(x, y, t) ∗ M(y, z, s) ≤ M(x, z, t + s)
(GV5) M(x, y, .) : ]0,+∞[−→]0, 1] is continuous

In the following, by fuzzy metric space we mean the concept due to George
and Veeramani. As usual, we will refer a fuzzy metric space X without explicit
mention to the fuzzy metric if it is not necessary.

The fuzzy metric M generates a topology τM in X. The topology τM has
as a basis the family of open balls {BM (x, r, t) : x ∈ X, 0 < r < 1, t > 0}
where BM (x, r, t) = {y ∈ X : M(x, y, t) > 1 − r}.

A sequence {xn}∞n=1 in X is called a Cauchy sequence if for each ε ∈]0, 1[
y t > 0, there exists n0 ∈ N so that M(xn, xm, t) > 1 − ε if m,n ≥ n0. X is
called complete if every Cauchy sequence is convergent. X is F -bounded if
there exists r ∈]0, 1[ so that M(x, y, t) > 1 − r for any x, y ∈ X, t > 0.

If (X, d) is a metric space, then the function Md(x, y, t) =
t

t + d(x, y)
is a

fuzzy metric (called standard) on X, with the product t-norm. The topology
τMd

coincides with the topology induced by d.
A fuzzy metric (M, ∗) on X is said to be stationary if M does not depend

on t, i.e. for each x, y ∈ X the function Mx,y(t) = M(x, y, t) is constant [14].
A subset A of X is said to be F-bounded [10] if there exist t > 0 and

s ∈]0, 1[ such that M(x, y, t) > s for all x, y ∈ A.
The above definitions agree with the metric spaces classical theory in the

sense that (X, d) is complete (bounded) if and only if (X,Md, ·) is complete
(F -bounded).

This definition of fuzzy metric is appropriate and it deserves special at-
tention since, as it was proved by Gregori and Romaguera [13] the class of
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metrizable topological spaces coincides with the class of the fuzzy metrizable
topological spaces of George and Veeramani.

From now on, we assume as notion of fuzzy metric space the one due to
George and Veeramani.

M(x, y, t) may be interpreted as the degree of nearness between x and y
with respect to t. In such a case, attending to (GV2), M(x, y, t) = 0 should
be associated to a classical distance ∞.

The most well-known three continuous t-norms, that we denote by Ti

(i = 1, 2, 3), are the following.

T1(x, y) = min{x, y}
T2(x, y) = xy
T3(x, y) = max{0, x + y − 1}

Taking into account the above definitions, the following conditions are
satisfied:

(i) T3(x, y) ≤ T2(x, y) ≤ T1(x, y), for any x, y ∈ [0, 1]
(ii) T (x, y) ≤ T1(x, y) for any continuous t-norm T and any x, y ∈ [0, 1]
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Part II

Contributions





3 Summary of contributions

As commented in the presentation of this dissertation, the filters proposed
in this PhD thesis along with the realized work, the achieved results and
the drawn conclusions are presented as a set of articles/contributions that
have been published/submitted in/to international journals or conferences.
In the following Chapters 4-12, each contribution is included. Notice that
since each contribution is a self-contained paper probably some contents of
this document may be repeated. In this chapter, we briefly explain the content
of each one of the presented contributions.

The main objectives pursued in this dissertation are two: First, to study
the applicability of fuzzy metrics in colour image filtering tasks and to deter-
mine in which cases fuzzy metrics may present some advantages over classical
metrics; and second, to design new colour image filtering solutions that use
fuzzy metrics and fuzzy logic and that take advantage of the interesting fuzzy
metrics properties.

In order to achieve these objectives, the work that has been carried out
has been divided into two parts: First, in Chapters 4-7 we implement some
variants of vector filters that use some fuzzy metric instead of the classical
metrics or measures originally used. So that, by analyzing the proposed vec-
tor filters in front of their classical versions and the observed performance
differences, we will observe in which cases and from which viewpoints fuzzy
metrics may be more appropriate; second, in Chapters 8-12 we design new
colour image filters on the basis of the observed fuzzy metrics performance ad-
vantages. These filtering solutions exploit the interesting properties of fuzzy
metrics in order to take full advantage of their usage.

In the following we present a summary of each contribution stressing the
basic concepts used in each contribution along with the more outstanding
novelties, and results obtained. Note that figure and table references in the
following summaries are referred to the corresponding chapters.

Also, other publications of the author where some concepts and/or me-
thods in this dissertation has been used are the following:

– J. Camacho, S. Morillas, P. Latorre, Efficient impulse noise suppression
based on statistical confidence limits, Journal of Imaging Science and Tech-
nology 50 5 (2006) 427-436.
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– J.G. Camarena, V. Gregori, S. Morillas, G. Peris-Fajarnés, New method for
fast detection and removal of impulsive noise using fuzzy metrics, ICIAR06,
Lecture Notes in Computer Science 4141 (2006) 359-369.

– J. Riquelme, S. Morillas, G. Peris-Fajarnés, D. Castro, Fuzzy metrics appli-
cation in video spatial deinterlacing WILF07, Lecture Notes in Computer
Science, to appear.

– J.G. Camarena, V. Gregori, S. Morillas, A. Sapena, Fast detection and
removal of impulsive noise using peer groups and fuzzy metrics, Journal of
Visual Communication and Image Representation, to appear.

– S. Schulte, S. Morillas, V. Gregori, E.E. Kerre, A new fuzzy color corre-
lated impulse noise reduction method, revised version submitted to IEEE
Transactions on Image Processing .

– V. Gregori, S. Morillas, B. Roig, Rank-ordered differences switching vector
filter, submitted to Signal Processing: Image Communication.

– J.G. Camarena, V. Gregori, S. Morillas, A. Sapena, Some improvements
for image filtering using peer group techniques, submitted to IEEE Signal
Processing Letters.

3.1 Contribution (i): A new vector median filter based
on fuzzy metrics

In this paper we propose a variant of the vector median filter (VMF) [1] that
uses a fuzzy metric as distance criterion instead of the classical metrics used
in VMF. According to [1] and as it is explained in Section 4.3.1, the output
of the VMF is defined as follows:

Denote by F a colour image and by Fi the RGB colour vector located
at position i in the image F and consider the use of a filter window W of
size n × n. Then VMF output is the vector Fk∗ ∈ W that minimizes the
aggregated distance to the other samples in W . That is, the output is that

Fk∗ for which k∗ = arg mink

n2∑
j=1,j �=k

ρ(Fk,Fj), k = 1, . . . , n2, and where ρ

is the L1 (city-block) or L2 (Euclidean) metric.
In this contribution we propose to use a fuzzy metric instead of the ρ

function above. The proposed fuzzy metric MK is given by

MK(Fi,Fj) =
3∏

l=1

min{Fi(l), Fj(l)} + K

max{Fi(l), Fj(l)} + K
(3.1)

where Z is the real interval [0, 255], X = Z3, K > 0. (Fi(1), Fi(2), Fi(3))
denotes the element Fi ∈ X. As it is proved in Proposition 1 of Chapter 4,
MK is a stationary fuzzy metric on X in the sense of [2] since the axioms
given in Section 2.7 are fulfilled.

Then, according to axiom (GV2) in Section 2.7 and as it is described in
Section 4.3.2, the proposed filter output should be the vector Fk∗ ∈ W that
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Fig. 3.1. Values given by (a) MK for different values of K and (b) L1 and L2

metrics, when comparing a colour vector [128, 128, 128] with the colour vectors
[V, V, V ] where V = 0, 1, . . . , 255.

maximizes the aggregated fuzzy distance to the other samples in W , that is,

Fk∗ for which k∗ = arg maxk

n2∑
j=1,j �=k

MK(Fk,Fj), k = 1, . . . , n2.

Note that, as described in Section 4.4.1, the fuzzy metric MK presents
a particular behaviour since the value given for two distinct pairs of consec-
utive (or equally distanced) vectors may not be the same. This effect can
be smoothed by increasing the value of the K parameter in Eq. (3.1). So,
the value of K should be set high enough to reduce this effect. However, if
K → ∞ then MK(Fi,Fj) → 1, so very high values of K should also be
avoided. Several experiences have shown that for a range of values in [0, C]
appropriate values of K are in the range [2C, 23C]. This is shown in the below
figure and Figures 4.1-4.2 for the case of RGB values where K = 1024 is an
appropriate value. Indeed, the below figure show that the behaviour of MK

for the suggested values of K is very similar, except range and scaling, to the
behaviour of classical L1 and L2 (Euclidean) metrics.

In order to compare the performance of the VMF using the metrics L1,
L2 and the proposed fuzzy metric MK we use the procedure explained in Sec-
tion 1.71. The images Lenna, Peppers and Baboon have been contaminated
with different densities or impulsive, Gaussian and mixed impulsive-Gaussian
noise. From the obtained results in terms of MAE, PSNR and NCD that are
shown in Tables 4.2, 4.3 and 4.4 and Figures 4.3 and 4.4 it can be seen that
the VMF using the proposed fuzzy metric outperforms the classical metrics
for images where impulsive noise density is more important than Gaussian
noise density. So, it can be concluded that MK is suitable for multichannel
image filtering. Moreover, computational analysis of MK in front of the clas-
sical metrics L1 and L2 shows that, by means of the usage a look-up table,
MK is less computationally demanding than L1 and L2 (see Table 4.1).

1 The same procedure is used to assess all the filters proposed in this dissertation.
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3.2 Contribution (ii): Fuzzy bilateral filtering for color
images

In this contribution we propose a variant of the well-known bilateral filter
(BF) [10]. The bilateral filter is designed to remove Gaussian noise both in
gray-scale and colour images. Removing Gaussian noise should involve to
smooth the different areas of an image without degrading neither the sharp-
ness of their edges nor their details. The output of the BF at a particular
location is a weighted average of the pixels in its neighborhood where the
weight of each pixel depends on the spatial closeness and photometric simi-
larity with respect to the pixel under processing. In the variant we propose,
the spatial closeness and the similarity between colour vectors are measured
by means of a fuzzy metric which is built by combining other two fuzzy
metrics.

According to [10] and as it is explained is Section 5.2, the BF is defined
as follows. Let F represent a multichannel image and let W be a sliding
window of finite size n×n. Consider the pixels in W represented in Cartesian
Coordinates and so, denote by i = (i1, i2) ∈ Y 2 the position of a pixel Fi

in W where Y = {0, 1, . . . , n − 1} is endowed with the usual order. The BF
replaces the central pixel of each filtering window by a weighted average of
its neighbor colour pixels. The weighting function is designed to smooth in
regions of similar colours while keeping edges intact by heavily weighting
those pixels that are both spatially close and photometrically similar to the
central pixel.

Denote by || · ||2 the Euclidean norm and by Fi the central pixel under
consideration. Then, the weight W(Fi,Fj) corresponding to the vector Fj

with respect to Fi is the product of two components, one spatial and one
photometrical

W(Fi,Fj) = Ws(Fi,Fj)Wp(Fi,Fj) (3.2)

where the spatial component Ws(Fi,Fj) is given by

Ws(Fi,Fj) = e
− ||i−j||22

2σ2
s (3.3)

and the photometrical component Wp(Fi,Fj) is given by

Wp(Fi,Fj) = e
−∆ELab(Fi,Fj)

2

2σ2
p (3.4)

where ∆ELab = [(∆L∗)2 + (∆a∗)2 + (∆b∗)2]
1
2 denotes the perceptual

colour error in the L∗a∗b∗ colour space, and σs, σp > 0 are two filter smooth-
ing parameters.

The colour vector output F̃i is computed using the normalized weights
and so it is given by
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F̃i =

∑
Fj∈W W(Fi,Fj)Fj∑
Fj∈W W(Fi,Fj)

(3.5)

The Ws weighting function decreases as the spatial distance in the image
between i and j increases, and the Wp weighting function decreases as the
perceptual colour difference between the colour vectors increases. The spatial
component decreases the influence of the furthest pixels reducing blurring
while the photometric component reduces the influence of those pixels which
are perceptually different respect to the one under processing. In this way,
only perceptually similar areas of pixels are averaged together and the sharp-
ness of edges is preserved.

In the proposed fuzzy bilateral filter (FBF) we propose to compute the
weight of each colour vector by using a fuzzy metric that takes into account
both the photometric similarity and the spatial distance. To build the desired
fuzzy metric we join the fuzzy metric proposed in Proposition 1 of Chapter
4 that is used to measure the similarity between colour vectors (o photomet-
rical similarity), and the so-called standard fuzzy metric deduced from the
Euclidean norm from [2] Example 2.9 that is used to measure the spatial dis-
tance between the pixels in comparison. The resulting fuzzy metric is given
by

CFM(Fi,Fj, t) =
3∏

s=1

min{F s
i , F s

j } + K

max{F s
i , F s

j } + K
· t

t + ||i − j||2 (3.6)

If we identify each pixel Fi with (F 1
i , F 2

i , F 3
i , i1, i2), according to Section

5.4 and [4], then CFM can be proved to be a fuzzy metric on X3×Y 2. Notice
that the first term of CFM represents the similarity between the colour vec-
tors whereas the second term models the spatial closeness criterion where t is
the filter smoothing parameter. In this way, the use of the above fuzzy met-
ric is enough to simultaneously model the spatial closeness and photometric
similarity criteria. FBF is built by replacing W(Fi,Fj) by CFM(Fi,Fj, t) in
Eq. 3.5.

The main design difference between BF and FBF is that BF has two
filter parameters while FBF has only one. This is achieved because the FBF
uses a stationary fuzzy metric (see Section 2.7) to represent the similarity
between the colour vectors. This makes the FBF easier to adjust but a little
less flexible.

Experimental results in Table 5.1 and Figures 5.1-5.3 using the images
Lenna, Peppers and Baboon contaminated with different densities of Gaus-
sian noise show that the FBF presents a better detail preserving ability than
its classical version. So, FBF may receive better results than BF for low den-
sities of Gaussian noise and for highly textured images. Therefore, it can be
concluded that the proposed representation using fuzzy metrics is, at least,
as suitable as it is the classical modelling made in BF.
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3.3 Contribution (iii): A fast impulsive noise color
image filter using fuzzy metrics

In this paper we study a vector filtering technique for impulsive noise removal
which is based on measuring the similarity between colour vectors in a sliding
window (FSVF) [5]-[8]. FSVF is based on privileging the central pixel in each
filtering window in order to replace it only when it is really noisy and preserve
the original undistorted image structures. The method proposed in this paper
is based on replacing the colour vector similarity measures used in FSVF [5]-
[8] by a fuzzy metric.

According to [5]-[8] and as it is described in Section 6.2, FSVF is defined
as follows. Let assume a filtering window W containing n + 1 image pixels
{F0,F1, . . . ,Fn}, where n is the number of neighbors of the central pixel
F0. It is considered a similarity function µ : [0;∞) → IR which is non-
ascending and convex in [0;∞) and satisfies µ(0) = 1, and lim

x→∞µ(x) = 0.
The similarity between two pixels of the same colour should be 1, and the
similarity between pixels with very different colours should be very close to 0.
The function defined as µ(||Fi −Fj ||) where || · || denotes the specific vector
norm (typically the L1 or L2 vector norms), can easily satisfy the above
conditions when it is a decreasing function and µ(0) = 1. The cumulated
sum Mk of similarities between a given pixel Fk (k = 0, . . . , n) and all other
pixels belonging to the window W is defined as

M0 =
n∑

j=1

µ(F0,Fj), Mk =
n∑

j=1
j �=k

µ(Fk,Fj) , (3.7)

which means that for those Fk which are neighbors of F0, the similarity
between Fk and F0 is not taken into account, what privileges the central
pixel. Hence, the reference pixel F0 is replaced by one of its neighbors if M0 <
Mk, k = 1, . . . , n, only when it is noisy, preserving the original undistorted
image structures. If this is the case then, F0 is replaced by that Fk∗ for which
k∗ = arg max

k
Mk.

In the filter introduced in this contribution, we propose to replace the µ
function above by the stationary F-bounded fuzzy metric defined in Propo-
sition 2 of Chapter 6 which is designed as a modification of the stationary
fuzzy metric from Proposition 1 of Chapter 4. The fuzzy metric is given by

Mα(x,y) =
3∏

i=1

(
min{xi, yi} + K

max{xi, yi} + K

)α

(3.8)

where X is a real interval [a, b], K > |a| > 0, α > 0, x = (x1, . . . , x3),y =
(y1, . . . , y3). According to the proof in appendix of Chapter 6, Mα is an F-
bounded fuzzy metric [2] since there exists s ∈]0, 1[ such that Mα(x, y) > s



3.3 Contribution (iii): A fast impulsive noise color image filter using fuzzy metrics 47

for all x, y ∈ Xp. Notice that Mα fulfills the above conditions regarding the
µ function.

As explained in Sections 6.4.1-6.4.2, K and α are two filter parameters.
In section 6.4.1 it is explained that an appropriate value of K for RGB image
processing is K = 1024. On the other hand, experimental results in Figures
6.2, 6.9 and 6.10 show that the value of the α parameter influences the in-
tensity of the filtration process. Since the α parameter determines the lower
bound of the fuzzy metric, and since the lower bound of the fuzzy metric is
also the minimum advantage given to the central pixel, then the advantage
conferred to the central pixel that determines the probability of replacing
the pixel is influenced by the value of α. Figures 6.9 and 6.10 show that the
value of α should be set proportionally to the needed smoothing, that is,
proportionally to the percentage of contaminating noise.

Experimental comparison, in terms of MAE, PSNR and NCD, of the pro-
posed filter performance against the original FSVF and other vector filters
have been carried out using the Microscopic, Lenna, Baboon, Artic Hare and
Bright Rose images that have been contaminated with different percentages
of fixed-value impulsive noise. From the results shown in Tables 6.3-6.7 and
Figures 6.4-6.8 it can be seen that the proposed method outperforms its orig-
inal version for images of low frequency and reduced colour set. In general,
it can be considered that the performances are competitive. In addition, the
proposed filter outperforms the other filters in the comparison (see Table
6.2). Moreover, computational analysis performed in Sections 6.3.1, 6.4 and
Table 6.1 shows that the proposed method is computationally cheaper than
the original FSVF. Note that in order to achieve a similarity measure be-
tween colour vectors the classical FSVF uses a distance measure followed by
a convex function. Unlike this, the proposed fuzzy metric provides directly a
similarity measure and it does not need to use any convex function. These
results claim for the appropriateness of the proposed fuzzy metric Mα for
the considered filter design.
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3.4 Contribution (iv): Fuzzy directional distance vector
filter

As commented above, the most well-known vector filter is the vector median
filter (VMF). According to Sections 3.1, 4.3.1 and [1], this filter outputs the
vector in the filtering window that minimizes the accumulated distance to
other samples. The distance measure usually used is the Euclidean metric
that measures magnitude distance between the vector samples. However, any
particular case of the generalized Minkowski metric can be used instead. The
generalized Minkowski metric (Lp metric) is expressed as

Lβ(Fk,Fj) =

(
N∑

i=1

| (Fk(i) − Fj(i)) |β
) 1

β

, (3.9)

where the Euclidean metric corresponds to β = 2.
On the other hand, other well-known vector filter is the basic vector di-

rectional filter (BVDF) [11] that follows the same procedure that the VMF
but using the angular distance between vectors that is given by

A(Fk,Fj) = cos−1

(
Fk · Fj

||Fk||2 · ||Fj ||2

)
. (3.10)

where || · ||2 denotes the Euclidean norm. It is known that directional
filtering may outperform VMF in terms of chromaticity preservation because
RGB vector directions are associated to chromaticity.

From a more general point of view, the directional distance filter (DDF),
[3], minimizes a combination of the aggregated distance measures used in the
VMF and the BVDF. In the DDF, the accumulated distance Rk associated
to each vector Fk, k = 0, . . . , n in the filtering window is now calculated as
follows

Rk =

 n∑
j=0

Lβ(Fk,Fj)

1−q

·
 n∑

j=0

A(Fk,Fj)

q

, (3.11)

where Lβ denotes the specific metric used, A is the angular distance func-
tion above and q ∈ [0, 1] is a parameter which allows to tune the importance
of the angle criterion versus the distance criterion.

In this contribution first we use the fuzzy metric defined in Proposition
1 of Chapter 4 to measure directional differences between colour vectors and
then we propose a variant of the BVDF using this fuzzy metric. Note that
this fuzzy metric was originally used in Contribution (i) to measure magni-
tude differences between colour vectors. Next, we define a novel fuzzy metric
between colour vectors that takes simultaneously into account the magnitude
and the directional differences. Using this hybrid fuzzy metric we propose a
variant of the DDF.
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Let us recall that the MK fuzzy metric defined in Contribution (i) is given
by

MK(Fi,Fj) =
3∏

l=1

min{Fi(l), Fj(l)} + K

max{Fi(l), Fj(l)} + K
(3.12)

where K is a parameter that is set to K = 1024 when using RGB colour
vectors. Now we denote by F̂k the unitary vector associated to the colour
image vector Fk (see Eq. (7.5) in Section 7.2.1). Then, as it is explained in
Section 7.2.1, we can measure directional distance between colour vectors if
we use the MK fuzzy metric between two unitary vectors as MK′(F̂k, F̂j),
where the value of K ′ should be appropriate for unitary vectors and so, as
explained in Section 7.2.1, it is set to K ′ = 4. The vector filter that parallelizes
the BVDF operation but using MK′ as distance criterion is named fuzzy
metric vector directional filter (FMVDF).

Next in this paper, in order to approach a simultaneous fuzzy magnitude-
directional distance, from a fuzzy point of view it should be appropriate to
join both MK(Fi,Fj) and MK′(F̂i, F̂j) with an appropriate t-norm. The
product t-norm will be used since it is involved in MK , then, according to
Section 7.2.2, the function

MKK′ = MK(Fi,Fj) · MK′(F̂i, F̂j) (3.13)

represents the fuzzy distance between the colour vectors Fi and Fj taking
simultaneously into account both magnitude and directional criteria. More-
over, according to Section 7.2.2 and [4], it is easy to verify that MKK′ is a
fuzzy metric, as well. In this case, the vector filter that parallelizes the BVDF
operation but using MKK′ as distance criterion is named fuzzy metric direc-
tional distance filter (FMDDF).

In order to assess the performances of the proposed vector filters we com-
pare their performance in terms of objective quality measures against their
classical versions. For this, we have contaminated the Lenna, Baboon and
Bright rose images with different densities of Gaussian noise, fixed-value im-
pulsive noise and mixed Gaussian-fixed-value-impulsive noise. The results in
Table 7.1 and Figures 7.3-7.11 show that the FMDDF performs better than
the DDF for impulsive noise removal and similar for Gaussian noise sup-
pression. When considering mixed Gaussian-impulsive noise, FMDDF out-
performs DDF when the component of impulsive noise is higher than the one
of Gaussian noise and similar in other cases. Also, it can be seen that the
performances of BVDF and FMVDF are alike in most of the cases for all
considered types of noise.

It has also been observed that the FMDDF is sensibly faster than the
classical DDF. This is due to the fact that the DDF needs to compute two
accumulated distances, one in magnitude and one in direction, which are
combined afterwards, whereas the FMDDF computes only one accumulation
of the hybrid MKK′ fuzzy metric.
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3.5 Contribution (v): Local self-adaptive impulsive noise
filter for color images using fuzzy metrics

In this contribution we present an advanced variant of the impulsive noise
filtering technique studied in Contribution (iii) and [5]-[8]. Recall that the fil-
tering technique in Contribution (iii) is based on performing a kind of reduced
vector ordering where the (central) vector under processing is privileged to
be the lowest ranked vector that will finally be the filter output. The fuzzy
metric used in Contribution (iii) to perform the ordering is the following

Mα(x,y) =
3∏

i=1

(
min{xi, yi} + K

max{xi, yi} + K

)α

(3.14)

where, according to Contribution (iii), K = 1024, α > 0. The α parameter
is used to adjust the filter performance. As it was determined in Section 6.4.2,
in order to the filter adapts to the image under processing the α parameter
should be set proportionally to the needed smoothing, that is, proportionally
to the percentage of corrupting impulsive noise. Notice that the necessity of
having to tune the α parameter may limit the filter performance. Indeed,
according to Section 8.1, many adaptive filtering techniques have the disad-
vantage of having to tune an adaptive parameter to achieve an appropriate
performance. This fact motivates us to study in this contribution the possibil-
ity of designing a self-adaptive variant of the filter introduced in Contribution
(iii). Additionally, in this paper we also use extension of the above fuzzy met-
ric to the directional and magnitude-directional domain analogously to the
approach presented in Contribution (iv).

To approach the design of a self-adaptive filter we will design a procedure
to automatically determine the value of α. Moreover, we will determine this
value for each pixel under processing so that the adaptation is made locally
and the filter may perform different in each image location.

According to Section 6.4.2, the value of α determines the minimum advan-
tage given to the central pixel for being the filter output. In order to avoid
noisy colour vectors being the output of the filtering, the given advantage
should be lower (higher value of α) for noisy vectors. Therefore, according
to Section 8.3, we propose to estimate the noisiness of a given colour vec-
tor according to its multivariate dispersion with respect to its neighbors.
The multivariate dispersion is estimated either as the difference between the
colour vector and the vector mean of the neighbors or as the difference be-
tween the colour vector and the vector median of the neighbors as follows
(see Section 8.3.1).

Denote by F̄ the vector mean of the vectors in the filter window, that is

F̄ = 1
n+1

n∑
i=0

Fi, and denote by F̂ the vector median [1] of the vectors in the

sliding window. The multivariate dispersion of a pixel Fi with respect to the
vector mean F̄ is given by
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σF̄(Fi) = ||Fi − F̄||2 (3.15)

and the multivariate dispersion of any pixel Fi with respect to the vector
median F̂ is given by

σF̂(Fi) = ||Fi − F̂||2 (3.16)

where || · ||2 denotes the Euclidean norm.
Finally, the estimated multivariate dispersion of the central pixel is used

to locally determine the value of α. Some experiments show that the values
of σF̄(F0) or σF̂(F0) can not be directly used as the α parameter since these
values are too large and the advantage given to the central pixel would not
be appropriate. Therefore, it is necessary to use an scaling parameter c in
order to adequate these values. So, the value of α is given by

α = c · σF̄(F0) (3.17)

or

α = c · σF̂(F0) (3.18)

Some simulations show that an appropriate value of the scaling factor c
is c = 0.05. Values around this one are also suitable. Then, as it is explained
in Section 8.3.2, we obtain a local self-adaptive filter structure by replacing
α in Eq. (3.14) by the expressions in Eqs. (3.17)-(3.18).

To assess the proposed filter the Baboon, Lenna and Microscopic images
have been contaminated with different densities of fixed-value and random-
value impulsive noise and filtered with the proposed self-adaptive technique
and the filtering techniques in Table 8.1. The results in Tables 8.2-8.4 and
Figures 8.1 and 8.3 show that the proposed technique outperforms all the
techniques in comparison. Moreover, in order to better illustrate the advan-
tages of the local self-adaptive approach, the Lenna image has been contam-
inated with different densities of fixed-value impulsive noise in its upper half
and lower half and the obtained results are shown in Figure 8.2 and Table
8.5. It can be seen that the proposed approach receives better results than
the rest of the filtering technique in the comparison.
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3.6 Contribution (vi): New adaptive vector filter using
fuzzy metrics

In this contribution we present a new adaptive vector filter for impulsive
noise reduction that uses fuzzy metrics. The main idea behind the proposed
method is that the output vector for a given filter window will be the one
which best fulfills two criteria: to be similar in signal value and to be spatially
close to all the other pixels in the filter window. Unlike the classical vector
median filter (VMF) [1] that determines as output the vector that is the
most similar in signal value to the rest of the vectors in the window, in the
proposed vector filter we include the spatial closeness criterion to perform
the selection. The use of fuzzy metrics allows to simultaneously handle both
criteria.

In order to measure the similarity in signal value between colour vectors,
we propose to use the fuzzy metric R given by

R(Fi,Fj) =
C

C + ||Fi − Fj||2 (3.19)

where || · ||2 denotes the L2 norm, C is a positive real parameter used to
control the spread of the function that, according to Section 9.2, can be set
to C = 150 and Fk = (F 1

k , F 2
k , F 3

k) represents the colour vector of the image
pixel at position k comprising its R, G and B components. From [2] Example
2.9, R is a stationary fuzzy metric on X3 where X is the set {0, 1, . . . , 255}.
Notice that various fuzzy metrics, such as those listed in [2], could be used
instead of R in the same conditions.

For the case of spatial closeness between pixels, we consider the pixels in a
n×n filter window W represented in Cartesian coordinates and so, we denote
by i = (i1, i2) ∈ Y 2 the position of a pixel Fi in W where Y = {0, 1, . . . , n−1}.
We consider the standard fuzzy metric S deduced from the L∞ metric ([2]
Remark 2.10) given by

S(i, j, t) =
t

t + ||i − j||∞ (3.20)

where i, j ∈ Y 2, t > 0 and ||i − j||∞ is the L∞ metric on Y 2 given by
||i − j||∞ = max{|i1 − j1|, |i2 − j2|}. We aim that all neighbors in a 3 × 3
neighborhood (and analogously for further neighborhoods) should receive the
same closeness degree with respect to the central pixel. To achieve this we
have used the L∞ metric between the pixel positions i, j. Hence, some exper-
iments have shown that this approach provides better results than the usage
of the Euclidean metric and any other metric. Then, according to Section
2.7, S(i, j, t) measures the spatial closeness between the colour pixels Fi and
Fj with respect to t. The parameter t is used to adjust the importance given
to the spatial closeness criterion.
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To handle both criteria of similarity in signal value and spatial closeness
simultaneously we join the R and S fuzzy metrics to build the following CFM
fuzzy metric given by

CFM(Fi,Fj, t) = R(Fi,Fj) · S(i, j, t) =
C

C + ||Fi − Fj|| ·
t

t + ||i − j|| (3.21)

If we identify each pixel Fi with (F 1
i , F 2

i , F 3
i , i1, i2) then, according to

Section 9.2 and [4] Proposition 3.5 it can be proved that CFM is a fuzzy
metric on X3 × Y 2.

According to Section 9.3, the proposed vector filtering technique is
achieved by performing a reduced vector ordering using the CFM fuzzy
metric as distance criterion. Then, it can be easily noticed that the order of
computational complexity of the proposed method and the VMF is the same.
As explained in Sections 9.3 and it is illustrated in Figure 9.2, the t param-
eter allows to adjust the importance of the spatial criterion. When t → ∞
the spatial criterion is not taken into account and the proposed filter will be-
have as a classical VMF. On the other hand, in the extreme case that t → 0
the filter approaches the identity operation. Therefore, the value of t should
be determined to find an appropriate balance between the VMF operation
and the identity operation so, it seems intuitive to determine the value of t
according to the density of contaminating noise. In Section 9.4 and Figures
9.4-9.5 it is illustrated how the value of the t parameter influences the filter
performance. A correlation based study using optimal experimental values of
t and percentages of contaminating impulsive noise is performed in Section
9.4. As a result, an adjusting function is computed so that the value of the t
parameter can be determined as a function of the percentage of contaminat-
ing noise. Also in Section 9.4 it is explained how the percentage of impulsive
noise can be estimated.

Finally in Section 9.4, the proposed filter is assessed in comparison to
some classical and well-known vector filters, some recent vector filters with
good detail-preserving ability and also with some impulsive noise filters for
gray-scale images applied in a componentwise way. For this, the Lenna, Pep-
pers and Baboon images have been contaminated with different percentages
of fixed-value and random-value impulsive noise. Experimental results for
comparison are presented in Tables 9.1-9.3 and Figures 9.6-9.8. From these
results it can be seen that the proposed approach is able to suppress different
densities of the two types of impulsive noise and can outperform the compe-
tition in terms of performance. By visually inspecting the results in Figures
9.6-9.8, it can be observed that VMF and the proposed filters show similar
noise suppression ability, except for small impulses. On the other hand, the
sharpness of edges and the fine details are better preserved by the proposed
method.
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3.7 Contributions (vii)-(viii): Isolating impulsive noise
pixels in colour images by peer group techniques

First it should be noted that Contribution (vii), that was presented in the
EUSIPCO 2006 conference, contains only preliminary results of Contribution
(viii). So, we present Contribution (viii) because this paper includes the re-
sults in Contribution (vii). We have preferred to include Contribution (vii)
in addition to Contribution (viii) because it is an already published paper
whereas Contribution (viii) is a paper submitted to an international journal.

As commented in Section 1.5.3, switching filtering is a well known ap-
proach for impulsive noise reduction. Switching filtering techniques aim to
affect only the noisy pixels while keeping the desired image structures (edges
and fine details) unchanged. In this paper a new switching vector filter is
proposed. The proposed method uses fuzzy metrics to represent magnitude,
direction and hybrid magnitude-directional differences between colour vectors
in an analogous manner as it is done in Contribution (iv).

The main motivation of this paper is the filter proposed in [9] which is
based on the peer group concept defined as follows. Let || · || be a norm on
a non-empty set X and let h > 0. If x ∈ X, we denote by P(x, h) the set
{y ∈ X : ||x− y|| ≤ h}. Now, let W be a subset of X containing x and let m
be a nonnegative integer. A subset of P(x, h)∩W containing m+1 elements
is called a peer group of cardinality m contained in W , and it is denoted by
P(x,W, h,m) or P(x, h,m) if confusion is not possible.

Following the prior findings presented in [9], a pixel x is considered as
noise-free only if there exists a peer group P(x, h,m) for some positive value of
m. Otherwise, the pixel should be considered as noisy. The particular setting
of the m parameter determines the filter performance. On the one hand,
lower values of m provide a better signal-preserving ability to the filtering
but sometimes also a lack of robustness. On the other hand, higher values of
m provide a robust performance though a more smoothed output image is
obtained. As a result, the work in [9] proposed to use intermediate values of
m in order to reach an appropriate trade-off between signal-preserving and
noise smoothing.

