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Abstract

Image filtering is an essential image processing task for almost every computer
vision system where images are used for automatic analysis or for human in-
spection. In fact, noise contaminating an image may be a major drawback
for most other image processing tasks like, for instance, image analysis, edge
detection or pattern and/or object recognition and hence, it should be re-
duced.

In the last years, the interest in using colour images has grown dramati-
cally in a variety of applications. Therefore, colour image filtering has become
an interesting area of research. It has been widely observed that colour im-
ages have to be processed taking into account the existing correlation among
image channels. Probably, the most well-known approach in this sense is the
vector approach. Earliest vector filtering solutions as, for instance, the vector
median filter (VMF) or the vector directional filter (VDF), are based on the
theory of robust statistics and as a consequence, they are able to perform
a robust filtering. Unfortunately, these techniques are non-adaptive to local
image statistics which implies that the processed images are usually blurred
in edges and image details. To overcome this drawback, a number of adaptive
vector processing solutions have been recently proposed.

This PhD dissertation undertakes two main tasks: (i) the study of fuzzy
metrics applicability in colour image filtering tasks and (ii) the design of new
colour image filtering solutions that take advantage of the observed interest-
ing fuzzy metrics and fuzzy logic properties. Extensive experimental results
presented in this dissertation have shown that fuzzy metrics and fuzzy logic
are useful to design both non-adaptive and adaptive filtering techniques which
are competitive with respect to recent state-of-the-art filters. Moreover, as it
is demonstrated in several filter designs introduced in this dissertation, an in-
teresting advantage of fuzzy metrics is that they provide a simple mechanism
to simultaneously handle multiple distance criteria.
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Resumen

El filtrado de imagen es una tarea fundamental para la mayoria de los
sistemas de visién por computador cuando las imagenes se usan para analisis
automatico o, incluso, para inspeccion humana. De hecho, la presencia de
ruido en una imagen puede ser un grave impedimento para las sucesivas
tareas de procesamiento de imagen como, por ejemplo, la deteccion de bordes
o el reconocimiento de patrones u objetos y, por lo tanto, el ruido debe ser
reducido.

En los ultimos anos el interés por utilizar imégenes en color se ha visto
incrementado de forma significativa en una gran variedad de aplicaciones. Es
por esto que el filtrado de imagen en color se ha convertido en un area de
investigacion interesante. Se ha observado ampliamente que las imagenes en
color deben ser procesadas teniendo en cuenta la correlacién existente entre
los distintos canales de color de la imagen. En este sentido, la solucién prob-
ablemente mas conocida y estudiada es el enfoque vectorial. Las primeras
soluciones de filtrado vectorial, como por ejemplo el filtro de mediana vecto-
rial (VMF) o el filtro direccional vectorial (VDF), se basan en la teorfa de la
estadistica robusta y, en consecuencia, son capaces de realizar un filtrado ro-
busto. Desafortunadamente, estas técnicas no se adaptan a las caracteristicas
locales de la imagen, lo que implica que usualmente los bordes y detalles de las
imégenes se emborronan y pierden calidad. A fin de solventar este problema,
varios filtros vectoriales adaptativos se han propuesto recientemente.

En la presente Tesis doctoral se han llevado a cabo dos tareas princi-
pales: (i) el estudio de la aplicabilidad de métricas difusas en tareas de proce-
samiento de imagen y (ii) el disefio de nuevos filtros para imagen en color
que sacan provecho de las propiedades de las métricas difusas y la logica di-
fusa. Los resultados experimentales presentados en esta Tesis muestran que
las métricas difusas y la légica difusa son herramientas ttiles para disenar
técnicas de filtrado, tanto no adaptativas como adaptativas, que son com-
petitivas respecto a otras técnicas en el estado del arte. Ademads, como se
demuestra en varios de los filtros diseniados en esta Tesis, una ventaja intere-
sante de las métricas difusas es que proporcionan un mecanismo sencillo para
manejar simultdneamente multiples criterios de distancia.



ix

Resum

El filtrat d’imatge és una tasca fonamental per a la majoria dels sistemes
de visi6 per ordinador quan les imatges s’usen per a I’analisi automatica o, fins
i tot, per a la inspeccié humana. De fet, la presencia de soroll en una imatge
pot ser un greu impediment per a les successives tasques de processament
d’imatge com, per exemple, la deteccié de vores o el reconeixement de patrons
o objectes i, per tant, el soroll ha de ser reduit.

En els darrers anys l'interés per utilitzar imatges en color s’ha vist in-
crementat de forma significativa en una gran varietat d’aplicacions. Es per
aco, que el filtrat d’imatge en color s’ha convertit en una area d’investigacié
interessant. S’ha observat ampliament que les imatges en color han de ser
processades tenint en compte la correlacié existent entre els distints canals
de color de la imatge. En este sentit, la solucié probablement més coneguda
i estudiada és I'enfocament vectorial. Les primeres solucions de filtrat vec-
torial, com per exemple el filtre de mediana vectorial (VMF) o el filtre di-
reccional vectorial (VDF), es basen en la teoria de l'estadistica robusta i, en
conseqiiéncia, sén capacos de realitzar un filtrat robust. Desafortunadament,
estes tecniques no s’adapten a les caracteristiques locals de la imatge, la qual
cosa implica que usualment les vores i detalls de les imatges s’esborrallen i
perden qualitat. A fi de resoldre este problema, uns quants filtres vectorials
adaptatius s’han proposat recentment.

En la present Tesi Doctoral s’han dut a terme dos tasques principals: (i)
Iestudi de I’aplicabilitat de metriques difuses en tasques de processament
d’imatge i (ii) el disseny de nous filtres per a imatge en color que trauen
profit de les propietats de les metriques difuses i la logica difusa. Els resul-
tats experimentals presentats en esta Tesi mostren que les metriques difuses
i la logica difusa sén ferramentes tils per a dissenyar tecniques de filtrat,
tant no adaptatives com adaptatives, que sén competitives respecte d’altres
tecniques en l'estat de 'art. A més, com es demostra en alguns dels filtres dis-
senyats en esta Tesi, un avantatge interessant de les métriques difuses és que
proporcionen un mecanisme senzill per a utilitzar simultaniament multiples
criteris de distancia.






Presentation

Image filtering is probably the most common image processing task. Filtering
an image or a signal means, in general, to transform that image/signal into a
more appropriate one for a particular purpose. Image filtering is commonly
applied to eliminate or reduce the noise that may be present in an image
and that can alter the structured information contained in it. Indeed, noise
filtering is the process of estimating the original image information from
noisy data, what makes that the filtering problem can be seen as a problem
of information interpretation. In fact, noise contaminating an image may be
a grave drawback for most other image processing tasks as, for instance,
image analysis, edge detection or pattern and/or object recognition. As a
consequence, image filtering becomes an essential step in any computer vision
system where images are used for automatic analysis or, even, for human
inspection.

First image filtering solutions were developed for gray-scale, one-channel,
images. These solutions were usually designed to remove a specific type of
noise. Lots of papers can be found in the literature describing image filter
designs that use different approaches to process images. One of the most well-
known approaches are fuzzy filters. Fuzzy sets and fuzzy logic tools are able
to deal with uncertainty and, since images are highly non-stationary in edges
and it is difficult to distinguish between noise and edge pixels, these tools
were proved to be highly appropriate for image filtering tasks. As a result, a
number of fuzzy filtering solutions were published.

In the last years, the interest in using multichannel signals, and in par-
ticular colour images, has impressively grown in a variety of applications.
Therefore, colour image filtering became an interesting area of research. The
earliest solutions to filter colour images were componentwise approaches that
used some gray-scale image filter in each colour channel. In this way, each
channel was processed independently from the other channels. However, it
is known that the existing correlation among the image channels should be
taken into account. Otherwise, many colour artefacts and other undesired
effects may appear in the processed images. This implied the need of specific
colour image filtering solutions.

One of the most studied approaches for colour image processing is the
vector approach. According to this approach, each image pixel is treated as
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a vector comprised of the colour components and the image is treated as a
vector field. Therefore, all image channels are jointly processed and the cor-
relation among the image channels is necessarily taken into account. The first
vector filtering solutions as, for instance, the vector median filter (VMF) or
the vector directional filter (VDF'), are based on the theory of robust statis-
tics. These vector filters are able to perform a robust filtering. That is, they
are able to efficiently suppress noise. However, the operation made by these
vector filters in each image location is fixed, i.e., they are non-adaptive to
local image statistics. It has been widely observed that non-adaptive pro-
cessing usually results in blurred edges and image details. To overcome this
drawback, a number of adaptive vector processing solutions have been re-
cently proposed to adapt the filter to varying image characteristics and noise
statistics, and to obtain good performance in real-life applications.

The adaptive processing of colour images have been approached using
different techniques and tools. The most recent approaches can be classi-
fied according to the technique used to approach adaptiveness. Among these
techniques we can find (i) techniques based on weighting coefficients, (ii) tech-
niques that perform a multiple filtering, (iii) switching filtering techniques,
(iv) techniques for Gaussian noise smoothing, and (v) fuzzy filtering tech-
niques.

This PhD thesis aims at developing new colour image filtering solutions
based on the usage of fuzzy logic and fuzzy metrics. Fuzzy metrics is a math-
ematical tool that has been extensively studied from the theoretical point
of view. However, despite their interesting theoretical properties they have
been few times used in real applications. The main objectives pursued by
this PhD thesis are two: First, to study the applicability of fuzzy metrics in
colour image filtering tasks and to determine in which cases fuzzy metrics
may present some advantages over classical metrics; and second, to design
new colour image filtering solutions that use fuzzy metrics and fuzzy logic
and that take advantage of the observed interesting fuzzy metrics properties.

In order to achieve these objectives the work done within this PhD thesis
has been divided into two stages: First, we have implemented some variants
of vector filters that use some fuzzy metric instead of the classical metrics or
measures they originally used. By analyzing both the proposed vector filters
and the observed performance differences in front of their classical versions,
we will conclude in which cases and from which viewpoints fuzzy metrics may
be more appropriate; second, new colour image filters using fuzzy metrics
will be developed. The novel filtering solutions will exploit the interesting
properties of fuzzy metrics in order to take full advantage of their usage.

This dissertation is divided into three parts where each part consists of
several chapters. Please note that each chapter is followed by the bibliographic
references used in it.

Part I includes preliminaries concerning the area of research of this dis-
sertation. Chapter 1 describe the state-of-the-art of colour image filtering.
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Chapter 2 introduces some basic concepts about fuzzy sets and fuzzy logic
intended to illustrate the reader who is unfamiliar with the fuzzy theory. In
addition, Chapter 2 also includes the state-of-the-art of fuzzy topology and
fuzzy metrics stressing the importance of the concept of fuzzy metric due to
George and Veeramani which is used in this dissertation.

Part II presents the contributions made in this PhD thesis. The novel
filtering designs and techniques proposed in this dissertation are presented
as a set of articles/contributions that have been published /submitted in/to
international journals or conferences. Each contribution, that is included
as a chapter of this dissertation in Chapters 4-12, is a self-contained pa-
per that presents the proposed filtering technique, the realized experiments,
the achieved results and the drawn conclusions. Notice that due to the self-
contained nature of the papers, probably some contents may be repeated
along the document. However, in spite of this, we have preferred to include
the original content of each published/submitted paper for the best under-
standing of the reader. Previously to the contributions, Chapter 3 includes a
summary of all the contributions presented in Chapters 4-12 where the main
content of each contribution is briefly explained.

Finally, Part III presents the conclusions obtained and some possible fu-
ture research lines.
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Part I

Preliminaries






1 State-of-the-art of vector filtering for colour
images

In any digital colour image, some pixel colour values may have been altered
due to the presence of noise. The general objective of the different noise
filtering structures is to eliminate the wrong observations or, at least, to
reduce their influence, without affecting those colours that have not been
perturbed by noise.

Commonly, two noise types that may corrupt colour images are considered
(see Section 1.6). On the one hand, the noise associated to the camera sensor,
also called thermal noise, and, on the other hand, the noise that may be
introduced during the image transmission through a noisy channel [45]. The
camera sensor noise is usually modelled as additive white Gaussian noise.
Transmission noise is commonly modelled as impulsive noise. Impulsive noise
corruption process affects only some image pixels by changing one or more
colour components of the affected pixel by values which usually significantly
deviates from the originals.