On the basis of this work, the method proposed in Contribution (viii)
aims at achieving a filtering procedure which is robust in removing impulsive
noise and preserving fine details. This performance is achieved by using two
different values of the m parameter in the noise detection process. First, a set
of noise-free pixels of high reliability is determined by applying a demanding
condition on the peer group cardinality. Afterwards, an iterative detection
process is used to refine the initial findings by detecting additional noise-free
pixels. The remaining, undetected pixels represent impulses.

As it is explained in Section 11.3 and analogously to Contribution (iv),
the proposed method uses fuzzy metrics between colour vectors to determine
the peer groups and also to perform the filtering of noisy pixels. The proposed
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filtering method is defined in Section 11.4 and illustrated in Figures 11.3 and
11.4. The proposed procedure performs first the noise detection as follows.

(i) For each image pixel Fi, if there can be found a peer group PM (Fi,W, d,m)
then the pixel Fi is declared as noise-free. In other case, the pixel Fi is
declared as non-assigned.

(ii) For each non-assigned pixel Fi, let W ′ be the set of noise-free pixels in
W . If there can be found a peer group PM (Fi,W

′, d, 1), then the pixel
Fi is declared as noise-free. Note that this condition is fulfilled if there
exists some pixel Fj ∈ W ′ such that M(Fi,Fj) ≥ d.

(iii) If new noise-free pixels were determined in the previous step, repeat (ii).
(iv) Each non-assigned pixel is finally declared as noisy .

Above, W size is n × n, m = n + 1 and PM denotes the peer group
determined by using the fuzzy metric M as distance criterion. The fuzzy
metrics used in this contribution are described in Section 11.3.

In step (i), the proposed method detects a set of pixels which can be
declared as noise-free with a high reliability since they are similar to a con-
siderable number m of their neighbors. In steps (ii) and (iii), initial findings
are refined. The underlying idea is that if a pixel, which was initially marked
as non-assigned, is similar to some noise-free neighbor then it should be
considered as noise-free, as well. After the iterative procedure is completed,
the remaining (undetected) pixels represent the noise. The noisy pixels are
corrected using the filter proposed in Contribution (i).

Computational analysis of the proposed method, that is detailed in Ap-
pendix of Chapter 11, demonstrates that the computational complexity of
the proposed method is lower than the one of the VMF and quite similar to
the one of the method in [9].

The filter parameters have been set experimentally as it is described in
Section 11.5.1. The Parrots, House, Peppers, Baboon and Pills images have
been used to compare the filter performance in front of other state of the art
filters. These images have been corrupted with different densities of fixed-
value and random-value impulsive noise and mixed Gaussian-impulsive noise.
The results in Tables 11.2-11.7 and Figures 11.8-11.10 show that the proposed
method is able to outperform all the methods in the comparison in terms of
objective quality measures and that it generates visually pleasing images. Ex-
periments over images corrupted with mixed Gaussian-impulsive noise (see
Table 11.6 and Figure 11.11) have shown that the method is able to reduce
impulsive noise even in the presence of Gaussian noise. However, the perfor-
mance of the proposed method in the mixed noise case is sometimes even
inferior to the VMF because the switching structure is not appropriate to
remove mixed noise and it is only able to reduce the impulses. In addition,
the proposed method has been tested using real noisy images (see Figures
11.12-11.13) and its performance has been compared with the method in [9].
It can be seen that the proposed method is able to perform a more accurate
noisy-pixel selection and that the generated output images are less smoothed.
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3.8 Contribution (ix): A new fuzzy impulse noise
detection method for colour images

In this contribution we develop a new fuzzy impulse noise detection method.
The proposed method processes colour images taking into account the cor-
relation between the colour channels but in a different way that the vector
approach. Vector-based methods have these two major drawbacks: (i) the
higher the noise level is the lower the noise reduction capability is in com-
parison to the component-wise approaches and (ii) they tend to cluster the
noise into a larger array which makes it even more difficult to reduce. The
reason for these disadvantages is that the vector-based approaches consider
each pixel as a whole unit, while the noise can appear in only one of the three
components.

As explained in Section 12.2, in comparison to the vector-based ap-
proaches the proposed method is performed in each colour component sep-
arately. This implies that a fuzzy membership degree (within [0, 1]) in the
fuzzy set noise-free will be assigned to each colour component of each pixel.
When processing a colour, the proposed detection method examines two dif-
ferent relations between the central colour and its neighbouring colours to
perform the detection: it is checked both (i) whether each colour component
value is similar to the neighbours in the same colour band and (ii) whether
the value differences in each colour band corresponds to the value differences
in the other bands.

According to Section 12.2, expressions (12.1)-(12.3) are used to compute
the degree in which each central colour component is similar to the neighbors
in the same colour band. So that, we denote by µR, µG and µB the degree
of similarity of the central colour with respect to its neighbors in the Red,
Green and Blue colour bands, respectively. In addition, expressions (12.4)
and (12.5) are used to compute the degree in which the observed differences
in a colour band are similar to the observations in the other colour bands.
Indeed, we denote by µRG, µRB and µGB the mentioned degree between the
Red-Green, Red-Blue and Green-Blue colour bands, respectively. Notice that
some fuzzy similarity measures are used in the above computations.

Finally, the membership degrees of the central colour components in the
fuzzy set noise-free, that are denoted by NFF R

0
, NFF G

0
and NFF B

0
, respec-

tively, are computed using the following fuzzy rule. The calculation is illus-
trated for the R component only but is performed in an analogous way for
the G and B component.

Fuzzy Rule 2 Defining the membership degree NFF R
0

for the red component
FR

0 in the fuzzy set noise-free:
IF µR is large AND µRG is large AND µG is large OR

µR is large AND µRB is large AND µB is large
THEN the noise-free degree of FR

0 is large
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A colour component is considered as noise-free if (i) it is similar to its
neighbour values (µR) and (ii) the observed differences with respect to its
neighbours are similar to the observed differences in the other colour com-
ponents (µRG and µGB). In addition, the degrees of similarity of the other
component values with respect to their neighbour values, i.e. µG and µB , are
included so that a probably noisy component (with a low µG or µB value)
can not be taken as a reference for the similarity between the observed dif-
ferences. The example of the proposed noise detection performance which is
shown in Figure 12.2 demonstrates the accuracy of the method.

Section 12.3 explains an image denoising method that uses the above
fuzzy detection. The image is denoised so that (i) each colour component
is smoothed according to its noisy degree and (ii) the colour information is
used to estimate the output values. We propose to compute a weight for each
colour component in order to calculate a weighted averaging to obtain the
output. Now we illustrate the case of the R component but it is done in an
analogous way for the G and B components. The denoised R component is
obtained as follows

F̂R
0 =

n2−1∑
k=0

WF R
k

FR
k

n2−1∑
k=0

WF R
k

(3.22)

where F̂R
0 denotes the estimated value for the R component, FR

k , k =
0, ..., n2 − 1 denote the R component values in the filter window and WF R

k

are their respective weights. The weight of the component being processed
WF R

0
is set proportionally to its noise-free degree NFF R

0
so that it will be

less weighted, and therefore more smoothed, if its noise-free degree is lower.
The weight of the neighbour components is set inversely proportional to the
noise-free degree of the component being denoised NFF R

0
. Therefore, the

neighbours are more weighted as NFF R
0

is lower. In addition, in order to take
into account the colour information, we will weigh more those components
FR

k for which it can be observed that FG
k is similar to FG

0 or that FB
k is

similar to FB
0 . The underlying reasoning is that if two colours have similar

G or B components then it is observed that the R component is also similar.
Section 12.4 explains that the filter parameters have been set experimen-

tally. Also in this section, the proposed method is assessed both visually and
in terms of the PSNR quality measure. The Baboon, Boats and Parrots im-
ages have been corrupted with different densities of random-value impulsive
noise and the filter performance has been compared with other state-of-the-
art filters including gray-scale filters applied in a componentwise way, some
vector filters and some fuzzy colour image filters. Experimental results are
shown in Tables 12.1 and 12.2 and Figure 12.3. Numerical results show that
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the proposed method achieves the best results in almost all cases. By visually
analyzing Figure 12.3 it can be seen that the best visual results were obtained
by the proposed method. We observe that the proposed method reduces the
noise very well while preserving the colour information and the important
image features like edges and textures. In addition, it is also observed that
the proposed method does not introduce blurring nor colour artifacts.
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Abstract

Vector median filtering is a well known technique for reducing noise in colour
images. These filters are defined on the basis of a suitable distance or simi-
larity measure, being the most common used the Euclidean and City-Block
distances. In this paper, a Fuzzy Metric, in the sense of George and Veera-
mani (1994), is defined and applied to colour image filtering by means of a
new Vector Median Filter. It is shown that the standard Vector Median Filter
is outperformed when using this Fuzzy Metric instead of the Euclidean and
City-Block distances.

4.1 Introduction

Images are acquired by photoelectronic or photochemical methods. The sen-
sing devices and the transmission process tend to degrade the quality of the
digital images by introducing noise, geometric deformation and/or blur due
to motion or camera misfocus [8, 27].

Noise introduced into images may corrupt any of the following image
processing steps mostly related to image analysis (edge detection, image seg-
mentation, and pattern recognition) and computer vision applications. There-
fore, filtering is an essential part of any image processing system whether the
final product is used for human inspection or for an automatic analysis [28].

Several nonlinear multichannel filters which utilize correlation among mul-
tivariate vectors, using various distance measures, have been proposed in the
literature. Nonlinear filters applied to images are required to remove differ-
ent types of noise without degrading the quality of the image, preserving
edges, corners and other image details. One of the most important families
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of nonlinear filters is based on the ordering of vectors in a predefined slid-
ing window [27, 28]. The output of this filter is defined as the lowest ranked
vector according to a specific ordering criterion based on vectors magnitude
and/or vectors direction.

Probably the most well-known filter is the vector median filter (VMF)
[3] which uses the L1 (City-Block) or L2 (Euclidean) norm to order vec-
tors according to their relative magnitude differences. VMF can be derived
as a maximum likelihood estimate (MLE) when the underlying probability
densities of input samples are double exponential.

The direction of the image vectors can also be used as an ordering cri-
terion to remove vectors with atypical direction, which means atypical chro-
maticity. The basic vector directional filter (BVDF) parallelizes the VMF
operation employing the angle between colour vectors as a distance criterion.
The BVDF uses only information about directions, so, it is not able to re-
move achromatic noisy pixels from the image. The Directional Distance Filter
(DDF) overcomes the difficulties of the BVDF by using both magnitude and
direction in the distance criterion [33].

On this basis, the order statistics filters have been improved including
high level techniques such as the use of fuzzy rules [2], cluster analysis [1],
weighting coefficients [19], adaptive mechanisms [20], rational functions [17]
and digital paths [32].

In the colour image processing field both magnitude and chromatic rela-
tions play a major role [6]. This relationships are usually represented using a
distance or similarity measure. Many different distance and similarity mea-
sures have been introduced in the literature [28, 6, 7, 35, 36, 29]. Some of them
are based on fuzzy theory [6, 7, 35, 36, 29] and have been recently applied
with many different purposes in image processing, such as, image retrieval
[9], image comparison [34], object recognition [11], or region extraction [10].

In this paper, a fuzzy metric in the terms of George and Veeramani [12]
is defined and applied to colour image filtering by adapting the well-known
VMF. The paper is organized as follows. The fuzzy metric is defined in Section
4.2. In Section 4.3, the proposed filtering is explained. In Section 4.4, some
experimental results are shown. Finally, conclusions are presented in Section
5.5.

4.2 An appropriate Fuzzy Metric

One of the most important problems in Fuzzy Topology is to obtain an appro-
priate concept of fuzzy metric. This problem has been investigated by many
authors from different points of view. In particular, George and Veeramani
[12] have introduced and studied the following notion of fuzzy metric which
constitutes a slight modification of the one due to Kramosil and Michalek
[18].
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According to [12] a fuzzy metric space is an ordered triple (X,M, ∗) such
that X is a (nonempty) set, ∗ is a continuous t-norm and M is a fuzzy set of
X×X×]0,+∞[ satisfying the following conditions for all x, y, z ∈ X, s, t > 0:

(FM1) M(x, y, t) > 0
(FM2) M(x, y, t) = 1 if and only if x = y
(FM3) M(x, y, t) = M(y, x, t)
(FM4) M(x, z, t + s) ≥ M(x, y, t) ∗ M(y, z, s)
(FM5) M(x, y, ·) :]0,+∞[−→ [0, 1] is continuous.
M(x, y, t) represents the degree of nearness of x and y with respect to t. If

M(x, y, ∗) is a fuzzy metric space we will say that (M, ∗) is a fuzzy metric on
X. In the following, by a fuzzy metric we mean a fuzzy metric in the George
and Veeramani’s sense.

The authors proved in [12] that every fuzzy metric (M, ∗) on X generates
a Hausdorff topology on X. Actually, this topology is metrizable as it was
proved in [13, 14], and so the above definition can be considered an appro-
priate concept of fuzzy metric space.

A fuzzy metric (M, ∗) on X is said to be stationary if M does not depend
on t, i.e. for each x, y ∈ X the function Mx,y(t) = M(x, y, t) is constant [15].

A subset A of X is said to be F-bounded [12] if there exist t > 0 and
s ∈]0, 1[ such that M(x, y, t) > s for all x, y ∈ A.

Example 4.4 of [30] suggests the next proposition.

Proposition 1. Let X be the closed real interval [a, b] and let K > |a| > 0.
Consider for each n = 1, 2, · · · the function Mn : Xn × Xn×]0,+∞[−→]0, 1]
given by

Mn(x, y, t) =
n∏

i=1

min{xi, yi} + K

max{xi, yi} + K
(4.1)

where x = (x1, · · · , xn), y = (y1, · · · , yn), and t > 0. Then, (Mn, ·) is a
stationary F-bounded fuzzy metric on Xn, where the t-norm · is the usual
product in [0, 1].

Proof. Axioms (FM1)-(FM3) and (FM5) are obviously fulfilled. We show, by
induction, the triangular inequality (FM4).

An easy computation shows that M1 verifies (FM4). Now, suppose it
is true for Mn−1. Then, for each x = (x1, · · · , xn), y = (y1, · · · , yn), z =
(z1, · · · , zn) and for each t, s > 0 we have

Mn(x, z, t + s) =
∏n

i=1
min{xi,zi}+K
max{xi,zi}+K =

=
∏n−1

i=1
min{xi,zi}+K
max{xi,zi}+K · min{xn,zn}+K

max{xn,zn}+K ≥
≥∏n−1

i=1
min{xi,yi}+K
max{xi,yi}+K ·∏n−1

i=1
min{yi,zi}+K
max{yi,zi}+K · min{xn,yn}+K

max{xn,yn}+K · min{yn,zn}+K
max{yn,zn}+K =

=
∏n

i=1
min{xi,yi}+K
max{xi,yi}+K · ∏n

i=1
min{yi,zi}+K
max{yi,zi}+K = Mn(x, y, t) · Mn(y, z, s),

(4.2)
so Mn is a fuzzy metric on Xn, for n = 1, 2, · · · and clearly it is stationary.
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Finally, Xn is F-bounded, for n = 1, 2, · · · Indeed, if we write a =

(
n︷ ︸︸ ︷

a, . . . , a) and b = (

n︷ ︸︸ ︷
b, . . . , b), then for each x, y ∈ Xn and t > 0 we have

Mn(x, y, t) ≥ Mn(a,b, t) =
(

a + K

b + K

)n

> 0, for n = 1, 2, · · · (4.3)

��
In next sections we will use the above fuzzy metric and it will be denoted

Mn(x, y), since it does not depend on t.

4.2.1 Computational Analysis

Computationally efficient distances are of interest in the field of order statis-
tics filters [4, 5]. For this reason, the use of the L1 Norm is preferred to the
L2 Norm in many cases [28].

The particular case of the proposed fuzzy metric Mn suitable for 3-channel
image processing tasks will be M3, where M3(Ii, Ij) will denote the fuzzy dis-
tance between the pixels Ii and Ij in the I image. For each calculation of M3:
3 comparisons, 6 additions, 3 divisions and 2 products have to be computed.
In the case of L1 Norm are necessary 3 comparisons (absolute value), 3 sub-
tractions and 2 additions whereas for the L2 Norm 3 subtractions, 3 powers, 2
additions and 1 square-root have to be done. As can be seen in Table 6.1, the
computational complexity of M3 is even higher that the L2 Norm. However,
an optimization in the calculus of M3 (Fast M3) may be applied.

Given a fixed parameter K in (4.1), numerator and denominator of each
division in (4.1) are in a bounded set [K, 255 + K] when processing RGB
images. All the possible divisions can be precalculated in a square matrix C
where

C(i, j) =
min{i, j} + K

max{i, j} + K
i, j ∈ [0, 255] (4.4)

Using the pre-calculus matrix, the calculation of Fast M3 for two pixels
Ii = (Ii(1), Ii(2), Ii(3)), Ij = (Ij(1), Ij(2), Ij(3)) is reduced to

M3(Ii, Ij) =
3∏

l=1

C(Ii(l), Ij(l)) (4.5)

Table 4.1. Computational comparison between the classical metrics L1 and L2

and the proposed fuzzy metric M3 measured in a Pentium IV 2.4GHz

Metric 1 calculus (µs) Calculus per second

L1 Norm 28.37 3.524 104

L2 Norm 30.10 3.322 104

M3 34.68 2.883 104

Fast M3 26.98 3.706 104
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By means of this optimization, 3 accesses to matrix and 2 products are enough
to make the calculus.

The time measured for the construction of the matrix C is about 0.8
seconds in a Pentium IV 2.4GHz. Although it supposes an initial cost, the
gain is approx. 8µs (see Table 4.1) in each calculus, so, the initial cost is
compensated when 105 calculus have to be computed (which is roughly the
calculus involved in the filtering of a 50 · 50 pixels image1).

The results presented in Table 4.1 show that the M3 Fuzzy Metric is
computationally cheaper than the classical L1 and L2 Norms when the opti-
mization of the pre-calculus matrix is applied.

4.3 Image Filtering

4.3.1 Classical Vector Median Filter [3, 28]

Let I represents a multichannel image and let W be a window of finite size n
(filter length). The noisy image vectors in the filtering window W are denoted
as Ij , j = 0, 1, ..., n − 1. The distance between two vectors Ii, Ij is denoted
as ρ(Ii, Ij). For each vector in the filtering window, a global, accumulated
distance to all other vectors in the window has to be calculated. The scalar
quantity Ri =

∑n−1
j=0 ρ(Ii, Ij), is the distance associated to the vector Ii. The

ordering of the R(i)’s: R(0) ≤ R(1) ≤ ... ≤ R(n−1), implies the same ordering
of the vectors Ii’s: I(0) ≤ I(1) ≤ ... ≤ I(n−1) . Given this order, the output of
the filter is I(0).

4.3.2 Proposed Vector Median Filter

The proposed filter will parallelize the operation of the classical VMF with
just one modification. The ordering criterion usually used as defined above
has to be inverted due to the axiom (FM2) of the fuzzy metric (4.1), and then
the vector median must now be defined as the vector in the sliding window
that maximizes the accumulated fuzzy distance, as follows.

Being the fuzzy distance between two pixels Ii, Ij of the image I in
the n length sliding window W denoted as M3(Ii, Ij), the scalar quantity
M i =

∑n−1
j=0,j �=i M3(Ii, Ij), is the accumulated fuzzy distance associated to

the vector Ii. According to VMF, the ordering of the M (i)’s is now defined
as: M (0) ≥ M (1) ≥ ... ≥ M (n−1), therefore, the ordering of the vectors I(i)

is: I(0) ≥ I(1) ≥ ... ≥ I(n−1). Given this order, the output of the filter Iout is
defined as I(0).

This is, in general, the straightforward adaptation of the VMF when using
a similarity measure instead of a distance measure [28].

1 For all the filters studied in this article has been used a 8-neighborhood 3 × 3
size window W .
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4.4 Experimental results

In this section, the classical gaussian model for the thermal noise and the
impulsive noise model for the transmission noise, as defined in [28, 32], has
been used to add noise to the well-known images Lenna (256 · 256), Peppers
(512 · 512) and Baboon (512 · 512). The performance of the filter has been
evaluated by using the common measures MSE, SNR and NCD as defined in
[32].

Three different types of noise, according to the models in [28, 32], have
been considered in this section:
– Type A = low contaminated impulsive noise p = 7%, p1 = p2 = p3 = 0.3
– Type B = high contaminated impulsive noise p = 30%, p1 = p2 = p3 = 0.3
– Type C = mixed gaussian impulsive noise σ = 10, p = 15%, p1 = p2 =

p3 = 0.3

4.4.1 Adjusting the K parameter

The K parameter included in the definition of the Fuzzy Metric M3 (4.1)
has an important influence on the filter performance. The metric is non-
uniform in the sense that the measure given by M3 for two different pairs of
consecutive numbers (or vectors) may not be the same. However, this feature
may be very interesting since it is known that the human perception of colour
is also non-uniform [26]. Clearly, increasing the value of K reduces this non-
uniformity. This effect is shown in Figure 4.1 where the content of the matrix
C (4.4) for different values of K is presented.

After performing several tests, the results seem to show that a suitable
value for the K parameter for a variety of noise types is K = 210. The
dependence of the performance on the value of K is shown in Fig. 4.2. The use
of a proper value for K may lead to an improvement of the filter performance
up to 60%. In Fig. 4.2 the performance (MSE) of the filter dependent on K is
shown for the filtering of the Lenna image contaminated with type B noise.
For other performance measures as SNR and NCD the behavior is similar to
MSE. The performance is low for lower values of K. Increasing K leads to a
maximum performance and then it decreases slightly for higher values of K.
Finding the optimum K is a problem we are trying to solve since it depends
on the particular image and noise. In spite of it, it has been found that in
the most of the tested cases the optimum is in the range [29, 215], as the case
shown in Fig. 4.2

4.4.2 Comparing performances

In order to compare the performance of the VMF using the metrics L1, L2

and M3, different images contaminated with different types of noise have
been used.
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Fig. 4.1. Content of the pre-calculus matrix C(i, j) for several values of K.

Table 4.2. Comparison of the performance measured in terms of MSE, SNR and
NCD using the Lenna image contaminated with different types of noise

Filter A Noise B Noise C Noise
MSE SNR NCDLab MSE SNR NCDLab MSE SNR NCDLab

None 552.9 15.17 4.92 10−2 2318.51 9.35 20.80 10−2 1246.86 12.04 17.90 10−2

VMF L1 42.18 26.75 1.81 10−2 59.63 25.25 2.19 10−2 91.59 23.38 6.40 10−2

VMF L2 45.56 26.41 1.79 10−2 76.05 24.19 2.46 10−2 97.01 23.13 6.35 10−2

VMF M3 41.81 26.78 1.80 10−2 59.18 25.28 2.17 10−2 90.49 23.43 6.36 10−2

The results of the performance measured in tems of MSE, SNR and NCD
are shown in Tables 4.2,4.3 and 4.4. Fig. 4.4 presents the peppers image con-
taminated with type B noise (30% impulsive) and the output of the compared
filters, standing out a detail of each image.

The results show that the VMF using the proposed fuzzy metric may give
better performance than using the classical metrics.
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Fig. 4.2. Performance of the VMF using M3 in terms of MSE depending on K
using the Lenna image contaminated with type B noise.

Table 4.3. Comparison of the performance measured in terms of MSE, SNR and
NCD using the Peppers image contaminated with different types of noise

Filter A Noise B Noise C Noise
MSE SNR NCDLab MSE SNR NCDLab MSE SNR NCDLab

None 566.94 14.42 4.84 10−2 2493.27 7.99 21.09 10−2 1324.56 10.73 19.66 10−2

VMF L1 18.87 29.19 4.84 10−2 35.49 26.45 2.34 10−2 63.10 23.95 7.53 10−2

VMF L2 19.30 29.10 1.88 10−2 40.37 25.89 2.46 10−2 64.98 23.82 7.51 10−2

VMF M3 18.71 29.23 1.86 10−2 33.35 26.72 2.29 10−2 62.10 24.02 7.48 10−2

Table 4.4. Comparison of the performance measured in terms of MSE, SNR and
NCD using the Baboon image contaminated with different types of noise

Filter A Noise B Noise C Noise
MSE SNR NCDLab MSE SNR NCDLab MSE SNR NCDLab

None 535.33 15.52 4.83 10−2 2301.44 9.18 20.76 10−2 1238.64 11.88 17.37 10−2

VMF L1 287.66 18.22 4.07 10−2 326.93 17.66 4.48 10−2 350.65 17.36 7.93 10−2

VMF L2 295.07 18.11 4.02 10−2 351.71 17.34 4.61 10−2 359.89 17.24 7.72 10−2

VMF M3 287.98 18.21 4.05 10−2 326.73 17.67 4.46 10−2 350.27 17.36 7.88 10−2

Conclusions

The metric (4.1) proposed in section 4.2, which has been proved to be a
Fuzzy Metric in the sense of George and Veeramani [12], is a suitable fuzzy
metric to be used in multichannel image filtering. The adaptation of the
Vector Median Filter (Section 4.3) for the use of the proposed fuzzy metric
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(a) (b)

(c) (d)

(e) (f)

Fig. 4.3. (a) Original image peppers pointing out the detailed area,(b) detailed
area,(c) peppers corrupted with noise type B and (d) detail, (e) result of the VMF
using L1 and (f) detail...(continued)
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(a) (b)

(c) (d)

Fig. 4.4. (continue)... (a) result of the VMF using L2 and (b) detail, (c) result of
the proposed filter using M3 and (d) detail

outperforms the usual VMF’s using the classical metrics L1 and L2, specially
when the impulsive noise present in the image is high, as has been shown
in Section 4.4. Moreover, the proposed metric presents a nice computational
cost (see Section 4.2.1).

Fuzzy Metrics are a powerful tool which may be successfully applied in
image processing tasks since they are able to represent more complex relations
than the classical metrics.
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Abstract

Bilateral filtering is a well-known technique for smoothing gray-scale and
colour images while preserving edges and image details by means of an ap-
propriate nonlinear combination of the colour vectors in a neighborhood. The
pixel colours are combined based on their spatial closeness and photometric
similarity. In this paper, a particular class of fuzzy metrics is used to repre-
sent the spatial and photometric relations between the colour pixels adapting
the classical bilateral filtering. It is shown that the use of these fuzzy metrics
is more appropriate than the classical measures used.

5.1 Introduction

Any image is systematically affected by the introduction of noise during its
acquisition and transmission process. A fundamental problem in image pro-
cessing is to effectively suppress noise while keeping intact the features of the
image. Fortunately, two noise models can adequately represent most noise
corrupting images: additive Gaussian noise and impulsive noise [12].

Additive Gaussian noise, which is usually introduced during the acquisi-
tion process, is characterized by adding to each image pixel channel a random
value from a zero-mean Gaussian distribution. The variance of this distribu-
tion determines the intensity of the corrupting noise. The zero-mean property
allows to remove such noise by locally averaging pixel channel values.

Ideally, removing Gaussian noise would involve to smooth the different
areas of an image without degrading neither the sharpness of their edges
nor their details. Classical linear filters, such as the Arithmetic Mean Fil-
ter (AMF) or the Gaussian Filter, smooth noise but blur edges significantly.
Nonlinear methods have been used to approach this problem. The aim of
the methods proposed in the literature is to detect edges by means of local
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measures and smooth them less than the rest of the image to better preserve
their sharpness. A well-known method is the anisotropic diffusion introduced
in [11]. In this technique, local image variation is measured at every point
and pixels from neighborhoods whose size and shape depend on local varia-
tion are averaged. Diffusion methods are inherently iterative since the use of
differential equations is involved. On the other hand, a non-iterative interest-
ing method, which is the motivation of this work, is the bilateral filter (BF)
studied in [15]. The output of the BF at a particular location is a weighted
mean of the pixels in its neighborhood where the weight of each pixel de-
pends on the spatial closeness and photometric similarity respect to the pixel
in substitution. The BF has been proved to perform effectively in Gaussian
noise suppression and it has been the object of further studies [2, 3, 14].

In this paper, a certain class of fuzzy metrics is used to model the relations
of spatial closeness and photometric similarity between image pixels used in
the BF. Then, the BF structure is adapted an the, from now on called,
Fuzzy Bilateral Filter (FBF) is proposed. The use of fuzzy metrics instead
of the measures used in [15] makes the filter easier to use since the number
of adjusting parameters is lower. Moreover, the performance of the proposed
filter is improved respect to the other filters in the comparison in the sense
that will be shown.

The paper is arranged as follows. The classical BF is described in Section
5.2. The use of fuzzy metrics to model the spatial and photometric relations is
detailed in Section 5.3. Section 5.4 defines the Fuzzy Bilateral Filter. Exper-
imental results and discussions are presented in Section 5.5 and conclusions
are given in Section 5.6.

5.2 Bilateral Filtering

Let F represent a multichannel image and let W be a sliding window of finite
size n × n. Consider the pixels in W represented in Cartesian Coordinates
and so, denote by i = (i1, i2) ∈ Y 2 the position of a pixel Fi in W where
Y = {0, 1, . . . , n− 1} is endowed with the usual order. According to [15], the
BF replaces the central pixel of each filtering window by a weighted average
of its neighbor colour pixels. The weighting function is designed to smooth
in regions of similar colours while keeping edges intact by heavily weighting
those pixels that are both spatially close and photometrically similar to the
central pixel.

Denote by ||·||2 the Euclidean norm and by Fi the central pixel under con-
sideration. Then the weight W(Fi,Fj) corresponding to any pixel Fj respect
to Fi is the product of two components, one spatial and one photometrical

W(Fi,Fj) = Ws(Fi,Fj)Wp(Fi,Fj) (5.1)

where the spatial component Ws(Fi,Fj) is given by
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Ws(Fi,Fj) = e
− ||i−j||22

2σ2
s (5.2)

and the photometrical component Wp(Fi,Fj) is given by

Wp(Fi,Fj) = e
−∆ELab(Fi,Fj)

2

2σ2
p (5.3)

where ∆ELab = [(∆L∗)2 + (∆a∗)2 + (∆b∗)2]
1
2 denotes the perceptual

colour error in the L∗a∗b∗ colour space, and σs, σp > 0
The colour vector output F̃i of the filter is computed using the normalized

weights and so it is given by

F̃i =

∑
Fj∈W W(Fi,Fj)Fj∑
Fj∈W W(Fi,Fj)

(5.4)

The Ws weighting function decreases as the spatial distance in the image
between i and j increases, and the Wp weighting function decreases as the
perceptual colour difference between the colour vectors increases. The spatial
component decreases the influence of the furthest pixels reducing blurring
while the photometric component reduces the influence of those pixels which
are perceptually different respect to the one under processing. In this way,
only perceptually similar areas of pixels are averaged together and the sharp-
ness of edges is preserved.

The parameters σs and σp are used to adjust the influence of the spa-
tial and the photometric components, respectively. They can be considered
as rough thresholds for identifying pixels sufficiently close or similar to the
central one. Note that when σp → ∞ the BF approaches a Gaussian filter
and when σs → ∞ the filter approaches a range filter with no spatial notion.
In the case when both σp → ∞ and σs → ∞ the BF behaves as the AMF.

5.3 Fuzzy Metric approach

According to [4], a fuzzy metric space is an ordered triple (X,M, ∗) such
that X is a (nonempty) set, ∗ is a continuous t-norm and M is a fuzzy set of
X×X×]0,+∞[ satisfying the following conditions for all x, y, z ∈ X, s, t > 0:

(FM1) M(x, y, t) > 0
(FM2) M(x, y, t) = 1 if and only if x = y
(FM3) M(x, y, t) = M(y, x, t)
(FM4) M(x, z, t + s) ≥ M(x, y, t) ∗ M(y, z, s)
(FM5) M(x, y, ·) :]0,+∞[−→ [0, 1] is continuous.
M(x, y, t) represents the degree of nearness of x and y with respect to t. If

(X,M, ∗) is a fuzzy metric space we will say that (M, ∗) is a fuzzy metric on
X. According to [5, 6], the above definition can be considered an appropriate
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concept of fuzzy metric space. In the following, by a fuzzy metric we mean a
fuzzy metric in the George and Veeramani’s sense (from now on we will omit
the mention to the continuous t-norm ∗ since in all the cases it will be the
usual product in [0, 1]).

A fuzzy metric M on X is said to be stationary if M does not depend on
t, i.e. for each x, y ∈ X the function Mx,y(t) = M(x, y, t) is constant [7]. In
such case we write M(x, y) instead of M(x, y, t).

In this paper two fuzzy metrics, in a first step, will be used. The first one
to measure the photometric fuzzy distance between colour vectors and the
second one to measure the spatial fuzzy distance between the pixels under
comparison. In order to appropriately measure the photometric fuzzy distance
between colour vectors we will use the following fuzzy metric M :

Take X = {0, 1, 2, . . . , 255} and let K > 0 fixed. Denote by (F 1
i , F 2

i , F 3
i ) ∈

X3 the colour vector of a pixel Fi. The function M : X3×X3 → ]0, 1] defined
by

M(Fi,Fj) =
3∏

s=1

min{F s
i , F s

j } + K

max{F s
i , F s

j } + K
(5.5)

is, according to [9], a stationary fuzzy metric on X3. Previous works [9, 10]
have shown that a suitable value of the K parameter for standard RGB im-
ages is K = 1024, so, this value will be assumed from now on throughout the
paper. Then, M(Fi,Fj) will denote the photometric fuzzy distance between
the colour pixels Fi and Fj.