Several filtering techniques have been proposed over years of research.
Among the proposed techniques, we can find some linear processing tech-
niques which are mathematically simple and can be designed and imple-
mented easily. These techniques have been used during years due to their
simplicity and sufficient performance in several applications. Most of these
techniques operate under the assumption that the signal under processing
can be represented by means of a stationary model and so, they try to opti-
mize the appropriate parameters for such a model. However, many problems
in the area of image processing cannot be efficiently solved by using linear
techniques. Unfortunately, linear processing techniques have some lacks for
image processing tasks because they cannot deal with the non-linearities of
the image formation model and they cannot take into account the non-linear
features of human visual system (HVS) [41].

Image signals are composed of flat regions and sharp edges which bear
important information for visual perception. Filters which are able to pre-
serve image borders and details are highly appropriate for image filtering and
enhancement. Unfortunately, most of linear signal processing techniques tend
to blur borders and degrade other image details [45].
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1.1 Nonlinear filtering techniques

The need of dealing with complex nonlinear systems, joint with the avail-
ability of a higher computational capacity, implied the reevaluation of con-
ventional filtering techniques. New algorithms and techniques that take ad-
vantage of the higher computational capacity and that manage more realistic
assumptions were needed. To this end, nonlinear signal processing techniques
have been introduced. Theoretically, nonlinear techniques are able to suppress
non-gaussian noise, to preserve borders and image details and to eliminate
image defects that were introduced during image formation or transmission
through nonlinear channels. In spite of the recent growth of this kind of tech-
niques and the appearance of new theoretical results, tools and applications,
nonlinear filtering techniques still lack a unifying theory. Instead of that,
each class of non-linear operators has its own mathematical tools that pro-
vide a reasonably good performance analysis. As a result, multiple nonlinear
signal processing techniques have appeared in the literature. Nowadays, the
following classes of nonlinear processing techniques can be identified [45]:

— Polynomial based techniques

— Homomorphic techniques

— Mathematical morphology based techniques
— Order statistics based techniques

Polynomial filters, specially second order Volterra filters (quadratic fil-
ters), have been used for colour image filtering, non-linear channels modelling
in telecommunications and for multichannel geophysical signal processing.

Homomorphic filters and their extensions are one of the firsts non-linear
filtering classes and have been used in digital image and signal processing.
This class of filters has been used in several applications such as dependent
multiplicative noise suppression, colour image processing and multichannel
satellite image processing. Their basic feature is that they use nonlinearities,
mainly logarithms, to transform nonlinearly related signals to additive signals
and then they process them with lineal filters. The linear filter output should
be transformed according to the inverse nonlinear operation.

Mathematical morphology can be geometrically described in terms of the
made actions or the applied operators over binary, monochrome or colour
images. The geometric description depends on small synthetic images named
structural elements. This form of mathematical morphology, sometimes called
structural morphology, is useful for image processing and analysis. Morphol-
ogy filters can be found in image processing and analysis applications. Specif-
ically, its applications areas include image filtering, image enhancement and
edge detection.

In the following section, the family of the order statistics filters is de-
scribed. This family of filters is probably the most popular family of nonlin-
ear filters and this is the family of filters involved in the work carried out in
this dissertation.
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1.2 Order statistics filtering techniques

The theoretical basis of order statistics filters is the theory of robust statistics
[11]. There exist a number of filters for colour images within this family where
the most well-known filter is the vector medial filter (VMF) [3]. The idea
behind this approach is that unrepresentative or outlying observations in sets
of colour vectors can be seen as contaminating the data and thus they may
represent a drawback for further processing tasks. Therefore, order statistics
filters provide a tool for interpreting and classifying outliers and methods for
managing them by rejecting them or by applying procedures to reduce their
influence. Outliers can be defined as scalar (univariate) data samples tough
outliers exist in multivariate data such as colour vectors. The basic notion
of outlier is an statistically unexpected observation in terms of some basic
model that can be extended to multivariate data and, in particular, to colour
images. However, the expression of this notion and the determination of the
appropriate procedures to identify and adequate outliers are not direct when
the operation is made over multivariate data, mainly due to the fact that an
outlier in multivariate data does not have a simple representation as a sample
that deviates the maximum from the rest of the samples.

In univariate data analysis, there exists a natural data ordering that makes
possible extreme values to be identified and the distance from these extreme
values to the center can be computed easily. In this way, the problem of
identifying and isolating any individual values which are atypical with respect
to the rest of the set is simple. Because of this, numerous filtering techniques
which are based on univariate data ordering have been introduced in the
literature.

The popularity and extensive use of scalar order statistics filters lead to
the introduction of similar techniques for the analysis of multivariate data
and multichannel signals, as colour vectors and colour images. However, in
order to design this sort of filters, the problem of multivariate data ordering
should be solved.

In the following, we present some basic techniques to approach the prob-
lem of multivariate data ordering and some classical vector filters that use
these ordering techniques.

1.3 Multivariate data ordering scheme

A multivariate signal is a signal where each sample has multiple components.
This kind of signal is also called vector valued, multichannel or multispectral
signal. Colour images are typical examples of multichannel signals. A digi-
tal colour image is usually represented by the three primaries in the RGB
colour space as a two-dimensional three-variate (three-channel) signal. Let
X denote a p-dimensional random variable and X = [X7, Xo,...,X,]” a p-
dimensional vector of random variables and let x,xo,...,x, denote n ran-
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dom samples in X. Each sample x; is a vector of p-dimensional observations
X; = [®i1,%i2, - - -, Tip)”- The objective is to order the n values (x1, X2, ..., Xy)
according to some ordering scheme.

The concept of data ordering that is natural in the univariate case cannot
be directly extended to the multidimensional case since there is no unam-
biguous, universally accepted, way to order n multivariate samples. However,
there are some ways to order the data which are called sub-ordering prin-
ciples in multivariate data [5, 6]. Sub-ordering principles are categorized in
four types:

— Marginal ordering or M-ordering

— Conditional ordering or C-ordering

— Partial ordering or P-ordering

— Reduced (aggregated) ordering or R-ordering

1.3.1 M-ordering

According to the marginal ordering or M-ordering scheme, samples are or-
dered along each of the p-dimensions independently, so obtaining:

Xi(1) SX12) S -0 S Xq(p) (1.1)
Xo(1) < Xg(2) < ... < Xg(p) (1.2)

(1.3)
Xp(1) S Xp(2) S -+ = Xp(n) (1.4)

where x;(;) denotes the value of the i-th channel that is ranked in k-th
position.

Accordingly, the vector x1 = [z1(1),z2(1),...,2p(1)]” consists of the min-
imal elements in each dimension and the vector x,, = [z1(n), z2(n),...,zp(n)]”
consists of the maximal elements in each dimension, where 7 denotes trans-
pose matrix. The marginal median is defined as x,11 = [z1(v + 1), z2(v +
1),...,zp(v +1)]” for n = 2v + 1. Notice that this vector may not corre-
spond to any original data. However, in the scalar case, there is a one-to-one
correspondence between the original samples x; and the order statistics x(z).

1.3.2 C-ordering

In the conditional ordering case or C-ordering, multivariate data samples are
ordered conditionally on one of the sets of marginal observations. Thus, one of
the marginal components is ranked and the other components of each vector
are listed according to the position of their ranked component. Assuming
that the first dimension is ranked, the ordered samples would be represented
as follows:
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Xi(1) S Xp2) < -0 S Xy(p) (1.5)

Xa[1] < Xajg) < ... < Xapp) (1.6)

(1.7)

Xp(1] S Xpfz] < -+ S Xpn] (1.8)

where x;(¢),7 = 1,2,...,n are the marginal order statistics of the first
dimension, and x;[i],j = 1,2,...,p,i = 1,2,...,n are the quasi-ordered sam-
ples in dimensions j = 2,...,p conditionally on the marginal ordering of the

first dimension. Indeed, these components are not ordered, but simply listed
according to their ordered component in each case. In the two dimensional
case, the second non-ordered dimension is called concomitant with respect to
the first, ordered, dimension.

The main advantage of C-ordering is its simplicity, since only one scalar
ordering has to be computed. The disadvantage is that, since only the infor-
mation in one of the colour channels is used, it is assumed that most of the
information is borne by the used channel. If this assumption is not fulfilled
then important information will be lost. For instance, we can consider the
problem of ordering signals in the YIQ colour space. If a C-ordering is realized
on the luminance channel Y then the chromatical information in channels I
and Q is ignored for the ordering. Therefore, any advantages of identifying
outliers using chromatical information would be lost.

1.3.3 P-ordering

According to the P-ordering scheme, subsets of the data are grouped forming
minimal convex hulls. The first convex hull is formed such that the perimeter
contains a minimum number of points and the resulting hull contains all
other points in the given set. The points along this perimeter are denoted as
p-order group 1. These points form the most extreme group. The perimeter
points are then discarded and the process repeats. The new perimeter points
are denoted as p-order group 2 and then removed in order to the process
to be continued. P-ordering procedure can be used to isolate outliers but
this ordering does not provide any ordering within the groups and thus it
is not easily expressed in analytical terms. In addition, the determination
of the convex hull is conceptually and computationally difficult, specially
when working with high-dimensional data. Therefore, P-ordering is rather
infeasible for implementation in colour image processing.

1.3.4 R-orden

In the R-ordering or reduced (aggregated) ordering, each multivariate obser-
vation x; is associated to a scalar value by means of some combination of the
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component sample values. Then univariate ordering can be realized over the
resulting scalar values. Thus, the set x1,xs,...,X, can be ordered in terms
of the associated scalar values R; = R(x;),t=1,2,...,n.

In contrast to M-ordering, the aim of R-ordering is to carry out some
overall ordering among the original multivariate data. By means of this or-
dering, the multivariate ordering is reduced to a simple ordering operation
in a transformed data set. This ordering cannot be interpreted as the clas-
sical ordering between scalar data because there is no sample that can be
considered as the minimum or maximum of the data. Since the multivariate
ordering is based on the use of a reduction function R(.), points that diverge
from the center in opposite directions may be in the same order ranks. In ad-
dition, by utilizing a reduction function to realize the multivariate ordering,
useful information may be lost. Due to the fact that distance functions have a
natural mechanism for identification of outliers, the reduction function most
frequently used is the generalized (Mahalanobis) distance [6].

R(z,7,T) = (z —7)" Iz — 7) (1.9)

where 7 is a location parameter for the data set, or underlying distri-
bution, in consideration and I' is a dispersion parameter with '~ used
to apply a differential weighting to the components of the multivariate ob-
servation inversely related to the population variability. Parameters of the
reduction function may take arbitrary values, such as T =0 and I' = I or
can be assigned the true mean p or dispersion S settings. If these values are
unknown their standard estimates given by

T= lz:vi (1.10)

and

S = niIZ(a:i—f)(xi—f)T (1.11)

can be used instead.
Depending on the location parameter used in the ordering procedure the
following schemes can be distinguished:

a) Mean R-ordering:
Given a set of m multivariate samples x;,4 = 1,2,...,n in a processing
window and given X the sample mean, the mean R-ordering is defined as:

X(1), X(2)5 - - - s X(n) 1 X) (1.12)

where (X(1),X(2), ..., X(pn)) is the ordering defined by d? = (%, —%X)"(x;, — X)
and (df)) < dfy) < ... < di,).
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b)Marginal median R-ordering:
Given a set of n multivariate samples x;,7 = 1,2,...,n in a processing
window and given X,, the marginal mean of the considered data set, the
marginal mean R-ordering is defined as:

(X(1):X(2)s - - -+ X(n) * Xim) (1.13)

where (X(1),X(2), - - -, X(n)) is the ordering defined by d? = (x; — X)) 7 (x; —
Xp) and (df)) < dfy) < ... < dZ,).

¢) Center sample R-ordering;:
Given a set of n multivariate samples x;,7 = 1,2,...,n in a processing
window and given x. the center sample in the window, the center sample

R-ordering is defined as:

(X(l)7 X(g), ‘e 7X(n) : XC) (114)

where (X(1),X(2), .-, X(n)) is the ordering defined by d? = (x; — x.)"(x; —
X.) and (d%l) < dé) <...< d%n)).

The R-ordering scheme is specially useful for the detection of outliers in
multivariate data samples. Moreover, unlike the M-ordering, data are treated
as vectors instead of processing each component separately. Unlike the C-
ordering, the R-ordering scheme gives the same importance to each colour
channel. Finally, the R-ordering is simpler than the P-ordering and easier to
implement. Therefore, the R-ordering is the most used sub-ordering princi-
ple in multivariate data analysis and, in particular, in multichannel image
processing.

1.3.5 An appropriate vector ordering procedure for colour image
processing

The sub-ordering principles above explained can be used to rank any sort of
multivariate data. However, to define an ordering scheme which is attractive
for colour image processing, this should be focused to the ordering of colour
image vectors. Such an ordering should satisfy the following criteria [45]:

1. The proposed scheme should be useful from a robust estimation point of
view, allowing the extension of the scalar order statistics filters to the
multivariate domain.

2. The scheme should preserve the notion of varying levels of extremeness
that was present in the scalar ordering case.

3. The proposed ordering should take into account the sort of multivariate
data to process. Thus, since the RGB colour space will be commonly used,
equal importance should be given to the three channels and all the infor-
mation contained in each channel has to be considered.
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On the basis of these three criteria, the ordering scheme that has been
proposed and extensively used in the literature is a variation of the R-ordering
that utilizes some appropriate measure of distance or similarity between
colour vectors [3, 20, 26, 27, 45, 56]. For each sample in the set x;, an ag-
gregated measure with respect to all other samples in the set is defined as
follows:

n

Ra(xi) = ) R(xi,x;) (1.15)

This aggregated measure R,; = R,(x;) is used to define the vector order-
ing, so that:

Ryt < Rpo<...< Run (1.16)
X(1) S X@2) < - S X (1.17)

Using this ordering scheme, ordered samples x ;) have a one-to-one corre-
spondence with respect to the original samples. This is an important differ-
ence with respect to the M-ordering. In addition, all sample components are
given equal importance, unlike the C-ordering.

The proposed ordering scheme is focused to take into account the in-
terrelations among the multivariate samples since the distance or similarity
between each couple of samples in the data set is used. The output of the
ordering procedure depends critically on both the data set and the function
R(x;,x;) used to compute the distance or similarity between each pair of
samples.

1.4 Classical vector filtering techniques

Classical vector filtering methods are based on the above ordering scheme
to rank the data samples by using different distance or similarity functions.
These methods are briefly described in the following.

1.4.1 Vector medial filter VMF [3]

Let I denote a multichannel image and W a processing window of finite length
n. Image vector within the window W are denoted as I;,j = 1,...,n. The
distance between two vectors I;, I; is denoted as p(I;, I;) where p is usually
a classical metric. For each vector in the filtering window, an aggregated
distance with respect to all other vectors in the window is computed. The
scalar value R; = Z;.lzl p(I;,I;), is the distance associated to the vector I;.
The ordering of the R;’s:
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R(l) < R(2) <...<Z R(n), (1.18)

where Ry denotes the value ranked in the k-th position, implies the
ordering of the vectors I;’s:

Iy <) < o < Uiy (1.19)

Given this order, the output of the VMF is Ivar = I(1).

In the design of the VMF, the distance between two colour vectors is com-
monly measured using some distance measure derived from the generalized
Minkowski metric or L, norm which is defined as:

1

p(Li, 1) = (Z [1s(k) — Ij(’f)”) (1.20)
k=1

where v characterizes the used metric. Minkowski metric includes the
city-block distance (y = 1) or L; metric, the Euclidean metric (y = 2) or 5
metric and the chess-board distance (7 = 00) or L, norm. Other commonly
used distance and similarity measures are reviewed in [26, 45].

Since the VMF output is the sample associated to the minimum aggre-
gated distance, VMF minimizes the distance to other vector samples in the
filtering window. VMF can be derived either as a maximum likelihood es-
timate (MLE) when the underlying probability densities of input samples
are bi-exponential or by using vector order-statistics techniques. Thus, the
VMF is scale, translation and rotation invariant [45]. As well, if the vector
dimension is 1 then the VMF reduces to the scalar median. Since the im-
pulse response of the VMF is zero, it excellently suppresses impulsive noise
[3, 26]. Other approaches have been introduced with the aim of speeding up
the VMF by using a linear approximation of the Euclidean distance [7] and
by designing a fast algorithm when using the L norm [8]. On the other hand,
the VMF has been extended to fuzzy numbers in [10] by means of certain
fuzzy distances.

1.4.2 Extended vector median filter EVMF [3, 58]

The combination of the VMF with linear techniques has been used to improve
its performance in the suppression of gaussian noise [3, 58]. The filter built
as a combination of the VMF and the arithmetic mean filter (AMF) is the
so called extended vector median filter (EVMF) [3, 45, 58]. This filter selects
between the VMF output Iyasr and the AMF output I according to the
following rule:

T if Y e L) < 5 =1"p(Ivmrs 1)
Tovar = {IVMF otherwise (1.21)
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where T denotes the AMF output is computed as I = %Z?Zl I;. As
in the VMF case, different distance measures between colour vectors can be
considered. The EVMF performs so that near edges or areas with high details
it behaves like the VMF. Thus, it avoids the blurring that would be generated
by the AMF in these cases. In the smooth parts of the image, it more often
chooses the mean vector to be the output value what results in improved noise
attenuation, above all, from the Gaussian noise reduction point of view.

1.4.3 Basic vector directional filter BVDF [56]

Directional filtering employs a vector ordering technique that uses the angle
between two colour vectors as the distance criterion for the ordering. Since
vectors are multichannel samples, they are characterized by their magnitude
and direction. These characteristics can be used for designing multichannel
image filters.

In the BVDF each vector is associated to an aggregated angular distance
measure

N
ai=» AI,L) i=12...N, (1.22)
j=1
where
L1
A1, 1) = arccos <4J) (1.23)
L] - [L

represents the angle between the vectors I; and I;.
Using «; as ordering criterion:

am) Sap) <. <oy, (1.24)

the ordering of the samples in the window is
I(l) SI(Q) SSI(N) (1.25)

The lowest rank that is associated to the lowest aggregated angular distance
represents the BVDF output Igypr = I(1).

Since BVDF outputs the sample in the set which is the closest one to
the other vectors in the set in terms of the angular distance used, and since
directionality is associated to chromaticity in the RGB colour space, the
BVDF may outperform the VMF in terms of chromaticity preservation.

1.4.4 Generalized directional distance filter GVDF

The set of the r lowest ranked samples in the BVDF ordering constitutes the
generalized vector directional filter scheme which is defined as follows:
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Ievpr = {1y, L2y, Ir)} (1.26)

The GVDF output is a set of r samples whose angle difference «;, i =
1,2,..., N is relatively low so that vectors with atypical directions, and thus
atypical chromaticities, are removed from the set. In order to choose the final
filter output, GVDF should be used in conjunction with some other filter
processing vectors according to its magnitude. Usually, GVDF is used as a
second level filter so that its output is an input for some other filter that
computes the final output.

1.4.5 Directional distance filter DDF [20]

The directional distance filtering (DDF) technique uses simultaneously both
distance criteria employed by VMF and BVDF. This implies that this fil-
tering technique is much more computationally demanding than the VMF
and BVDF. On the other hand, because of the use of both magnitude and
angular distances the DDF outperforms the VMF and BVDF since it is able
to reject vectors with atypical magnitude and vectors with atypical direction
from the data set and so, it is able to generate a more robust output.

The distance criterion used by the DDF is expressed as a weighted product
of the aggregated Minkowski distances and the aggregated angular distances
as follows:

|~

1-p
N P

i = Z(Zui(k)fj(k)l”) Do ATLT) (1.27)
k=1 =

fori=1,2,...,nand p € [0,1]. DDF output is the sample I(1) associated
to the minimum {2(1) so that 1) < £2(3) < ... 2(n). In the above expression
p is a parameters that tunes the importance given to the magnitude criterion
in front of the angular criterion. If p = 0, DDF behaves as VMF whereas for
p =1 DDF nehaves as BVDF.

1.4.6 Hybrid Filters

The introduction of the DDF was based on a set of heuristic filters that
tried to simultaneously minimize the distance functions employed by VMF
and BVDF. Directional hybrid filters HVFs [45] operate on direction and
magnitude of vectors independently and then they apply a combination to
generate the output.

The filter HV F; makes a non-linear combination of VMF and BVDF
according to the following rule:
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; [ Ivmr i lvmr =Ipvpr 1.98
HVF, = (%)[BVDF otherwise (1.28)

where Iy prr denotes the VMF output, Ipy pr denotes the BVDF output
and | - | denotes the vector magnitude.

Another more complex hybrid filter HV F, [45] that also uses the AMF
is designed as follows:

Ivyr it Ivyr = Ipvpr
. N N
IHVFQ = Ioutl if Zi:l ‘Xi - Iout1| S Zi:l |Xi - Ioth‘ (129)
I w2 otherwise

where
igyea
Iowti = | 57— | IBvDF, (1.30)
lIsvDF|
I
Toutz = (7' Avr| )IBVDF (1.31)
[Ipvpr|

and 4 r denotes the AMF output.

The HV Fy and HV F, hybrid filters are able to outperform VMF and
BVDF since they generate a vector output that is appropriate both from
the point of view of vector magnitude and from the point of view of vector

direction. However, they are much more computationally expensive since they
need to compute the outputs from VMF, BVDF and AMF in the HV F5 case.

1.5 Adaptive colour image filters

Classical vector filters mentioned in the previous section have the drawback
that the operations made in any image location are fixed, i.e. they are non-
adaptive to local features. It has been widely observed that non-adaptive
processing usually results in blurred edges and image details. To overcome
this drawback, a number of vector processing solutions have been proposed
to adapt the filter to varying image characteristics and noise statistics, and
to obtain good performance in real-life applications such as microarray image
processing, television image enhancement, virtual restoration of artworks, and
colour video processing. Some recent overviews on vector processing schemes
can be found in [26, 27, 28, 45]. In this section we summarize some of the
most well-known and/or recent colour image adaptive filters that are more
closely related to the content of this PhD thesis.

The adaptive processing of colour images have been approached using dif-
ferent techniques. The most recent approaches can be classified according to
the technique used to approach adaptiveness. Among these techniques we can
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find (i) techniques based on weighting coefficients, (ii) techniques that per-
form a multiple filtering, (iii) switching filtering techniques, (iv) techniques
for Gaussian noise smoothing, and (v) fuzzy filtering techniques. In the fol-
lowing sections we comment the state-of-the-art works that belong to these
classes.

1.5.1 Techniques based on weighting coefficients

Some recent adaptive techniques are based on computing weights that are
associated to each pixel in the filtering window. Afterwards, the computed
weights are used to compute the output so that the noise is reduced and the
original signal structures, such as edges and fine details are preserved. The
output is usually calculated either as a weighted average of the vectors in the
window or as the output of a weighted vector median procedure.

The main difference between the methods based on weighting coefficients
is the technique used to compute the weights. The technique in [24] uses an
off-line optimization algorithm to compute appropriate weights. The works
in [30, 29, 34, 54] use different statistics to compute the weights. Polynomial
functions are used in [4]. The work in [25] computes the weights in order to
achieve a better chromaticity preservation and the method in [35] calculates
the weights by means of evolutionary computation.

The filtering techniques based on weighting coefficients are appropriate
when noise statistics and image characteristics are unknown since these tech-
niques can adapt for removing different types of noise.

1.5.2 Techniques using multiple filtering

Some filtering techniques aim at computing the filter output by using differ-
ent sub-filters simultaneously or by dividing the filtering procedure in two or
more steps. Instead of trying to find a method able to provide an appropri-
ate output in any circumstance, these techniques use different sub-filtering
methods or filtering phases and their particular outputs are used to compute
the final output.

Within this approach, the methods in [40, 22, 23, 57] propose to simul-
taneously use several sub-filters in each image location. Then, in [40], the
filter output is computed by choosing the most appropriate sub-filter output,
and in [22, 23, 57| by fusing the sub-filter outputs. The works [22, 23] use a
rational function to perform the fusion and the work in [57] uses a genetic
algorithm. The method in [38] analyzes similarities between the neighboring
colour vectors in a two-step impulse detection procedure and, a three-step
procedure including robust estimation, vector partition and weighted filter-
ing, has been recently introduced in [39].

Since a flexible performance is achieved by using the different sub-filtering
techniques or filtering steps, this kind of filters may also be used when the
noise and image characteristics are unknown.