Now for the case of spatial fuzzy distance between pixels and using the
terminology in Section 5.2, denote by i = (i1, i2) ∈ Y 2 the position of the
pixel Fi in the window W . The function M||·||2 : Y 2×]0,+∞ −→]0, 1] given
by

M||·||2(i, j, t) =
t

t + ||i − j||2 (5.6)

is a fuzzy metric on Y 2 called the standard fuzzy metric deduced from
the Euclidean norm || · ||2 ([4] Example 2.9). Then, M||·||2(i, j, t) will denote
the spatial fuzzy distance between the colour pixels Fi and Fj with respect
to t. Notice that M||·||2 does not depend on the length of Y but on the
relative position in the image of the pixels Fi and Fj under comparison. The
t parameter may be interpreted as a parameter to adjust the importance
given to the spatial closeness criterion.

5.4 Fuzzy Bilateral Filtering

In order to define the Fuzzy Bilateral Filter (FBF) it is just necessary to
determine how the weight of each pixel in the filtering window is computed
by using the fuzzy metrics in Section 5.3.
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Since each pixel Fi is characterized by its RGB colour vector (F 1
i , F 2

i , F 3
i )

and by its location (i1, i2) in the window, for our purpose, in a second step, it
will be considered a fuzzy metric combining M (5.5) with M||·||2 (5.6). So, to
compute the weight of each pixel Fj, j ∈ W it will be considered the following
function

CFM(Fi,Fj, t) = M(Fi,Fj) · M||·||2(i, j, t) =

=
3∏

s=1

min{F s
i , F s

j } + K

max{F s
i , F s

j } + K
· t

t + ||i − j||2 (5.7)

If we identify each pixel Fi with (F 1
i , F 2

i , F 3
i , i1, i2) then (from [13] Propo-

sition 3.5) the above function CFM is a fuzzy metric on X3 × Y 2. In this
way, the use of the above fuzzy metric is enough to simultaneously model the
spatial closeness and photometric similarity criteria commented in Sections
11.1-5.2. The FBF output will be calculated as follows

F̃i =

∑
Fj∈W CFM(Fi,Fj, t)Fj∑
Fj∈W CFM(Fi,Fj, t)

(5.8)

where the only t parameter is used to tune the importance of the spatial
closeness criterion respect to the photometric criterion. Notice that, in a
similar way to the BF, when t → ∞ the FBF approaches a range filter
without spatial notion. The reduction of the number of parameters respect
to the BF makes the FBF easier to tune, however it can not behave as the
Gaussian filter nor the AMF as in the case of the BF. The study of the t
parameter is done in the following section.

5.5 Experimental results

In order to study the performance of the proposed filter, some details of the
well-known images Lenna, Peppers and Baboon have been contaminated with
Gaussian noise following its classical model [12]. Performance comparison has
been done using the Normalized Colour Difference (NCD) objective quality
measure since it approaches human perception and which is defined as

NCDLab =

∑N
i=1

∑M
j=1 ∆ELab∑N

i=1

∑M
j=1 E∗

Lab

(5.9)

where M , N are the image dimensions and ∆ELab = [(∆L∗)2 + (∆a∗)2 +
(∆b∗)2]

1
2 denotes the perceptual colour error and E∗

Lab = [(L∗)2 + (a∗)2 +
(b∗)2]

1
2 is the norm or magnitude of the original image colour vector in the

L∗a∗b∗ colour space.
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Table 5.1. Comparison of the performance in terms of NCD (10−2) using details
of the Baboon, Peppers and Lenna images contaminated with different intensities
of additive gaussian noise.

Filter Detail of Baboon Detail of Peppers Detail of Lenna
σ = 10 σ = 20 σ = 30 σ = 5 σ = 15 σ = 30 σ = 10 σ = 20 σ = 30

None 10.08 20.14 29.90 3.86 11.57 22.85 9.11 17.49 25.75
AMF 7.42 9.58 11.81 3.74 5.43 8.38 5.08 7.28 9.73

VMMF 8.49 11.56 14.89 3.74 6.19 10.06 5.67 8.73 11.75
VMF 9.93 14.37 18.99 4.36 7.90 13.31 6.97 11.36 15.24

EVMF 8.55 11.25 13.96 3.90 6.20 9.50 5.68 8.50 11.29
BVDF 10.34 13.91 17.98 4.14 7.53 12.37 6.56 10.48 14.14
DDF 9.01 12.81 17.22 3.98 7.10 12.07 6.34 10.30 13.94
BF 6.91 9.38 11.70 3.39 5.25 8.37 4.79 7.21 9.70
FBF 6.42 9.24 11.61 3.43 5.29 8.33 4.74 7.12 9.64

The proposed filter is assessed in front of the classical BF and other
well-known vector filters: the Arithmetic Mean Filter (AMF), the Vector
Marginal Median Filter (VMMF) [12], the Vector Median Filter (VMF) [1],
the Extended Vector Median Filter (EVMF), the Basic Vector Directional
Filter (BVDF) [16] and the Distance-Directional Filter (DDF) [8]. In all the
cases it has been considered a 3 × 3 window size.

For both the classical BF and the proposed FBF extensive experiments
have been carried out trying to find the optimal parameters that reach the
best filter performance. The proposed filter has been much easier to adjust
since only one parameter (t) is involved in the adjusting process in contrast to
the BF where the presence of two parameters (σs and σp) makes this process
more complex. Appropriate values of the t parameter are in the range [1, 10]
for Gaussian noise densities (σ) in [0, 30]. For higher values of t the smoothing
performed is higher, as well, and the value of the t parameter in [1, 10] can
be easy set by simple proportionality respect to the noise density σ ∈ [0, 30].

From the results shown in Table 5.1 and Figures 5.1-5.3 it can be stated
that the performance presented by the proposed filter is competitive respect
to the BF and outperforms the rest of the techniques in comparison. The
results seem to indicate that the FBF behaves better than the BF when
dealing with highly textured images, as the Baboon image, and slightly worse
in images with many homogeneous areas, as the Peppers image.

Conclusions

In this paper a certain class of fuzzy metrics has been used to simultane-
ously model a double relation between colour pixels: spatial closeness and
photometric similarity, using an only fuzzy metric. Notice that, as far as the
authors know, this could not be done using a classical metric.
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(a) (b)

(c) (d)

(e) (f)

Fig. 5.1. Performance comparison: (a) Detail of Baboon image contaminated with
Gaussian noise σ = 10, (b) AMF output, (c) VMMF output, (d) EVMF output,
(e) BF output, (f) FBF output.

The proposed fuzzy metric has been used to adapt the classical BF, then
the FBF has been proposed. The proposed filter is easier to use than its
classical version since the filter adjusting process becomes simpler. The per-
formance presented by the proposed filter is competitive respect to the BF
outperforming it in many cases. These results indicate that this fuzzy metric
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(a) (b)

(c) (d)

(e) (f)

Fig. 5.2. Performance comparison: (a) Detail of Peppers image contaminated with
Gaussian noise σ = 15, (b) AMF output, (c) VMMF output, (d) EVMF output,
(e) BF output, (f) FBF output.

may be considered more appropriate than the measures used in the classical
BF.

The experiences of this paper constitute another proof of the appropri-
ateness of the fuzzy metrics to model complex relations which motivates its
further study.



(a) (b)

(c) (d)

(e) (f)

Fig. 5.3. Performance comparison: (a) Detail of Lenna image contaminated with
Gaussian noise σ = 30, (b) AMF output, (c) VMMF output, (d) EVMF output,
(e) BF output, (f) FBF output.
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Abstract

In this paper, the problem of impulsive noise reduction in multichannel images
is addressed. A new filter is proposed on the basis of a recently introduced
family of computationally attractive filters with a good detail preserving abi-
lity (FSVF). FSVF is based on privileging the central pixel in each filtering
window in order to replace it only when it is really noisy and preserve the
original undistorted image structures. The new filter is based on a novel fuzzy
metric and it is created by combining the mentioned scheme and the fuzzy
metric. The use of the fuzzy metric makes the filter computationally simpler
and it allows to adjust the privilege of the central pixel giving the filter an
adaptive nature. Moreover, it is shown that the new filter outperforms the
classical order statistics filtering techniques and its performance is similar to
FSVF outperforming it in some cases.

6.1 Introduction

Images are acquired by photoelectronic or photochemical methods. The sen-
sing devices and the transmission process tend to degrade the quality of the
digital images by introducing noise, geometric deformation and/or blur due
to motion or camera misfocus [6, 25]. The presence of noise in an image
may be a drawback in any subsequent processing to be done over the noisy
image such as edge detection, image segmentation or pattern recognition. As
a consequence, filtering the image to reduce the noise without degrading its
quality, preserving edges, corners and other details, is a major step in any
computer vision application [26].

One of the most important families of nonlinear filters which takes ad-
vantage of the theory of robust statistics [8, 13] is based on the ordering of
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vectors in a predefined sliding window [26, 25]. Generally, when the vectors
are ranked using the reduced ordering principle by means of a suitable dis-
tance or similarity measure, the lowest ranked vectors are those which are
close to all the other vectors in the window according to the distance or sim-
ilarity measure used. On the other hand, atypical vectors, susceptible to be
considered as noisy or outliers, occupy the highest ranks. Since the vectors are
ranked without using any a priori information about the signals distribution,
order-statistics filters such as the VMF, BVDF or DDF described below, can
be considered robust estimators. The output of these filter is defined as the
lowest ranked vector as follows.

Let F represent a multichannel image and let W be a window of finite size
n+1 (filter length). The image vectors in the filtering window W are denoted
as Fj , j = 0, 1, ..., n. The distance between two vectors Fk,Fj is denoted as
ρ(Fk,Fj). For each vector in the filtering window, a global or accumulated
distance to all the other vectors in the window has to be calculated. The scalar
quantity Rk =

∑n
j=0,j �=k ρ(Fk,Fj), is the accumulated distance associated to

the vector Fk. The ordering of the Rk’s: R(0) ≤ R(1) ≤ ... ≤ R(n), implies
the same ordering of the vectors Fk’s: F(0) ≤ F(1) ≤ ... ≤ F(n) . Given this
order, the output of the filter is F(0).

In this way, the vector median filter (VMF) [3], which is probably the
most well-known vector filter, uses the L1 (City-Block) or L2 (Euclidean)
norm to define the above ρ distance function. VMF can be derived either as
a maximum likelihood estimate (MLE) when the underlying probability den-
sities of input samples are bi-exponential or by using vector order-statistics
techniques. Thus, the VMF is scale, translation and rotation invariant [26].
As well if the vector dimension is 1 then the VMF reduces to the scalar me-
dian. Since the impulse response of the VMF is zero, it excellently suppresses
impulsive noise [3, 19]. The combination of the VMF with linear techniques
has been used to improve its performance in the suppression of gaussian noise
[3, 35]. Other approaches have been introduced with the aim of speeding up
the VMF by using a linear approximation of the Euclidean distance [4] and
by designing a fast algorithm when using the L1 norm [5]. On the other hand,
the VMF has been extended to fuzzy numbers in [7] by means of certain fuzzy
distances.

The direction of the image vectors can also be used as an ordering criterion
to remove vectors with atypical direction. The basic vector directional filter
(BVDF) [33] parallelizes the VMF operation employing the angle between
colour vectors as a distance criterion, so the output of the BVDF is the
vector whose direction is the MLE of the directions of the input vectors [19].
Since the vectors directions are associated to their chromaticity, the angular
minimization may give better result than VMF-based techniques in terms of
colour preservation. On the other hand, since the BVDF uses only information
about directions it is not able to remove achromatic noisy pixels from the
image. The directional distance filter (DDF) [14] overcomes the difficulties of
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the BVDF by using both magnitude and direction in the distance criterion.
A different chromatic filter can be found in [16].

However, those traditional vector filters are designed to perform a fixed
amount of smoothing and they are not able to adapt to local image statistics
[19]. Within this aim, many different filters have been recently introduced in
the literature. In [2, 17, 20, 21, 22, 23, 32] different techniques are presented
to calculate fuzzy coefficients used to determine the filter output as a com-
bination of the vectors in the filtering window. [1, 18] propose to determine
first if the vector in consideration is likely to be noisy using cluster analysis
[1] or an adaptive rule based system [18] and then apply the filtering opera-
tion only when it is necessary. In a similar way, in [34] a genetic algorithm is
used to decide in each image position performing the VMF operation, BVDF
operation or the identity operation. The simultaneous use of different vector
filters in each image position and the combination of their particular outputs
by means of a rational function to determine the final output is proposed in
[15].

Fuzzy metrics listed in [9] have recently been applied to colour image
filtering by adapting the classical VMF presenting good computational and
performance results [24]. In this paper, a fuzzy metric as listed in [9] is in-
troduced and a new filter for impulsive noise reduction in colour images is
proposed by combining the fuzzy metric and the fast similarity based impul-
sive noise removal vector filter FSVF scheme introduced in [28, 29, 30, 31].
The proposed filter is computationally faster than the VMF and FSVF pre-
senting better performance than VMF and similar performance to FSVF
outperforming it in some cases.

This paper is organized as follows. In section 6.2 the FSVF as introduced
in [28, 29, 30, 31] is summarized. The proposed fuzzy metric is described in
section 6.3. In Section 6.4 the proposed filtering is explained. Experimental
results are shown in section 6.5. Finally, conclusions are presented in section
6.6.

6.2 Fast Similarity Based Impulsive Noise Reduction
Filter (FSVF)

According to the family of filters introduced by Smolka et al. in [28, 29, 30, 31],
the FSVF is defined as follows. Let assume a filtering window W containing
n + 1 image pixels {F0,F1, . . . ,Fn}, where n is the number of neighbors of
the central pixel F0. It is considered a similarity function µ : [0;∞) → IR
which is non-ascending and convex in [0;∞) and satisfies µ(0) = 1, and
lim

x→∞µ(x) = 0. The similarity between two pixels of the same colour should
be 1, and the similarity between pixels with very different colours should be
very close to 0. The function defined as µ(||Fi −Fj ||) where || · || denotes the
specific vector norm (typically the L1 or L2 vector norms), can easily satisfy
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the above conditions when it is a decreasing function and µ(0) = 1. The
cumulated sum Mk of similarities between a given pixel Fk (k = 0, . . . , n)
and all other pixels belonging to the window W is defined as

M0 =
n∑

j=1

µ(F0,Fj), Mk =
n∑

j=1
j �=k

µ(Fk,Fj) , (6.1)

which means that for those Fk which are neighbors of F0, the similarity
between Fk and F0 is not taken into account, what privileges the central
pixel. Hence, the reference pixel F0 is replaced by one of its neighbors if
M0 < Mk, k = 1, . . . , n, only when it is really noisy, preserving the original
undistorted image structures. If this is the case then, F0 is replaced by that
Fk∗ for which k∗ = arg max

k
Mk.

Several convex functions fulfilling the above conditions have been pro-
posed in [28, 29, 30, 31]. The best results were achieved [29] for the simplest
similarity function

µ7(x) =
{

1 − x/h if x ≤ h
0 if x > h

(6.2)

where h ∈ (0,∞). This function allows to construct a fast noise reduc-
tion algorithm [28, 29, 30, 31]. The detailed implementation of the FSVF is
described as a modification of the VMF as follows [29].

Instead of the original function Rk in section 11.1 the following modified
cumulative distance function R∗

k is proposed

R∗
k =


−h +

n∑
j=1

ρ(Fk,Fj) , for k = 0 ,

n∑
j=1

ρ(Fk,Fj) , for k = 1, . . . , n ,

(6.3)

where ρ denotes the particular distance function, typically the L1 or L2 dis-
tances.

In the same way as in VMF, the original vector F0 in the filtering window
W is being replaced by Fk∗ such that k∗ = arg min

k
R∗

k. As it can be easily

seen, the parameter h in (6.3) influences the intensity of the filtration process
since the number of pixels replaced by the filter is a decreasing function of h.
For h → 0 this number is close to that caused by VMF. On the other hand, for
h → ∞ this number approaches zero (there is no filtering at all). Moreover,
h can be controlled for the best effectiveness of the filter depending on image
structure and noise statistics. In this way, the FSVF tries to overcome the
drawback of the VMF of replacing too many uncorrupted image pixels, as
commented in section 6.1.
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It is easy to observe that the FSVF is faster than VMF. It can be shown
using a simple matrix representation, (for the sake of simplicity in the 4-
neighborhood system case). In order to find Rk and R∗

k using the VMF and
FSVMF method respectively, we have to add the elements in rows or columns
of the following matrices

TV MF =


0 ρ01 ρ02 ρ03 ρ04

ρ10 0 ρ12 ρ13 ρ14

ρ20 ρ21 0 ρ23 ρ24

ρ30 ρ31 ρ32 0 ρ34

ρ40 ρ41 ρ42 ρ43 0

 , TFSV Fµ7 =


−h ρ01 ρ02 ρ03 ρ04

0 0 ρ12 ρ13 ρ14

0 ρ21 0 ρ23 ρ24

0 ρ31 ρ32 0 ρ34

0 ρ41 ρ42 ρ43 0

 ,

(6.4)
where ρij = ρ(Fi,Fj). Obviously, the symmetry of the matrix TV MF

causes that effectively 10 distances (36 in the 8-neighborhood case) and then
15 additions (63 in the 8-neighborhood case) are to be calculated. In the
case of FSVF, the number of distances needed is still 10 but there are only
12 additions (56 in the 8-neighborhood case), so FSVF is faster than VMF
and it also outperforms VMF in terms of commonly used objective measures
[28, 29, 30, 31].

6.3 Proposed Fuzzy Metric

One of the most important problems in fuzzy topology is to obtain an ap-
propriate concept of fuzzy metric. According to [9] a fuzzy metric space is
an ordered triple (X,M, ∗) such that X is a (nonempty) set, ∗ is a continu-
ous t-norm and M is a fuzzy set of X × X×]0,+∞[ satisfying the following
conditions for all x, y, z ∈ X, s, t > 0:

(FM1) M(x, y, t) > 0
(FM2) M(x, y, t) = 1 if and only if x = y
(FM3) M(x, y, t) = M(y, x, t)
(FM4) M(x, z, t + s) ≥ M(x, y, t) ∗ M(y, z, s)
(FM5) M(x, y, ·) :]0,+∞[−→ [0, 1] is continuous.
M(x, y, t) represents the degree of nearness of x and y with respect to t. If

M(x, y, ∗) is a fuzzy metric space we will say that (M, ∗) is a fuzzy metric on
X. In the following, by a fuzzy metric we mean a fuzzy metric in the George
and Veeramani’s sense.

The authors proved in [9] that every fuzzy metric (M, ∗) on X generates
a Hausdorff topology on X. Actually, this topology is metrizable as it was
proved in [10, 11], and so the above definition can be considered an appro-
priate concept of fuzzy metric space. A fuzzy metric (M, ∗) on X is said to
be stationary if M does not depend on t, i.e. for each x, y ∈ X the function
Mx,y(t) = M(x, y, t) is constant [12]. A subset A of X is said to be F-bounded
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[9] if there exist t > 0 and s ∈]0, 1[ such that M(x, y, t) > s for all x, y ∈ A.
Example 4.4 of [27] suggests the following proposition.

Proposition 2. Let X be the closed real interval [a, b], let K > |a| > 0
and let α > 0. Consider for each p = 1, 2, . . . the function Mα

p : Xp ×
Xp×]0,+∞[−→]0, 1] given by

Mα
p (x,y, t) =

p∏
i=1

(
min{xi, yi} + K

max{xi, yi} + K

)α

(6.5)

where x = (x1, . . . , xp),y = (y1, . . . , yp), and t > 0. Then, (Mα
p , ·) is a

stationary F-bounded fuzzy metric on Xp, where the t-norm · is the usual
product in [0, 1]. (The proof is included in the appendix)

In next sections the above fuzzy metric will be denoted Mα
p (x,y), since

it does not depend on t.

6.3.1 Computational Analysis

Computationally efficient distances are of interest in the field of order statis-
tics filters [4, 5]. For this reason, the use of the L1 norm is preferred to the
L2 norm in some cases [26].

The particular case of the proposed fuzzy metric Mα
p suitable for 3-

channel image processing tasks will be Mα
3 , and then Mα

3 (Fi,Fj) will denote
the fuzzy distance between the pixels Fi and Fj in the F image. For each
calculation of Mα

3 , 3 comparisons, 6 additions, 3 divisions, 2 products and
1 power have to be computed. In the case of L1 norm, 3 comparisons (ab-
solute value), 3 subtractions and 2 additions are necessary, whereas for the
L2 norm, 3 subtractions, 3 powers, 2 additions and 1 square-root have to be
done. As can be seen in Table 6.1, the computational complexity of Mα

3 is
even higher than the one of L2 norm. However, an optimization strategy in
the computation of Mα

3 (Fast Mα
3 ) may be applied.

Given the fixed parameters K and α in (6.5), numerator and denominator
of each fraction in (6.5) are in a bounded set [K, 255 + K] when processing
RGB images. All the possible powered fractions can be pre-calculated in a
square matrix Cα where

Table 6.1. Computational comparison between the classical metrics L1 and L2

and the proposed fuzzy metric M3 measured in a Pentium IV 2.4GHz

Metric 1 computation (µs) Computations per second

L1 norm 28.83 3.469 104

L2 norm 30.58 3.270 104

Mα
3 43.09 2.037 104

Fast Mα
3 27.51 3.635 104
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Cα(i, j) =
(

min{i, j} + K

max{i, j} + K

)α

i, j ∈ [0, 255] (6.6)

Using the pre-computation matrix, the calculation of Fast Mα
3 between

two pixels Fi = (Fi(1), Fi(2), Fi(3)),Fj = (Fj(1), Fj(2), Fj(3)) is reduced to

Mα
3 (Fi,Fj) =

3∏
l=1

Cα(Fi(l), Fj(l)) (6.7)

By means of this optimization, 3 accesses to matrix and 2 products are enough
to make the computation.

The time measured for the construction of the matrix Cα is about 0.9
seconds in a Pentium IV 2.4GHz. Although it supposes an initial cost, the
gain reached is approx. 15.5µs (see Table 6.1) in each computation, so, the
initial cost is compensated when 6 · 104 computations have to be computed
(which is roughly the computation involved in the filtering of a 40 · 40 pixels
image1). Moreover, the pre-computation matrix may be used for successive
filterings, for instance, when filtering a sequence of images.

The results presented in Table 6.1 show that the Mα
3 fuzzy metric is

computationally cheaper than the classical L1 and L2 norms when the opti-
mization of the pre-computation matrix is applied.

6.4 Proposed filtering

The filtering method described in section 6.2 can be adapted to use the fuzzy
metric proposed in section 6.3. Both, the vector norm Li (i = 1, 2) and the
convex function µ operating over it are replaced by the fuzzy metric Mα

3 .
This makes the filtering computationally simpler by the omission of the µ
function and the use of a fuzzy metric computationally more efficient than
the vector norms L1 and L2 (see Table 6.1).

In the proposed filtering, the cumulated sum Mk of similarities between
a given pixel Fk (k = 0, . . . , n) and all other pixels belonging to the window
W is defined as

M0 =
n∑

j=1

Mα
3 (F0,Fj), Mk =

n∑
j=1
j �=k

Mα
3 (Fk,Fj) , (6.8)

As explained in section 6.2, for those Fk which are neighbors of F0, the
similarity between Fk and F0 is not taken into account. This privileges the
central pixel.

In the construction of the proposed filter, the reference pixel F0 in the
window W is replaced by one of its neighbors if M0 < Mk, k = 1, . . . , n. If this
1 For all the filters studied in this article has been used a 8-neighborhood 3 × 3

size window W , which means 36 comparisons per pixel (see section 6.2)
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is the case, then F0 is replaced by that Fk∗ for which k∗ = arg max
k

Mk, k =
1, . . . , n.

Using a matrix representation as done in the section 6.2, the appropriate
matrix in the 4-neighborhood case for the new filter has the form

TMα
3

=


0 Mα

3 (0, 1) Mα
3 (0, 2) Mα

3 (0, 3) Mα
3 (0, 4)

0 0 Mα
3 (1, 2) Mα

3 (1, 3) Mα
3 (1, 4)

0 Mα
3 (2, 1) 0 Mα

3 (2, 3) Mα
3 (2, 4)

0 Mα
3 (3, 1) Mα

3 (3, 2) 0 Mα
3 (3, 4)

0 Mα
3 (4, 1) Mα

3 (4, 2) Mα
3 (4, 3) 0

 (6.9)

The number of values to be calculated is 10 but there are only 11 additions
(12 in the FSVF and 15 in the VMF (see section 6.2)). In the 8-neighborhood
case, the number of additions is 55 instead of 56 of the FSVF, and 63 in the
VMF (see section 6.2) [28, 29, 30, 31]. Clearly, this filter is faster than the
filters proposed in [28, 29, 30, 31] presenting a similar performance, even
better in some cases, as it will be shown in section 8.4.

6.4.1 Adjusting the K parameter

The K parameter included in the definition of the fuzzy metric Mα
3 (11.1)

has an important influence on the filter performance, according to [24]. The
metric is non-uniform in the sense that the measure given by Mα

3 for two
different pairs of consecutive numbers (or vectors) may not be the same.
Increasing the value of K reduces this non-uniformity. This effect is shown in
Fig. 6.1 where the content of the matrix C1 (6.6) for different values of K is
presented. However, as it was explained in [24], the optimum value of the K
parameter depends on the particular image structures and noise. A suitable
value for the K parameter for a variety of noise types is K = 210.

6.4.2 Adjusting the α parameter

Using a value of K = 210 makes the lower bound (6.15) of the fuzzy metric
be relatively close to 1 (see Fig. 6.1). This lower bound is also the minimum
advantage given to the central pixel (see (9)). Increasing the value of α , the
lower bound (6.15) of the fuzzy metric decreases, and the advantage given to
the central pixel is lower. Therefore, the value of α influences the intensity
of the filtration process. The number of pixels replaced by the filter is an
increasing function of α. The effect of increasing the value of α is shown in
Fig. 6.2 where the content of the matrix Cα (6.6) for different values of α is
presented.

Using an appropriate value of α has a great importance for the filter
performance. This will be shown in section 6.5. The α parameter can be set
experimentally or can be determined adaptively using the technique described
in [29, 31].
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Fig. 6.1. Content of the pre-computation matrix C1(i, j) for several values of K:
(a) K = 1, (b) K = 32, (c) K = 256, (d) K = 1024.

6.5 Experimental results

For the evaluation of the filter proposed in section 6.4, two types of impulsive
noise have been used to simulate different distortions which may corrupt
colour images [29, 32].
– I. Impulsive noise.

Let F = {FR, FG, FB} denote the original pixel and let F′ denote the
pixel corrupted by the noise process. Then the image pixels are distorted
according to the following scheme

F′ =


{d1, FG, FB} with probability p · p1 ,
{FR, d2, FB} with probability p · p2 ,
{FR, FG, d3} with probability p · p3 ,

{d1, d2, d3} with probability p ·
(
1 −∑3

i=1 pi

)
.

(6.10)

where d1, d2, d3 are independent and equal to 0 or 255 with equal proba-
bility.

– II. Uniform noise.
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Fig. 6.2. Content of the pre-computation matrix Cα(i, j) with K = 1024 for several
values of α: (a) α = 1, (b) α = 2, (c) α = 3, (d) α = 4.

F′ = {d1, d2, d3} with probability p, where d1, d2, d3 are random uniformly
distributed independent integer values in the interval [0, 255].
The Mean Absolute Error (MAE), Peak Signal to Noise Ratio (PSNR)

and Normalized Colour Difference (NCD) [26, 32] have been used to assess
the performance of the proposed filter. These quality measures are defined as
follows

MAE =

N∑
i=1

M∑
j=1

Q∑
q=1

∣∣∣F q (i, j) − F̂ q(i, j)
∣∣∣

N · M · Q , (6.11)

PSNR = 20 log

 255√
1

NMQ

N∑
i=1

M∑
j=1

Q∑
q=1

(
F q (i, j) − F̂ q(i, j)

)2

 , (6.12)
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where M , N are the image dimensions, Q is the number of channels of
the image (Q = 3 for colour image), and F q(i, j) and F̂ q(i, j) denote the
qth component of the original image vector and the filtered image, at pixel
position (i, j) , respectively, and

NCDLab =

∑N
i=1

∑M
j=1 ∆ELab∑N

i=1

∑M
j=1 E∗

Lab

(6.13)

where ∆ELab = [(∆L∗)2 + (∆a∗)2 + (∆b∗)2]
1
2 denotes the perceptual

colour error and E∗
Lab = [(L∗)2 +(a∗)2 +(b∗)2]

1
2 is the norm or magnitude of

the original image colour vector in the L∗a∗b∗ colour space.
Several images and some details of them (see Fig. 6.3) contaminated with

different types and densities of noise have been used to compare the perfor-
mance of the proposed filter with the FSVF [28, 29, 30, 31] and with the
classical filters (see table 6.2). The performance comparison is presented in
tables 6.3-6.7. Some filtering results of the techniques under comparison are
shown in Figs. 6.4-6.8.

Table 6.2. Filters taken for comparison and notation.

Notation Filter

VMF Vector Median Filter [3]

BVDF Basic Vector Directional Filter [33]

DDF Directional Distance Filter [14]

µ7(L1) FSVF using µ7 over L1 norm [29]

µ7(L2) FSVF using µ7 over L2 norm [29]

Mα
3 Proposed filter

Table 6.3. Comparison of the performance in terms of MAE, PSNR and NCD
using the detail of the Brandy Rose image (see Fig. 6.3) contaminated with 5%
Noise Type I.

Filter MAE PSNR NCD (10−2)
Noisy 2.46 21.49 2.71
VMF 3.59 30.91 2.40
BVDF 3.90 29.94 2.40
DDF 3.54 30.87 2.33

µ7(L1) 0.83 33.89 0.54
µ7(L2) 0.39 37.68 0.33
M3.5

3 0.37 37.95 0.36
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(a) (b) (c)

(d) (e)

Fig. 6.3. Test Images: (a) Microscopic image, (b) Detail of Lenna image, (c) Detail
of Mandrill image, (d) Detail of Artic Hare image (Copyright photo courtesy of
Robert E. Barber), (e) Detail of Brandy Rose image (Copyright photo courtesy of
Toni Lankerd)

Table 6.4. Comparison of the performance in terms of MAE, PSNR and NCD
using the Microscopic image (see Fig. 6.3) contaminated with 10% Noise Type I.

Filter MAE PSNR NCD (10−2)
Noisy 4.80 18.40 6.41
VMF 4.85 29.15 4.23
BVDF 6.20 27.01 5.17
DDF 4.91 29.08 4.24

µ7(L1) 32.61 33.89 1.15
µ7(L2) 34.79 37.68 0.86
M3.8

3 34.24 37.95 0.92
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(a) (b) (c)

(d) (e) (f)

Fig. 6.4. Test Images: (a) Detail of Brandy Rose image contaminated with 5%
noise type I, (b) VMF output, (c) BVDF output, (d) DDF output, (e) µ7(L2)
output, (f) Proposed filter output.

Table 6.5. Comparison of the performance in terms of MAE, PSNR and NCD
using the detail of the Artic Hare image (see Fig. 6.3) contaminated with 15%
Noise Type II.

Filter MAE PSNR NCD (10−2)
Noisy 14.19 14.90 7.51
VMF 4.57 27.70 1.20
BVDF 5.29 26.29 1.27
DDF 4.47 27.51 1.11

µ7(L1) 2.21 26.93 0.65
µ7(L2) 1.59 28.92 0.40
M3.4

3 1.30 30.43 0.38
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(a) (b) (c)

(d) (e) (f)

Fig. 6.5. Test Images: (a) Microscopic image contaminated with 10% noise type
I, (b) VMF output, (c) BVDF output, (d) DDF output, (e) µ7(L2) output, (f)
Proposed filter output.

Table 6.6. Comparison of the performance in terms of MAE, PSNR and NCD
using the detail of the Mandrill image (see Fig. 6.3) contaminated with 25% Noise
Type I.

Filter MAE PSNR NCD (10−2)
Noisy 12.25 15.33 18.30
VMF 11.48 22.81 6.54
BVDF 13.91 20.68 7.09
DDF 11.31 22.75 6.22

µ7(L1) 7.62 23.17 4.61
µ7(L2) 5.83 24.21 3.99

M5
3 6.92 23.47 4.40
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(a) (b) (c)

(d) (e) (f)

Fig. 6.6. Test Images: (a) Detail of Artic Hare image contaminated with 5% noise
type I, (b) VMF output, (c) BVDF output, (d) DDF output, (e) µ7(L2) output,
(f) Proposed filter output.

Table 6.7. Comparison of the performance in terms of MAE, PSNR and NCD
using the detail of the Lenna image (see Fig. 6.3) contaminated with 30% Noise
Type II.

Filter MAE PSNR NCD (10−2)
Noisy 22.48 13.90 20.24
VMF 6.93 25.46 4.47
BVDF 7.81 23.81 4.69
DDF 6.67 25.70 4.21

µ7(L1) 3.71 27.08 2.34
µ7(L2) 3.32 27.59 2.16
M5.5

3 3.19 27.87 2.11
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(a) (b) (c)

(d) (e) (f)

Fig. 6.7. Test Images: (a) Detail of Mandrill image contaminated with 25% noise
type I, (b) VMF output, (c) BVDF output, (d) DDF output, (e) µ7(L2) output,
(f) Proposed filter output.

The results in tables 6.3-6.7 and Figs. 6.4-6.8 show that the proposed filter
outperforms, in terms of objective quality measures, the classical filtering
techniques and its performance is similar to the FSVF [28, 29, 30, 31] and
even better in some cases. For a particular type of images of low frequency
and reduced colour set (as the details of the Brandy Rose and Artic Hare
images shown in Fig. 6.3 (d,e)) the results seem to show that the proposed
filter works better than the FSVF (see tables 6.3,6.6 and Fig. 6.4,6.6). As
well, the proposed filter presents better performance when suppressing noise
type II than noise type I.

As it was commented in section 6.4.2, the value of the α parameter has
an important influence on the filtering process. In Fig. 6.9 it is shown the
dependence of the percentage of replaced pixels on α. The number of replaced
pixels is an increasing function of α. The maximum performance is reached
when the percentage of replaced pixels is very close to the percentage of
noisy pixels. This can be seen in Figs. 6.9,6.10. Therefore, depending on the
percentage of noisy pixels in the image, the optimum value of α is different .
The higher the percentage of contaminated pixels is, the higher the value of
α.
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(a) (b) (c)

(d) (e) (f)

Fig. 6.8. Test Images: (a) Detail of Lenna image contaminated with 30% noise
type II, (b) VMF output, (c) BVDF output, (d) DDF output, (e) µ7(L2) output,
(f) Proposed filter output.

Conclusions

Firstly, in this paper we introduce a fuzzy metric in the sense of George and
Veeramani [9] which is computationally simpler than the classical L-norms.

Secondly, the proposed fuzzy metric has been combined with the FSVF
technique [28, 29, 30, 31] to define a computationally efficient filter. This
filter is faster than FSVF since the filtering process is simpler and the fuzzy
metric used is faster than the classical metrics used in FSVF [28, 29, 30, 31].
Moreover, the proposed filter outperforms the classical vector median filtering
techniques and it presents similar performance to the FSVF, outperforming
it in some cases.
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Fig. 6.9. Percentage of pixels replaced by the proposed filter when filtering the
details of the Lenna (a) and baboon (b) images contaminated with noise type II
and I respectively as a function of α and the percentage of noise.

Proof of proposition 1

Proof. Proof Axioms (FM1)-(FM3) and (FM5) are obviously fulfilled. We
show, by induction, the triangular inequality (FM4).

An easy computation shows that Mα
1 verifies (FM4). Now, suppose it

is true for Mα
p−1. Then, for each x = (x1, · · · , xp),y = (y1, · · · , yp), z =

(z1, · · · , zp) and for each t, s > 0 we have
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Fig. 6.10. (a) Performance in terms of PSNR of the proposed filter for the Mandrill
image contaminated with noise type I as a function of α and the percentage of
noise, (b) Performance in terms of NCD of the proposed filter for the Lenna image
contaminated with noise type II as a function of α and the percentage of noise.

Mα
p (x, z, t + s) =

∏p
i=1

(
min{xi,zi}+K
max{xi,zi}+K

)α

=

=
∏p−1

i=1

(
min{xi,zi}+K
max{xi,zi}+K

)α

·
(

min{xp,zp}+K
max{xp,zp}+K

)α

≥
≥∏p−1

i=1

(
min{xi,yi}+K
max{xi,yi}+K

)α

·∏p−1
i=1

(
min{yi,zi}+K
max{yi,zi}+K

)α

·
·
(

min{xp,yp}+K
max{xp,yp}+K

)α

·
(

min{yp,zp}+K
max{yp,zp}+K

)α

=

=
∏p

i=1

(
min{xi,yi}+K
max{xi,yi}+K

)α

·∏p
i=1

(
min{yi,zi}+K
max{yi,zi}+K

)α

= Mα
p (x,y, t) · Mα

p (y, z, s),
(6.14)
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so Mα
p is a fuzzy metric on Xp, for p = 1, 2, . . . and clearly it is stationary.

Finally, Xp is F-bounded, for p = 1, 2, . . .. Indeed, if we write a =

(
p︷ ︸︸ ︷

a, . . . , a) and b = (

p︷ ︸︸ ︷
b, . . . , b), then for each x,y ∈ Xp and t > 0 we have

Mα
p (x,y, t) ≥ Mα

p (a,b, t) =
(

a + K

b + K

)pα

> 0, for p = 1, 2, . . .�� (6.15)
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Abstract

A well-known family of nonlinear multichannel image filters based on the
theory of robust statistics uses the reduced ordering of vectors in a predefined
sliding window by means of an appropriate distance or similarity measure
between vectors. Distances which take into account magnitude, directional
and magnitude-directional criteria have been studied in the literature. In this
paper a novel fuzzy metric already used to measure fuzzy magnitude distances
between image vectors is extended to the directional domain. Then, a hybrid
approach which takes into account both magnitude and directional criteria is
proposed by realizing the fuzzy fusion of the fuzzy magnitude distances and
the fuzzy directional distances. The proposed fuzzy distance measures are used
to propose two new vector filters. Experimental results are presented to state
the appropriateness of the proposed vector filters.

7.1 Introduction

Nonlinear vector filters based on the theory of robust statistics [6, 12], com-
monly use the reduced ordering principle amongst vectors in a predefined
sliding window [15, 20]. This ordering of vectors identifies outliers of the pop-
ulation in the highest ranks while the lower ranks are occupied by the vectors
which are similar (in some sense) to all the other vectors of the population.
The output of the reduced ordering based vector filters is defined as the lowest
ranked vector as follows [20].

Let F represent a multichannel image and let W be a window of finite
size n + 1 (filter length). The image vectors in the filtering window W are
denoted as Fj = (Fj(1), Fj(3), Fj(3)), j = 0, 1, ..., n. The distance between
two vectors Fk,Fj is denoted as ρ(Fk,Fj). For each vector in the filtering
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window, a global or accumulated distance to all the other vectors in the
window has to be calculated. The scalar quantity Rk =

∑n
j=0,j �=k ρ(Fk,Fj),

is the accumulated distance associated to the vector Fk. The ordering of the
Rk’s: R(0) ≤ R(1) ≤ ... ≤ R(n), implies the same ordering of the vectors Fk’s:
F(0) ≤ F(1) ≤ ... ≤ F(n). Given this order, the output of the filter is F(0).

Following the above scheme, the vector median filter (VMF) uses the
generalized Minkowski metric (Lp norm) expressed as

Lβ(Fk,Fj) =

(
N∑

i=1

| (Fk(i) − Fj(i)) |β
) 1

β

, (7.1)

and usually its particular cases the L1(Fk,Fj) =
∑N

i=1 |Fk(i)−Fj(i)| and

L2(Fk,Fj) =
(∑N

i=1 (Fk(i) − Fj(i))
2
) 1

2
metrics as the ρ distance function

between vectors. VMF can be derived as a maximum likelihood estimate
(MLE) when the underlying probability densities of input samples are bi-
exponential and the output vector is restricted to be one of the vectors in
the population [2, 20]. Thus it is scale, translation and rotation invariant and
since the impulse response of VMF is zero it excellently suppresses impulsive
noise [2, 15]. VMF has been combined with linear techniques to improve its
performance in the suppression of gaussian noise [2, 25]. Other approaches
have been introduced with the aim of speeding up the VMF by using a linear
approximation of the Euclidean distance [3], and by designing a fast algorithm
when using the L1 norm [4].

On the other hand the basic vector direcional filter BVDF [23], uses the
difference in direction among the image vectors as the distance criterion for
the ordering. The function usually used to measure angular differences be-
tween vectors is defined [23], as

A(Fk,Fj) = cos−1

(
Fk · Fj

||Fk|| · ||Fj ||
)

. (7.2)

The BVDF uses the A function as the ρ distance function above for defin-
ing the vector ordering. The output of the BVDF is the vector whose direction
is the MLE of the directions of the input vectors [15]. This approach exploits
the fact that in RGB images the vectors directions are associated to their
chromaticity and therefore, the angular minimization may give better results
than techniques based on VMF in terms of colour preservation. However, the
BVDF is not able to remove achromatic noise from the image because it only
uses information about vector directions.

From a more general point of view, the directional distance filter (DDF),
[13], tries to minimize a combination of the distance measures used in the
VMF and the BVDF. The accumulated distance Rk associated to each vector
Fk, k = 0, . . . , n in the filtering window is now calculated as follows
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Rk =

 n∑
j=0

Lβ(Fk,Fj)

1−q

·
 n∑

j=0

A(Fk,Fj)

q

, (7.3)

where Lβ denotes the specific metric used, A is the angular distance func-
tion above and q ∈ [0, 1] is a parameter which allows to tune the importance
of the angle criterion versus the distance criterion. If q = 0, the DDF operates
as the VMF, whereas for q = 1 DDF is equivalent to the BVDF. For q = 0.5
the weight is equivalent for both criteria. In this way, the DDF constitutes a
generalization of the VMF and BVDF. It is useful in multichannel image pro-
cessing since it inherits the properties of its ancestors [13]. The disadvantage
of DDF is a relatively high computational complexity because two different
aggregated measures are to be calculated.

The traditional vector filters described above have the disadvantage of be-
ing designed to perform a fixed amount of smoothing and they are not able to
adapt to local image statistics. Many different approaches have been recently
introduced in the literature with the aim of being able to properly adapt the
smoothing performed in each particular case, for extensive information the
reader is referred to the recent overview made in [15].

The use of fuzzy techniques for image filtering has been studied in the
literature. The VMF has been extended to fuzzy numbers in [5] by means of
certain fuzzy distances. A fuzzy rule based system to decide the filtering is
proposed in [1]. The simultaneous use of different vector filters and its combi-
nation within a fuzzy approach is proposed in [14, 24]. Some fuzzy coefficients
are introduced in [16] to perform weighted vector median operation. A fuzzy
smoothing operation based on fuzzy membership functions and the so-called
fuzzy transformation are studied in [7, 19, 22].

In this paper the use of the novel fuzzy metric introduced in [17, 18] to
measure fuzzy magnitude distances between colour vectors is extended to the
directional domain. Then a fuzzy hybrid approach combining both magni-
tude and directional criteria is proposed and a unique fuzzy expression which
models the nearness of two colour vectors in both direction and magnitude is
obtained. A set of vector filters following the reduced ordering procedure is
proposed according to these approaches. It will be shown that the proposed
approaches present some advantages respect to the classical vector filters.
Notice that the fuzzy metric can be used in combination with most of the ad-
vanced techniques listed above and some improvements should be expected.
Since it is not the aim of the authors to enlarge nor diversify the content of
this paper, this study is not included.

The paper is organized as follows. In Section 7.2 the novel fuzzy metric
and its use in magnitude and directional vector processing is described. Ex-
perimental results including performance comparison are shown in Section
7.3. Finally, conclusions are presented in Section 7.4.
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7.2 A fuzzy metric for vector processing

Let X be a non-empty set and ∗ a continuous t-norm. A (stationary) fuzzy
metric [8, 11] on X is a function M(x, y) defined on X × X with values in
]0, 1], symmetric respect to x and y, which satisfies for all x, y, z ∈ X

(FM1) M(x, y) = 1 if and only if x = y
(FM2) M(x, z) ≥ M(x, y) ∗ M(y, z)
M(x, y) represents the degree of nearness of x and y and according to

(FM1) M(x, y) is close to 0 when x is far from y. From now on ∗ will be the
usual product in ]0, 1].

According to [17, 18] a stationary fuzzy metric fulfilling the above condi-
tions suitable for RGB colour vectors is the following.

Proposition 3. Let Z be the real interval [0, 255], put X = Z3 and take
K > 0. Denote by (Fi(1), Fi(2), Fi(3)) the element Fi ∈ X. The function
MK given by

MK(Fi,Fj) =
3∏

l=1

min{Fi(l), Fj(l)} + K

max{Fi(l), Fj(l)} + K
(7.4)

for all Fi,Fj ∈ X, is a fuzzy metric on X.

Notice the fuzzy metric presents a particular behaviour since the value
given for two distinct pairs of consecutive (or equally distanced) vectors may
not be the same. This effect can be smoothed by increasing the value of the K
parameter in Eq. (7.4). Therefore, the value of K should be set high enough
to reduce this effect (see Figure 7.4). Several experiences have shown that
for RGB colour vectors appropriate values for K are in the range [512, 2048]
[17, 18].
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Fig. 7.1. Values given by MK when comparing a colour vector [128, 128, 128] with
the colour vectors [L, L, L] where L = 0, 1, . . . , 255, for different values of K.
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7.2.1 Using MK to measure fuzzy directional distance between
colour vectors

Following the above notation, to approach directional processing of RGB
colour vectors instead of considering the colour vector itself and according to
[23] we can consider the unitary vector associated to each colour vector which
characterizes its direction in the vector space. Let F̂k denote the unitary
vector associated to the colour image vector Fk which is obtained as

F̂k =
Fk

||Fk|| =
(

Fk(1)
||Fk|| ,

Fk(2)
||Fk|| ,

Fk(3)
||Fk||

)
(7.5)

where || · || denotes the vector norm. Notice the above expression has
no sense for the RGB black colour vector (0, 0, 0) since ||(0, 0, 0)|| = 0. To
overcome this it is proposed to take into account that the gray scale in RGB
corresponds to the vectors with the form Va = (a, a, a), where a ∈ [0, 255] and
that these colour vectors should be assigned with the same chromaticity. Now,
for any a > 0, ||Va|| = a

√
3 and V̂a = ( 1√

3
, 1√

3
, 1√

3
), then for Z = (0, 0, 0)

we will assign Ẑ = ( 1√
3
, 1√

3
, 1√

3
), extending so the definition of the above

function.
So, the fuzzy metric MK′ over the unitary vectors defined as above can

be used to measure directional distance between colour vectors. In this way

MK′(F̂k, F̂j) =
3∏

l=1

min{F̂k(l), F̂j(l)} + K ′

max{F̂k(l), F̂j(l)} + K ′ (7.6)

will be the fuzzy directional distance between Fk and Fj . In this case, the
value of K ′ must be appropriate for unitary vectors. Several experiences have
shown that appropriate values for K ′ are in [2, 8], which agrees, by simple
proportionality, with the explanation above.

7.2.2 A fuzzy magnitude-directional distance measure

In order to approach a simultaneous magnitude-directional distance, from a
fuzzy point of view it should be appropriate to join both fuzzy magnitude
distances MK(Fi,Fj) and fuzzy directional distances MK′(F̂i, F̂j) with an
appropriate t-norm. The product t-norm will be used since it is involved in
(7.4), then, the function

MKK′ = MK(Fi,Fj) · MK′(F̂i, F̂j) (7.7)

models the nearness of the colour vectors Fi and Fj taking simultaneously
into account both magnitude and directional criteria (compare with [13]).
Moreover, according to [21] it is easy to verify that MKK′ is a fuzzy metric,
as well.
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7.2.3 Proposed vector filters

Following the reduced ordering based vector filter procedure explained in Sec-
tion 7.1 three different vector filters can be defined by using the expressions
(7.4), (7.6) and (7.7) as the distance criterion between colour vectors. These
filters will be called Fuzzy Metric Vector Median Filter FMVMF (already
defined in [17]), Fuzzy Metric Vector Directional Filter FMVDF and Fuzzy
Metric Distance Directional Filter FMDDF, respectively. Unlike the classical
VMF, BVDF and DDF, in these vector filters the vector output is defined as
the highest ranked vector since according to (FM1) the accumulated distance
has to be maximized.

Notice the filters proposed in this paper parallelize the operation of the
VMF, BVDF and DDF decribed in Section 7.1. In the next section, the
FMVMF, the FMVDF and the FMDDF will be assessed by comparing their
performance in front of those vector filters.

7.3 Experimental results

The classical gaussian model for the thermal noise and the impulsive noise
model for the transmission noise, as defined in [20], have been used to assess
the performance of the proposed filters by adding noise to the details of the
images in Figure 7.2.

(a) (b) (c)

Fig. 7.2. Test Images: (a) Detail of Lenna image, (b) Detail of Mandrill image, (c)
Detail of Brandy Rose image (Copyright photo courtesy of Toni Lankerd)

The Peak Signal to Noise Ratio (PSNR), Normalized Colour Difference
(NCD) and the recently introduced Structural Similarity Index (SSI) [26]1

have been used to assess the performance of the proposed filters. The SSI has
1 The used MATLAB implementation is available online at

http://www.cns.nyu.edu/∼lcv/ssim/.
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been used since it was proved to be more appropriate in image quality assess-
ment than previous quality measures [26]. It has been applied to each colour
channel and the mean value has been used for the assessment. According to
[20], the PSNR and NCD measures are defined as

PSNR = 20 log

 255√
1

NMQ

N∑
i=1

M∑
j=1

Q∑
q=1

(
F q (i, j) − F̃ q(i, j)

)2

 , (7.8)

where M , N are the image dimensions, Q is the number of channels of the
image (Q = 3 for RGB images), and F q(i, j) and F̃ q(i, j) denote the qth

component of the original image vector and the filtered image, at pixel posi-
tion (i, j) , respectively, and

NCDLab =

∑N
i=1

∑M
j=1 ∆ELab∑N

i=1

∑M
j=1 E∗

Lab

(7.9)

where ∆ELab = [(∆L∗)2 + (∆a∗)2 + (∆b∗)2]
1
2 denotes the perceptual colour

error and E∗
Lab = [(L∗)2 + (a∗)2 + (b∗)2]

1
2 is the norm or magnitude of the

original image colour vector in the L∗a∗b∗ colour space.

Table 7.1. Performance comparison in terms of PSNR, NCD and SSI using the
test images contaminated different densities of noise.

Filter Lenna 5% impulsive and Brandy Rose 15% impulsive Baboon 25% impulsive
σ = 5 Gaussian and σ = 10 Gaussian

PSNR NCD SSI PSNR NCD SSI PSNR NCD SSI

(10−2) (10−2) (10−2)
Noisy 22.127 7.777 0.677 16.821 13.790 0.397 15.329 18.305 0.423
VMF 28.702 4.671 0.868 28.237 5.840 0.781 22.806 6.535 0.674

FMVMF 28.837 4.790 0.870 28.498 5.808 0.791 23.116 6.508 0.691
BVDF 27.000 4.669 0.812 26.584 5.663 0.713 20.681 7.094 0.582

FMVDF 26.942 4.730 0.813 26.927 5.573 0.728 20.350 7.326 0.576
DDF 28.506 4.507 0.863 28.001 5.620 0.774 22.746 6.219 0.673

FMDDF 28.746 4.544 0.869 28.410 5.610 0.785 23.035 6.114 0.690

In the experiences we have set q = 0.5 for the DDF giving both magni-
tude and direction criteria the same weight, and K = 1024,K ′ = 4 for the
proposed filters.

The experimental results in Figures 7.3-7.11 and Table 7.1 show that
the proposed FMVMF and FMDDF filters present a better performance
than their classical versions when filtering impulsive noise and a similar
performance when dealing with gaussian noise. In general, when consider-
ing mixed gaussian and impulsive noise, the results show that the proposed
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Fig. 7.3. Performance comparison of filters in terms of (a) PSNR, (b) NCD and
(c) SSI for the detail of the Lenna image contaminated with different densities of
gaussian noise.
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Fig. 7.4. Performance comparison of filters in terms of (a) PSNR, (b) NCD and
(c) SSI for the detail of the Lenna image contaminated with different percentage of
impulsive noise.
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Fig. 7.5. Performance comparison of filters in terms of (a) PSNR, (b) NCD and
(c) SSI for the detail of the Baboon image contaminated with different densities of
gaussian noise.
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Fig. 7.6. Performance comparison of filters in terms of (a) PSNR, (b) NCD and
(c) SSI for the detail of the Baboon image contaminated with different percentage
of impulsive noise.
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Fig. 7.7. Performance comparison of filters in terms of (a) PSNR, (b) NCD and (c)
SSI for the detail of the Brandy Rose image contaminated with different densities
of gaussian noise.
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Fig. 7.8. Performance comparison of filters in terms of (a) PSNR, (b) NCD and (c)
SSI for the detail of the Brandy Rose image contaminated with different percentage
of impulsive noise.
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(a) (b) (c)

(d) (e) (f)

(g) (h)

Fig. 7.9. Test Images: (a) Detail of the Lenna image, (b) Detail of the Lenna image
contaminated with 5% Impulsive noise and σ = 5 Gaussian noise, (c) VMF output,
(d) FMVMF output, (e) BVDF output, (f) FMVDF output, (g) DDF output, (h)
FMDDF output.

filters outperform their classical versions when the component of impulsive
noise present domains over the gaussian component and it is similar in other
cases. The performances of the BVDF and the FMVDF are alike in most of
the cases for both types of noise.

It should be pointed out that the improvement reached is lower than the
one that may be reached using the advanced filtering techniques listed in
Section 1 that propose changes in the filtering methodology. Here we propose
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(d) (e) (f)
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Fig. 7.10. Test Images: (a) Detail of the Brandy Rose image, (b) Detail of the
Brandy Rose image contaminated with 15% Impulsive noise and σ = 10 Gaussian
noise, (c) VMF output, (d) FMVMF output, (e) BVDF output, (f) FMVDF output,
(g) DDF output, (h) FMDDF output.

a different way to reach some improvement over classical filtering by changing
the measures used. Notice this is compatible, in most of the cases, with the
changes in the methodology.

It has also been observed that the FMDDF is sensibly faster than the
classical DDF. This is due to the fact that the DDF needs to compute two
accumulated distances, one in magnitude and one in direction, which are
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Fig. 7.11. Test Images: (a) Detail of the Baboon image, (b) Detail of the Baboon
image contaminated with 25% Impulsive noise, (c) VMF output, (d) FMVMF out-
put, (e) BVDF output, (f) FMVDF output, (g) DDF output, (h) FMDDF output.

combined afterwards, while the FMDDF computes only one accumulation of
the hybrid fuzzy magnitude-directional distance measure (7.7).

Furthermore, after extensive experiments it has been observed that the
proposed filters present better results when filtering reduced colour set im-
ages, for instance the detail of the Brandy Rose image in Figure 7.2 (c).
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Conclusions

The usefulness of a novel fuzzy metric, previously introduced by the authors
[17], in colour image filtering using vector reduced ordering techniques has
been further studied in this paper. The fuzzy metric (7.4) which had been
previously used to measure fuzzy magnitude distances has been extended to
measure fuzzy directional distances. Using a fuzzy approach, a hybrid fuzzy
metric between two colour vectors which takes simultaneously into account
magnitude and direction criteria has been obtained.

A family of vector filters (FMVMF, FMVDF, FMDDF) using the classical
approaches of the VMF, BVDF and DDF filters has been introduced by using
the proposed fuzzy distance measures. The proposed filters outperform their
classical versions when the impulsive noise component of the noisy images
is higher than the gaussian component. Furthermore, the use of the hybrid
fuzzy distance measure in the FMDDF has reduced the computational cost
of the classical DDF.

Fuzzy metrics are a powerful tool which may be successfully applied in
image processing tasks since they are able to represent more complex relations
than the classical metrics in a simple way. The fuzzy measures presented in
this paper can be used in many other image processing tasks which motivates
its further study.
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Abstract

In this work, a new filter for impulsive noise reduction in colour images is
proposed. The filter is designed on the basis of a recently introduced family
of vector filters with good detail-preserving ability. In these approaches, the
central pixel in each filtering window is privileged to replace it only when it is
likely to be noisy. In this way, the uncorrupted image structures are preserved.
The use of a recently introduced fuzzy metric allows to create a local self-
adaptive filter. The privilege given to each central pixel will depend on its
estimated multivariate dispersion with respect to its neighbors. As well, the
fuzzy metric allows to generalize in a straightforward way the proposed filter
structure to the use of fuzzy magnitude distances, fuzzy directional distances
and combined fuzzy magnitude-directional distances. The proposed filtering
technique is robust and presents a good balance between noise attenuation
and detail-preservation. Experimental results are given to show the filter
performance is competitive with respect to classical and recently introduced
techniques for impulsive noise removal in colour images.

8.1 Introduction

During the image acquisition and transmission process the quality of the dig-
ital images is affected by the introduction of noise. In particular, it is mostly
in the transmission process when the so-called impulsive noise appears. In or-
der to avoid noise perturbing subsequent image processing tasks, the filtering
process becomes an essential task.

Several vector filters for colour images taking advantage of the existing
correlation amongst the colour image channels have been proposed to date.
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A well-known family of nonlinear vector filters is based on the theory of ro-
bust statistics [4, 9]. When the vectors in a predefined sliding window are
ranked using the reduced ordering principle the lowest ranked vectors are
those which are close to all the other vectors in the window according to
the distance or similarity measure used [15, 23]. On the other hand, atypical
vectors, susceptible to be considered as noisy or outliers, occupy the highest
ranks. Hence, in these filter structures the filter output is commonly defined
as the lowest ranked vector. The vector median filter (VMF), [2], the ba-
sic vector directional filter (BVDF), [33], and the directional-distance filter
(DDF), [10], are well-known vector filters of this family which present good
noise suppression and other interesting properties1.

The traditional vector filters described above have the disadvantage of be-
ing designed to perform the same in any image location and they are not able
to adapt to local image statistics [15]. Many different approaches have been
recently introduced in the literature with the aim of address this drawback,
for instance: Weighted vector median filtering [13, 16, 17, 31], fuzzy weighted
averaging techniques [1, 32, 5, 25], switching filtering [3, 14, 19, 22, 30],
hybrid filtering techniques [11, 12, 34] or center privileging approaches
[18, 21, 26, 27, 28, 29].

Many of the techniques listed above have the disadvantage of having to
tune an adaptive parameter to reach an appropriate filter performance. This
fact motivates us to introduce a local self-adaptive impulsive noise vector
filter structure for colour images. In this paper, the approach of privileging
the input central pixel studied in [21, 26, 27, 28, 29] is used. Some approaches
[3, 29] try to automatically determine the value of the adaptive parameter
to filter a hole image such that the filter may perform different for distinct
images. Unlike this, in this paper it is proposed to compute the value of
the adaptive parameter for each image location. So, the filter may perform
different in each image location. Hence, the privilege given to each particular
pixel in consideration will depend on its estimated multivariate dispersion
with respect to its neighbors. The filter will perform more smoothing by
decreasing the privilege given to the input central pixel when it is estimated
to be far from its neighbors. In this way, the filter may perform well, for
instance, in images where the noise is concentrated in a part of the image
thanks to its local adaptive nature.

The paper is organized as follows. In Section 8.2 the filter structure based
on privileging the central pixel is described. Section 8.3 details the approach
used to estimate the dispersion of the central pixel. Then, the local self-
adaptive filter structure using a fuzzy metric and the estimated dispersion
is proposed. Experimental study and some comparisons in front of recent
and well-known vector filters are shown in Section 8.4. Finally, Section 8.5
presents the conclusions.
1 For a detailed description of these vector filters and their properties the reader

is refered to [15, 23]
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8.2 Central Privileging Approach

According to the Fast Impulsive Vector Filter technique introduced in [21, 26,
27, 28, 29] (from now on FIVF), an appropriate filter structure for impulsive
noise reduction in RGB images is defined as follows.

Let X = [0, 255] and assume a filtering window W containing a set of n+1
image pixels {F0,F1, . . . ,Fn} ⊂ X3, where each Fk = (Fk(1), Fk(2), Fk(3))
is comprised by its R, G and B components and n is the number of neighbors
of the central pixel F0. It is considered a function µ : X3 × X3 → [0, 1]
which satisfies that µ(Fi,Fi) = 1 and µ(Fi,Fj) → 0 when Fi and Fj are
pixels with very different colour. Any function defined by means of a non-
ascending convex function over some norm of the vector difference ||Fi −Fj ||
can easily satisfy the above conditions. As well, any fuzzy metric, in the sense
of [6], between colour vectors can be used as the µ function, as in [21]. The
cumulated sum Rk of similarities between a given pixel Fk (k = 0, . . . , n) and
all the other pixels in W is defined as

R0 =
n∑

j=1

µ(F0,Fj), Rk =
n∑

j=1,j �=k

µ(Fk,Fj) , (8.1)

which means that for those Fk, (k = 1, . . . , n) which are neighbors of F0,
the value µ(Fk,F0) is not taken into account when computing Rk, which
privileges the central pixel. Indeed, the reference pixel F0 is replaced by its
neighbor Fk∗ for which k∗ = arg max

k
Rk if and only if R0 < Rk∗ . So, it is

substituted only when it is really noisy and the original undistorted image
structures are preserved.

Several functions fulfilling the above conditions have been proposed in
[21, 26, 27, 28, 29] to be used as the µ function above. These functions
include an adaptive parameter able to tune the privilege given to the central
pixel. This privilege influences the intensity of the filtering process. The best
performance and computational results were achieved, in our experiences [21],
when using the function Mα

K given by

Mα
K(Fi,Fj) =

3∏
l=1

(
min{Fi(l), Fj(l)} + K

max{Fi(l), Fj(l)} + K

)α

(8.2)

where Fi,Fj ∈ X3. Mα
K is, according to [6, 7, 8], a stationary fuzzy metric

on X3, with respect to the usual product in [0, 1]. This fuzzy metric presents
an special behaviour in the sense that the value given by Mα

K between two
pairs of equally distanced (or consecutive) vectors may not be the same. This
non-uniformity is negligible from a practical point of view if a large enough
value of the K parameter is set. Previous works [20, 21] have shown that
a suitable values of the K parameter when processing RGB colour vectors
are around K1 = 1024. On the other hand, the α parameter is able to tune
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the privilege given to the central pixel. In fact, the values given by the fuzzy
metric are in a bounded interval, such that

1 ≥ Mα
1024(Fi,Fj) ≥ Mα

1024((0, 0, 0), (255, 255, 255)) =
(

255
1279

)3α

> 0 (8.3)

where the value of the lower bound is the minimum privilege given to the
central pixel. Obviously, the lower bound of the fuzzy metric decreases as
the value of α increases. So, increasing the value of α reduces the advantage
given to the central pixel. Therefore, the likelihood to replace it is higher and
the intensity of the filtering process is higher, as well. The computation of
the α parameter is addressed in Section 8.3. For a more detailed information
about this fuzzy metric, its properties and parameters, the interested reader
is refered to [20, 21, 24].

8.2.1 Using Mα
K to measure fuzzy magnitude distance between

colour vectors

Notice Mα
K was directly used in [21] between the colour vector component

values so it measures the fuzzy magnitude distances between the colour vec-
tors. However, some works have shown that taking into account directional
distances is also interesting in RGB image processing [10, 15, 33]. In these
works it is stated that it exists a close relation between colour vector direc-
tion and chromaticity. In this subsection we extend the use of Mα

K to the
directional domain. This will allow us to define some vectors filters, which
use this fuzzy metric, taking into account magnitude, directional and hybrid
distance criteria.

Following the above notation, to each colour image vector, for instance
Fi, we can associate its unitary vector F

′
i that characterizes its direction in

the vector space and which is given by

F
′
i =

Fi

||Fi||2 (8.4)

where || · ||2 denotes the Euclidean norm. The above expression has no sense
for the RGB black colour vector Z = (0, 0, 0) since ||Z||2 = ||(0, 0, 0)||2 = 0.
Now, taking into account that the gray-scale vectors (that should be assigned
with the same chromaticity) in RGB correspond to the vectors with the form
Va = (a, a, a) where a ∈ [0, 255] and that for any a > 0, ||Va||2 = a

√
3 and

V′
a = ( 1√

3
, 1√

3
, 1√

3
), then we will extend the above function by defining the

unitary vector Z′ = ( 1√
3
, 1√

3
, 1√

3
).

So, the fuzzy metric Mα
K over the unitary vectors defined as above can

be used to measure directional distances between colour vectors. In this way
Mα

K2
(F

′
i,F

′
j) will be the fuzzy directional distance between Fi and Fj . In

this case, the value of the parameter K2 must be appropriate for a vector
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components value range in [0, 1]. Notice an appropriate value of the K pa-
rameter for the RGB range ([0, 255]) is K1 = 1024. Then, it has been checked
that a value of K2 = 4 is appropriate for vector component values in [0, 1],
as it could be expected by simple proportionality. As commented above, the
α parameter is able to adjust the privilege given to the central pixel and so,
the intensity of the filtering process. Its computation is addressed in Section
8.3.

8.3 Proposed Local Self-Adaptive Filter

Following the FIVF approach described in Section 8.2 our aim is to design a
local self-adaptive filter where the privilege given to each pixel will depend
on its estimated multivariate dispersion. Since the value of the α parameter
in Eq. (8.2) tunes the privilege given to the central pixel, in order to create a
local self-adaptive filter it is necessary to locally determine the value of α. In
the following sections it will be proposed how to approach the multivariate
dispersion of the central pixel and then a method to determine the value of
the α parameter using this dispersion.

8.3.1 Approaching the Multivariate Dispersion of the Central
Pixel

According to the notation used in Section 8.2, denote by F̄ the vector mean

of the vectors in the sliding window, that is F̄ = 1
n+1

n∑
i=0

Fi, and denote by

F̂ the vector median [2] of the vectors in the sliding window. In the existing
literature, the vector mean and the vector median are statistical concepts
that have been used to define switching vector filters [3, 19]. Now, it seems
natural to define the multivariate dispersion of any pixel Fi with respect to
the vector mean F̄ as

σF̄(Fi) = ||Fi − F̄||2 (8.5)

and the multivariate dispersion of any pixel Fi with respect to the vector
median F̂ as

σF̂(Fi) = ||Fi − F̂||2 (8.6)

where || · ||2 denotes the L2 (Euclidean) norm. So, two multivariate dispersion
of the central pixel, σF̄(F0) and σF̂(F0), may be considered. The use of the
vector median may provide certain robustness against noise, however, it can
be easily observed that its use is much more computationally demanding than
the use of the vector mean.
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8.3.2 Local Self-Adaptive Filters

In this section, the estimated multivariate dispersion of the central pixel is
used to locally determine the value of α in (8.2). Our experiments show that
the values of σF̄(F0) or σF̂(F0) can not be directly used as the α parameter
since these values are too high and the advantage given to the central pixel
would not be appropriate. Therefore, it is necessary to use an scaling param-
eter c in order to adequate the range of these values. So, we will compute the
value of α at each image location as

α = c · σF̄(F0) (8.7)

or

α = c · σF̂(F0) (8.8)

We have experimentally determined that appropriate values for c are in
the range [0.040, 0.070] (which means that we take the 4%-7% of the value of
the dispersion), and in the following it will be assumed the use of c = 0.055.