16 1 State-of-the-art of vector filtering for colour images
1.5.3 Switching filtering techniques

A type of noise that frequently contaminates digital images is the so called
impulsive, or fat-tailed, noise (see Section 1.6). Impulsive noise corruption
process affects only some pixels in the image while leaving other pixels un-
changed.

The switching filtering techniques aim to affect only the noisy pixels while
keeping the desired image structures (edges and fine details) unchanged.
When the images are contaminated with impulsive noise the switching ap-
proaches are widely used due to its sufficient performance and proven compu-
tational simplicity. Existing switching vector filters use different approaches
to identify impulses. For example, the solution in [1] performs a cluster anal-
ysis of the pixel neighbourhood and detects as noisy those pixels whose mem-
bership degree to the clusters is low. The t-student test vector median filter
(tTVMF) [9] assumes that the neighbors of the colour under processing fol-
low some multi-normal distribution. Each colour component is checked to
belong to the corresponding distribution with a high confidence level. If at
least one of the components does not belong to the distribution then the
corresponding colour pixel is considered as noisy. The work in [18] uses a
fuzzy inference system which takes as inputs some statistical measures of the
pixel under processing and its neighbourhood. The method in [31] checks the
difference between the input vector and the mean of several lowest ranked
vectors. The method in [32] performs the detection by using the input vector,
the vector median, the vector mean and their aggregated distances to other
vectors inside the filter window. The work in [33] extends the former work in
[32] by utilizing the variance approximation in the multivariate case. The so-
lution presented in [34] uses center weighting coefficients and the methods in
[38, 51, 52] use a similarity based vector ordering to increase the importance
of the pixel under consideration in the impulse detection process.

The peer group concept in [12, 16, 21] has also been used to detect and
filter out impulsive noise. The filters introduced in [12, 21] use the difference
between the peer group of the pixel under consideration and other peer groups
in its neighbourhood to form the detection rule. The work in [17] proposes to
use windows of different size to determine the peer region of each pixel and
then check the peer region size and shape. In the approach introduced in [53]
for a pixel to be declared as moise-free it is required to have a peer group of
a determined size around it.

As commented above, the switching approaches are very useful to process
images contaminated with impulsive noise since they are computationally
simple and they can provide successful results. However, this filtering is usu-
ally not appropriate for suppressing other types of noise such as, for instance,
Gaussian noise.
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1.5.4 Techniques for Gaussian noise smoothing

The so called Gaussian noise is other type of noise that usually corrupts
digital images. Additive Gaussian noise, which is usually introduced during
the acquisition process, is characterized by adding to each image pixel channel
a random value from a zero-mean Gaussian distribution. The variance of this
distribution determines the intensity of the corrupting noise. The zero-mean
property allows to remove such noise by locally averaging pixel channel values
(see Section 1.6).

Ideally, removing Gaussian noise would involve to smooth the different
areas of an image without degrading neither the sharpness of their edges
nor their details. Classical linear filters, such as the Arithmetic Mean Filter
(AMF) or the Gaussian Filter, smooth noise but blur edges significantly.
Adaptive nonlinear methods have been used to approach this problem. The
aim of the methods proposed in the literature is to detect edges by means
of local measures and smooth them less than the rest of the image to better
preserve their sharpness. A well-known method is the anisotropic diffusion
introduced in [43]. In this technique, local image variation is measured at
every point and pixels from neighborhoods whose size and shape depend
on local variation are averaged. Diffusion methods are inherently iterative
since the use of differential equations is involved. A non-iterative interesting
method, is the bilateral filter (BF) studied in [55]. The output of the BF at a
particular location is a weighted mean of the pixels in its neighborhood where
the weight of each pixel depends on the spatial closeness and photometric
similarity respect to the pixel in substitution. The BF has been proved to
perform effectively in Gaussian noise suppression and it has been the object
of further studies [13, 15, 48]. In the works in [13, 15, 48] other techniques
are proposed to compute the weights used in the averaging.

The above mentioned techniques are specifically designed for the reduc-
tion of Gaussian noise and, therefore, they are not able to reduce other kinds
of noise such as, for instance, impulsive-like noise.

1.5.5 Fuzzy filtering techniques

Since the images are highly non-stationary in edges and due to the difficulty
in distinguishing between noise and edge pixels, fuzzy sets, that are able to
deal with uncertainty, are highly appropriate for image filtering tasks. Indeed,
the ability of managing uncertainty which is inherently adaptive implies that
fuzzy filtering are useful for the suppression of different kinds of noise.

Over the last years a huge amount of fuzzy-based noise reduction meth-
ods for gray-scale images were developed [42], e.g. the histogram adaptive
fuzzy filter (HAF) [59, 60], the fuzzy impulse noise detection and reduction
method (FIDRM) [46], the iterative fuzzy control based filter (IFCF) [14], the
adaptive fuzzy switching filter (AFSF) [61], the fuzzy similarity-based filter
(FSB) [19], the fuzzy random impulse noise reduction method (FRINRM)
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[47] and so on. These fuzzy filters were developed for images corrupted with
fat-tailed noise like impulse noise. They use fuzzy adaptive approaches that
outperform rank-order filter schemes (such as the median filter). Although
these filters are especially developed for grey-scale images, they can be used
to filter colour images by applying them on each colour component separately.
However, this approach generally introduces many colour artefacts mainly on
edge and texture elements.

To overcome these problems several fuzzy filtering approaches for colour
images were successfully introduced. The vector median operations are ex-
tended to fuzzy numbers in [10]. In [2] a fuzzy rule based system determines
the filter output. In [18] a fuzzy inference system (FISF) for detecting im-
pulses in colour images is combined with a switching scheme to select between
an identity filter output and the output from a proposed L-filter design. This
L-filter is designed to exploit the ordering techniques of the vector median
filters. The final output is calculated by using the optimal magnitude and di-
rection of the vectors. The vector median and some fuzzy measures are used
in [?, 49, 50] for calculating the fuzzy coefficients to determine the output
as a weighted average of the inputs. In [36, 37] fuzzy coeflicients determine
the filter output by selecting the most representative input vector or as the
combination of the vectors inside the filter window. The fuzzy impulse noise
detection and reduction method for colour images (FIDRMC), studied in [?],
is one alternative colour method which does not use vectors at all. The result
of the detection method, which is applied on each colour component sepa-
rately, is used to calculate the noise-free colour component differences of each
pixel. These differences are then used by the noise reduction method so that
the colour component differences are preserved.

1.6 Objective assessment of colour image filters
performance

In addition to visual inspection which is inherently subjective, some objective
evaluation of filtering performance is needed in order to assess a particular
filtering method. A commonly used procedure to objectively assess the per-
formance achieved by any filtering technique is the following.

First, some appropriate test colour image is selected for the processing.
Images presenting some interesting characteristics such as the presence of
sharp borders, fine details or textured areas can be considered as appropriate
for the tests. Figure 1.2 shows several test images, some of them very well-
known, that are used by the scientific community and that are also used in
this PhD thesis.

Second, the introduction of some kind of noise in the image is simu-
lated. For this, some noise model is used in the simulation. Mainly, two noise
types that may corrupt colour images are considered. On the one hand, the
noise associated to the camera sensor, also called thermal noise, and, on the
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Fig. 1.1. Scheme of a procedure to objectively evaluate a particular filtering
method.

other hand, the noise that may be introduced during the image transmission
through a noisy channel [45].

The noise associated to the camera sensor or thermal noise is modelled as
additive white Gaussian noise having the following probability distribution
in each colour channel:

1 —a?
—— €22 (1.32)
(2mo)2

where o denotes the standard deviation of the distribution. This noise is
introduced independently in each colour channel however, it can be assumed
that all three colour channels have the same average noise magnitude with
constant noise variance over the entire image plane.

Transmission noise is commonly modelled as impulsive noise. Impulsive
noise corruption process affects only some pixels in the image while leaving
other pixels unchanged. Typically, the noise process changes one or more
colour components of the affected pixel by replacing its original values with
the values which usually significantly deviates from the originals. The most
common impulsive noise models consider that the impulse is either an extreme
value in the signal range or a random uniformly distributed value within the
signal range. For RGB images, these possibilities are represented with the
following two well-known models.

In the so-called impulsive noise type I or fixed-value impulsive noise
model, the corruption is modeled as follows:

p(xn) =
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Fig. 1.2. Some classical test images used for filter assessment: (a) Lenna (256 x256),
(b) Baboon (256 x 256), (c) Peppers (512 x 512), (d) Microscopic (50 x 50), (e)
Parrots (256 x 384), (f) Bright Rose(287 x 200), (g) House (256 x 256), (h) Artic

Hare (135 x 200), (i) Pills (130 x 200), (j) Boat (576 x 720), and (k) Bird image
(900 x 600).



1.6 Objective assessment of colour image filters performance 21

{d\,Fe,Fg} with probability p - p,
" {FR,ds, Fp} with probability p - ps,
F* =0 {Fgr,Fg,ds} with probability p - ps, (1.33)

{d1,da,dz}  with probability p- (1 X0, i) -

where F = {Fg, Fg, Fg} denotes the original pixel, F* denotes the pixel
corrupted by the noise process and di, ds, ds are independent values equal to
0 or 255 with equal probability. The symbol p is the probability of the noise
appearance and p;,7 = 1,2,3 determine the probability of appearance of the
noise in the image channels.

In the so-called impulsive noise type II or random-value impulsive noise
model, Fx = {dy,ds,ds} is obtained using d;,ds,ds which are random uni-
formly distributed independent integer values in the interval [0,255] with
probability p.

Finally, the corrupted image is filtered using the filtering procedure to be
assessed and the processed image is compare with the original noise-free image
in order to measure the degree in which the output image is similar to the
original image. Different functions can be used to measure this similarity. In
order to properly assess the quality of the filtering both the noise suppression
and the detail preserving abilities have to be evaluated. The Mean Absolute
Error (MAE) is the most used function to approach the detail-preserving
assessment and the Peak Signal to Noise Ratio (PSNR) is the function usually
used to express the noise suppression ability. In addition, the Normalized
Colour Difference (NCD) measure is also used since it approaches the human
perception [53]. These three objective quality measures have been also used
in this dissertation. The mentioned objective quality measures are defined as
follows [45]:

N-M

Q .
Z Fiq_Fiq
q=1

N-M-Q

=1

MAE =

(1.34)

2
PSNR = 20log 55 (1.35)

, M8 g _ pa\>
NMQ z; q;l(Fi _Fi)

where M, N are the image dimensions, () is the number of channels of
the image (Q = 3 for colour images), and F? and E? denote the ¢ com-
ponent of the original image vector and the filtered image, at pixel position
1, respectively, and




22 1 State-of-the-art of vector filtering for colour images

N-M
Z AELab

NCD = L

Z E}:ab
=1

where AEpq, = [(AL*)? + (Aa*)? + (Ab*)2]z denotes the perceptual
colour error and Ej , = [(L*)?+ (a*)? + (b*)2]2 is the norm or magnitude of
the original image colour vector in the L*a*b* colour space.

(1.36)
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2 Fundamentals of fuzzy sets, fuzzy logic,
fuzzy topology and fuzzy metrics

2.1 Concept of fuzzy set

A fuzzy set is a set with a smooth boundary. Fuzzy set theory generalized
classical set theory to allow partial membership. Let us introduce fuzzy sets
by analyzing the following limitation of classical sets. A set in classical set
theory always has a sharp boundary because membership in a set is a black-
and-white concept, i.e., an object either completely belongs to the set or does
not belong to the set at all. Even though some sets have sharp boundaries
(e.g., the set of married people), many others to not have sharp boundaries
(e.g. the set of happily married couples or the set of good graduate schools).
Fuzzy set theory addresses this limitation by allowing membership in a set to
be a matter of degree. The degree of membership in a set is expressed by a
number between 0 and 1; 0 means entirely not in the set, 1 means completely
in the set and a number in between means partially in the set. In this way,
a smooth and gradual transition from the regions outside the set to those in
the set can be described.