Now, we define several local self-adaptive vector filters using the filter
structure explained in Section 8.2 and the fuzzy distance measures in mag-
nitude, direction and a combined magnitude-directional approach. For this,
we make use of the fuzzy metric in Eq. (8.2) and the estimation of the multi-
variate dispersion for each pixel to compute the value of α (see Sections 8.2
and 8.3.1).

Taking the cumulated measure Rk in Eq. (8.1) of the FIVF in Section 8.2,
we can define two Local Self-Adaptive Magnitude Impulsive Vector Filters
denoted by SMFσF̄

and SMFσF̂
using σF̄ and σF̂, respectively, as a modifi-

cation of the FIVF, where the value of α is computed using Eqs. (8.7) and
(8.8) and so the Rk values will be calculated as follows.

R0 =
n∑

j=1

M
cσF̄(F0)
K1

(F0,Fj), Rk =
n∑

j=1,j �=k

M
cσF̄(F0)
K1

(Fk,Fj) (8.9)

in the case of the SMFσF̄
, and,

R0 =
n∑

j=1

M
cσF̂(F0)
K1

(F0,Fj), Rk =
n∑

j=1,j �=k

M
cσF̂(F0)
K1

(Fk,Fj) (8.10)

for the SMFσF̂
.

In a similar way we can define two Local Self-Adaptive Directional Im-
pulsive Vector Filters denoted by SDFσF̄

and SDFσF̂
using σF̄ and σF̂, re-

spectively, as a modification of the FIVF, where
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R0 =
n∑

j=1

M
cσF̄(F0)
K2

(F
′
0,F

′
j), Rk =

n∑
j=1,j �=k

M
cσF̄(F0)
K2

(F
′
k,F

′
j) (8.11)

in the case of the SDFσF̄
, and,

R0 =
n∑

j=1

M
cσF̂(F0)
K2

(F
′
0,F

′
j), Rk =

n∑
j=1,j �=k

M
cσF̂(F0)
K2

(F
′
k,F

′
j) (8.12)

for the SDFσF̂
.

In order to define an analogous filter using a fuzzy distance combining
the magnitude and the directional criteria, an intuitive approach may consist
of joining the fuzzy magnitude distance and the fuzzy directional distance
by using an appropriate mean. Since Mα

K is a fuzzy metric with respect to
the usual product in [0, 1], the geometric mean between the fuzzy magnitude
distance and the fuzzy directional distance seems to be appropriate. Notice
that in this way it is obtained a unique fuzzy expression to simultaneously
model the magnitude and directional criteria for each comparison between
colour vectors (compare with [10]).

Therefore, we define two Local Self-Adaptive Directional-Distance Im-
pulsive Vector Filters denoted by SDDFσF̄

and SDDFσF̂
using σF̄ and σF̂,

respectively, as a modification of the FIVF, where

R0 =
n∑

j=1

√
M

cσF̄(F0)
K1

(F0,Fj) · M cσF̄(F0)
K2

(F′
0,F

′
j), (8.13)

Rk =
n∑

j=1 j �=k

√
M

cσF̄(F0)
K1

(Fk,Fj) · M cσF̄(F0)
K2

(F′
k,F′

j) (8.14)

in the case of the SDDFσF̄
, and,

R0 =
n∑

j=1

√
M

cσF̂(F0)
K1

(F0,Fj) · M cσF̂(F0)
K2

(F′
0,F

′
j), (8.15)

Rk =
n∑

j=1 j �=k

√
M

cσF̂(F0)
K1

(Fk,Fj) · M cσF̂(F0)
K2

(F′
k,F′

j) (8.16)

in the case of the SDDFσF̂
.

The proposed filters suitability will be assessed in the following section by
presenting some experimental results for comparison in front of some classical
vector filters and some recently introduced vector filters.
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8.4 Experimental Results and Assessment

For the evaluation of the filters proposed in Section 8.3, two types of impulsive
noise have been used to simulate different distortions which may corrupt
colour images [27, 31]. Let F = {FR, FG, FB} be the original pixel, let F∗

denote the pixel corrupted by the noise process and suppose that p is the
probability of the noise appearance. Then, the two types of impulsive noise
considered are defined as follows.

Table 8.1. Filters taken for performance comparison and notation.

Notation Filter

VMF Vector Median Filter [2]

BVDF Basic Vector Directional Filter [?]

DDF Directional Distance Filter [10]

FIVF Fast Impulsive Noise Vector Filter [21]

SAMF Switching Arithmetic Mean Filter [30]

AVMF Adaptive Vector Median Filter [19]

MAVMF Modified Adaptive Vector Median Filter[19]

SMFσF̄
Local Self-Adaptive Magnitude Impulsive Vector Filter using σF̄

SMFσ
F̂

Local Self-Adaptive Magnitude Impulsive Vector Filter using σF̂

SDFσF̄
Local Self-Adaptive Directional Impulsive Vector Filter using σF̄

SDFσ
F̂

Local Self-Adaptive Directional Impulsive Vector Filter using σF̂

SDDFσF̄
Local Self-Adaptive Distance Directional Impulsive Vector Filter using σF̄

SDDFσ
F̂

Local Self-Adaptive Distance Directional Impulsive Vector Filter using σF̂

– I. Impulsive noise.
The image pixels are distorted according to the following scheme

F∗ =


{d1, FG, FB} with probability p · p1 ,
{FR, d2, FB} with probability p · p2 ,
{FR, FG, d3} with probability p · p3 ,

{d1, d2, d3} with probability p ·
(
1 −∑3

i=1 pi

)
.

(8.17)

where d1, d2, d3 are independent and equal to 0 or 255 with equal probabil-
ity, and pi, i = 1, 2, 3 determine the probability of appearance of the noise
in the image channels.

– II. Uniform noise.
F∗ = {d1, d2, d3} with probability p, where d1, d2, d3 are random uniformly
distributed independent integer values in the interval [0, 255].
Now, in order to assess the performance of the proposed filter, the Mean

Absolute Error (MAE), Peak Signal to Noise Ratio (PSNR) and Normalized
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Table 8.2. Comparison of the performance measured in terms of MAE, PSNR and
NCD using the Baboon image contaminated with different percentages of impulsive
noise type I.

Filter 10% impulsive type I 25% impulsive type I
MAE PSNR NCD (10−2) MAE PSNR NCD (10−2)

None 5.10 19.13 7.73 11.72 15.47 18.12
VMF 10.55 23.32 6.10 10.92 23.09 6.42
BVDF 12.58 21.20 6.33 14.02 20.22 7.13
DDF 10.48 23.17 5.61 11.26 22.68 6.15
FIVF 2.96 24.94 3.80 6.96 23.41 4.34
SAMF 3.77 25.68 2.19 5.76 24.36 3.78
AVMF 4.27 25.60 2.56 5.35 24.13 4.81

MAVMF 4.31 25.53 2.66 5.51 23.84 5.17
SMFσF̄

4.46 24.67 2.73 6.07 23.75 4.56
SMFσ

F̂
4.57 24.53 2.77 6.20 23.61 4.59

SDFσF̄
2.56 26.38 1.56 5.80 22.08 3.40

SDFσ
F̂

2.92 25.48 1.67 5.90 22.09 3.49

SDDFσF̄
3.24 26.14 1.82 5.02 24.84 3.13

SDDFσ
F̂

3.41 25.78 1.86 5.14 24.46 3.17

Table 8.3. Comparison of the performance measured in terms of MAE, PSNR and
NCD using the Lenna image contaminated with different percentages of impulsive
noise type II.

Filter 10% impulsive type II 20% impulsive type II
MAE PSNR NCD (10−2) MAE PSNR NCD (10−2)

None 6.40 19.38 5.78 15.23 15.59 14.19
VMF 4.61 28.85 3.04 5.60 27.36 3.74
BVDF 4.71 28.33 2.84 6.33 25.79 3.81
DDF 4.44 28.88 2.77 5.47 27.35 3.53
FIVF 0.93 33.31 0.62 2.01 30.02 1.47
SAMF 0.88 34.92 0.50 1.98 30.97 1.25
AVMF 1.19 33.11 0.77 2.67 27.13 2.13

MAVMF 1.27 32.60 0.85 2.99 26.30 2.45
SMFσF̄

0.96 33.22 0.61 2.12 29.66 1.54
SMFσ

F̂
0.97 33.24 0.60 2.05 30.08 1.43

SDFσF̄
0.79 34.26 0.48 2.17 28.89 1.39

SDFσ
F̂

0.78 34.25 0.48 2.09 29.22 1.31

SDDFσF̄
0.80 34.54 0.50 1.92 30.55 1.34

SDDFσ
F̂

0.83 34.28 0.52 1.87 30.76 1.26

Colour Difference (NCD) [23, 31] have been used. These objective quality
measures are defined as follows
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 8.1. Performance comparison: (a) Detail of Baboon image, (b) Detail of Ba-
boon image with 25% impulsive noise type I, (c) VMF output, (d) BVDF output,
(e) DDF output, (f) FIVF output, (g) SAMF output, (h) SDDFσF̄

output, (i)
SDDFσ

F̂
output.

MAE =

N∑
i=1

M∑
j=1

Q∑
q=1

∣∣∣F q (i, j) − F̂ q(i, j)
∣∣∣

N · M · Q , (8.18)

PSNR = 20 log

 255√
1

NMQ

N∑
i=1

M∑
j=1

Q∑
q=1

(
F q (i, j) − F̂ q(i, j)

)2

 , (8.19)
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 8.2. Performance comparison: (a) Detail of Lenna image with 5% impulsive
noise type I in the upper half and 25% impulsive noise type I in the lower half,
(b) VMF output, (c) BVDF output, (d) DDF output, (e) FIVF output, (f) SAMF
output, (g) SDFσF̄

output, (h) SDDFσF̄
output, (i) SDDFσ

F̂
output.

where M , N are the image dimensions, Q is the number of channels of the
image (Q = 3 for colour image), and F q(i, j) and F̂ q(i, j) denote the qth

component of the original image vector and the filtered image, at pixel posi-
tion (i, j) , respectively, and

NCDLab =

∑N
i=1

∑M
j=1 ∆ELab∑N

i=1

∑M
j=1 E∗

Lab

(8.20)
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Table 8.4. Comparison of the performance measured in terms of MAE, PSNR
and NCD using the Microscopic image contaminated with different percentages of
impulsive noise type I.

Filter 10% impulsive type I 20% impulsive type I
MAE PSNR NCD (10−2) MAE PSNR NCD (10−2)

None 3.28 20.29 4.40 8.94 15.89 11.91
VMF 4.76 29.32 4.30 5.10 28.86 4.63
BVDF 6.03 26.70 5.01 6.64 26.15 5.46
DDF 4.77 29.30 4.07 5.12 28.71 4.41
FIVF 0.68 34.79 0.95 1.81 31.31 1.75
SAMF 0.58 36.46 0.76 1.47 32.57 1.66
AVMF 1.18 33.78 1.08 1.93 30.67 2.12

MAVMF 1.27 33.32 1.17 1.97 30.29 2.33
SMFσF̄

0.66 35.13 0.84 1.60 31.44 1.87
SMFσ

F̂
0.71 34.69 0.87 1.58 31.69 1.86

SDFσF̄
0.60 34.03 0.63 1.93 27.43 1.91

SDFσ
F̂

0.55 35.55 0.59 1.98 27.37 1.99

SDDFσF̄
0.51 37.70 0.56 1.46 32.28 1.56

SDDFσ
F̂

0.57 36.80 0.58 1.47 32.38 1.57

Table 8.5. Comparison of the performance measured in terms of MAE, PSNR and
NCD using the Lenna image contaminated with 5% of impulsive noise type I in the
upper half and 25% of impulsive noise type I in the lower half.

Filter MAE PSNR NCD (10−2)

None 7.22 17.53 10.22
VMF 4.43 29.16 2.95
BVDF 5.03 27.98 3.03
DDF 4.69 28.66 2.93
FIVF 1.59 31.04 1.32
SAMF 1.45 30.84 1.30
AVMF 1.71 29.99 1.66

MAVMF 1.85 29.04 1.90
SMFσF̄

1.42 31.25 1.35
SMFσ

F̂
1.39 31.45 1.30

SDFσF̄
1.18 32.72 1.00

SDFσ
F̂

1.16 32.94 1.03

SDDFσF̄
1.18 32.74 1.07

SDDFσ
F̂

1.28 32.02 1.15

where ∆ELab = [(∆L∗)2 + (∆a∗)2 + (∆b∗)2]
1
2 denotes the perceptual colour

error and E∗
Lab = [(L∗)2 + (a∗)2 + (b∗)2]

1
2 is the norm or magnitude of the

original image colour vector in the L∗a∗b∗ colour space.
The proposed filters are assessed in front of the classical vector filters and

recently introduced adaptive vector filters for impulsive noise removal with
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 8.3. Performance comparison: (a) Detail of Microscopic image, (b) Detail of
Microscopic image with 10% impulsive noise type I, (c) VMF output, (d) BVDF
output, (e) DDF output, (f) FIVF output, (g) SAMF output, (h) SDDFσF̄

output,
(i) SDDFσ

F̂
output.

good detail preserving ability in Table 8.1. Several test images contaminated
with different densities of impulsive noise types I and II, have been used.

Some performance results for comparison are shown in Tables 8.2-8.5 and
Figures 8.1-8.3. The results show that the presented technique outperforms
classical vector filters and recently introduced vector filters presenting the
advantage of being self-adaptive. The self-adaptive mechanism can be con-
sidered suitable since the images were contaminated with both low and high
densities of impulsive noise and the performance is good in all the cases.
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In general, the proposed filters best results correspond to the SDDFσF̄

and SDDFσF̂
. The multivariate dispersion estimation based on the vector

median F̂ is more useful than the one using the vector mean F̄ when dealing
with impulsive noise type II. However, in general, the performance using the
vector mean F̄ or the vector median F̂ to estimate the multivariate dispersion
are similar, so it is rather preferred to use the vector mean F̄ since in this
case the computational cost of the filtering process is lower.

The proposed filters are specially useful for two wide classes of images
thank to their local adaptive nature. The first class corresponds to highly
non-homogeneous images, with many textures and edges, since the use of
distinct values of the adjusting parameter is necessary in different parts of
the image (as can be seen for the Baboon image in Table 8.2 and Figure 8.1).
The second class corresponds to images where the contaminating impulsive
noise is not uniformly distributed along the image. In fact, this situation
may occur, for instance, when the noise appears with more intensity in an
interval of the transmission process. The filter performances in these cases
are depicted in Table 8.5 and Figure 8.2 where the detail of the Lenna image
has been contaminated with different densities of noise in its upper half and
its lower half. In such cases, obviously, local adaptive methods may present
better performance than those methods which use the same value of the
adjusting parameter to filter the hole image.

Conclusions

In this paper, a local self-adaptive filter structure using a fuzzy metric has
been introduced. The proposed filter is based on a recently introduced tech-
nique for impulsive noise removal with good detail-preserving ability and nice
computational cost.

Fuzzy metrics are specially useful within this technique since the use of a
fuzzy metric has allowed to create a local self-adaptive filter structure and to
extend it to the use of fuzzy magnitude distances, fuzzy directional distances
and combined fuzzy magnitude-directional distances in a straightforward way.

The proposed filters are able to remove impulsive noise of different types
and densities from colour images presenting a good balance between noise
suppression and detail-preserving and they are easy to use due to their self-
adaptive nature. Since the proposed filters perform well for low and high
densities of impulsive noise, the self-adaptive mechanism may be considered
suitable. Furthermore, the local adaptiveness allows to perform well in highly
non-homogeneous images and in images where the density of contaminating
noise is distinct in different parts of the image. This local adaptiveness is
approached by using an estimated multivariate dispersion of the pixels with
respect to the vector mean or to the vector median of its neighborhood. So,
when the estimated dispersion is higher, the conditions to keep the original
pixel are less demanding and the likelihood to substitute the pixel increases.
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Abstract

Classical nonlinear vector median-based filters are well-known methods for
impulsive noise suppression in colour images but mostly they lack good detail-
preserving ability. In this paper a class of fuzzy metrics is used to introduce a
vector filter aimed at improving the detail-preserving ability of classical vector
filters while effectively removing impulsive noise. The main idea behind the
proposed method is that the output pixel for a given filter window will be
the one which best fulfills two criteria: to be similar in signal value and
to be spatially close to all the other pixels in the filter window. The use
of fuzzy metrics allows to simultaneously handle both criteria. The filter is
designed so that the importance of the spatial criterion can be adjusted. It
is shown that the filter can adapt to the density of the contaminating noise
by adjusting the spatial criterion importance. Classical and recent filters are
used to assess the proposed filtering. The experimental results show that the
proposed technique exhibits a competitive performance.

9.1 Introduction

Nonlinear vector filters based on the theory of robust statistics [9] commonly
use the reduced ordering principle amongst vectors in a predefined sliding
window [20, 34] because this ordering takes into account the existing correla-
tion amongst the image channels. The reduced ordering commonly identifies
outliers of the population in the highest ranks and therefore, the filter output
is defined as the lowest ranked vector. Building on the concept of robust order
statistics, numerous filters, with a detailed overview to be found in [20, 34, 21],
have been proposed. Within this context, the vector median filter (VMF) [4]
uses the L1 (city-block) or L2 (Euclidean) metrics as the distance function
between colour vectors. The VMF concept has been extended to the direc-
tional domain by using the angular distance in the basic vector directional
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filter BVDF [44]. The work in [46] defines a different vector median opera-
tion using a conditional ordering in the Hue-Saturation-Value (HSV) colour
space.

The traditional vector filters described above have the disadvantage of be-
ing designed to perform a fixed amount of smoothing which sometimes leads
to insufficient signal preservation [20]. To avoid this drawback, the filters in-
troduced in [22]-[25] make use of different weighting coefficients to preserve
the original signal structures, such as edges and fine details. The approaches
in [2]-[6] propose switching methods where only pixels identified by the im-
pulse detection procedure are filtered. In order to detect the noisy pixels [2]
checks the cluster membership of each pixel after a cluster analysis of its
neighborhood. The work in [26] performs a deviation test with respect to
the set of a few lowest ranked vectors. The methods in [27, 28] use approx-
imation of the multivariate dispersion, and the technique in [6] is based on
computing the confidence limits extracted from the neighborhood assuming
a multi-normal distribution of the colour vectors. In [39]-[33] a special vector
ordering procedure that increases the probability of the filter window cen-
tral pixel to be the filter output is used. This fact reduces the number of
unnecessary substitutions and improves the detail-preserving ability of the
filtering. The method in [30] analyzes similarities between the neighboring
colour vectors in a two-step impulse detection procedure. A three-step pro-
cedure including robust estimation, vector partition and weighted filtering
has been recently introduced in [31]. The methods in [32]-[45] propose to
simultaneously use several sub-filters in each image location and the filter
output is computed by choosing the most appropriate sub-filter output [32]
or by fusing the sub-filter outputs using a rational function [16, 17] or a
genetic algorithm [45]. Recently, a class of chromatic filters has been pro-
posed to achieve better chromatic smoothness [19]. Additionally, other good
detail-preserving methods for impulsive noise have been recently introduced
in [41]-[7]. On the other hand, also different fuzzy approaches have been pro-
posed in the literature [8]-[29]. The scalar and vector median operations are
extended to fuzzy numbers in [8]. In [3] and [14] a fuzzy rule based system
determines the filter output. The vector median and some fuzzy measures are
used in [36, 37, 38] for calculating the fuzzy coefficients to determine the out-
put as a weighted average of the inputs. The work in [43] computes the fuzzy
coefficients taking into account spatial and value nearness relations between
pixels, and the inclusion of an impulse detector in this procedure is addressed
in [10]. In [29] fuzzy coefficients determine the filter output by selecting the
most representative input vector or as the combination of the vectors inside
the filter window.

In this paper we propose to use a fuzzy metric as the distance criterion to
perform the reduced ordering of the vectors in the filter window. This fuzzy
metric for comparing two pixels will simultaneously handle two criteria: the
value similarity between the colour vectors and the spatial closeness of the
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pixels in the image. The inclusion of the spatial closeness criterion in the
distance measure is the main novelty presented in the paper. Unlike the
approaches in [43, 10] which perform fuzzy weighted averaging, the method
proposed in this paper uses fuzzy metrics to order the input vectors. Hence,
the output of the filtering process is the vector which is simultaneously the
most similar in value and spatially close to all the other vector pixels in the
filter window. Moreover, by adjusting the spatial criterion importance, the
proposed filter adapts to the density of impulsive noise in the image.

The paper is organized as follows. In Section 9.2 the fuzzy metric approach
is introduced. Section 9.3 describes the proposed filter. Experimental study
and performance comparison are shown in Section 9.4. Finally, Section 9.5
presents the conclusions.

9.2 A Fuzzy Metric Approach

Let X be a non-empty set. A function M(x, y, t) defined on X ×X×]0,+∞[
with values in ]0, 1] is called a fuzzy metric [11, 12] if it is symmetric with
respect to x and y, continuous on t and it satisfies the following conditions
for all x, y, z ∈ X and t, s > 0:

(FM1) M(x, y, t) = 1 if and only if x = y
(FM2) M(x, z, t + s) ≥ M(x, y, t) · M(y, z, s)
M(x, y, t) represents the degree of nearness, or similarity, of x and y with

respect to t. Fuzzy metrics behave similarly to classical metrics [12] since, as
classical metrics take values in the interval [0,∞[, M takes values in ]0, 1].
M is called stationary, [13], if it does not depend on t and in such a case we
write M(x, y) instead of M(x, y, t).

In the following we aim at measuring the fuzzy value similarity between
colour vectors. Consider the function R given by

R(Fi,Fj) =
C

C + ||Fi − Fj|| (9.1)

where || · || denotes the vector norm, C is a positive real parameter used
to control the spread of the function, X is the set {0, 1, . . . , 255} and
Fk = (F 1

k , F 2
k , F 3

k) represents the colour vector of the image pixel at po-
sition k comprising its R, G and B components. From [11] Example 2.9, R is
a stationary fuzzy metric on X3. Notice that various fuzzy metrics, such as
those listed in [11], could be used instead of R in the same conditions.

The influence of the value of C is illustrated in FIG. 9.1. Using a low
value of C reduces the value of R to 0 too quickly as the Euclidean distance
increases. On the other hand, if a high value is used the value of R decreases
too slowly. So intermediate values of C are more adequate. Hence, in the
case of the L2 metric any value of C in [50, 250] can be used without signifi-
cantly affecting the filter performance while values out of the interval are less
appropriate.
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Fig. 9.1. Behavior of R for different values of C as a function of the Euclidean
distance between the colour vectors.

For the case of fuzzy spatial closeness between pixels, let us consider the
pixels in a n × n filter window W represented in Cartesian coordinates and
so, denote by i = (i1, i2) ∈ Y 2 the position of a pixel Fi in W where Y =
{0, 1, . . . , n − 1}. We consider the standard fuzzy metric S deduced from the
L∞ metric ([11] Remark 2.10) given by S(i, j, t) = t

t+||i−j||∞ where i, j ∈ Y 2,
t > 0 and || ||∞ is the L∞ metric given by ||i− j||∞ = max{|i1−j1|, |i2−j2|}.
We propose that all neighbors in a 3 × 3 neighborhood (and analogously
for further neighborhoods) should receive the same closeness degree with
respect to the central pixel. To achieve this we have used the L∞ metric
between the pixel positions i, j. Hence, some experiments have shown that this
approach provides better results than the usage of the Euclidean metric which
is proposed in [43, 10]. Then, S(i, j, t) measures the fuzzy spatial closeness
between the colour pixels Fi and Fj with respect to t. The parameter t is
used to adjust the importance given to the spatial closeness criterion.

Now, since each pixel is represented as a three-component RGB colour
vector occupying some location in the filter window, for our purpose we will
consider a fuzzy metric combining R with S. So, the following function is
proposed:

CFM(Fi,Fj, t) = R(Fi,Fj) · S(i, j, t) =
C

C + ||Fi − Fj|| ·
t

t + ||i − j|| (9.2)

If we identify each pixel Fi with (F 1
i , F 2

i , F 3
i , i1, i2) then from [35] Proposition

3.5 it can be proved that CFM is a fuzzy metric on X3×Y 2. This fuzzy metric
is used to simultaneously model the value similarity and spatial closeness
criteria commented in Section 9.1. Notice the main novelty presented in this
paper is that the measure used to perform the vector ordering includes a
spatial closeness criterion. It is possible to find expressions different from the
fuzzy metrics used in this paper to simultaneously model these criteria. In this
paper we have preferred the use of fuzzy metrics for three main reasons: First
they present a strong axiomatic system which is very close to the one of the
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classical metrics; second, two fuzzy metrics can be joined in a straightforward
way since both take values in the same interval ]0, 1]; third, the value given
by any fuzzy metric M(x, y, t) can be considered as the certainty degree of a
fuzzy logic proposition and then the product of two fuzzy metrics corresponds
to the certainty degree of the fuzzy connector AND (when the product t-norm
is chosen instead of the minimum t-norm), which might be useful in many
applications.

9.3 Proposed filtering

The scheme of a vector ordering procedure based on the reduced ordering
principle [34] can be described as follows.

For simplicity, we denote by Fq, q = 0, 1, . . . , n2 − 1 the n2 colour vectors
in W . The distance and similarity between two vectors Fi,Fj is denoted as
ρ(Fi,Fj) (The interested reader may find the most common distance and sim-
ilarity measures used in the field in the overview made in [20].). For each vec-

tor Fk in the filter window, an accumulated measure Rk =
n2−1∑

j=0,j �=k

ρ(Fk,Fj)

to all the other vectors in the window has to be calculated to perform the re-
duced ordering [20, 34]. The Rk values are ordered in an ascending sequence
(in which the value located in the r-th position is written as R(r)) as follows:
R(0) ≤ R(1) ≤ ... ≤ R(n2−1). This order implies the same ordering of the Fk’s
vectors: F(0) ≤ F(1) ≤ ... ≤ F(n2−1).

The proposed method uses the fuzzy metric CFM as the ρ function.
Since according to (FM1) the associated measure must be maximized, the
filter output will be the vector F(n2−1) occupying the highest rank in the
ordered sequence. Note that the t parameter allows to adjust the importance
of the spatial criterion. When t → ∞ the spatial criterion is not taken into
account and the proposed filter will behave as a classical VMF. For lower
values of t, increasing the size of the filter window does not increase too much
the smoothing performed. The pixels far from the central pixel help deciding
the filter output but, actually, they are not likely to be the filter output as
they are not spatially close to all the other pixels in the window. Hence,
mostly one of the pixels spatially close to the central pixel will be the filter
output independently of the filter window size. Example in FIG. 9.2 illustrates
this behavior. Furthermore, in the extreme case when t → 0 the filter will
approach the identity operation. The value of t should be determined to
find an appropriate balance between the VMF operation and the identity
operation so, it seems intuitive to determine the value of t according to the
density of contaminating noise.

It can be easily noticed that the order of computational complexity of
proposed method and the VMF is the same. Both methods use the same
ordering procedure and the number of needed distance calculations is the
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(a) (b) (c)

(d) (e)

Fig. 9.2. Example of the proposed procedure. (a),(b) Sample of an edge in a gray-
scale image (used for simplicity) and (c), (d) the result after adding some impulses.
We have computed the outputs of processing the central pixel (165) using the
median filter (in red colour) and the CFM filter (with C = 150, t = 1.5, in bold
font) using filter windows of size 3×3, 5×5 and 7×7. The outputs are summarized
in the table (e). Similar results are obtained for similar t values.

same. However, the CFM function is a little more computationally demanding
than the L1 or L2 metrics commonly used by the VMF. This drawback could
be alleviated by using some look-up tables for the calculation of S. This makes
the CFM filter perform a little bit slower than the VMF but within the same
complexity order.

9.4 Experimental Study and Performance Comparison

First in this section, we study the influence of the t parameter in the filter
performance. For this, the test images in FIG. 9.3 were corrupted with im-
pulsive noise. We consider the following two impulsive noise models for RGB
images [34].

Let F = {FR, FG, FB} be the original pixel, let F∗ denote the pixel cor-
rupted by the noise process and suppose that p is the probability of noise
appearance. Then, the two types of impulsive noise considered are defined as
follows.
– I. Fixed-value impulsive noise.

The image pixels are distorted according to the following scheme
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F∗ =


{d1, FG, FB} with probability p · p1 ,
{FR, d2, FB} with probability p · p2 ,
{FR, FG, d3} with probability p · p3 ,

{d1, d2, d3} with probability p ·
(
1 −∑3

i=1 pi

)
.

(9.3)

where d1, d2, d3 are independent and equal to 0 or 255 with equal proba-
bility, and pi for i = 1, 2, 3 determine the probability of appearance of the
noise in the image channels.

– II. Random-value impulsive noise.
F∗ = {d1, d2, d3} with probability p, where d1, d2, d3 are random integer
values uniformly distributed in [0, 255].
The Mean Absolute Error (MAE), Peak Signal to Noise Ratio (PSNR) and

Normalized Colour Difference (NCD) objective quality measures as defined
in [34] have been used to evaluate the filtering.

(a) (b) (c)

(d)

Fig. 9.3. Test images: (a) Mandrill image (256 × 256), (b) Detail of a microscopic
image, (c) Peppers image (256 × 256), (d) Lenna image (256 × 256).

First we study the importance of the filter window size. We have exper-
imentally found that the 3 × 3 size is the most appropriate one when the
image is corrupted with a low impulsive noise percentage (< 40% approx.).
For medium noise percentages (between 40% and 60%) a 5 × 5 size is more
appropriate. And, for high noise densities (> 60%) a 7 × 7 filtering window
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is rather preferred. FIG. 9.4 (a) shows these results. Notice that the larger
window size the more important the spatial criterion is.
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Fig. 9.4. (a) Performance of the proposed filter in terms of NCD for different
window sizes and optimal t values: 3×3 (blue solid line), 5×5 (red dashed line), 7×7
(green dotted line), on the Peppers image contaminated with different densities of
fixed-value impulsive noise. (b) NCD optimal t values in the CFM filter for different
percentages of noise where blue points correspond to Baboon, green points to Micro,
red points to Peppers and black line to the adjusting function

Second, the filter performance has been assessed as a function of the t
parameter in the CFM fuzzy metric in Eq. (9.2). As it is shown in FIG.
9.5 the intensity of the smoothing process and the performance presented by
the filters depend on the value of the t parameter. For higher values of t the
importance of the positional criterion in Eq. (9.2) is lower and the number of
performed substitutions increases (FIG. 9.5 (a)). By analyzing the optimum



9.4 Experimental Study and Performance Comparison 151

performance presented for each density of noise it is shown that the higher
the density of the contaminating noise is, the higher the needed value of t
(FIG. 9.5 (b),(c),(d)).
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Fig. 9.5. (a) Percentage of substitutions, and performance in terms of (b) MAE,
(c) PSNR and (d) NCD for the CFM filter, as a function of t and the percentage
of impulsive noise contaminating the Peppers image.

In order to set the value of the t parameter we propose two different
approaches. On the one hand, we have experimentally found that a value
of t = 4 receives a good performance for many different images and noise
densities. This value can be used when the density of the contaminating
noise is unknown. On the other hand, as commented above, the value of
t should be higher when the density of the contaminating noise is higher.
So, we also propose to determine the value of t according to the density of
contaminating noise. For this, the relation between the t parameter and the
filter performance is investigated by means of the following regression study.
The optimal value of t in terms of NCD is computed for each one of the test
images Baboon, Micro and Peppers against varying the noise density from
0% to 40%. The optimal values are shown as the set of points in FIG. 9.4 (b).
The correlation study is done over this set of points. Since the t parameter has
the constraint of being a real positive value (see Section 9.2) we must use a
function f such that t = f(p) > 0,∀p. To address this we have considered the
parabolic function f(p) = (a + bp)2 that fulfills the mentioned condition and
gives a good adjustment to the set of points. The adjusting function we have
computed using the least squares method is t = f(p) = (0.36+0.056p)2, which
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is shown in FIG. 9.4 (b). The correlation coefficient is r = 0.955 and the 95%
confidence intervals of the adjusting function parameters are [0.32, 0.40] and
[0.052, 0.060] for a and b, respectively. The data may be considered properly
adjusted since the correlation factor is high (r > 0.95). As a result, we define
the CFM ′ function by replacing t in Eq. (9.2) by the computed adjusting
function, i.e. CFM ′(Fi,Fj, t) = CFM(Fi,Fj, f(p)). It can be proved that
the function CFM ′ is also a fuzzy metric on X3 × Y 2. This proposed t
parameter adjustment approach will be validated in the following using an
image different from those used for the regression. In this way, it is possible
to determine a suitable value of the t parameter from an estimated noise
percentage of the input image.

Actually, the noise percentage may be quite accurately estimated using
the technique described in [39, 40]. This method consists of detecting as noise
all those pixels that do not have at least 2 neighbors in a 3× 3 neighborhood
at Euclidean distance lower or equal to D (typically, D ∈ [50, 60]). In the
worst case, it has to compute 8 distances per pixel which is 2

9 of the distances
needed by the VMF. Moreover, this method does not need to run over the
whole image. Using only 25% of the image could be enough to have a fast
and quite accurate estimation. So, including this estimation would involve,
as much, an additional number of distance calculations equal to 1

18 of the
distances in the VMF. So, the computational load is only increased in a 5.5%
approx.

Finally in this section, the proposed filter is assessed in comparison to
some classical and well-known vector filters: VMF [4], Extended Vector Me-
dian Filter (EVMF) [4], BVDF [44], Weighted Multichannel Median Filter
(WMMF) [18], Vector Median-Rational Hybrid Filter (VMRHF) [16] and Bi-
lateral Filter (BF) [43]; some recent vector filters with good detail-preserving
ability named Adaptive Switching Vector Median Filter (ASVMF) [26], Adap-
tive Vector Median Filter (AVMF) [27], t-Test Vector Median Filter (tTVMF)
[6], Fast Impulsive Vector Filter (FIVF) [33], Neighborhood Vector Filter
(NVF) [30] and Peer Group Switching Arithmetic Mean Filter (PGSAMF)
[41]; and also with some impulsive noise filters for gray-scale images applied in
a component-wise way: Marginal Vector Median Filter (MVMF) [34], Trun-
cation Filter (TF) [15], Modified Peak-Valley Filter (MPVF) [1], Median-Type
Detection Filter (MTDF) [7] and Universal Filter (UF) [10].

The proposed filter is easy to adjust by using the correlation function
f(p). In this way, instead of tuning a poor meaningful parameter, the tuning
process is done with respect to an estimated percentage of noise which makes
the process simpler.

In Tables 9.1-9.3, the performance comparison in terms of MAE, PSNR
and NCD for different densities of noise using the test images (FIG. 9.3)
is presented. The results of the CFM filter correspond to a fixed value of
t = 4. The results denoted by CFM ′ correspond to t = f(p′) where p′ is the
impulsive noise percentage estimation. Note that the Lenna image was not
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used in the process to determine the correlation function, so, these results
validate its suitability.

Table 9.1. Comparison of the performance measured in terms of MAE, PSNR
and NCD (×102) using the Lenna image contaminated with different types and
percentages of impulsive noise

Filter 5% fixed-value 20% fixed-value 30% random-value
MAE PSNR NCD MAE PSNR NCD MAE PSNR NCD

None 2.519 22.198 3.458 9.830 16.320 13.507 23.018 13.894 20.756
VMF 2.747 32.060 1.778 3.082 31.300 1.997 5.019 26.672 3.330

EVMF 2.775 32.067 1.806 3.117 31.275 2.073 5.537 26.027 3.941
BVDF 2.954 31.492 1.701 3.765 29.544 2.181 5.970 24.665 3.479
WMMF 2.359 32.679 1.713 2.230 32.184 1.988 5.830 24.373 5.917
VMRHF 1.822 34.938 1.239 2.792 31.171 1.984 6.841 24.219 5.249

BF 5.722 28.364 4.366 9.921 24.694 8.948 18.029 20.420 15.310
ASVMF 0.474 36.219 0.366 1.393 32.147 1.288 2.836 27.986 1.959
AVMF 0.849 35.277 0.511 1.341 31.509 1.271 4.177 23.674 3.405
tTVMF 0.376 38.668 0.299 1.366 30.471 1.447 2.985 27.446 2.169
FIVF 0.427 36.318 0.353 1.476 31.748 1.078 2.485 28.897 1.548
NVF 0.302 39.431 0.239 1.315 31.228 1.199 2.619 28.352 1.709

PGSAMF 0.451 37.163 0.294 1.467 30.666 1.289 2.106 30.484 1.335
MVMF 2.770 32.119 1.940 3.137 31.177 2.481 5.875 25.717 5.313

UF 2.167 33.278 1.426 2.543 30.825 2.005 4.255 27.247 3.526
TF 6.323 26.107 4.400 6.366 25.681 4.870 9.418 22.825 7.752

MPVF 1.220 30.499 1.238 3.726 21.771 5.151 8.299 20.099 8.805
MTDF 0.826 36.723 0.787 0.909 36.423 1.025 11.040 18.401 11.349
CFM 0.787 34.398 0.451 1.565 31.853 1.030 2.553 28.896 1.586
CFM ′ 0.368 37.916 0.300 1.424 32.010 1.068 2.558 28.924 1.585

The results in Tables 9.1-9.3 and Figs. 9.6-9.8 show that the proposed
approach is able to suppress different densities of the two types of impulsive
noise and can outperform the competition in terms of performance. By visu-
ally inspecting the results in Figs. 9.6-9.8 it can be observed that VMF and
the proposed filters show similar noise suppression ability, except for small
impulses. On the other hand, the sharpness of edges and the fine details are
better preserved. The experimental results show that the CFM ′ filter gives
better results than the CFM filter in most of the cases. So, we can con-
clude that, if the additional computation load can be assumed, the adaptive
computation of t = f(p′) is recommended to the use of a fixed value.

Conclusions

In this paper, fuzzy metrics are used to measure the similarity between colour
image pixels. A fuzzy metric which simultaneously takes into account the
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(a) (b) (c)

(d) (e)

Fig. 9.6. Performance comparison: (a) Detail of Lenna image with 30% random-
value impulsive noise, (b) VMF output, (c) FIVF output, (d) ASVMF output, (e)
CFM’ output.

(a) (b) (c)

(d) (e)

Fig. 9.7. Performance comparison: (a) Detail of Peppers image with 25% fixed-
value impulsive noise, (b) VMF output, (c) tTVMF output, (d) CFM output, (e)
CFM’ output.
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Table 9.2. Comparison of the performance measured in terms of MAE, PSNR and
NCD (×102) using the Peppers image contaminated with different percentages of
impulsive noise

Filter 5% random-value 25% fixed-value 60% fixed-value
MAE PSNR NCD MAE PSNR NCD MAE PSNR NCD

None 3.885 21.315 3.495 12.398 15.091 16.685 29.952 11.267 40.921
VMF 2.598 32.467 2.198 2.966 31.414 2.541 5.225 24.668 5.458

EVMF 2.646 32.540 2.234 3.004 31.399 2.615 5.176 25.112 5.357
BVDF 2.888 31.160 2.070 4.406 26.444 3.147 12.254 17.536 9.089
WMMF 1.261 35.153 1.329 1.951 31.097 2.395 4.383 24.058 5.983
VMRHF 1.839 34.285 1.643 2.904 30.077 2.740 8.541 21.442 10.326

BF 6.520 27.754 6.186 11.291 23.564 12.066 20.285 19.048 21.840
ASVMF 0.408 37.109 0.298 1.830 30.442 2.582 6.363 22.927 7.702
AVMF 0.559 37.090 0.385 1.808 28.555 2.499 13.648 15.870 21.099
tTVMF 0.480 36.231 0.397 1.630 32.069 1.775 4.565 25.187 5.949
FIVF 0.352 37.208 0.287 1.593 31.158 1.630 7.673 19.860 10.710
NVF 0.343 38.366 0.248 1.804 28.733 2.310 8.281 19.344 11.317

PGSAMF 0.407 38.080 0.279 2.032 28.294 2.755 11.666 18.062 16.541
MVMF 2.621 32.712 2.443 2.970 31.453 3.087 4.657 25.788 5.639

UF 2.108 33.198 2.043 2.588 29.351 2.934 5.100 23.414 6.801
TF 7.214 24.461 6.210 7.219 24.063 6.930 8.821 21.915 9.319

MPVF 1.012 32.370 1.187 5.066 19.598 7.312 20.253 13.154 29.109
MTDF 1.231 31.121 2.407 0.917 37.190 2.122 1.437 34.729 3.163
CFM 0.546 35.781 0.374 1.735 31.012 1.586 8.117 19.740 10.919
CFM ′ 0.373 37.666 0.291 1.721 30.915 1.632 7.944 20.037 9.990

value similarity between the colour vectors and the spatial closeness of the
pixels in the image has been defined. Moreover, the fuzzy metric makes the
spatial criterion flexible for the considered image processing operations.

The fuzzy metric is used to define an adaptive reduced ordering-based
vector filter. The method allows to remove impulsive noise in multichannel
images reaching a good trade-off between noise suppression and detail preser-
vation. The proposed filter outperforms the considered classical vector filters
and presents a competitive performance with respect to several recent filters.

A correlation study has been carried out to simplify the filter parameter
adjusting process. In this way, a methodology that may be used to simplify
analogous adjusting problems is proposed. Given the results of this approach,
the authors feel that using fuzzy metrics to represent complex relations in
other image processing tasks may also be suitable.
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Table 9.3. Comparison of the performance measured in terms of MAE, PSNR and
NCD (×102) using the Baboon image contaminated with different percentages of
impulsive noise

Filter 10% fixed-value 20% random-value 30% fixed-value
MAE PSNR NCD MAE PSNR NCD MAE PSNR NCD

None 5.085 19.321 7.015 14.636 16.078 12.871 15.239 14.569 20.768
VMF 10.980 23.059 4.552 12.008 22.510 5.110 11.527 22.679 4.894

EVMF 11.044 23.070 4.687 12.201 22.454 5.602 11.627 22.669 5.244
BVDF 12.196 21.906 4.689 13.186 21.420 5.172 13.769 20.950 5.434
WMMF 7.158 25.389 3.660 9.217 23.417 5.852 8.059 24.028 5.248
VMRHF 4.076 25.894 2.685 11.260 22.919 5.162 10.633 23.004 5.236

BF 13.837 22.419 7.434 17.599 20.822 10.661 17.479 20.678 11.762
ASVMF 4.571 24.999 1.922 5.875 24.252 2.493 6.959 23.647 3.462
AVMF 5.244 24.923 2.103 5.888 24.086 2.717 6.418 22.803 4.641
tTVMF 2.809 27.318 1.471 5.430 24.214 2.792 7.207 24.034 3.455
FIVF 4.392 24.702 1.991 6.894 23.322 2.828 8.695 22.328 3.983
NVF 2.833 27.210 1.249 4.700 25.384 1.976 6.650 23.292 3.596

PGSAMF 3.179 26.463 1.390 5.368 24.633 2.142 8.241 22.167 4.212
MVMF 11.026 23.075 5.041 12.293 22.389 6.613 11.560 22.709 6.098

UF 8.444 24.101 3.778 9.846 23.223 4.926 9.455 23.043 5.102
TF 13.211 21.964 6.753 14.451 21.333 7.988 13.504 21.574 7.587

MPVF 5.941 23.342 4.318 8.577 21.635 6.745 10.777 17.813 12.539
MTDF 3.683 27.037 2.508 8.339 20.963 7.241 3.859 26.968 3.501
CFM 6.328 23.889 2.419 7.196 23.506 2.847 8.106 22.782 3.658
CFM ′ 3.623 25.822 1.562 6.173 23.988 2.523 8.171 22.764 3.667



(a) (b) (c)

(d) (e)

Fig. 9.8. Performance comparison: (a) Detail of Baboon image with 10% fixed-
value impulsive noise, (b) VMF output, (c) NVF output, (d) PGSAMF output, (e)
CFM’ output.
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Abstract

A new method for removing impulsive noise pixels in colour images is pre-
sented. The proposed method applies the peer group concept defined by means
of fuzzy metrics in a novel way to detect the noisy pixels. Then, a switching
filter between the identity operation and the Arithmetic Mean Filter (AMF)
is defined to perform a computationally efficient filtering operation over the
noisy pixels. Comparisons in front of classical and recent vector filters are
provided to show that the presented approach reaches a very good relation
between noise suppression and detail preserving.

10.1 Introduction

Digital Colour Images are frequently disturbed by the presence of the so-
called impulsive noise [19, 11]. In this context, the filtering process becomes an
essential task to avoid possible drawbacks in the subsequent image processing
steps.

When the images are contaminated with impulsive noise the switching
approaches are widely used due to their sufficient performance and proven
computational simplicity. On the basis of the classical vector filters as the
Arithmetic Mean Filter (AMF) [19], the Vector Median Filter (VMF) [2] , the
Basic Vector Directional Filter (BVDF) [24, 25], or the Distance Directional
Filter (DDF) [9] the switching approaches aims at selecting a set of pixels
of the image to be filtered leaving the rest of the pixels unchanged. A series
of methods for selecting the noise-likely pixels have been proposed to date
[1, 12, 13, 16, 21, 22, 15, 17, 23]. In [1] the authors propose to determine if
the vector in consideration is likely to be noisy using cluster analysis. The
standard deviation, the sample mean and various distance measures are used
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in [12, 14] to form de adaptive noise detection rule. [13] proposes to use
an statistical test and [3] uses statistical confidence limits. In [16, 21, 22] a
neighborhood test is applied. Then, the filtering operation is performed only
when it is necessary. In a similar way, in [26] a genetic algorithm is used
to decide in each image position to perform the VMF operation, the BVDF
operation or the identity operation. In [15, 17, 23], it is proposed to privilege
the central pixel in each filtering window to reduce the number of unnecessary
substitutions.

The peer group concept using classical metrics is employed in the ap-
proaches introduced in [21, 22] to detect impulsive noisy pixels by checking
the size of the central pixel peer group . In this paper, the peer group concept
is adapted to the use of a certain fuzzy metric. The use of this fuzzy metric is
considered instead of the classical metrics since this fuzzy metric has provided
better results than classical metrics in impulsive noise filtering [18, 17]. The
proposed peer group concept is employed to define a switching filter between
the AMF and the identity operation. Experimental results for performance
comparison are provided to show that the proposed approach outperforms
the classical vector filters and the recent approaches listed above.

The paper is organized as follows. In Section 10.2 the fuzzy metric is
described. Section 10.3 presents the peer group concept. The method to detect
the noisy pixels is defined in Section 10.4. Section 10.5 contains experimental
results and discussion. Finally, conclusions are presented in Section 10.6.

10.2 An appropriate fuzzy metric

One of the most important problems in fuzzy topology is to obtain an ap-
propriate concept of fuzzy metric. In [8] a particular class of fuzzy metrics in
the George and Veeramani’s sense, [5], called stationary fuzzy metrics, were
defined; for simplicity they will be referred as fuzzy metrics. From now on,
and according to [5, 8] a fuzzy metric space is an ordered triple (X,M, ∗)
such that X is a (nonempty) set, ∗ is a continuous t-norm and M is a fuzzy
set of X × X satisfying the following conditions for all x, y, z ∈ X:

(FM1) M(x, y) > 0
(FM2) M(x, y) = 1 if and only if x = y
(FM3) M(x, y) = M(y, x)
(FM4) M(x, z) ≥ M(x, y) ∗ M(y, z)
M(x, y) represents the degree of nearness of x and y and according to

(FM2) M(x, y) is close to 0 when x is far from y. If (X,M, ∗) is a fuzzy
metric space we will say that (M, ∗) is a fuzzy metric on X.

The authors proved in [5] that every fuzzy metric (M, ∗) on X generates
a Hausdorff topology on X. Actually, this topology is metrizable as it was
proved in [6, 7], and so the above definition can be considered an appropriate
concept of fuzzy metric space.
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The next proposition will be established to be applied in next sections
when working with colour pixels xi that are characterized by terns of values
in the set {0, 1, . . . , 255}. This proposition is a particular case of the one used
in [17], inspired in [20], and its proof will be omitted.

Proposition. Let X be the set {0, 1, . . . , 255} and let K > 0. Denote by
(xi(1), xi(2), xi(3)) the element xi ∈ X3. The function M given by

M(xi,xj) =
3∏

l=1

min{xi(l), xj(l)} + K

max{xi(l), xj(l)} + K
(10.1)

for all xi,xj ∈ X3, is a fuzzy metric on X3, where the t-norm ∗ is the
usual product in [0, 1].

In this way from now on,
M(xi,xj) (10.2)

will be the fuzzy distance between the colour image vectors xi and xj . Ac-
cording to [18, 17], an appropriate value for K when comparing RGB colour
vectors is K = 1024.

10.3 Peer Groups in the fuzzy context

A colour RGB image is commonly represented as a multidimensional array
N1 × N2 × 3, where every pixel xi, i = 1, 2, . . . , N1N2 is a three component
vector in X3, as mentioned above. The peer group concept introduced in
[4, 10] have been used in various RGB colour image filter designs. In this
work, the notion of peer group given in [21] will be adapted to the context
of fuzzy metrics. So, attending to the concept of nearness (see axiom FM2 in
the definition of fuzzy metric given in Section 10.2), for a central pixel xi in
a 3× 3 filtering window W and fixed d ∈]0, 1], we denote by P(xi, d) the set

{xj ∈ W : M(xi,xj) ≥ d}
that is, P(xi, d) is the set of pixels of the filtering window W whose fuzzy
distance to xi is not less than d. Obviously, P(xi, d) is not empty for each
xi, since xi ∈ P(xi, d).

Now, employing the same terminology used in [21], given a natural number
m, we denote by P(xi,m, d) a subset of P(xi, d) constituted by xi and other
m elements of P(xi, d), which will be called a peer group of m elements
(associated to xi). Clearly, for each P(xi, d) we can find a peer group for
m = 0, but it could not exist for m ≥ 1.

10.4 Proposed filtering technique

As it was commented in Section 1, the filters in [21, 22] determine a noise-
free pixel when its peer group reaches a minimum size m (see Section 3).
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An appropriate value of m for any type and density of noise is difficult to
find. In homogeneous regions, higher values of m would present a robust and
proper performance. In edges or details, lower values of m are needed to
properly preserve the uncorrupted data, however, the robustness is lower as
m decreases.

In this work, an iterative algorithm aimed at solving the selection of m is
proposed. First, a higher value of m is required to determine in a robust way
noise-free pixels in homogeneous regions far from borders and details. Second,
to reach an appropriate performance in edges and detailed regions, the value
of m is iteratively decremented. Then the required peer group size is lower but
the restriction of all the members of the peer group to be previous noise-free
pixels is added. The intuitive underlying idea in this second step is that if a
pixel is similar to some (m) noise-free pixels it should be noise-free, as well.
Using the notation in Sections 10.2-10.3 the proposed algorithm for detection
and removal of impulsive noise pixels which will be called Iterative Peer Group
Switching Arithmetic Mean Filter (IPGSAMF) is defined as follows.
1. Every pixel xi in the image for which it can be found a peer group

P(xi, 4, d) is declared as noise-free . The rest of the pixels are declared
as non-assigned.

2. For each non-assigned pixel xi in the image, if a peer group P(xi, 3, d)
where all the pixel members of the peer group excepting xi are noise-free
can be found, then xi is declared as noise-free .

3. Repeat step 2 but searching peer groups P(xi, 2, d).
4. Repeat step 2 but searching peer groups P(xi, 1, d).
5. Each pixel declared as non-assigned is now declared as noisy .
6. The noisy pixels in the image are now substituted performing the filter-

ing operation. Each noisy pixel is replaced by the output of the AMF
(mimicking [21]) performing over the noise-free neighbors of the pixel in
substitution in a 3 × 3 window. Notice that a noisy pixel may not have
any noise-free neighbor in its 3 × 3 neighborhood. If it is the case, the
window must be enlarged in size until at least one noise-free neighbor
is included. The AMF is applied because of its computational simplicity,
however other suitable filters as the VMF could be applied in the above
conditions, as well.
The proposed filter methods performs by detecting in step 1 a set of
pixels which can be declared as noise-free with a high reliability since
they are similar to, at least, the half of their neighbors. On the basis of
these noise-free pixels, new noise-free pixels are detected in the steps 2,3
and 4 by relaxing the required condition respect to the number of pixels
members of the peer group but requiring them to be previous noise-free
pixels. Finally, the procedure leaves the impulsive noise pixels isolated
(step 5). The noisy pixel substitution is finally performed in step 6.
Figure 10.1 shows a noisy image along with the pixels declared as noise-
free after each step and the final output of the filter. Notice that the
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performance of the filter critically depends on the first selection of noise-
free pixels performed in step 1 for which the value of d is quite important.
The appropriate value of this parameter is studied in Section 10.5 and it
is proposed a robust setting for it.

(a) (b)

(c) (d)

(e) (f)

Fig. 10.1. Sample of performance of the proposed filter (noisy pixels in black,
noise-free pixels coloured): (a) Detail of Peppers image with 5% impulsive noise,
(b) noise-free pixels after step 1, (c) noise-free pixels after step 2, (d) noise-free
pixels after step 3, (e) noise-free pixels after step 4, (f) IPGSAMF output,
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Table 10.1. Filters taken for performance comparison and notation.

Notation Filter

AMF Arithmetic Mean Filter [19]

VMF Vector Median Filter [2]

BVDF Basic Vector Directional Filter [25]

DDF Directional Distance Filter [9]

FIVF Fast Impulsive Vector Filter [17]

PGSAMF Peer Group Switching AMF [21, 22]

AVMF Adaptive Vector Median Filter [13]

IPGSAMF Iterative Peer Group Switching AMF

10.5 Experimental results

In this section, the impulsive noise model for the transmission noise, as
defined in [19], has been used to add noise to some tests images in order to
assess the performance of the proposed filter in front of the classical and
recent filters in Table 10.1. For simplicity, it has been used the common
objective quality measure PSNR defined as [19]

PSNR = 20 log

 255√
1

NMQ

N∑
i=1

M∑
j=1

Q∑
q=1

(
F q (i, j) − F̂ q(i, j)

)2

 , (10.3)

where M , N are the image dimensions, Q is the number of channels of
the image (Q = 3 for colour image), and F q(i, j) and F̂ q(i, j) denote
the qth component of the original image vector and the filtered image, at
pixel position (i, j) , respectively.
The results of the assessment using some details of the images Peppers
and Baboon are shown in Tables 10.2 and 10.3. Similar results can be
obtained for other common objective quality measures as MAE or NCD.
Some outputs of the filters in comparison are shown in Figures 10.2 and
10.3.
As it was commented in Section 10.4 the filter performance is influenced
by the value of the d parameter. It has been found that appropriate values
of d are in the range [0.900, 0.940]. The optimal value of d for a particular
image is directly proportional to the density of the contaminating noise.
However, a robust setting of d presenting a good performance for several
images and noise densities is d = 0.925.
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Table 10.2. Comparison of the performance in terms of PSNR using a detail of
the Baboon image contaminated with different densities of impulsive noise.

Filter 5% 15% 25%

None 23.41 17.75 15.32
AMF 22.90 21.77 20.73
VMF 23.45 23.30 22.85
BVDF 21.33 20.99 20.31
DDF 23.37 23.07 22.58
FIVF 28.33 24.86 23.08
SAMF 27.08 25.34 22.84
AVMF 25.93 25.58 23.25

IPGSAMF 29.90 25.59 23.56

Table 10.3. Comparison of the performance in terms of PSNR using a detail of
the Peppers image contaminated with different densities of impulsive noise.

Filter 5% 20% 30%

None 23.74 17.15 14.76
AMF 25.91 23.36 21.76
VMF 28.10 27.06 26.72
BVDF 27.32 25.75 24.00
DDF 28.08 26.46 25.56
FIVF 32.98 28.91 26.51
SAMF 32.93 27.67 24.95
AVMF 32.85 28.23 24.34

IPGSAMF 33.48 27.44 24.13

Conclusions

In this paper, the peer group concept has been adapted to the use of a
certain fuzzy metric. Using this concept, a novel filter for impulsive noise
removal has been introduced. The usefulness of the peer groups and fuzzy
metrics for impulsive noise detection and removal is shown.
The proposed filtering method is able to properly isolate and remove im-
pulsive noise pixels while preserving the uncorrupted image structures.
The classical vector filters are significantly outperformed and the pre-
sented performance is competitive respect to recently introduced vector
filters with good detail-preserving ability, outperforming them in many
cases.



(a) (b) (c)

(d) (e) (f)

(g) (h)

Fig. 10.2. Performance comparison: (a) Detail of Baboon image with 25% impul-
sive noise, (b) AMF output, (c) VMF output, (d) BVDF output, (e) FIVF output,
(f) SAMF output, (g) AVMF output, (h) IPGSAMF output.
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(d) (e) (f)

(g) (h)

Fig. 10.3. Performance comparison: (a) Detail of Peppers image with 5% impulsive
noise, (b) AMF output, (c) VMF output, (d) BVDF output, (e) FIVF output, (f)
SAMF output, (g) AVMF output, (h) IPGSAMF output.





References

1. H. Allende, J. Galbiati, A non-parametric filter for image restoration using
cluster analysis, Pattern Recognition Letters, 25 8 (2004) 841-847.

2. J. Astola, P. Haavisto, Y. Neuvo, Vector Median Filters, Proc. IEEE., 78 4
(1990) 678-689.

3. J. Camacho, S. Morillas, P. Latorre, Efficient impulsive noise suppression
based on statistical confidence limits, Journal of Imaging Science and Tech-
nology , 50 5 (2006) 427-436.

4. Y. Deng, C. Kenney, MS Moore, BS Manjunath, Peer group filtering and per-
ceptutal color image quantization, Proceedings of IEEE international sym-
posium on circuits and systems 4 (1999) 21-4.

5. A. George, P. Veeramani, On Some results in fuzzy metric spaces, Fuzzy
Sets and Systems, 64 3 (1994) 395-399.

6. A. George, P. Veeramani, Some theorems in fuzzy metric spaces, J. Fuzzy
Math. 3 (1995) 933-940.

7. V. Gregori, S. Romaguera, Some properties of fuzzy metric spaces, Fuzzy
Sets and Systems, 115 3 (2000) 477-483.

8. V. Gregori, S. Romaguera, Characterizing completable fuzzy metric spaces,
Fuzzy Sets and Systems, 144 3 (2004) 411-420.

9. D.G. Karakos, P.E. Trahanias, Generalized multichannel image-filtering
structure, IEEE Transactions on Image Processing 6 7 (1997) 1038-1045.

10. C. Kenney, Y. Deng, BS Manjunath, G. Hewer, Peer group image enhance-
ment, IEEE Transactions on Image Processing 10 2 (2001) 326-34.

11. R. Lukac, B. Smolka, K. Martin, K.N. Plataniotis, A.N. Venetsanopou-
los, Vector Filtering for Color Imaging, IEEE Signal Processing Magazine,
Special Issue on Color Image Processing , 22 1 (2005) 74-86.

12. R. Lukac, Adaptive vector median filtering, Pattern Recognition Letters,
24 12 (2003) 1889-1899.

13. R. Lukac, K.N. Plataniotis, A.N. Venetsanopoulos, B. Smolka, A
Statistically-Switched Adaptive Vector Median Filter, Journal of Intelligent
and Robotic Systems, 42 4 (2005) 361-391.

14. R. Lukac, B. Smolka, K.N. Plataniotis, A.N. Venetsanopoulos, Vector sigma
filters for noise detection and removal in color images, Journal of Visual
Communication and Image Representation 17 1 (2006) 1-26.

15. R. Lukac, Adaptive Color Image Filtering Based on Center Weighted Vec-
tor Directional Filters, Multidimensional Systems and Signal Processing , 15
2 (2004) 169-196.



174 References

16. Z. Ma, D. Feng, H.R. Wu, A neighborhood evaluated adaptive vector filter
for suppression of impulsive noise in color images, Real-Time Imaging , 11
5-6 (2005) 403-416.

17. S. Morillas, V. Gregori, G. Peris-Fajarnés, P. Latorre, A fast impulsive noise
color image filter using fuzzy metrics, Real-Time Imaging , 11 5-6 (2005) 417-
428.

18. S. Morillas, V. Gregori, G. Peris-Fajarnés, P. Latorre, A new vector me-
dian filter based on fuzzy metrics, ICIAR 2005, Lecture Notes in Computer
Science 3656 (2005) 81-90.

19. K.N. Plataniotis, A.N. Venetsanopoulos, Color Image processing and ap-
plications. Springer-Verlag, Berlin, 2000.

20. A. Sapena, A contribution to the study of fuzzy metric spaces, Appl. Gen.
Topology , 2 1 (2001) 63-76.

21. B. Smolka, A. Chydzinski, Fast detection and impulsive noise removal in
color images, Real-Time Imaging 11 5-6 (2005) 389-402.

22. B. Smolka, K.N. Plataniotis, Ultrafast technique of impulsive noise removal
with application to microarray image denoising, Lecture Notes in Computer
Science 3656 (2005) 990-997.

23. B. Smolka, K.N. Plataniotis, A. Chydzinski, M. Szczepanski, A.N. Venet-
sanopoulos, K. Wojciechowski, Self-adaptive algorithm of impulsive noise
reduction in color images, Pattern Recognition, 35 8 (2002) 1771-1784.

24. P.E. Trahanias, A.N. Venetsanopoulos, Vector directional filters-a new class
of multichannel image processing filters, IEEE Trans. Image Process. 2 4
(1993) 528-534.

25. P.E. Trahanias, D. Karakos, A.N. Venetsanopoulos, Directional process-
ing of color images: theory and experimental results, IEEE Trans. Image
Processing , 5 6 (1996) 868-880 .

26. H.H. Tsai, P.T. Yu, Genetic-based fuzzy hybrid multichannel filters for
color image restoration, Fuzzy Sets and Systems, 114 2 (2000) 203-224.



11 Contribution (viii)

S. Morillas, V. Gregori, G. Peris-Fajarnés, Isolating
impulsive noise pixels in colour images by peer group
techniques, accepted for publication in Computer
Vision and Image Understanding .

Abstract

A new method for removing impulsive noise in colour images is presented.
The fuzzy metrics peer group concept is used to build novel switching vec-
tor filters. In the proposed filtering procedure, a set of noise-free pixels
of high reliability is determined by applying a high demanding condition
based on the peer group concept. Afterwards, an iterative detection pro-
cess is used to refine the initial findings by detecting additional noise-free
pixels. Finally, noisy pixels are filtered by maximizing the employed fuzzy
distance criterion between the pixels inside the filter window. Compar-
isons are provided to show that our approach suppresses impulsive noise,
while preserving image details. In addition, the method is analyzed in
order to justify the necessity of the iterative process and demonstrate the
computational efficiency of the proposed approach.

11.1 Introduction

Deficiencies in image acquisition, transmission, or storage often result in
the introduction of noise into the digital images. In particular, errors that
may arise during the transmission process have the character of impulsive
noise. Since the presence of noise usually affects the accuracy of any image
processing and analysis task, it is essential that images are filtered prior
to subsequent processing and analysis.
In the processing of colour (or multichannel) images the vector ap-
proaches are preferred over componentwise solutions due to the corre-
lation between the image channels that has to be taken into account to
achieve the required performance [32]. The most well-known vector filters
are the Vector Median Filter (VMF) [2] and the Basic Vector Directional
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Filter (BVDF) [37]. These methods are widely used since they are robust
and also hold other interesting properties. For instance: the VMF can be
derived as a maximum likelihood estimate (MLE) when the underlying
probability densities are double exponential and the filter output is re-
stricted to be one of the input samples. The impulse response of VMF
is zero, suggesting that VMF-like filters can remove impulsive noise. In
the BVDF case, the filter output is the vector in the filter window whose
direction is the MLE of directions of the input vectors. Since RGB vec-
tor direction is associated to chromaticity, BVDF may improve the VMF
performance in terms of chromaticity preservation. For additional infor-
mation, the reader is referred to the overviews of vector filters made in
[17, 25].
The above mentioned classical vector filters have the drawback that
the operations made in any image location are fixed, i.e. they are
non-adaptive to local features. It has been widely observed that non-
adaptive processing usually results in blurred edges and image details.
To overcome this drawback, a number of vector processing solutions
[25, 15, 18, 19, 20, 24, 33] have been proposed to adapt the filter to
varying image characteristics and noise statistics, and to obtain good
performance in real-life applications such as microarray image process-
ing, television image enhancement, virtual restoration of artworks, and
colour video processing.
A well-known approach to the problem of impulsive noise detection and
removal is switching filtering which aims to affect only the noisy pix-
els while keeping the desired image structures (edges and fine details)
unchanged. The method introduced in this paper follows the switching
filtering paradigm and introduces an impulse detection procedure based
on the peer group concept defined using the fuzzy metrics. Therefore,
Section 11.2 presents an overview of switching vector filters whereas Sec-
tion 11.3 proposes novel fuzzy metrics to obtain peer groups from the set
of colour pixels. Section 11.4 defines and analyzes the novel method for
impulsive noise detection and removal. Section 11.5 contains experimen-
tal results and discussion. Finally, conclusions are presented in Section
11.6.

11.2 Switching Vector Filters and Peer Groups

Existing switching vector filters use different approaches to identify im-
pulses. For example, the solution in [1] performs a cluster analysis of
the pixel neighbourhood and detects as noisy those pixels whose mem-
bership degree to the clusters is low. In [3] a multi-normal distribution
of the colour vectors is assumed and the confidence limit of the colour
vector under processing is checked. The work in [11] uses a fuzzy infer-
ence system which takes as inputs some statistical measures of the pixel
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under processing and its neighbourhood. The method in [16] checks the
difference between the input vector and the mean of several lowest ranked
vectors. The method in [22] performs the detection by using the input
vector, the vector median, the vector mean and their aggregated dis-
tances to other vectors inside the filter window. The work in [23] extends
the former work in [22] by utilizing the variance approximation in the
multivariate case. The solution presented in [21] uses center weighting
coefficients and the methods in [26, 30, 34, 35] use a similarity based vec-
tor ordering to increase the importance of the pixel under consideration
in the impulse detection process.
The peer group concept in [4, 5, 9, 13] has also been used to detect
and filter out impulsive noise. The filters introduced in [5, 13] use the
difference between the peer group of the pixel under consideration and
other peer groups in its neighbourhood to form the detection rule. The
work in [10] proposes to use windows of different size to determine the
peer region of each pixel and then check the peer region size and shape.
In the approach introduced in [36] for a pixel to be declared as noise-
free it is required to have a peer group of a determined size around it.
In [4], the peer group concept is defined in the fuzzy metrics context and
the method in [36] is modified to perform filtering faster. The works in
[27, 28] extend the filter defined in [13] to the directional domain and use
it as a sub-filter in a hybrid structure.
The main motivation of this paper is the work in [36]. In the following
subsection we describe the method in [36] in order to highlight the basic
differences with respect to the proposed method.