A fuzzy set is thus defined by a function that maps object in domain of
concern to their membership values in the set. Such a function is called the
membership function. More specifically, the concept of fuzzy set was intro-
duced by Lofti. A. Zadeh [33] in 1965. A fuzzy set is mathematically defined
as an assignment of a value in [0, 1] to each element of a classical set. This
value represents the degree of membership of the element to the fuzzy set.
Formally, given a non-empty set X, every application 4 : X — [0, 1] is called
a fuzzy set on X. X is named support set of the fuzzy set. The fact that
there is a lot of real-life situations where objects do not have a totally defined
membership criterion motivates the appearance of this concept and suggests
its usefulness. Fuzzy sets have been extensively studied from the theoretical
point of view and the developed fuzzy set theory includes concepts regard-
ing relations between classical and fuzzy sets, operations in fuzzy sets, types
and design of membership functions, properties of fuzzy sets, and so on (see
19, 31, 32)).
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2.2 Principles of fuzzy logic

The term fuzzy logic has been used in two different senses. In a narrow sense,
fuzzy logic refers to a logical system that generalizes the two-valued logic
for reasoning under uncertainty. In a broad sense, fuzzy logic refers to all of
the theories and technologies that employ fuzzy sets. Even though this broad
sense, we can explain the basics of fuzzy logic by using the following three
basic concepts: (1) the above commented fuzzy sets, (2) linguistic variables
and (3) fuzzy if-then rules.

2.2.1 Linguistic variables

Having introduced the fundamental concept of fuzzy set, it is natural to see
how it can be used. Like a conventional set, a fuzzy set can be used to describe
the value of a variable. For example, the sentence “The amount of trading is
heavy” uses a fuzzy set “Heavy” to describe the quantity of the stock mar-
ket trading in one day. More formally it is expressed as: TradingQuantity is
Heavy. The variable TradingQuantity in this example demonstrates an im-
portant concept in fuzzy logic: the linguistic variable. A linguistic variable
enables its value to be described both qualitatively by a linguistic term (i.e.,
a symbol serving as the name of a fuzzy set) and quantitatively by a cor-
responding membership function (which expresses the meaning of the fuzzy
set). The linguistic term is used to express concepts and knowledge in hu-
man communication, whereas membership function is useful for processing
numeric input data.

A linguistic variable is like a composition of a symbolic variable (a variable
whose value is a symbol) and a numeric variable (a variable whose value is
a number). In our example about stock market trading activities, there are
certainly many other linguistic descriptions about the trading quantity such
as “light”, “moderate”, “heavy”, and so on. All these linguistic, descriptions,
that are indeed unprecise and vague, can be managed using fuzzy sets. In
this way, the numerical value of the variable TradingQuantity is expressed in
terms of its membership degrees to the fuzzy sets used in the representation.
Figure 2.1 shows an example of representation of the linguistic descriptions
of the variable TradingQuantinty using fuzzy sets.

2.2.2 Fuzzy if-then rules

Among all the techniques developed used fuzzy sets, the fuzzy if-then rule
(or, in short, fuzzy rule) is by far the most visible one due to its wide range
of successful applications. Fuzzy rules have been applied to many disciplines
such as control systems, decision making, pattern recognition and system
modelling [4, 31, 32]. Fuzzy rules also play a critical role in industrial ap-
plications ranging from consumer products, robotics, manufacturing, process
control, medical imaging, to financial trading.
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Fig. 2.1. Example of representation of the linguistic descriptions of the variable

TradingQuantinty using fuzzy sets.

Fuzzy rule-based inference can be understood from several viewpoints.
Conceptually, it can be understood using the metaphor of drawing a conclu-
sion using a panel of experts. Mathematically, it can be viewed as an inter-
polation scheme. Formally, it is a generalization of a logic inference called
modus ponens.

In classical logic, if we know a rule is true and we also know the antecedent
of the rule is true, then it can be inferred, by modus ponens, that the con-
sequent of the rule is true. For example, suppose we know that the rule R1

below is true:

Rule 1 R1:
IF the annual income of a person is greater than 120000 Euros

THEN the person is rich

We also know that the following statement is true: Maria’s annual income

is 121000 Ewuros.
Based on modus ponens, classical logic can deduce that the following state-

ment is also true: Maria is rich.

One limitation of modus ponens is that it cannot deal with partial match-
ing. To illustrate this, let us consider rule R1 and the case of a person whose
income is 119000 Euros. People would say that that person would be some-
what rich however, modus ponens would deduce that that person is not rich.
This problem has two causes: (1) the antecedent of R1 does not represent
a smooth transition into the rich category that is often exhibited in human
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reasoning, and (2) modus ponens cannot deal with a situation where the
antecedent of a rule is partially satisfied.

Viewing such a limitation, fuzzy rule-based inference generalizes modus
ponens to allow its inferred conclusion to be modified by the degree in which
the antecedent is satisfied. This is the essence of fuzzy rule-based inference.

Analogously to the classical logic case, the structure of a fuzzy rule has
two components: an if-part (also referred to as the antecedent) and a then-
part (also referred to as the consequent).

Fuzzy Rule 1 Structure of a fuzzy rule:
IF <antecedent>
THEN <consequent>

Since it is not the aim of this text to explain in detail how the fuzzy
rules and the fuzzy rule-based systems work, in the following, a brief and
informal explanation about the basis of their working procedure is given. The
interested reader can find extensive information in the existing literature, for
instance in [31, 32, 33].

According to above, classical logic, by using a classical rule, is able to
determine whether the consequent of the rule is satisfied or not just by looking
if the antecedent is satisfied or not. In the case of fuzzy logic, by using a fuzzy
rule and when some knowledge about the degree in which the antecedent is
satisfied is available, the degree in which the consequent is satisfied can be
computed by means of a procedure called fuzzy rule-based inference. Any
fuzzy rule-based system commonly uses multiple fuzzy rules. The way in
which fuzzy-rule based systems work can be explained in a simple way as
follows. Let us assume that the fuzzy rule-based system is composed by a set
of input variables, a set of fuzzy rules and a set of output variables whose
values are to be computed by the system. The system working procedure can
be divided in three phases: (1) First, on the basis of the numerical values of
the input variables, the degree in which the antecedents of the fuzzy rules
are satisfied are computed. This phase is named fuzzyfication; (2) Second, the
fuzzy rule-based inference procedure is used to compute the degree in which
the consequents are satisfied; (3) Finally, output variable values, that may
not be fuzzy, are computed by using the degree in which the consequents of
the fuzzy rules are satisfied. This phase is named defuzzyfication.

2.3 Principles of fuzzy topology

In the following, the concept of fuzzy metric is explained within the context
of fuzzy theory.

One of the first research topics that appeared in fuzzy mathematics is
fuzzy topology. The first work on fuzzy topology was done by C. L. Chang
in 1968 [3]. According to Chang, a topology 7 in X is a family of fuzzy sets
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on X that is closed for unions and for finite intersections. This family should
also contain the constant functions 0 and 1. Notice that this is the most used
concept both in the existing literature and the developed theory, however it is
not the only one. So, from another point of view, R. Lowen [21, 22] requests,
in addition, that 7 should contain all constant functions. This topology is
the so-called laminated topology [29]. Therefore, unlike Chang’s topology, a
laminated topology does not constitutes a generalization of the topology in
the classical sense. On the other hand, Goguen [11] and Hutton [16] generalize
the notion given by Chang by replacing the fuzzy range I = [0,1] by a
complemented lattice L, so implying the so-called concept of L-topology.

One of the most interesting and most studied problems in fuzzy topology
is to obtain an appropriate notion of fuzzy metric space. Recall that the
study of metric spaces is based on the notion of distance between points,
however, in many real situations this distance cannot be exactly determined.
This problem, that belongs to the fuzzy field, was previously approached
from the point of view of the probability theory. Indeed, in 1942 K. Menger
[23] introduced the so-called probabilistic metric spaces. In these spaces, if
d(z,y) is the distance between two points x and y then the distribution
function Fy,(t) represents the probability of the distance between x and y to
be lower or equal than ¢. Later, Schweizer and Sklar [27, 28] followed with
the study of these spaces and recently many other works have been published
on this issue [2], [24], [25], [26], [27], [30].

It is easy to notice that the notion of fuzzy topology has been studied
from many different points of view and the same is true in almost all fuzzy
concepts that have been studied. Regarding fuzzy metrics, also many authors
have approached this concept from many different points of view. Here we
make a simple classification of these works into two large groups: On the one
hand, a first group would be constituted by those works where a (pseudo-
)metric on X is treated as a function d : £2 x 2 — R where 2 C IX
(I =[0,1]) that satisfies some axioms which are analogous to the ones of the
classic metrics case. Among these works we point out the works made by Deng
Zi-ke [5], Erceg [8], Hu [15], and Artico and Moresco [1]. The most interesting
problems within this line are: (i) investigating in which way a fuzzy metric
induces a fuzzy (quasi-)uniformity in the sense of [17] and a fuzzy topology
[8, 5, 15], (ii) determining the criteria for (pseudo-)metrization [7, 8, 15], (iii)
defining the properties of the disjunction in metric spaces [8, 1, 15, 6], (iv)
and defining the properties of completion and bounding [1, 6]. On the other
hand, a second group would include those works where the distance between
objects is fuzzy. The most relevant results published in this line are due to
Kaleva and Seikkala [18] and Kramosil and Michalek [20].

In our work, we use the concept of fuzzy metric space given by George
and Veeramani. This concept is defined as an appropriate modification of the
concept of fuzzy metric from Kramosil and Michalek [20].
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Now we make a chronological summary to show the most relevant results
concerning the theory of fuzzy metrics.

2.4 Probabilistic metric spaces

Previous to the introduction of the fuzzy theory in the field of metric spaces
the study of metrics was associated to probability concepts. In this sense, in
1942 Menger [23] defined the concept of probabilistic metric space as follows.

Definition 2.4.1 Let X be an arbitrary non-empty set. Let Fp, be a family
of distribution functions that satisfy the following:

(M1) Fpq(0) =0
(M2) If p = q, then Fpy(z) =1Vz >0
(M3) If p # q, then Fpy(z) <1 for some x >0
(M) Fypq = Fyp
(M5) Fpr(x +y) > T(Fpe(x), Fyr(y)) V¥p,q,7 € X and Vx,y € R, where
T :]0,1] x [0,1] — [0,1] is a function that satisfies:
(i) T(a,b) =T(b,a)
(ii) T(a,b) <T(c,d) ifa<cyb<d
(i1i) T(a,1) >0 ifa >0, and T(1,1) =

Let us note that a distribution function F' : R — [0, 1] is a left-continuous
non-decreasing application so that mf {F ()} =0 and sup{F ()} =1. The

statistic metric Fj, can be mterpreted as the probablhty of the distance
between two points p and g to be lower than x.
Schweizer and Sklar [28] replaced the above condition (M5) by the follow-
ing:
If Fpy(x) =1 and F,,(y) =1, then F,.(z +y) =1

The resulting space is called weak probabilistic metric space and it gen-
eralizes the Menger’s probabilistic spaces.

Schweizer and Sklar, also introduced the concept of continuous t-norm
which has an important relevance in the development of fuzzy metric space
theory.

Definition 2.4.2 A binary operation * : [0,1] x [0,1] — [0,1] is a continuous
t-norm if it satisfies the following conditions:

(i) x is continuous, associative and commutative
(ii) a* 1 = aVa € [0,1]
(i) axb<cxdifa<candb<d, ab,cdel0,1]

From this definition, Schweizer and Sklar defined a probabilistic metric
space as follows.
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Definition 2.4.3 A probabilistic metric space is a pair (X, F) where X is
an arbitrary set and F is an application on X x X to the set of all possible
distribution functions and satisfies:

(1) Fpy(t) =1Vt >0 if and only if x =y

(2) Fpy(0) =0

(3) F:Cy = wa

(4) 1f ny(t) =1 and FyZ(S) =1, then Fy,(t+s)=1

A Menger space (X, F,*) is a probabilistic metric space along with a t-
norm that satisfies the condition

For(t+8) > Fpy(t) * Fy2(s)

2.5 Fuzzy metric spaces of Kaleva and Seikkala

Since the uncertainty regarding the existing distance between two points is
more related to the fuzzy notion than to randomness, Kaleva and Seikkala [18]
extended the concept of metric space to the novel fuzzy theory by associating
the distance between two points to a fuzzy number.

Definition 2.5.1 A fuzzy number is an application x : R — [0, 1] that asso-
ciates a degree of membership to each real number.

A fuzzy number is said to be convex if z(t) > min{xz(s),z(r)} where
s<t<r.
For 0 < a <1 and a fuzzy number z, its a-sets of level [z], are defined
by
[#]a = {u: z(u) 2 a}

As a result, z is convex if and only if [z], is a convex set in R Va €]0, 1]

Additionally, if it exists an element u € R so that x(u) = 1, then the
fuzzy number z is normal.