11.2.1 Peer group switching filter

Let || · || be a norm on a non-empty set X and let h > 0. If x ∈ X,
we denote by P(x, h) the set {y ∈ X : ||x − y|| ≥ h}. Now, let W
be a subset of X containing x and let m be a nonnegative integer. A
subset of P(x, h) ∩ W containing m + 1 elements is called a peer group
of cardinality m contained in W , and it is denoted by P(x,W, h,m) or
P(x, h,m) if confusion is not possible.
Following the prior findings presented in [36], a pixel x is considered as
noise-free only if there exists a peer group P(x, h,m) for some positive
value of m. Otherwise, the pixel should be considered as noisy. The partic-
ular setting of the m parameter determines the filter performance. On the
one hand, lower values of m provide a better signal-preserving ability to
the filtering but sometimes also a lack of robustness. On the other hand,
higher values of m provide a robust performance though a more smoothed
output image is obtained. As a result, the work in [36] proposed the use
of intermediate values of m in order to reach an appropriate trade-off
between signal-preserving and noise smoothing.
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On the basis of this work, the proposed method aims at achieving a filter-
ing procedure which is robust in removing impulsive noise and preserving
fine details. This performance is achieved by using two different values of
the m parameter in the noise detection process. First, a set of noise-free
pixels of high reliability is determined by applying a demanding condition
on the peer group cardinality. Afterwards, an iterative detection process is
used to refine the initial findings by detecting additional noise-free pixels.
The remaining, undetected pixels represent impulses.

11.3 Fuzzy metrics peer groups and fuzzy distances

Let X be a non-empty set and ∗ a continuous t-norm. A (stationary)
fuzzy metric [7, 8] on X is a function M(x, y) defined on X × X with
values in (0, 1], symmetric with respect to x and y, which satisfies for all
x, y, z ∈ X the following:

(FM1) M(x, y) = 1 if and only if x = y
(FM2) M(x, z) ≥ M(x, y) ∗ M(y, z)

In the above expressions, M(x, y) represents the degree of nearness of x
and y and according to (FM1) M(x, y) is close to 0 when x is far from
y. In the following, the notion of peer group given in [36] is shown in the
context of fuzzy metrics, as proposed in [4].
Take d ∈ [0, 1]. In the above context, if x ∈ X, we denote by PM (x, d)
the set {y ∈ X : M(x, y) ≥ d}. Now, let W be a subset of X containing x
and let m be a nonnegative integer. A subset of PM (x, d)∩W containing
m + 1 elements is called a peer group of cardinality m contained in W ,
and it is denoted by PM (x,W, d,m) or P(x, d,m), as in [36], if confusion
is not possible. According to (FM1) it is always possible to find a peer
group for m = 0, but it may not exist for m ≥ 1.

Proposition 4. Consider Z as the real interval [0, 255], let X = Z3 and
K > 0. Denote the RGB colour vector at position i in the F image by
Fi = (Fi(1), Fi(2), Fi(3)) ∈ X. The function MK given by

MK(Fi,Fj) =
3∏

l=1

min{Fi(l), Fj(l)} + K

max{Fi(l), Fj(l)} + K
(11.1)

for all Fi,Fj ∈ X, is a fuzzy metric on X when ∗ is the product t-norm
in [0, 1].

The fuzzy metric MK , which was introduced in [29], presents the partic-
ular behaviour that the given value for two distinct pairs of consecutive
numbers (or vectors) may not be the same. This effect can be smoothed
by increasing the value of the K parameter in Eq. (11.1). So, the value
of K should be set high enough to reduce this effect. However, if K → ∞
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then MK(Fi,Fj) → 1, so very high values of K should also be avoided.
Several experiences have shown that for a range of values in [0, C] appro-
priate values of K are in the range [2C, 23C]. This is shown in Figure 11.1
(a) for the case of RGB values where K = 1024 has been proved to be an
appropriate value [30, 29]. Indeed, Figures 11.1(a) and 11.1(b) show that
the behaviour of MK for the suggested values of K is very similar, except
range and scaling, to the behaviour of classical L1 and L2 (Euclidean)
metrics. This suggests that these classical metrics could replace MK in
the filter design and similar performance should be expected. However,
because the fuzzy metric in Eq. (11.1) allows for the design of hybrid
(magnitude and directional processing-based) filters, we have preferred
the usage of fuzzy metrics instead of classical metrics.
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Fig. 11.1. Values given by (a) MK for different values of K and (b) L1 and L2

metrics, when comparing a colour vector [128, 128, 128] with the colour vectors
[V, V, V ] where V = 0, 1, . . . , 255.
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11.3.1 Fuzzy magnitude distance

In the following, each pixel colour at position i in the image F is repre-
sented as a vector Fi = (Fi(1), Fi(2), Fi(3)) comprised its R, G and B
components. The term MK(Fi,Fj), for K1 = 1024, is the fuzzy magni-
tude distance between the colour image vectors Fi and Fj .

11.3.2 Fuzzy angular-like distance

To address directional vector processing [32, 37, 17] using the fuzzy metric
MK we use the approach introduced in [31]. First, each colour image
vector Fi will be associated with an unitary vector F

′
i given by F

′
i = Fi

||Fi||2
where ||·||2 denotes the Euclidean norm. Note that achromatic RGB pixels
correspond to the vectors Va = (a, a, a) where a ∈ [0, 255] and that for
any a > 0, ||Va||2 = a

√
3 and V′

a = Va

||Va||2 = ( 1√
3
, 1√

3
, 1√

3
). Therefore,

achromatic (gray-scale) vectors imply F
′
i = ( 1√

3
, 1√

3
, 1√

3
). This unitary

vector F
′
i characterizes the direction of the vector Fi in the Euclidean

space. Then we can use the fuzzy metric MK over these unitary vectors
to measure fuzzy angular-like distances.
Operating on the unitary equivalents of the input vectors, the fuzzy met-
ric in Eq. (11.1) can be used to evaluate the angular-like distances be-
tween Fi and Fj . We found that K2 = 4 constitutes an appropriate value
for such a configuration.

11.3.3 Fuzzy magnitude-angular-like distance

An intuitive and straightforward approach from the fuzzy point of view
consists of combining the magnitude and angular-like criteria by using
an appropriate t-norm [31]. According to Proposition 1, the product t-
norm should be used, so that the product function MK1K2(Fi,Fj) =
MK1(Fi,Fj) · MK2(F

′
i,F

′
j) will be the fuzzy magnitude-angular-like dis-

tance between Fi and Fj , where K1 = 1024 and K2 = 4 as commented
above. It can be verified that MK1K2 is a fuzzy metric on X.
Unlike the above approach, directional-magnitude vector processing solu-
tions presented in [20, 23, 12] join the Euclidean and the angular distances
between the vectors. Since these metrics measure in quite different ranges,
joining them is not as straightforward as in the fuzzy metrics context [31].

11.4 Proposed detection and filtering of corrupted
pixels

Consider the use of a generic n × n window W where n = 2c + 1, c =
1, 2, . . .. Consider also that m = n + 1, that the window is centered
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at Fi and that the pixels in the filter window follow the classical 1-
D indexing shown in Figure 11.2. The proposed Iterative Peer Group
Switching Vector Filter (IPGSVF) operates as follows (Figure 11.3):
(i) For each image pixel Fi, if there can be found a peer group PM (Fi,W, d,m),

then the pixel Fi is declared as noise-free. In other case, the pixel Fi

is declared as non-assigned.
(ii) For each non-assigned pixel Fi let W ′ be the set of noise-free pixels

in W . If there can be found a peer group PM (Fi,W
′, d, 1), then the

pixel Fi is declared as noise-free. Note that this condition is fulfilled
if there exists some pixel Fj ∈ W ′ such that M(Fi,Fj) ≥ d.

(iii) If new noise-free pixels were determined in the previous step, then
repeat (ii).

(iv) Each non-assigned pixel is finally declared as noisy .
In step (i), the proposed method detects a set of pixels which can be
declared as noise-free with a high reliability since they are similar to a
considerable number m of their neighbors. In steps (ii) and (iii), initial
findings are refined. The underlying idea is that if a pixel, which was ini-
tially marked as non-assigned, is similar to some noise-free neighbor then
it should be considered as noise-free, as well. After the iterative procedure
is completed, the remaining (undetected) pixels represent the noise. The
noisy pixels are corrected using the filter in [29] which uses MK1 as the
distance criterion. The output of this filter is the vector Fk∗ ∈ W that
maximizes the fuzzy distance to the other samples. That is, the output is

that Fk∗ for which k∗ = arg maxk

n2∑
j=1,j �=k

MK1(Fk,Fj), k = 1, . . . , n2.

Note that the employed smoothing filter operates solely in the magni-
tude domain. However, depending on the employed distance criterion,
new variants of the proposed method, varying in performance and com-
putational complexity, can be obtained.

Fig. 11.2. Indexing followed by vectors inside the filter window for the 3× 3 case.

Figure 11.4(a) shows a noisy image. Figure 11.4(b) shows that after step
(i) noise-free pixels in homogeneous regions are correctly detected. How-
ever, the performance near edges and details is far from accurate. To solve
this, the different iterations of step (ii) (see Figure 11.4 (c),(d) and (e))
identify new noise-free pixels to achieve an accurate detection. From the
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False

True

Step (i)

Step (ii)

Step (iii)

Step (iv)

True

True

False

False

Fig. 11.3. Scheme of the proposed detection procedure, where F denotes the image
to filter and W the set of pixels in the filter window. The procedure classifies
all image pixels in two sets: noise-free (NF ) and noisy pixels (N). Additionally,
an auxiliary set of non-assigned pixels denotes the pixels to be explored in each
iteration of step (ii).
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output image in Figure 11.4 (f), it can be concluded that the noise-free
image areas, edges and details are properly preserved and that except
some small impulses the procedure removed most of the noisy pixels.
It should be noted that in the proposed filtering procedure, MK1 can
be replaced with MK2 or MK1K2 , thus obtaining the filters with differ-
ent design characteristics and performance. For example, since MK1K2

combines both the magnitude and directional information, IPGSVF with
MK1K2 should outperform its variants based on MK1 or MK2 . This fact
follows similar findings presented in [20, 23, 12].
Another advantage of the proposed filter is its computational efficiency.
In order to compare the complexity of IPGSVF and VMF, we have to
take into account that the most computationally demanding operation in
vector filtering methods is the computation of distances between colour
vectors. Therefore, the computational complexity can be simply com-
pared using the average number of distance calculations per pixel needed
by each method. In the following we estimate the average number of dis-
tance computations per pixel needed by the proposed method. A detailed
computational complexity analysis of the proposed method is developed
in Appendix A.
Let Fi be the central pixel of a n×n filter window W where n = 2c+1, c =
1, 2, . . .. Let us denote by η = n2−1 the number of neighbors of Fi in W ,
by p the probability of noise appearance, and by t(p) the probability of a
pixel to be declared as noisy in step (iv) of the proposed method. Then,
the average number cd(p) of distance computations per pixel, including
the VMF computation over the noisy pixels, is

cd(p) = s(p) + t(p)
(

η

2

)
where s(p) is the average number of distances computed by the proposed
method to determine whether a pixel is noisy or not.
In the case of the filter proposed in [36] this value is s1(p)+t1(p)

(
η
2

)
, where

s1(p) denotes the average number of distances needed to diagnose a pixel
in step (i) and t1(p) is the probability of a pixel to be non-assigned in step
(i). The value of t(p) can be approximated by the probability tN (p) of a
pixel to be non-assigned in the Nth iteration of step (ii) if tN (p)−tN+1(p)
is very close to 0 (note that from now on, if confusion is not possible, we
will omit to mention p).
In the following we aim at verifying our theoretical study. We have taken
a detail of the Pills image (Fig. 11.5 (b)) and it has been contaminated
with 10% of impulsive noise type I [32] (see Section 11.5). Then we run the
IPGSVF with MK1 ,n = 3, d = 0.95. The comparison between theoretical
values and obtained experimental values is shown in Table 11.1. In the
table, s∗N (p) denotes the average number of distances needed to diagnose a
pixel in the Nth iteration (N ≥ 2) and λN denotes the average number of
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(a) (b)

(c) (d)

(e) (f)

Fig. 11.4. Demonstration of the impulse noise detection and filtering process using
IPGSVF with MK1 , 3 × 3 window and d = 0.93 (noisy pixels in black, noise-free
pixels coloured): (a) Detail of Peppers image with 5% impulsive noise. Noise-free
pixels after: (b) step (i), (c) step (ii), first iteration, (d) step (ii), third iteration,
(e) step (ii), fifth iteration (last), and (f) filter output.
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Table 11.1.

step 1 1st iteration 2nd iteration 3rd iteration 4th iteration 5th iteration 6th iteration
s1 = 6.4510 s∗

2 = 3.8996 s∗
3 = 0.9647 s∗

4 = 0.0628 s∗
5 = 0.0033 s∗

6 = 0.0002 s∗
7 = 8.86 · 10−6

λ1 = 5.9499 λ2 = 0.9647 λ3 = 0.0628 λ4 = 0.0033 λ5 = 0.0002 λ6 = 8.8 · 10−6 λ7 = 4.5 · 10−7

t1 = 0.2562 t2 = 0.1356 t3 = 0.1278 t4 = 0.1274 t5 = 0.1273 t6 = 0.1273 t7 = 0.1273
t′1 = 0.2712 t′2 = 0.1337 t′3 = 0.1254 t′4 = 0.1223 t′5 = 0.1215 t′6 = 0.1210 t′7 = 0.1210

pixels in W already declared as non-assigned in the Nth iteration of step
(ii). These values have been estimated by supposing that the probabilities
of a pixel in W to be similar to Fi when Fi is non-corrupted or corrupted
are r = 0.6 and q = 0.05, respectively. In addition, we have estimated
that the probabilities of a pixel in W which was declared as non-assigned
in step (i) to be similar to Fi are R = 0.2 and Q = 0.01 when Fi is
non-corrupted or corrupted, respectively. Finally, we have assumed that
a pixel Fj ∈ W is similar to Fi if Mk(Fi,Fj) ≥ 0.95, i.e. d = 0.95.
Moreover, Table 11.1 also shows a comparison between the tN expected
theoretical values and the t′N values computed in the experience. Note
that after the third iteration the differences tJ − tJ+1 are close to 0 and
the algorithm stopped in the fifth iteration. It can be seen that there is
a very close matching between theoretical and experimental values and
therefore, this experimental results validate the developed analysis.
Now, if we approximate t(p) by t5 = 0.1273 then (by (11.19)-(11.20) in
Appendix 11.5.2),

s(p) ≈ s1 + t1 · s∗2 + t2 · s∗3 + t3 · s∗4 + t4 · s∗5 = 7.5896

and hence, cd(p) ≈ 7.5896 + 0.1273 ·
(

8
2

)
= 11.1568

Computational analysis of the filter proposed in [36] demonstrated that
this value is 13.6274 when m = 4, and 9.2496 when m = 3. In the case of
the VMF, the needed average number of distances per pixel is constant

and equal to
(

η + 1
2

)
. In the case of a 3×3 filter window this value is 36.

Therefore, it is easy to notice that the proposed algorithm is competitive
in terms of computational complexity.

11.5 Experimental results

Impulsive noise corruption process affects only some pixels in the image
while leaving other pixels unchanged. Typically, the noise process changes
one or more colour components of the affected pixel by replacing its orig-
inal values with the values which usually significantly deviates from the
originals. The most common impulsive noise models consider that the
impulse is either an extreme value in the signal range or a random uni-
formly distributed value within the signal range. For RGB images, these
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possibilities are represented with the following two well-known models
that have been used to add impulsive noise to the test images in Fig.
11.5.
In the so-called impulsive noise type I model, the corruption is modeled
as follows:

F∗ =


{d1, FG, FB} with probability p · p1 ,
{FR, d2, FB} with probability p · p2 ,
{FR, FG, d3} with probability p · p3 ,

{d1, d2, d3} with probability p ·
(
1 −∑3

i=1 pi

)
.

(11.2)

where F = {FR, FG, FB} denotes the original pixel, F∗ denotes the pixel
corrupted by the noise process and d1, d2, d3 are independent values equal
to 0 or 255 with equal probability. The symbol p is the probability of the
noise appearance and pi, i = 1, 2, 3 determine the probability of appear-
ance of the noise in the image channels.
In the so-called impulsive noise type II model, F∗ = {d1, d2, d3} is ob-
tained using d1, d2, d3 which are random uniformly distributed indepen-
dent integer values in the interval [0, 255] with probability p.

(a) (b) (c)

(d)

Fig. 11.5. Test Images with 8 bits per colour channel: (a) Parrots, 256×384 (detail
80× 80), (b) Pills, 130× 200 (detail 50× 50) , (c) House, 256× 256 (detail 70× 70)
and (d) Baboon, 256 × 256 (detail 60 × 60).
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Fig. 11.6. Sample of performance of the IPGSVF with MK1 filter as a function of
the d adjusting parameter. Green colours correspond with the Parrots image, blue
with Pills, red with House and black with Baboon. Continuous and dotted lines
correspond with 30% and 10% of impulsive noise type I, respectively.

In order to assess the quality of the proposed filters both the noise
suppression and the detail preserving abilities have to be evaluated.
We have used the Mean Absolute Error (MAE) that approaches the
detail-preserving assessment and the Peak Signal to Noise Ratio (PSNR)
that expresses the noise suppression ability. In addition, the Normalized
Colour Difference (NCD) measure has been used since it approaches the
human perception [36, 6, 14]. These objective quality measures are de-
fined as follows [32]:

MAE =

N ·M∑
i=1

Q∑
q=1

∣∣∣F q
i − F̂ q

i

∣∣∣
N · M · Q (11.3)
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Fig. 11.7. Optimal PSNR values of the d parameter in the (a) IPGSVF using
MK1 , (b) IPGSVF using MK1K2 for different percentages of impulsive noise type
I. Blue points correspond to Baboon, red points to House, green points to Parrots
and black points to Pills. Similar results are obtained for the IPGSVF using MK2 .

PSNR = 20 log

 255√
1

NMQ

N ·M∑
i=1

Q∑
q=1

(
F q

i − F̂ q
i

)2

 (11.4)

where M , N are the image dimensions, Q is the number of channels of
the image (Q = 3 for colour images), and F q

i and F̂ q
i denote the qth

component of the original image vector and the filtered image, at pixel
position i, respectively, and
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(a) (b)

(c) (d)

(e) (f)

Fig. 11.8. Performance comparison: (a) Detail of Parrots image with 5% impulsive
noise type II, (b) VMF output, (c) PGSVMF output, (d) IPGSVF output using
MK1 , (e) IPGSVF output using MK2 , (f) IPGSVF output using MK1K2 .
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(a) (b)

(c) (d)

(e) (f)

Fig. 11.9. Performance comparison: (a) Detail of Pills image with 15% impulsive
noise type I, (b) VMF output, (c) PGSVMF output, (d) IPGSVF output using
MK1 , (e) IPGSVF output using MK2 , (f) IPGSVF output using MK1K2 .



11.5 Experimental results 191

(a) (b)

(c) (d)

(e) (f)

Fig. 11.10. Performance comparison: (a) Detail of House image with 30% impulsive
noise type I, (b) VMF output, (c) tTVMF output, (d) IPGSVF output using MK1 ,
(e) IPGSVF output using MK2 , (f) IPGSVF output using MK1K2 .
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(a) (b)

(c) (d)

(e) (f)

Fig. 11.11. Performance comparison: (a) Detail of Peppers image with mixed 30%
impulsive noise type I and σ = 30 Gaussian noise, (b) VMF output, (c) FISF
output, (d) PGSVMF output, (e) IPGSVF output using MK2 , (f) IPGSVF output
using MK1K2 .
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(a) (b)

(c) (d)

(e) (f)

Fig. 11.12. Performance assessment using real noisy images: (a) Detail of a road
map image, (b) VMF output, (c) PGSAMF output with n = 3, m = 2, d = 50,
(d) Noisy pixels detected by PGSAMF (27.85%), (e) IPGSVF output with MK1K2 ,
n = 3, m = 4, d = 0.84, (f) Noisy pixels detected by IPGSVF (8.09%).
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(a) (b)

(c) (d)

(e) (f)

Fig. 11.13. Performance assessment using real noisy images: (a) Detail of an old
manuscript image, (b) VMF output, (c) PGSAMF output with n = 3, m = 2, d =
50, (d) Noisy pixels detected by PGSAMF (14.00%), (e) IPGSVF output with MK1 ,
n = 3, m = 4, d = 0.93, (f) Noisy pixels detected by IPGSVF (10.22%).
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Table 11.2. Comparison of the performance in terms of MAE, PSNR and NCD us-
ing a detail of the Parrots image contaminated with different densities of impulsive
noise of types I and II.

Filter 5% impulsive type II 15% impulsive type I 25% impulsive type II
MAE PSNR NCD MAE PSNR NCD MAE PSNR NCD

(10−2) (10−2) (10−2)
None 3.85 21.30 3.26 7.66 17.06 11.34 20.04 14.10 17.08
VMF 8.50 22.57 3.97 8.34 22.65 3.92 11.48 20.56 5.73
FIVF 1.96 25.38 1.10 3.87 23.37 3.05 6.54 21.14 3.29
FISF 4.51 23.96 2.04 5.23 23.36 2.49 8.96 20.06 4.05

AVMF 2.59 25.71 1.20 3.07 24.80 2.31 6.66 20.72 4.38
tTVMF 1.34 27.84 0.79 2.54 25.33 2.23 6.37 21.76 3.61

PGSVMF 1.25 28.74 0.70 2.97 25.47 2.82 6.05 22.17 3.16
PRF 3.68 24.18 1.52 4.60 23.06 2.52 7.72 20.66 4.12

PGSAMF 3.44 23.74 1.23 4.35 23.21 3.06 6.31 21.62 2.71
FMPGSAMF 3.50 23.46 1.27 6.01 21.05 2.98 8.94 19.45 3.75
IPGSVF-MK1 1.66 27.29 0.85 4.15 24.03 3.16 6.60 21.73 3.46
IPGSVF-MK2 1.14 28.70 0.59 3.09 23.07 1.82 4.99 23.00 2.62

IPGSVF-MK1K2 0.95 29.92 0.53 2.66 25.73 1.84 4.99 22.95 2.71

Table 11.3. Comparison of the performance in terms of MAE, PSNR and NCD
using a detail of the Pills image contaminated with different densities of impulsive
noise of types I and II.

Filter 5% impulsive type II 15% impulsive type I 25% impulsive type I
MAE PSNR NCD MAE PSNR NCD MAE PSNR NCD

(10−2) (10−2) (10−2)
None 3.27 22.22 2.91 6.98 17.71 10.28 11.02 15.68 16.16
VMF 4.40 28.17 2.87 4.57 27.94 3.03 5.27 26.85 3.60
FIVF 0.72 32.56 0.47 1.87 29.42 1.92 3.09 27.01 3.01
FISF 2.25 28.27 1.32 3.04 27.81 1.89 4.52 26.76 2.15

AVMF 0.99 32.13 0.54 1.65 29.80 1.91 2.91 26.16 4.22
tTVMF 0.69 32.45 0.45 1.54 30.02 1.72 2.80 27.85 2.64

PGSVMF 0.58 34.54 0.36 1.56 30.61 2.14 2.77 27.69 2.74
PRF 1.07 30.41 0.63 2.15 26.77 2.16 3.56 24.25 3.46

PGSAMF 0.78 33.10 0.39 1.83 29.91 2.38 3.24 27.33 3.34
FMPGSAMF 0.83 33.02 0.39 2.34 28.75 2.18 3.96 26.30 4.10
IPGSVF-MK1 0.68 33.31 0.42 1.99 29.64 2.07 3.11 28.21 2.81
IPGSVF-MK2 0.65 33.49 0.45 1.87 28.34 1.34 3.31 25.48 2.39

IPGSVF-MK1K2 0.53 34.41 0.33 1.90 30.15 1.28 2.66 28.82 2.00

NCDLab =

N ·M∑
i=1

∆ELab

N ·M∑
i=1

E∗
Lab

(11.5)

where ∆ELab = [(∆L∗)2 + (∆a∗)2 + (∆b∗)2]
1
2 denotes the perceptual

colour error and E∗
Lab = [(L∗)2+(a∗)2+(b∗)2]

1
2 is the norm or magnitude

of the original image colour vector in the L∗a∗b∗ colour space.

11.5.1 Parameter adjustment

In Figure 11.6 the performance of the IPGSVF using MK1 is presented as
a function of the d parameter. It can be observed that the percentage of
substitutions made is an increasing function of d and that the value of d
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Table 11.4. Comparison of the performance in terms of MAE, PSNR and NCD
using a detail of the House image contaminated with different densities of impulsive
noise of types I and II.

Filter 5% impulsive type II 20% impulsive type II 30% impulsive type I
MAE PSNR NCD MAE PSNR NCD MAE PSNR NCD

(10−2) (10−2) (10−2)
None 3.22 22.92 3.01 13.10 16.77 12.26 14.12 15.09 20.97
VMF 3.68 32.63 2.95 4.79 29.78 3.53 4.33 30.21 3.41
FIVF 0.32 39.83 0.30 1.41 32.96 1.72 2.17 29.95 1.95
FISF 1.75 34.41 1.29 3.07 30.01 2.06 4.02 30.31 2.91

AVMF 0.85 37.58 0.57 1.89 30.09 1.48 2.71 26.46 3.37
tTVMF 0.87 36.89 0.66 2.24 29.35 1.88 2.65 31.48 2.38

PGSVMF 0.29 41.61 0.23 1.58 32.63 1.58 2.30 27.79 2.34
PRF 0.49 33.60 0.39 2.18 27.30 1.64 2.74 26.22 2.61

PGSAMF 0.36 41.36 0.26 1.39 34.48 0.99 2.74 27.32 2.81
FMPGSAMF 0.36 40.13 0.28 1.37 34.50 0.96 3.61 25.13 3.74
IPGSVF-MK1 0.29 41.55 0.23 1.59 32.69 1.07 2.00 31.48 1.61
IPGSVF-MK2 0.31 40.55 0.24 1.57 32.08 1.07 2.63 25.90 1.99

IPGSVF-MK1K2 0.28 42.02 0.22 1.50 32.96 1.03 1.97 31.44 1.59

Table 11.5. Comparison of the performance in terms of MAE, PSNR and NCD us-
ing a detail of the Baboon image contaminated with different densities of impulsive
noise of types I and II.

Filter 5% impulsive type I 20% impulsive type II 30% impulsive type I
MAE PSNR NCD MAE PSNR NCD MAE PSNR NCD

(10−2) (10−2) (10−2)
None 2.28 23.02 3.40 13.40 16.56 11.61 13.63 15.10 18.73
VMF 13.75 21.58 4.81 15.11 20.79 5.49 14.47 21.12 5.15
FIVF 1.77 25.02 2.47 7.41 22.23 3.02 10.18 21.27 4.01
FISF 6.75 24.41 2.26 9.50 22.05 3.36 9.64 22.38 3.61

AVMF 5.72 24.15 1.88 6.99 22.78 2.84 7.61 21.74 4.71
tTVMF 2.29 27.99 0.96 8.51 22.46 3.06 8.48 22.75 3.36

PGSVMF 0.89 32.21 0.58 5.18 24.12 2.15 6.19 22.92 3.87
PRF 5.06 24.07 1.93 7.83 22.11 3.03 8.51 21.57 3.99

PGSAMF 3.19 26.00 1.08 7.06 22.81 2.42 9.77 21.30 4.10
FMPGSAMF 2.50 26.94 0.93 7.93 22.35 2.66 10.21 20.77 4.52
IPGSVF-MK1 1.14 30.14 0.80 5.33 24.01 2.24 6.65 23.20 3.63
IPGSVF-MK2 1.07 30.12 0.51 4.04 25.90 1.45 6.62 21.62 2.81

IPGSVF-MK1K2 0.85 33.23 0.36 4.35 25.40 1.61 5.45 24.57 2.45

is needed to be higher when the density of contaminating noise is higher.
Regarding the nature of the image, lower values of the d parameter are
rather preferred for highly detailed or textured images and higher values
for images with many homogeneous regions. It has been experimentally
found that in the case of IPGSVF with MK1 appropriate values of d are in
the range [0.900, 0.950]. A similar behaviour is observed when using MK2

and MK1K2 for which the sub-optimal range of d is around [0.940, 0.980]
and [0.830, 0.900], respectively. This is also shown in Fig. 11.7 where
the optimal PSNR values of the d parameter for different images and
percentages of impulsive noise type I are given.
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Table 11.6. Comparison of the performance in terms of MAE, PSNR and NCD
using a detail of the Peppers image contaminated with different densities of mixed
impulsive noise type I and Gaussian noise.

Filter 10% impulsive type I and 20% impulsive type I and 30% impulsive type I and
σ = 10 Gaussian noise σ = 20 Gaussian noise σ = 30 Gaussian noise

MAE PSNR NCD MAE PSNR NCD MAE PSNR NCD

(10−2) (10−2) (10−2)
None 12.09 18.87 13.89 22.35 15.80 24.86 33.54 13.51 36.46
VMF 8.19 26.14 6.36 11.61 23.76 10.39 16.58 20.83 16.03
FIVF 8.44 25.93 8.56 13.62 22.66 13.47 18.47 19.73 18.46
FISF 7.90 26.03 6.83 11.82 23.49 10.64 15.08 21.60 12.60

AVMF 7.93 26.59 8.04 14.42 22.04 15.25 22.16 18.15 23.82
tTVMF 7.77 26.11 7.86 12.85 22.82 12.95 17.22 20.39 17.35

PGSVMF 8.17 26.36 9.01 14.77 21.94 15.57 17.40 20.50 17.02
PRF 8.54 25.44 8.44 14.63 21.27 14.51 20.29 18.93 20.51

PGSAMF 8.36 27.28 8.25 14.45 22.07 14.14 19.74 19.26 19.29
FMPGSAMF 8.33 26.23 8.48 14.36 21.55 13.41 20.38 18.60 20.10
IPGSVF-MK1 8.49 26.26 8.37 12.65 23.28 11.75 16.51 20.89 15.92
IPGSVF-MK2 8.43 25.80 7.74 12.23 23.40 10.87 16.52 20.89 15.90

IPGSVF-MK1K2 8.40 26.32 8.26 13.73 22.66 12.92 16.80 20.80 16.11

Table 11.7. Average rank of performance in terms of PSNR achieved by the con-
sidered filters in the performed experiences.

Filter Average Rank
IPGSVF-MK1K2 1.72

PGSVMF 3.00
IPGSVF-MK1 3.83

tTVMF 5.17
IPGSVF-MK2 5.91

PGSAMF 6.08
FIVF 7.00
AVMF 7.42

FMPGSAMF 8.50
FISF 8.75
PRF 10.25
VMF 10.42

11.5.2 Proposed method assessment

The proposed method is assessed in front of the classical VMF [2]
and the recent vector filters: Fast Impulsive Vector Filter (FIVF) [30],
Fuzzy Inference System Filter (FISF) [11], Adaptive Vector Median Fil-
ter (AVMF) [22], t-Student Test Vector Median Filter (tTVMF) [3], Peer
Group Switching Vector Median Filter (PGSVMF) [13], Peer Region Fil-
ter (PRF) [10], Peer Group Switching Arithmetic Mean Filter (PGSAMF)
[36], and Fuzzy Modified Peer Group Switching Arithmetic Mean Filter
(FMPGSAMF) [4]. These filters have been selected because of the follow-
ing reasons: VMF is the most well-known vector filter and it is of com-
mon reference for all vector filters; FIVF, FISF, AVMF, tTVMF are some
recent switching filters that present a good performance. In particular,
FIVF and FISF are also based on fuzzy techniques; and, PGSVMF, PRF,
PGSAMF and FMPGSAMF are recent switching vector filters based on
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the peer group concept. The parameter setting advised by the authors in
the respective works have been used in all considered filters.
For the assessment, test images in Figure 11.5 have been contaminated
with different percentages of the considered impulsive noise types. This
test database has been selected because it includes images presenting
many homogeneous regions and sharp edges (House and Pills) and also
images containing a lot of texture and fine details (Parrots and Baboon).
The results for performance comparison in terms of MAE, PSNR and
NCD are shown in Tables 11.2-11.6. Some outputs of the filters in com-
parison are shown in Figures 11.8-11.11. To summarize these results, for
each considered case in Tables 11.2-11.5, we have sorted the filters in the
comparison in decreasing order of PSNR performance. Then we have com-
puted the average of the ranks achieved by each filter in the performed
experiences. The result including the filters sorted in increasing order of
average rank is shown in Table 11.7. After analyzing Table 11.7, the nu-
merical results in Tables 11.2-11.5 and the visual results in Figures 11.8-
11.11, the following conclusions can be drawn: Obviously, VMF provides
the most smoothed images. The filters PRF, FISF, AVMF, FMPGSAMF
and FIVF present some clear improvements over the VMF in terms of
signal-preservation while efficiently reducing noise. However, the superior
performance is achieved by the filters PGSAMF, tTVMF, PGSVMF and
the proposed IPGSVF. The major differences, in terms of performance,
between these techniques are listed below:
– PGSAMF: This solution is very effective when the images are contam-

inated with low-medium percentage of impulsive noise and specially
for impulsive noise type II (see Table 11.4 central column). However,
it may present some lack of robustness when similar noisy pixels ap-
pear very close to each other. This may happen for high percentages
of noise and specially for impulsive noise type I (see Table 11.4 right
column).

– tTVMF: This method performs a very accurate detection of noise-
free pixels. However, it may eventually fail to detect noisy pixels if
they appear close to an edge or surrounded by several impulses. This
happens because in these cases the normal distribution extracted from
the neighbors has a very large standard deviation and so, any pixel
can easily belong to such a distribution with a quite high confidence
level (for instance, see the green noise in the window in Figure 11.10
(c)).

– PGSVMF: This method accurately detects large impulses, though,
it often omits small impulses (see small impulses close to the right-
down corner in Figure 11.9 (c)). However, pixels in sharp borders
may sometimes be regarded as noise. This happens because a sharp
border makes the peer groups in each side of the border be at a
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large distance which may be over the distance threshold (see blurred
black-white area in Figure 11.8 (c)).

– IPGSVF: The proposed technique presents the best overall results in
terms of the computed average rank when the MK1K2 fuzzy metric is
used. The method can accurately detect and remove impulsive noise
and simultaneously preserve edges and fine details. This performance
is achieved because of its two-stage based procedure. A deficiency of
the proposed method is that small impulses are sometimes not cor-
rectly detected (see small impulses in white area close to the roof in
Figure 11.10 (d),(e) and (f)). This drawback may not be very impor-
tant if the proposed method is used in conjunction with some Gaus-
sian noise smoothing filter since the smoothing filter will probably
also smooth remaining small impulses.

We have also made some experiments using images corrupted with
mixed (Gaussian-impulsive) noise in order to check whether the proposed
method is able to correctly detect impulses in this case. From the results
in Figure 11.11 it can be seen that the method is able to reduce impulsive
noise even in the presence of Gaussian noise. However, the performance
of the proposed method in the mixed noise case (see Table 11.6) is some-
times even inferior to the VMF. This is because the switching structure of
the proposed filter is not appropriate to remove mixed noise and it is only
able to reduce the impulses. In the case that the Gaussian noise should
also be smoothed, then some Gaussian noise smoothing filter should be
applied after the impulsive noise reduction.
In addition, the proposed method has been tested using real noisy images
(see Figures 11.12-11.13). In the case of the image in Figure 11.12 we have
used IPGSVF with MK1K2 and for the image in Figure 11.13 we have
used IPGSVF with MK1 . We have changed the fuzzy metric to show that
the method can perform well with different fuzzy metrics. The noisy-pixel
selection made by the proposed method is compared with the selection
made by the PGSAMF [36]. In the case of Figure 11.12 it can be seen
that the proposed method makes a more accurate selection and that it
generates a less smoothed output image. In the case of Figure 11.13 both
methods perform in a similar way (and also similar if we use IPGSVF
with MK1K2 or MK2), but the PGSAMF still generates a little more
smoothed output. However, in both cases it can be observed that the
IPGSVF sometimes detect a group of several pixels as noise (for instance
the up-right corner of black letter near the center of Figure 11.13 (f)).
This happens because in this group of pixels there is a lot of fluctuations
and no pixel can be regarded as noise-free with high reliability in step (i)
of the method and so, no pixel is finally regarded as noise-free.
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Conclusions

In this paper, a novel switching vector filter for impulsive noise removal
using the peer group concept in the context of fuzzy metrics was intro-
duced. The proposed filtering method is designed as such that instead of
trying to find a condition able to separate impulses from noise-free data,
it applies an iterative procedure to select the noise-free samples keeping
the impulses isolated. Analysis of the method is provided to demonstrate
the appropriateness of the iterative procedure and to show that the com-
putational complexity of the proposed switching filter is lower than the
complexity of the well-known vector median filter.
Experimental results show that the method is able to suppress noise while
preserving desired image structures. The proposed method significantly
outperforms classical VMF. In addition, the method has been compared
with recently introduced vector filters including some based on similar
peer group concepts. With respect to these filters, the filter performance
has been demonstrated to be competitive and even superior in many
cases.

Appendix: Computational complexity analysis

In this appendix a detailed analysis of the computational complexity of
the proposed method is performed.
Let us consider a fixed value of d ∈ [0, 1] and let Fi be the central pixel
of a n × n filter window W where n = 2c + 1, c = 1, 2, . . .. We will say
that the pixel Fj ∈ W is close to Fi if MK(Fi,Fj) ≥ d. Let us denote
the probabilities of a pixel Fj in W to be close to Fi, when Fi is non-
corrupted (noise-free) or corrupted (noisy) by r and q, respectively. Let
η = n2 − 1 be the number of Fi neighbors in W .
From [36] Eq. (8), the probability that k distances (k = m, . . . , η) are
needed to diagnose Fi in step (i) of the proposed algorithm under the
condition that it is non-corrupted is

f1
1 (k) =



(
k − 1
m − 1

)
rm−1(1 − r)k−mr k = m, . . . , η − 1

(
η − 1
m − 1

)
rm−1(1 − r)η−mr +

m−1∑
l=0

(
η

l

)
rl(1 − r)η−l k = η

(11.6)
The same probability under the condition that it is corrupted is denoted
by f1

2 (k) and its expression is similar to (11.6), but replacing r by q.
Hence, the mean number of distances needed to diagnose the central
pixel in step (i) is
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s1(p) = (1 − p)
η∑

k=m

f1
1 (k) · k + p ·

η∑
k=m

f1
2 (k) · k (11.7)

where p is the probability of the noise appearance. The probability of a
pixel to be non-assigned in step (i) is

t1(p) = (1 − p)
m−1∑
l=0

(
η

l

)
rl(1 − r)η−l + p

m−1∑
l=0

(
η

l

)
ql(1 − q)η−l (11.8)

Now, in order to analyze step (ii), let us also consider each non-assigned
pixel Fi centered in a n × n filter window W . The average number of
noise-free pixels in W which were diagnosed in step (i) is

λ1(p) = (1 − t1(p))(n2 − 1) (11.9)

From now on, if confusion is not possible, we will omit to mention p.
Let us denote the probabilities of a non-assigned pixel of step (i) in W
to be close to Fi when Fi is non-corrupted or corrupted by R and Q,
respectively. In the following, we will find the probability of a pixel to be
declared as non-assigned in the first iteration of step (ii) assuming that
t1 > p (which agrees with the filter’s design). Next, since the argument is
the same and R and Q are assumed to be constant for all the iterations,
we will prove our assertion but in the case of the (N + 1)th iteration of
step (ii) on the basis of the Nth iteration.
So, let us denote the probability of a pixel to be non-assigned in the Nth
iteration by tN , N = 2, 3, . . . and assume tN > p (which also agrees with
the filter’s design). The average number of pixels in W which have been
already declared as non-assigned in the Nth iteration is

λN = (tN−1 − tN )(n2 − 1), N = 2, 3, . . . (11.10)

Now, let us denote the probabilities of a non-assigned pixel of the Nth
iteration to be declared as non-assigned in the (N +1)th iteration, under
the condition that it is not corrupted or corrupted, by τ1(λN ) and τ2(λN ),
respectively. If λN is a positive integer then we have that τ1(λN ) = (1 −
R)λN and that τ2(λN ) = (1 − Q)λN .
Let us now suppose that λN is not integer and in this case denote [λN ]
the integer value such that [λN ] < λN < [λN ] + 1. Then, by linear inter-
polation we obtain

τ1(λN ) = ([λN ]+1−λN )(1−R)[λN ] +(λN − [λN ])(1−R)[λN ]+1 (11.11)

and a similar expression is obtained for τ2(λN ) replacing R by Q.
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The probability of a pixel in the image to be non-assigned in the (N+1)th
iteration is

tN+1 = tN

(
tN − p

tN
τ1(λN ) +

p

tN
τ2(λN )

)
= (tN − p) · τ1(λN )+ p · τ2(λN )

(11.12)
Clearly, tN+1 ≤ tN . Further, tN+1 = tN if and only if τi(λN ) = 1, i.e. if
and only if λN = 0.
The following expression denotes the probability fN+1

1 (k) that k distances
k = 1, 2, . . . , λN are needed to diagnose a not-corrupted pixel Fi in the
Nth iteration if λN is a positive integer and λN > 1,

fN+1
1 (k) =

{
(1 − R)k−1 · R k = 1, . . . , λN − 1
(1 − R)λN−1 · R + (1 − R)λN k = λN

(11.13)
Otherwise, when λN = 1 then fN+1

1 (k) = fN+1
1 (1) = 1.

Now we study the probability fN+1
1 when λN is not integer, and distin-

guish 3 cases.
a) λN > 2, then fN+1

1 (k) =
(1 − R)k−1 · R k = 1, . . . , [λN ] − 1
([λN ] + 1 − λN + (λN − [λN ]) · R) (1 − R)[λN ]−1 k = [λN ]
(λN − [λN ])(1 − R)[λN ] k = [λN ] + 1

(11.14)
b) λN ∈ (1, 2), then

fN+1
1 (k) =

{
2 − λN + (λN − 1) · R k = 1
(λN − 1) · (1 − R) k = 2 (11.15)

c) λN ∈ (0, 1), then

fN+1
1 (k) =

{
1 − λN k = 0
λN k = 1 (11.16)

Finally when λN = 0, obviously

fN+1
1 (0) = 1 (11.17)

The same probability under the condition that the central pixel is cor-
rupted is obtained replacing R by Q in (11.13)-(11.17) and is denoted by
fN+1
2 (k).

In the following we compute the average number of distances needed to
diagnose the central pixel in the (N + 1)th iteration. If we suppose that
λN is a positive integer and that tN > p then the average number of
distances is
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s∗N+1(p) =
tN − p

tN
·

λN∑
k=1

fN+1
1 (k) · k +

p

tN
·

λN∑
k=1

fN+1
2 (k) · k, N = 1, 2, . . .

(11.18)
When λN is not integer, by (11.14)-(11.16) the above sum is extended
from k = 1 to k = [λN ] + 1 when λN > 1, and from k = 0 to k = 1 when
λN ∈ (0, 1). If λN = 0 then s∗N+1(p) = 0.
So the mean number of distances needed to diagnose any pixel in the
image is

s(p) =
∑
J≥1

sJ(p) (11.19)

where
sJ(p) = tJ−1 · s∗J(p), J = 2, 3, . . . (11.20)

In our conditions we only can assert that the decreasing sequence {tN}
converges in [p, 1] since it is lower bounded. Therefore from a certain
(N0)th iteration all differences tJ − tJ+1, J ≥ N0, are close to 0 and
then by (11.10) λJ is close to 0, hence by (11.16) sJ(p) is negligible, for
J ≥ N0.
According to the above, the algorithm can be necessarily executed in a
finite number of iterations. Thus, it exists some Nth iteration such that
λN = 0. Hence, by (11.17) s∗N+1(p) = 0 and so sN+1(p) = 0. Now, since
λN = 0 implies τi(λN ) = 1, (i = 1, 2)(and conversely) then, by (11.12)
tN+1 = tN and by (11.10) λN+1 = 0. In this case, sN+2(p) = 0, and
employing a similar argument we can state that sN+i(p) = 0, for all
i ≥ 1. Therefore, (11.19) contains a finite number of terms. Mostly, when
using a 3 × 3 filter window the algorithm finalizes in 8 iterations, and
only the first five values of sJ(p) are really significative to approach the
computational complexity.
Note that the algorithm does not include the condition that tJ > p for
J = 1, 2, . . . , so some tJ could satisfy tJ ≤ p. However, before this may
occur the differences tJ − tJ−1 will be very close to 0 and, taking into
account (11.10), (11.16), (11.18) and (11.19), the corresponding values of
sJ(p) can be ignored for the computational complexity calculation.
Finally, if we denote by t(p) the probability of a pixel in the image to be
declared as noisy in step (iv) (this value can be approximated by tN (p)
when tN (p)− tN+1(p) is close to 0), then the average number of distances
per pixel needed for the filtering including those computed by the VMF
operation over the noisy pixels is

cd(p) = s(p) + t(p)
(

η

2

)
.
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Abstract

This paper focuses on fuzzy image denoising techniques. In particular, we
develop a new fuzzy impulse noise detection method. The main difference
between the proposed method and other state-of-the-art methods is the
usage of the colour components for the impulse noise detection method
that are used in a more appropriate manner. The idea is to detect all noisy
colour components by observing the similarity between (i) the neighbours
in the same colour band and (ii) the colour components of the two other
colour bands. Numerical and visual results illustrate that the proposed
detection method can be used for an effective noise reduction method.

12.1 Introduction

Reduction of noise in digital images is one of the most basic image pro-
cessing operations.
Recently a lot of fuzzy based methods have shown to provide efficient
image filtering [5, 9, 18, 19, 20, 21, 22, 23].
These fuzzy filters are mainly developed for images corrupted with fat-
tailed noise like impulse noise. Although these filters are especially de-
veloped for greyscale images, they can be used to filter colour images
by applying them on each colour component separately. This approach
generally introduces many colour artefacts mainly on edge and texture
elements. To overcome these problems several nonlinear vector-based ap-
proaches were successfully introduced [1, 2, 3, 4, 7, 8, 12, 13, 14, 15, 16,
17].
Nevertheless all these vector-based methods have the same major draw-
backs, i.e. (i) the higher the noise level is the lower the noise reduction
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capability is in comparison to the component-wise approaches and (ii)
they tend to cluster the noise into a larger array which makes it even
more difficult to reduce. The reason for these disadvantages is that the
vector-based approaches consider each pixel as a whole unit, while the
noise can appear in only one of the three components.
In this paper another colour filtering method is proposed. As in most
other applications we use the RGB colour space. The main difference
between the proposed method and other state-of-the-art methods is the
usage of the colour components for the impulse noise detection. The idea
behind this detection phase is to detect all colour components which
are dissimilar (i) to the neighbours in the same colour band and (ii)
to the colour components of the two other colour bands. The proposed
method illustrates the advantage of using the colour information in a
more appropriate way to improve the noise reduction method. This work
should also stimulate more research in the field of colour processing for
image denoising.
The paper is organized as follows: in section 12.2 the new colour based
impulse noise detection method is explained. A noise reduction method
that uses the performed detection is described in section 12.3. Section
12.4 illustrates the performance of the proposed method in comparison
to other state-of-the-art methods and the conclusions are finally drawn
in section 12.5.

12.2 Fuzzy impulse noise detection

In this section a novel fuzzy impulse noise detection method for colour
images is presented. In comparison to the vector-based approaches the
proposed fuzzy noise detection method is performed in each colour com-
ponent separately. This implies that a fuzzy membership degree (within
[0, 1]) in the fuzzy set noise-free will be assigned to each colour component
of each pixel. When processing a colour, the proposed detection method
examines two different relations between the central colour and its neigh-
bouring colours to perform the detection: it is checked both (i) whether
each colour component value is similar to the neighbours in the same
colour band and (ii) whether the value differences in each colour band
corresponds to the value differences in the other bands. In the following,
the method is described in more detail.
Since we are using the RGB colour-space, the colour of the image pixel at
position i is denoted as the vector Fi which comprises its red (R), green
(G), and blue (B) component, so Fi = (FR

i , FG
i , FB

i ). Let us consider the
use of a sliding filter window of size n×n, with n = 2c+1 and c ∈ N, which
should be centered at the pixel under processing. The colours within the
filter window are indexed according to the scheme shown in Figure 12.1
for the 3×3 case. For larger window sizes the indexing will be performed in
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Fig. 12.1. Vector index in the filter window.

an analogous way. The colour pixel under processing is always represented
by F0 = (FR

0 , FG
0 , FB

0 ).
First, we compute the absolute value differences between the central pixel
F0 and each colour neighbour as follows:

∆F R
k = |F R

0 − F R
k |, ∆F G

k = |F G
0 − F G

k |, ∆F B
k = |F B

0 − F B
k | (12.1)

where k = 1, . . . , n2−1 and ∆FR
k ,∆FG

k ,∆FB
k denote the value difference

with the colour at position k in the R, G and B component, respectively.
Now, we want to check if these differences can be considered as small.
Since small is a linguistic term, it can be represented as a fuzzy set [10].
Fuzzy sets in turn can be represented by a membership function. We
compute the membership degree in the fuzzy set small1 using the 1− S-
membership function [10] over the computed differences. This function is
defined as follows

1 − S(x) =


1 if x < α1

1 − 2
(

x−γ1
γ1−α1

)2

if α1 < x < α1+γ1
2

2
(

x−α1
γ1−α1

)2

if α1+γ1
2 < x < γ1

0 if x > γ1

(12.2)

where we have experimentally found that α1 = 10 and γ1 = 50 receive
satisfying results in terms of noise detection. In this case we denote 1−S
by S1, so that S1(∆FR

k ), S1(∆FG
k ), S1(∆FB

k ) denote the membership
degrees in the fuzzy set small1 of the computed differences with respect
to the colour at position k. Now, we use the values S1(∆FR

k ), S1(∆FG
k ),

S1(∆FB
k ) for k = 1, . . . , n2 − 1 to decide whether the values FR

0 , FG
0

and FB
0 are similar to its component neighbours. The calculation of the

membership degree in the fuzzy set noise-free is illustrated for the R
component only but is performed in an analogous way for the G and B
component. Because of the noise some of the neighbours could be cor-
rupted with noise and therefore the values of S1(∆FR

k ) for k = 1, ..., n2−1
are sorted in descending order so that only the most relevant differences
are considered. The value occupying the j-th position in the ordering
is denoted by S1(∆FR

(j)). Next, the similarity to the neighbour values is
determined by checking that the value difference should be small with
respect to, at least, a certain number K of neighbours. The number K of
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considered neighbours will be a parameter of the filter and its importance
is discussed in section 12.4. So, we apply a fuzzy conjunction operator
(fuzzy AND operation represented here by the triangular product t-norm
[11, 6]) among the first K ordered membership degrees in the fuzzy set
small1. The conjunction is calculated as follows:

µR =
K∏

j=1

S1(∆FR
(j)), (12.3)

where µR denotes the degree of similarity of FR
0 with respect to K of its

neighbours in the most favourable case. Notice that in the case that FR
0

is noisy a low similarity degree µR should be expected.
The next step of the detection process is to determine whether the
observed differences in the R component of the processed colour cor-
responds to the same observations in the G and B component. We
want to check if these differences agree at least for a certain number
K of neighbours. Then, for each neighbour we compute the absolute
value of the difference between the membership degrees in the fuzzy set
small1 for the red and the green and for the red and the blue com-
ponents, i.e. |S1(∆FR

k ) − S1(∆FG
k )| and |S1(∆FR

k ) − S1(∆FB
k )|, where

k = 1, . . . , n2 − 1, respectively. Now, in order to see if the computed
differences are small we compute their fuzzy membership degrees in the
fuzzy set small2. A 1 − S-membership function is also used but now we
used α2 = 0.10 and γ2 = 0.25, which also have been determined exper-
imentally. In this case we denote the membership function as S2. So we
calculate

µRG
k = S2(|S1(∆FR

k ) − S1(∆FG
k )|),

µRB
k = S2(|S1(∆FR

k ) − S1(∆FB
k )|), (12.4)

where µRG
k and µRB

k denote the degree in which the observed difference
in the red component is similar to the observed difference in the green
and blue components with respect to the colour located at position k,
respectively. Now, since we want to require that the differences are similar
with respect to at least K neighbours, the values of µRG

k and µRB
k are also

sorted in descending order, where µRG
(j) and µRB

(j) denote the values ranked
at the j-th position. Consequently, the joint similarity with respect to K
neighbours is computed as

µRG =
K∏

j=1

µRG
(j) , µRB =

K∏
j=1

µRB
(j) , (12.5)

where µRG and µGB denote the degree in which the observed differences
for the red component are similar to the observed differences in the green
and blue components, respectively. Notice that if FR

0 is noisy and FG
0
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and FB
0 are not, then the observed differences can hardly be similar and

therefore, low values of µRG and µRB are expected.
Finally, the membership degree in the fuzzy set noise-free for FR

0 is com-
puted using the following fuzzy rule 3

Fuzzy Rule 3 Defining the membership degree NFF R
0

for the red com-
ponent FR

0 in the fuzzy set noise-free:
IF µR is large AND µRG is large AND µG is large OR

µR is large AND µRB is large AND µB is large
THEN the noise-free degree of FR

0 is large

A colour component is considered as noise-free if (i) it is similar to some
of its neighbour values (µR) and (ii) the observed differences with respect
to some of its neighbours are similar to the observed differences in some of
the other colour components (µRG and µGB). In addition, the degrees of
similarity of the other components values with respect to their neighbour
values, i.e. µG and µB, are included so that a probably noisy component
(with a low µG or µB value) can not be taken as a reference for the
similarity between the observed differences. The fuzzy rule 3 contains
four conjunctions and one disjunction. In fuzzy logic triangular norms
and co-norms are used to represent conjunctions and disjunctions [11, 6],
respectively. Since we use the product triangular norm to represent the
fuzzy AND (conjunction) operator and the probabilistic sum co-norm to
represent the fuzzy OR (disjunction) operator the noise-free degree of FR

0

which we denote as NFF R
0

is computed as follows:

NFF R
0

= µRµRGµG + µRµRBµB − µRµRGµGµRµRBµB . (12.6)

Notice that all the variables in the antecedent of the fuzzy rule 3 are al-
ready appropriate fuzzy values, so that no fuzzyfication is needed. More-
over, since we aim at computing a fuzzy noise-free degree, any defuzzyfi-
cation is neither needed.
Analogously to the calculation of the noise-free degree for the red com-
ponent described above, we obtain the noise-free degrees of FG

0 and FB
0

denoted as NFF G
0

and NFF B
0

as follows

NFF G
0

= µGµRGµR + µGµGBµB − µGµRGµRµGµGBµB , (12.7)

NFF B
0

= µBµRBµR + µBµGBµG − µBµRBµRµBµGBµG.

In fuzzy logic, involutive negators are commonly used to represent nega-
tions. We use the standard negator Ns(x) = 1 − x, with x ∈ [0, 1] [11].
By using this negation we can also derive the membership degree in the
fuzzy set noise for each colour component, i.e. NF R

0
= 1−NFF R

0
, where

N denotes the membership degree in the fuzzy set noise. An example of
the proposed detection method is shown in Figure 12.2.
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(a) (b) (c) (d)

Fig. 12.2. An example of the proposed noise detection performance, with (a)-(d)
Detail of the “Lena” image contaminated with 10% random-value impulse noise
in each colour channel, and the computed noise-free degrees. White/dark points
indicate a high/low noise-degree, respectively.

12.3 Image denoising method

Now we briefly explain an image denoising method that uses the fuzzy
detection in section 12.2. The image is denoised so that (i) each colour
component is smoothed according to its noisy degree and (ii) the colour
information is used to estimate the output values. We propose to com-
pute a weight for each colour component in order to calculate a weighted
averaging to obtain the output. Now we illustrate the case of the R com-
ponent but it is done in an analogous way for the G and B components.
The denoised R component is obtained as follows

F̂R
0 =

n2−1∑
k=0

WF R
k

FR
k

n2−1∑
k=0

WF R
k

(12.8)

where F̂R
0 denotes the estimated value for the R component, FR

k , k =
0, ..., n2 − 1 denote the R component values in the filter window and
WF R

k
are their respective weights. The weight of the component being

processed WF R
0

is set proportionally to its noise-free degree NFF R
0

so
that it will be less weighted, and therefore more smoothed, if its noise-free
degree is lower. The weight of the neighbour components is set inversely
proportional to the noise-free degree of the component being denoised
NFF R

0
. Therefore, the neighbours are more weighted as NFF R

0
is lower.
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In addition, in order to take into account the colour information, we will
weigh more those components FR

k for which it can be observed that FG
k

is similar to FG
0 or that FB

k is similar to FB
0 . The underlying reasoning is

that if two colours have similar G or B components then it is observed that
the R component is also similar. Notice that in a extremely noisy situation
it may happen that WF R

k
= 0,∀k and then the weighted average cannot

be performed. In such situations we perform a weighted vector median
(WVM) operation, instead. In the WVM the weight of each vector should
be set according to the vector noise-free degree which is computed as the
conjunction of the noise-free degree of its RGB components.

12.4 Parameter setting and experimental results

In this section we evaluate the performance of the proposed method and
compare it with the performance of other methods. We use the Peak
Signal-to-Noise Ratio (PSNR) [16] as objective measure to evaluate the
quality of the filtered images.
In order to set the K parameter of the filter we have taken different
images and we have contaminated them with random-value impulse noise
varying its percentage from 1% to 50% in each colour component. We
have computed the performance (PSNR) achieved by the proposed filter
using a 3 × 3 filter window for all possible values of K ∈ {1, . . . , 8}. The
obtained results seem to indicate that the most appropriate values of
the K parameter are K = 2, 3. When the images are contaminated with
low-medium percentages of noise, setting K = 2, 3 makes the filter able
to properly detect and reduce impulse noise while preserving noise-free
image areas, specially edges and textures. However, when the percentage
of noise is high it is observed that some clusters of similar noisy pixels
may occasionally appear in the noisy images. Using a value of K = 2, 3
may not be able to reduce clusters of noisy pixels larger than or equal
to 3 or 4 pixels. This problem can be solved by using a larger value for
K (maybe K = 4, 5), but in this case the performance for low densities
of noise would be far from optimal because the detail-preserving ability
is not so good as it is for lower values of K. Instead of this, we propose
to perform a filtering based on a two-step approach. In the first step the
noisy image is filtered using a 3 × 3 window and K = 2. In this step,
isolated noisy pixels are reduced while uncorrupted edges and details are
properly preserved. In the second step, the image is now filtered using a
5×5 window and K = 5. This step is intended to remove possible clusters
of noisy pixels that may still remain in the image.
In the following the performance of the proposed filtering procedure,
which we will entitle as impulse noise reduction method (INR), is com-
pared to the performance of other state-of-the-art filters. The set of filters
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Table 12.1. Some experimental results for comparison in terms of PSNR using the
Baboon image corrupted with different densities of random-value impulse noise.

Filter 5% 10% 15% 20% 25% 30% 40%
PSNR PSNR PSNR PSNR PSNR PSNR PSNR

None 21.98 18.95 17.18 15.95 15.01 14.18 12.97
VMF 22.95∗ 22.68∗ 22.35∗ 21.93∗ 21.70 21.46 20.77
PGSF 25.22∗ 24.00∗ 22.83∗ 22.04 21.51 20.95 19.66
FISF 25.29∗ 24.08∗ 23.33∗ 22.96∗ 22.39∗ 21.75∗ 20.74

FIDRMC 26.09∗ 25.48∗ 24.72∗ 24.02∗ 23.30∗ 22.86 21.85
UF 24.17∗ 23.94∗ 23.65∗ 23.37∗ 23.07∗ 22.72∗ 21.95

FRINRM 29.12∗ 26.85∗ 25.25 24.55 23.75 22.82 20.29
INR 30.64∗ 28.88∗ 27.03 25.99 25.09 24.24 22.61

Table 12.2. Some experimental results for comparison in terms of PSNR using the
Boat image corrupted with different densities of random-value impulse noise.

Filter 5% 10% 15% 20% 25% 30% 40%
PSNR PSNR PSNR PSNR PSNR PSNR PSNR

None 21.75 18.78 16.99 15.79 14.82 13.99 12.73
VMF 30.28∗ 29.42∗ 28.20∗ 26.70∗ 26.11 25.46 23.81
PGSF 33.42∗ 30.30∗ 28.45 27.24 26.08 24.64 22.08
FISF 31.63∗ 30.14∗ 29.01∗ 27.80∗ 26.73∗ 25.16∗ 23.87

FIDRMC 34.25∗ 32.41∗ 31.00 29.79 29.05 27.95 25.80
UF 33.08∗ 32.13∗ 31.32∗ 30.46∗ 29.65∗ 28.67∗ 26.79

FRINRM 36.80∗ 32.38 31.28 30.10 28.88 27.14 23.07
INR 38.48∗ 34.77∗ 32.84 31.36 30.31 29.10 26.37

chosen for the comparison includes some filters for grayscale images ap-
plied in a component wise way (UF [7] and FRINRM [19]) and some
colour image filters (VMF [1], PGSF [17], FISF [8] and FIDRMC [20]).
Notice that some of the mentioned filters are also based on fuzzy concepts
(FRINRM, FISF and FIDRMC). We have used the three well-known im-
ages Baboon, Boats and Parrots for the tests. These images have been
corrupted with different percentages of random-value impulse noise in
each colour channel. We have used the following percentages: 5%, 10%,
15%, 20%, 25%, 30%, 40%.
Since the proposed method uses a two-step procedure we have also fil-
tered the test-images with the proposed filters using an analogous two-
step design. The first step uses a 3 × 3 filter window where we used the
(optimal) parameter setting suggested in the corresponding works. After
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(a) PSNR = 16.50 (b) PSNR = 26.38 (c) PSNR = 26.39

(d) PSNR = 27.47 (e) PSNR = 29.36 (f) PSNR = 28.01

(g) PSNR = 29.99 (h) PSNR = 30.80

Fig. 12.3. Visual comparison of filters performance. (a) Detail of Parrots image
with 15% of random-value impulse noise in each colour channel and outputs from
(b) VMF, (c) PGSF, (d) FISF, (e) FIDRMC, (f) UF, (g) FRINRM and (h) INR.

the first step we have performed a second step where we use a 5× 5 win-
dow size and where the corresponding (optimal) parameters are changed
accordingly to the number of pixels in the window. In Tables 12.1-12.2
we have illustrated the PSNR performance achieved by all filters. The
performance of the state-of-the-art methods included in the tables corre-
sponds with the best performance achieved by the first or second step.
Numbers followed by a ∗ indicate that the best performance is achieved
in the first step. If no ∗ is used then the best performance is achieved
by the second step. Some outputs of the filters for visual comparison are
included in Figure 12.3 using a detail of the Parrots image corrupted by
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15% of noise in each colour channel. From these results we can make the
following conclusions:
– The proposed method generally receives the best PSNR values, which

indicates that the proposed method receives the best filtering capa-
bility. Other filters such as the UF, may eventually receive slightly
better PSNR values however, from the visual results we illustrate that
the other methods have some important disadvantages in comparison
to the proposed method.

– From the images we observe the main problem of the filtering al-
gorithms that are applied component-wise, i.e. they even introduce
(impulse like) colour artefacts in heterogeneous areas like edges or
fine texture areas. By processing each component separately it often
happens that colour component differences were destroyed.

– The vector based approaches do not introduce artefacts but tend to
cluster the noise in larger areas, as in the case of PGSF. This makes
it much more difficult to reduce the remaining noise. Additionally we
observe that the results from the vector based approaches tend to
make the images much blurrier (smoother) than the other methods
so that important image structures are destroyed.

– The best visual results were obtained by the proposed method. We
observe that the proposed method reduces the noise very well, while
preserving the colour information and the important image features
like edges and textures.

From both the numerical and visual results we can conclude that the pro-
posed method can be advised for reducing random-value impulse noise in
colour images since it generally outperforms other state-of-the-art meth-
ods.

Conclusion

In this paper a new fuzzy filter for impulse noise reduction in colour
images is presented. The main difference between the proposed method
(denoted as INR) and other classical noise reduction methods is that
the colour information is taken into account in a more appropriate way
(i) to develop a better impulse noise reduction method and (ii) to de-
velop a noise reduction method which reduces the noise effectively. The
advantages of the proposed method are (i) it reduces random-value im-
pulse noise (for low and high noise levels) effectively, (ii) it preserves
edge sharpness and (iii) it doesn’t introduce blurring artefacts or new
colours artefacts in comparison to other state-of-the art methods. This
method also illustrates that colour images should be treated differently
than grayscale images in order to increase the visual performance.
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Conclusions and future work

In this dissertation, several filtering techniques based on the use of fuzzy
metrics and fuzzy logic tools have been developed. The designed filtering
techniques aim at taking advantage of fuzzy metrics and fuzzy logic for
colour image filtering. Apart from the conclusions drawn in each con-
tribution presented in this dissertation, the following overall conclusions
may also be drawn.
· The fuzzy metric MK introduced in Proposition 1 of Chapter 4 is

suitable for RGB colour image processing and it has the advantage
of being a little faster than other classical metrics. This fuzzy met-
ric can be used to measure magnitude and directional differences
between colour vectors and by employing it, variants of the vector
median and vector directional filters can be designed. In fact, Contri-
butions (i)-(v), (vii) and (viii) make use of MK or some variant of it.
Furthermore, this fuzzy metric has been proved to be specially useful
within the similarity based vector filtering technique context studied
in Contributions (iii) and (v).

· Fuzzy metrics provide a simple mechanism to handle multiple dis-
tance criteria simultaneously. Contributions (ii), (iv), (v), (vi) and
(viii) propose filtering procedures where a fuzzy metric is success-
fully used to handle multiple distance criteria.

· As shown in Contributions (iii), (v)-(viii), it is possible to design
adaptive filtering techniques using fuzzy metrics that are competitive
with respect to recent state-of-the-art filters, outperforming them in
many cases.

· As it is proposed in Contribution (ix), fuzzy logic techniques can be
used to process colour images by taking into account the correlation
among the image channels in a different way that the vector approach
does. Indeed, the fuzzy-based technique studied in Contribution (ix)
may outperform vector-based filtering techniques.

As a result of the above conclusions, the following future research issues
could be of interest.
· To further study the applicability of fuzzy techniques to process mul-

tichannel images by taking into account the correlation among the
image channels in a different way that the vector approach.
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· To investigate on the usefulness of fuzzy metrics and fuzzy logic tools
for the reduction of other defects in colour images. For instance, a
recent and interesting sort of defects that appears in pictures from
colour digital cameras are the so called hot and dead pixels (see, for
instance, www.neatimage.com).

· To research on the applicability of fuzzy metrics in other image pro-
cessing tasks such as, for instance, video deinterlacing, colour image
demosaicking, image segmentation, and so on.