A fuzzy number is said to be non-negative if z(u) = 0 Vu < 0.

The set of all right semi-continuous non-negative normal convex fuzzy
numbers is denoted as G.

Using the above notation Kaleva and Seikkala define the concept of fuzzy
metric space as follows.

Definition 2.5.2 Let X be a non-empty arbitrary set and letd : X x X — G
be an application. Let L, R : [0,1] x [0,1] — [0,1] be two symmetric applica-
tions that are nondecreasing in both arguments and that satisfy L(0,0) = 0
and R(1,1) = 1. We denote by

[d(z,9)]a = [Aa(Z,y), palz,y)] forz,ye X, 0<a<1
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The vector (X,d, L, R) is named KS fuzzy metric space and d is a KS
fuzzy metric if the following conditions are satisfied:

(a) d(z,y) =0 if and only if x =y

(b) d(z,y) = d(y,x) for any x,y € X

(c) for any x,y,z € X,
(1) d(z,y)(s +t) = L (d(z, 2)(s), d(2,y)(t))
if s <Az, 2), t < M( and S+t<)\1( Y)
(2) d(z,y)(s +1) < R( ), d(z,y)(t)
if s> Mz, 2), t > M(z,y 5+t>/\1( ,Y)

(s
(s

Since non-negative real numbers belong to G, if we assume that

0 a=b=0
L(a,b) =0 y R(a,b) = {1 otherwise

then the usual metric space may be considered as a K .S fuzzy metric space.
Additionally, definition 2.5.2 generalizes Menger’s spaces as it is proven in
the following note.

Note 2.5.3 Let (X, F,*) a Menger space. We defined: X x X — G as

If we take R(a,b) = 1—((1 —a) * (1 — b)) and L(a,b) = 0, then (X,d, L, R)
18 a KS fuzzy metric space and so, a Menger space can be considered as K.S
fuzzy metric space.

In the case that these conditions are fulfilled , then (X, F,*) is a Menger
space where axb=1— R(1 —a,1 —b) for any a,b € [0,1],z,y € X,s € R,

B 0 S S )\l(xay)
Fzy('s) - { 1— d(x’y)(s) s> )\l(xay)

Moreover, (X, F,x) is named associated Menger space.

2.6 Fuzzy metric spaces of Kramosil and Michalek

Kramosil and Michalek [20] defined the concept of fuzzy metric space by
generalizing the concept of probabilistic metric space to the fuzzy theory in
the following way:

Definition 2.6.1 [12, 20]

A tern (X, M,x*) is said to be a fuzzy metric space of Kramosil and
Michalek (KM fuzzy metric space) if X is an arbitrary set, x is a continuous
t-norm and M is a fuzzy set on X x X x [0, 400[ that satisfies the following
conditions for any x,y,z € X and t,s > 0:
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(KM1) M(z,y,0) =

(KM2) M(z,y,t) = 1 VYt >0 if and only if t =y
(KM3) M(x,y,t) = (y’ﬂﬁ t)

(KM/4) M(x,y,t) « M ( ,8) < M(x,z,t+ s)
(KM5) M(z,y,-) : 0, [ [0,1] is continuous

2.7 Fuzzy metric space of George and Veeramani

The concept of fuzzy metric introduced by George and Veeramani [10, 9]
is the concept that we use in this dissertation. The concept is defined as a
modification of the concept introduced by Kramosil and Michalek as follows.

The tern (X, M, *) is a fuzzy metric space if X is a non-empty arbitrary
set, * is a continuous t-norm and M is a fuzzy set on X x X x]0, +oo[ that
satisfies the following axioms for any z,y,z € X, t,s > 0:

(GV1) M(x,y,t) >

(GV2) M (x,y,t) = 1 if and only if z =y

(GV3) M(z,y,t) = M(y,z,t)

(GV4) M(z,y,t) * M(y,z,s) < M(z,z,t+ s)
(GV5) M(z,y,.) : ]0,+00[—]0, 1] is continuous

In the following, by fuzzy metric space we mean the concept due to George
and Veeramani. As usual, we will refer a fuzzy metric space X without explicit
mention to the fuzzy metric if it is not necessary.

The fuzzy metric M generates a topology 7js in X. The topology 7ps has
as a basis the family of open balls {Bu(x,r,t) :x € X, 0 <r <1, t >0}
where By (z,r,t) ={y € X : M(z,y,t) >1—r}.

A sequence {z,}5°; in X is called a Cauchy sequence if for each e €]0, 1]
y t > 0, there exists ng € N so that M (x,, Tm,t) > 1 —¢€ if m,n > ng. X is
called complete if every Cauchy sequence is convergent. X is F-bounded if
there exists r €]0,1[ so that M(x,y,t) > 1 —r for any z,y € X, ¢t > 0.

If (X, d) is a metric space, then the function My(z,y,t) = T dy) isa
fuzzy metric (called standard) on X, with the product t-norm. The topology
7w, coincides with the topology induced by d.

A fuzzy metric (M, ) on X is said to be stationary if M does not depend
on t, i.e. for each z,y € X the function M, ,(t) = M(x,y,t) is constant [14].

A subset A of X is said to be F-bounded [10] if there exist ¢ > 0 and
s €]0,1[ such that M(z,y,t) > s for all z,y € A.

The above definitions agree with the metric spaces classical theory in the
sense that (X, d) is complete (bounded) if and only if (X, My, -) is complete
(F-bounded).

This definition of fuzzy metric is appropriate and it deserves special at-
tention since, as it was proved by Gregori and Romaguera [13] the class of



36 2 Fundamentals of fuzzy sets, fuzzy logic, fuzzy topology and fuzzy metrics

metrizable topological spaces coincides with the class of the fuzzy metrizable
topological spaces of George and Veeramani.

From now on, we assume as notion of fuzzy metric space the one due to
George and Veeramani.

M (z,y,t) may be interpreted as the degree of nearness between z and y
with respect to ¢. In such a case, attending to (GV2), M(z,y,t) = 0 should
be associated to a classical distance oco.

The most well-known three continuous t-norms, that we denote by T;
(i=1,2,3), are the following.

Tl(xvy) = mln{xvy}
Tr(z,y) = xy
T3(x,y) = max{0,z +y — 1}

Taking into account the above definitions, the following conditions are
satisfied:

(i) T3(z,y) < Ta(z,y) < Th(z,y), for any z,y € [0,1]
(ii) T(z,y) < Ti(z,y) for any continuous t-norm 7" and any z,y € [0, 1]
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Contributions






3 Summary of contributions

As commented in the presentation of this dissertation, the filters proposed
in this PhD thesis along with the realized work, the achieved results and
the drawn conclusions are presented as a set of articles/contributions that
have been published/submitted in/to international journals or conferences.
In the following Chapters 4-12, each contribution is included. Notice that
since each contribution is a self-contained paper probably some contents of
this document may be repeated. In this chapter, we briefly explain the content
of each one of the presented contributions.

The main objectives pursued in this dissertation are two: First, to study
the applicability of fuzzy metrics in colour image filtering tasks and to deter-
mine in which cases fuzzy metrics may present some advantages over classical
metrics; and second, to design new colour image filtering solutions that use
fuzzy metrics and fuzzy logic and that take advantage of the interesting fuzzy
metrics properties.

In order to achieve these objectives, the work that has been carried out
has been divided into two parts: First, in Chapters 4-7 we implement some
variants of vector filters that use some fuzzy metric instead of the classical
metrics or measures originally used. So that, by analyzing the proposed vec-
tor filters in front of their classical versions and the observed performance
differences, we will observe in which cases and from which viewpoints fuzzy
metrics may be more appropriate; second, in Chapters 8-12 we design new
colour image filters on the basis of the observed fuzzy metrics performance ad-
vantages. These filtering solutions exploit the interesting properties of fuzzy
metrics in order to take full advantage of their usage.

In the following we present a summary of each contribution stressing the
basic concepts used in each contribution along with the more outstanding
novelties, and results obtained. Note that figure and table references in the
following summaries are referred to the corresponding chapters.

Also, other publications of the author where some concepts and/or me-
thods in this dissertation has been used are the following:

— J. Camacho, S. Morillas, P. Latorre, Efficient impulse noise suppression
based on statistical confidence limits, Journal of Imaging Science and Tech-
nology 50 5 (2006) 427-436.
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— J.G. Camarena, V. Gregori, S. Morillas, G. Peris-Fajarnés, New method for
fast detection and removal of impulsive noise using fuzzy metrics, ICIAR06,
Lecture Notes in Computer Science 4141 (2006) 359-369.

— J. Riquelme, S. Morillas, G. Peris-Fajarnés, D. Castro, Fuzzy metrics appli-
cation in video spatial deinterlacing WILF07, Lecture Notes in Computer
Science, to appear.

— J.G. Camarena, V. Gregori, S. Morillas, A. Sapena, Fast detection and
removal of impulsive noise using peer groups and fuzzy metrics, Journal of
Visual Communication and Image Representation, to appear.

— S. Schulte, S. Morillas, V. Gregori, E.E. Kerre, A new fuzzy color corre-
lated impulse noise reduction method, revised version submitted to IEEE
Transactions on Image Processing.

— V. Gregori, S. Morillas, B. Roig, Rank-ordered differences switching vector
filter, submitted to Signal Processing: Image Communication.

— J.G. Camarena, V. Gregori, S. Morillas, A. Sapena, Some improvements
for image filtering using peer group techniques, submitted to IEEE Signal
Processing Letters.

3.1 Contribution (i): A new vector median filter based
on fuzzy metrics

In this paper we propose a variant of the vector median filter (VMF) [1] that
uses a fuzzy metric as distance criterion instead of the classical metrics used
in VMF. According to [1] and as it is explained in Section 4.3.1, the output
of the VMF is defined as follows:

Denote by F a colour image and by F; the RGB colour vector located
at position ¢ in the image F and consider the use of a filter window W of
size n X n. Then VMF output is the vector Fig~ € W that minimizes the
aggregated distance to the other samples in W. That is, the output is that

2
n
Fy- for which k* = arg min, Y, p(Fi,F;), k=1,...,n% and where p
J=1,j#k
is the Ly (city-block) or Lo (Euclidean) metric.
In this contribution we propose to use a fuzzy metric instead of the p

function above. The proposed fuzzy metric Mg is given by

3 .
oy i B0, (D) + K

where Z is the real interval [0,255], X = Z3, K > 0. (F;(1), F;(2), F;(3))
denotes the element F; € X. As it is proved in Proposition 1 of Chapter 4,
Mg is a stationary fuzzy metric on X in the sense of [2] since the axioms
given in Section 2.7 are fulfilled.

Then, according to axiom (GV2) in Section 2.7 and as it is described in
Section 4.3.2, the proposed filter output should be the vector Fp« € W that

(3.1)
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Fig. 3.1. Values given by (a) Mg for different values of K and (b) L and L2
metrics, when comparing a colour vector [128,128,128] with the colour vectors
[V,V,V] where V =0,1,...,255.

maximizes the aggregated fuzzy distance to the other samples in W, that is,

2
n
Fy- for which k* = arg max,, Y. Mg(Fy,F;), k=1,...,n%
J=1j#k
Note that, as described in Section 4.4.1, the fuzzy metric Mg presents

a particular behaviour since the value given for two distinct pairs of consec-
utive (or equally distanced) vectors may not be the same. This effect can
be smoothed by increasing the value of the K parameter in Eq. (3.1). So,
the value of K should be set high enough to reduce this effect. However, if
K — oo then Mk (F;,F;) — 1, so very high values of K should also be
avoided. Several experiences have shown that for a range of values in [0, C|
appropriate values of K are in the range [2C, 23C]. This is shown in the below
figure and Figures 4.1-4.2 for the case of RGB values where K = 1024 is an
appropriate value. Indeed, the below figure show that the behaviour of My
for the suggested values of K is very similar, except range and scaling, to the
behaviour of classical L1 and Lo (Euclidean) metrics.

In order to compare the performance of the VMF using the metrics L1,
L5 and the proposed fuzzy metric M we use the procedure explained in Sec-
tion 1.7'. The images Lenna, Peppers and Baboon have been contaminated
with different densities or impulsive, Gaussian and mixed impulsive-Gaussian
noise. From the obtained results in terms of MAE, PSNR and NCD that are
shown in Tables 4.2, 4.3 and 4.4 and Figures 4.3 and 4.4 it can be seen that
the VMF using the proposed fuzzy metric outperforms the classical metrics
for images where impulsive noise density is more important than Gaussian
noise density. So, it can be concluded that My is suitable for multichannel
image filtering. Moreover, computational analysis of Mg in front of the clas-
sical metrics L, and Ly shows that, by means of the usage a look-up table,
M is less computationally demanding than Ly and Lo (see Table 4.1).

! The same procedure is used to assess all the filters proposed in this dissertation.
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3.2 Contribution (ii): Fuzzy bilateral filtering for color
images

In this contribution we propose a variant of the well-known bilateral filter
(BF) [10]. The bilateral filter is designed to remove Gaussian noise both in
gray-scale and colour images. Removing Gaussian noise should involve to
smooth the different areas of an image without degrading neither the sharp-
ness of their edges nor their details. The output of the BF at a particular
location is a weighted average of the pixels in its neighborhood where the
weight of each pixel depends on the spatial closeness and photometric simi-
larity with respect to the pixel under processing. In the variant we propose,
the spatial closeness and the similarity between colour vectors are measured
by means of a fuzzy metric which is built by combining other two fuzzy
metrics.

According to [10] and as it is explained is Section 5.2, the BF is defined
as follows. Let F represent a multichannel image and let W be a sliding
window of finite size n x n. Consider the pixels in W represented in Cartesian
Coordinates and so, denote by i = (i1,i2) € Y? the position of a pixel F;
in W where Y = {0,1,...,n — 1} is endowed with the usual order. The BF
replaces the central pixel of each filtering window by a weighted average of
its neighbor colour pixels. The weighting function is designed to smooth in
regions of similar colours while keeping edges intact by heavily weighting
those pixels that are both spatially close and photometrically similar to the
central pixel.

Denote by || - ||2 the Euclidean norm and by F; the central pixel under
consideration. Then, the weight W(F;,F;) corresponding to the vector Fj
with respect to F; is the product of two components, one spatial and one
photometrical

W(F;, Fj) = W, (F;, Fj)Wp(Fi,Fj) (3.2)
where the spatial component W, (F;, F;) is given by
~1i-il13
Ws(Fi,Fj) =e 278 (3.3)

and the photometrical component W, (F;, Fj) is given by

_ AEL qp(F;,Fj)?

W, (Fi,Fj) =e (3.4)

where ABpq = [(AL*)? + (Aa*)? + (Ab*)2]2 denotes the perceptual
colour error in the L*a*b* colour space, and o, 0, > 0 are two filter smooth-
ing parameters. .

The colour vector output F; is computed using the normalized weights
and so it is given by
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ﬁ . EFjeW W(Fia FJ')FJ
' ZFjeW W(FiaFj)

The W, weighting function decreases as the spatial distance in the image
between i and j increases, and the W, weighting function decreases as the
perceptual colour difference between the colour vectors increases. The spatial
component decreases the influence of the furthest pixels reducing blurring
while the photometric component reduces the influence of those pixels which
are perceptually different respect to the one under processing. In this way,
only perceptually similar areas of pixels are averaged together and the sharp-
ness of edges is preserved.

In the proposed fuzzy bilateral filter (FBF) we propose to compute the
weight of each colour vector by using a fuzzy metric that takes into account
both the photometric similarity and the spatial distance. To build the desired
fuzzy metric we join the fuzzy metric proposed in Proposition 1 of Chapter
4 that is used to measure the similarity between colour vectors (o photomet-
rical similarity), and the so-called standard fuzzy metric deduced from the
Euclidean norm from [2] Example 2.9 that is used to measure the spatial dis-
tance between the pixels in comparison. The resulting fuzzy metric is given
by

(3.5)

.
FM(F;,Fj,t) = S '
CFM(F;,Fj,t) Hmax{Fis,ﬁf}JrK t+[[i—Jll2

s=1

(3.6)

If we identify each pixel F; with (F}', F?, F2,i1,42), according to Section
5.4 and [4], then C F M can be proved to be a fuzzy metric on X2 x Y 2. Notice
that the first term of C'F'M represents the similarity between the colour vec-
tors whereas the second term models the spatial closeness criterion where ¢ is
the filter smoothing parameter. In this way, the use of the above fuzzy met-
ric is enough to simultaneously model the spatial closeness and photometric
similarity criteria. FBF is built by replacing W(F;, F;) by CFM (F;, F;,t) in
Eq. 3.5.

The main design difference between BF and FBF is that BF has two
filter parameters while FBF has only one. This is achieved because the FBF
uses a stationary fuzzy metric (see Section 2.7) to represent the similarity
between the colour vectors. This makes the FBF easier to adjust but a little
less flexible.

Experimental results in Table 5.1 and Figures 5.1-5.3 using the images
Lenna, Peppers and Baboon contaminated with different densities of Gaus-
sian noise show that the FBF presents a better detail preserving ability than
its classical version. So, FBF may receive better results than BF for low den-
sities of Gaussian noise and for highly textured images. Therefore, it can be
concluded that the proposed representation using fuzzy metrics is, at least,
as suitable as it is the classical modelling made in BF.



46 3 Summary of contributions

3.3 Contribution (iii): A fast impulsive noise color
image filter using fuzzy metrics

In this paper we study a vector filtering technique for impulsive noise removal
which is based on measuring the similarity between colour vectors in a sliding
window (FSVF) [5]-[8]. FSVF is based on privileging the central pixel in each
filtering window in order to replace it only when it is really noisy and preserve
the original undistorted image structures. The method proposed in this paper
is based on replacing the colour vector similarity measures used in FSVF [5]-
[8] by a fuzzy metric.

According to [5]-[8] and as it is described in Section 6.2, FSVF is defined
as follows. Let assume a filtering window W containing n + 1 image pixels
{Fo,F1,...,F,}, where n is the number of neighbors of the central pixel
Fy. Tt is considered a similarity function u : [0;00) — IR which is non-
ascending and convex in [0;00) and satisfies ©(0) = 1, and xh_}rrolo wu(z) = 0.
The similarity between two pixels of the same colour should be 1, and the
similarity between pixels with very different colours should be very close to 0.
The function defined as u(||F; — F;||) where || - || denotes the specific vector
norm (typically the L; or Ly vector norms), can easily satisfy the above
conditions when it is a decreasing function and §(0) = 1. The cumulated
sum M, of similarities between a given pixel F, (k =0,...,n) and all other
pixels belonging to the window W is defined as

My = Z ,U,(F(),Fj)7 M, = Z ,Uz(Fk,Fj), (37)
j=1

RS
I

j#

which means that for those Fj which are neighbors of F, the similarity
between Fj and F( is not taken into account, what privileges the central
pixel. Hence, the reference pixel F is replaced by one of its neighbors if M, <
My, k=1,...,n, only when it is noisy, preserving the original undistorted
image structures. If this is the case then, F is replaced by that Fy« for which
k* = argmkaka.

In the filter introduced in this contribution, we propose to replace the p
function above by the stationary F-bounded fuzzy metric defined in Propo-
sition 2 of Chapter 6 which is designed as a modification of the stationary
fuzzy metric from Proposition 1 of Chapter 4. The fuzzy metric is given by

3 . «
min{z;, yi} + K
M*(x,y) = 3.8
v =11 (st =) (33)
where X is a real interval [a,b], K > |a| >0, a > 0, x = (21,...,23),y =

(y1,---,y3). According to the proof in appendix of Chapter 6, M* is an F-
bounded fuzzy metric [2] since there exists s €]0, 1] such that M*(z,y) > s
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for all z,y € XP. Notice that M fulfills the above conditions regarding the
u function.

As explained in Sections 6.4.1-6.4.2, K and « are two filter parameters.
In section 6.4.1 it is explained that an appropriate value of K for RGB image
processing is K = 1024. On the other hand, experimental results in Figures
6.2, 6.9 and 6.10 show that the value of the a parameter influences the in-
tensity of the filtration process. Since the o parameter determines the lower
bound of the fuzzy metric, and since the lower bound of the fuzzy metric is
also the minimum advantage given to the central pixel, then the advantage
conferred to the central pixel that determines the probability of replacing
the pixel is influenced by the value of a. Figures 6.9 and 6.10 show that the
value of a should be set proportionally to the needed smoothing, that is,
proportionally to the percentage of contaminating noise.

Experimental comparison, in terms of MAE, PSNR and NCD, of the pro-
posed filter performance against the original FSVF and other vector filters
have been carried out using the Microscopic, Lenna, Baboon, Artic Hare and
Bright Rose images that have been contaminated with different percentages
of fixed-value impulsive noise. From the results shown in Tables 6.3-6.7 and
Figures 6.4-6.8 it can be seen that the proposed method outperforms its orig-
inal version for images of low frequency and reduced colour set. In general,
it can be considered that the performances are competitive. In addition, the
proposed filter outperforms the other filters in the comparison (see Table
6.2). Moreover, computational analysis performed in Sections 6.3.1, 6.4 and
Table 6.1 shows that the proposed method is computationally cheaper than
the original FSVF. Note that in order to achieve a similarity measure be-
tween colour vectors the classical FSVF uses a distance measure followed by
a convex function. Unlike this, the proposed fuzzy metric provides directly a
similarity measure and it does not need to use any convex function. These
results claim for the appropriateness of the proposed fuzzy metric M® for
the considered filter design.
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3.4 Contribution (iv): Fuzzy directional distance vector
filter

As commented above, the most well-known vector filter is the vector median
filter (VMF). According to Sections 3.1, 4.3.1 and [1], this filter outputs the
vector in the filtering window that minimizes the accumulated distance to
other samples. The distance measure usually used is the FEuclidean metric
that measures magnitude distance between the vector samples. However, any
particular case of the generalized Minkowski metric can be used instead. The
generalized Minkowski metric (L, metric) is expressed as

N 5
Lp(Fy, Fj) = (Z | (F3(4) — Fj(7)) 5) ; (3.9)
i=1

where the Euclidean metric corresponds to g = 2.

On the other hand, other well-known vector filter is the basic vector di-
rectional filter (BVDF) [11] that follows the same procedure that the VMF
but using the angular distance between vectors that is given by

Fy F;
A(Fy,F;) = cos™! <J> . (3.10)
! 1E%[l2 - [[F5]]2
where || - ||z denotes the Euclidean norm. It is known that directional

filtering may outperform VMF in terms of chromaticity preservation because
RGB vector directions are associated to chromaticity.

From a more general point of view, the directional distance filter (DDF),
[3], minimizes a combination of the aggregated distance measures used in the
VMF and the BVDF. In the DDF, the accumulated distance R associated

to each vector Fy,k = 0,...,n in the filtering window is now calculated as
follows
n 1—q n q
Ry = | Ly(Fy, F)) D) AFF)| (3.11)
j=0 j=0

where Lg denotes the specific metric used, 4 is the angular distance func-
tion above and ¢ € [0, 1] is a parameter which allows to tune the importance
of the angle criterion versus the distance criterion.

In this contribution first we use the fuzzy metric defined in Proposition
1 of Chapter 4 to measure directional differences between colour vectors and
then we propose a variant of the BVDF using this fuzzy metric. Note that
this fuzzy metric was originally used in Contribution (i) to measure magni-
tude differences between colour vectors. Next, we define a novel fuzzy metric
between colour vectors that takes simultaneously into account the magnitude
and the directional differences. Using this hybrid fuzzy metric we propose a
variant of the DDF.
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Let us recall that the Mg fuzzy metric defined in Contribution (i) is given
by

maz{F;(1),F;()} + K

3
Mg(Fi, F) =]] (3.12)
1=1
where K is a parameter that is set to K = 1024 when using RGB colour
vectors. Now we denote by F the unitary vector associated to the colour
image vector Fy (see Eq. (7.5) in Section 7.2.1). Then, as it is explained in
Section 7.2.1, we can measure directional distance between colour vectors if
we use the My fuzzy metric between two unitary vectors as Mg/ (Fk,Fj),
where the value of K’ should be appropriate for unitary vectors and so, as
explained in Section 7.2.1, it is set to K’ = 4. The vector filter that parallelizes
the BVDF operation but using My as distance criterion is named fuzzy
metric vector directional filter (FMVDF).

Next in this paper, in order to approach a simultaneous fuzzy magnitude-
directional distance, from a fuzzy point of view it should be appropriate to
join both My (F;,F;) and Mgk (13‘1,}%]) with an appropriate t-norm. The
product t-norm will be used since it is involved in Mg, then, according to
Section 7.2.2, the function

Mg = My (F;, Fj) - Mg (F;, Fj) (3.13)

represents the fuzzy distance between the colour vectors F; and F; taking
simultaneously into account both magnitude and directional criteria. More-
over, according to Section 7.2.2 and [4], it is easy to verify that Mk is a
fuzzy metric, as well. In this case, the vector filter that parallelizes the BVDF
operation but using Mg i as distance criterion is named fuzzy metric direc-
tional distance filter (FMDDF).

In order to assess the performances of the proposed vector filters we com-
pare their performance in terms of objective quality measures against their
classical versions. For this, we have contaminated the Lenna, Baboon and
Bright rose images with different densities of Gaussian noise, fixed-value im-
pulsive noise and mixed Gaussian-fixed-value-impulsive noise. The results in
Table 7.1 and Figures 7.3-7.11 show that the FMDDF performs better than
the DDF for impulsive noise removal and similar for Gaussian noise sup-
pression. When considering mixed Gaussian-impulsive noise, FMDDF out-
performs DDF when the component of impulsive noise is higher than the one
of Gaussian noise and similar in other cases. Also, it can be seen that the
performances of BVDF and FMVDF are alike in most of the cases for all
considered types of noise.

It has also been observed that the FMDDF is sensibly faster than the
classical DDF. This is due to the fact that the DDF needs to compute two
accumulated distances, one in magnitude and one in direction, which are
combined afterwards, whereas the FMDDF computes only one accumulation
of the hybrid M g+ fuzzy metric.
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3.5 Contribution (v): Local self-adaptive impulsive noise
filter for color images using fuzzy metrics

In this contribution we present an advanced variant of the impulsive noise
filtering technique studied in Contribution (iii) and [5]-[8]. Recall that the fil-
tering technique in Contribution (iii) is based on performing a kind of reduced
vector ordering where the (central) vector under processing is privileged to
be the lowest ranked vector that will finally be the filter output. The fuzzy
metric used in Contribution (iii) to perform the ordering is the following

3 . «@
vy =11 (e ) (3.14)

where, according to Contribution (iii), K = 1024, a > 0. The « parameter
is used to adjust the filter performance. As it was determined in Section 6.4.2,
in order to the filter adapts to the image under processing the « parameter
should be set proportionally to the needed smoothing, that is, proportionally
to the percentage of corrupting impulsive noise. Notice that the necessity of
having to tune the a parameter may limit the filter performance. Indeed,
according to Section 8.1, many adaptive filtering techniques have the disad-
vantage of having to tune an adaptive parameter to achieve an appropriate
performance. This fact motivates us to study in this contribution the possibil-
ity of designing a self-adaptive variant of the filter introduced in Contribution
(iii). Additionally, in this paper we also use extension of the above fuzzy met-
ric to the directional and magnitude-directional domain analogously to the
approach presented in Contribution (iv).

To approach the design of a self-adaptive filter we will design a procedure
to automatically determine the value of ae. Moreover, we will determine this
value for each pixel under processing so that the adaptation is made locally
and the filter may perform different in each image location.

According to Section 6.4.2, the value of a determines the minimum advan-
tage given to the central pixel for being the filter output. In order to avoid
noisy colour vectors being the output of the filtering, the given advantage
should be lower (higher value of «) for noisy vectors. Therefore, according
to Section 8.3, we propose to estimate the noisiness of a given colour vec-
tor according to its multivariate dispersion with respect to its neighbors.
The multivariate dispersion is estimated either as the difference between the
colour vector and the vector mean of the neighbors or as the difference be-
tween the colour vector and the vector median of the neighbors as follows
(see Section 8.3.1).

Denote by F the vector mean of the vectors in the filter window, that is

n

F= %ﬂ Z: F;, and denote by F the vector median [1] of the vectors in the

sliding Wigdow. The multivariate dispersion of a pixel F; with respect to the
vector mean F is given by
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op(Fi) = [|Fi — F||2 (3.15)

and the multivariate dispersion of any pixel F; with respect to the vector
median F is given by

op(Fy) = ||Fs — Fll2 (3.16)

where || - ||2 denotes the Euclidean norm.

Finally, the estimated multivariate dispersion of the central pixel is used
to locally determine the value of a. Some experiments show that the values
of o(Fo) or 0 (Fo) can not be directly used as the o parameter since these
values are too large and the advantage given to the central pixel would not
be appropriate. Therefore, it is necessary to use an scaling parameter ¢ in
order to adequate these values. So, the value of « is given by

a=c-op(Fo) (3.17)

or

a=c-ou(Fo) (3.18)

Some simulations show that an appropriate value of the scaling factor ¢
is ¢ = 0.05. Values around this one are also suitable. Then, as it is explained
in Section 8.3.2, we obtain a local self-adaptive filter structure by replacing
a in Eq. (3.14) by the expressions in Eqgs. (3.17)-(3.18).

To assess the proposed filter the Baboon, Lenna and Microscopic images
have been contaminated with different densities of fixed-value and random-
value impulsive noise and filtered with the proposed self-adaptive technique
and the filtering techniques in Table 8.1. The results in Tables 8.2-8.4 and
Figures 8.1 and 8.3 show that the proposed technique outperforms all the
techniques in comparison. Moreover, in order to better illustrate the advan-
tages of the local self-adaptive approach, the Lenna image has been contam-
inated with different densities of fixed-value impulsive noise in its upper half
and lower half and the obtained results are shown in Figure 8.2 and Table
8.5. It can be seen that the proposed approach receives better results than
the rest of the filtering technique in the comparison.
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3.6 Contribution (vi): New adaptive vector filter using
fuzzy metrics

In this contribution we present a new adaptive vector filter for impulsive
noise reduction that uses fuzzy metrics. The main idea behind the proposed
method is that the output vector for a given filter window will be the one
which best fulfills two criteria: to be similar in signal value and to be spatially
close to all the other pixels in the filter window. Unlike the classical vector
median filter (VMF) [1] that determines as output the vector that is the
most similar in signal value to the rest of the vectors in the window, in the
proposed vector filter we include the spatial closeness criterion to perform
the selection. The use of fuzzy metrics allows to simultaneously handle both
criteria.

In order to measure the similarity in signal value between colour vectors,
we propose to use the fuzzy metric R given by

C

R(FUFJ) = C + HFI — FJ||2

(3.19)

where || - ||2 denotes the Ly norm, C' is a positive real parameter used to
control the spread of the function that, according to Section 9.2, can be set
to C'=150 and Fy = (Fé7 Flf, Ff:’) represents the colour vector of the image
pixel at position k comprising its R, G and B components. From [2] Example
2.9, R is a stationary fuzzy metric on X? where X is the set {0,1,...,255}.
Notice that various fuzzy metrics, such as those listed in [2], could be used
instead of R in the same conditions.

For the case of spatial closeness between pixels, we consider the pixels in a
n x n filter window W represented in Cartesian coordinates and so, we denote
by i = (i1,42) € Y? the position of a pixel F; in W where Y = {0,1,...,n—1}.
We consider the standard fuzzy metric S deduced from the Lo, metric ([2]
Remark 2.10) given by

_ t

where i,j € Y2, ¢t > 0 and ||i — j|| is the Lo, metric on Y? given by
[li = jlloc = maz{|ir — j1l,|i2 — j2|}. We aim that all neighbors in a 3 x 3
neighborhood (and analogously for further neighborhoods) should receive the
same closeness degree with respect to the central pixel. To achieve this we
have used the L., metric between the pixel positions i, j. Hence, some exper-
iments have shown that this approach provides better results than the usage
of the Euclidean metric and any other metric. Then, according to Section
2.7, S(i,j,t) measures the spatial closeness between the colour pixels F; and
F; with respect to t. The parameter ¢ is used to adjust the importance given
to the spatial closeness criterion.

S(3i,j,t) (3.20)
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To handle both criteria of similarity in signal value and spatial closeness
simultaneously we join the R and S fuzzy metrics to build the following C' F M
fuzzy metric given by

B C t
C+|[Fs — Fy|| ¢+ [[i -l

CFM(F;,F;,t) = R(F;,F;) - S3i,], ) (3.21)

If we identify each pixel F; with (F', F?, F?,i1,i2) then, according to
Section 9.2 and [4] Proposition 3.5 it can be proved that CFM is a fuzzy
metric on X3 x Y2,

According to Section 9.3, the proposed vector filtering technique is
achieved by performing a reduced vector ordering using the CFM fuzzy
metric as distance criterion. Then, it can be easily noticed that the order of
computational complexity of the proposed method and the VMF is the same.
As explained in Sections 9.3 and it is illustrated in Figure 9.2, the ¢ param-
eter allows to adjust the importance of the spatial criterion. When ¢ — oo
the spatial criterion is not taken into account and the proposed filter will be-
have as a classical VMF. On the other hand, in the extreme case that t — 0
the filter approaches the identity operation. Therefore, the value of ¢ should
be determined to find an appropriate balance between the VMF operation
and the identity operation so, it seems intuitive to determine the value of ¢
according to the density of contaminating noise. In Section 9.4 and Figures
9.4-9.5 it is illustrated how the value of the ¢ parameter influences the filter
performance. A correlation based study using optimal experimental values of
t and percentages of contaminating impulsive noise is performed in Section
9.4. As a result, an adjusting function is computed so that the value of the ¢
parameter can be determined as a function of the percentage of contaminat-
ing noise. Also in Section 9.4 it is explained how the percentage of impulsive
noise can be estimated.

Finally in Section 9.4, the proposed filter is assessed in comparison to
some classical and well-known vector filters, some recent vector filters with
good detail-preserving ability and also with some impulsive noise filters for
gray-scale images applied in a componentwise way. For this, the Lenna, Pep-
pers and Baboon images have been contaminated with different percentages
of fixed-value and random-value impulsive noise. Experimental results for
comparison are presented in Tables 9.1-9.3 and Figures 9.6-9.8. From these
results it can be seen that the proposed approach is able to suppress different
densities of the two types of impulsive noise and can outperform the compe-
tition in terms of performance. By visually inspecting the results in Figures
9.6-9.8, it can be observed that VMF and the proposed filters show similar
noise suppression ability, except for small impulses. On the other hand, the
sharpness of edges and the fine details are better preserved by the proposed
method.
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3.7 Contributions (vii)-(viii): Isolating impulsive noise
pixels in colour images by peer group techniques

First it should be noted that Contribution (vii), that was presented in the
EUSIPCO 2006 conference, contains only preliminary results of Contribution
(viii). So, we present Contribution (viii) because this paper includes the re-
sults in Contribution (vii). We have preferred to include Contribution (vii)
in addition to Contribution (viii) because it is an already published paper
whereas Contribution (viii) is a paper submitted to an international journal.

As commented in Section 1.5.3, switching filtering is a well known ap-
proach for impulsive noise reduction. Switching filtering techniques aim to
affect only the noisy pixels while keeping the desired image structures (edges
and fine details) unchanged. In this paper a new switching vector filter is
proposed. The proposed method uses fuzzy metrics to represent magnitude,
direction and hybrid magnitude-directional differences between colour vectors
in an analogous manner as it is done in Contribution (iv).

The main motivation of this paper is the filter proposed in [9] which is
based on the peer group concept defined as follows. Let || - || be a norm on
a non-empty set X and let h > 0. If x € X, we denote by P(z,h) the set
{y € X : ||z —y|| < h}. Now, let W be a subset of X containing x and let m
be a nonnegative integer. A subset of P(x, h) "W containing m + 1 elements
is called a peer group of cardinality m contained in W, and it is denoted by
P(xz, W, h,m) or P(z,h,m) if confusion is not possible.

Following the prior findings presented in [9], a pixel z is considered as
noise-free only if there exists a peer group P(x, h, m) for some positive value of
m. Otherwise, the pixel should be considered as noisy. The particular setting
of the m parameter determines the filter performance. On the one hand,
lower values of m provide a better signal-preserving ability to the filtering
but sometimes also a lack of robustness. On the other hand, higher values of
m provide a robust performance though a more smoothed output image is
obtained. As a result, the work in [9] proposed to use intermediate values of
m in order to reach an appropriate trade-off between signal-preserving and
noise smoothing.

On the basis of this work, the method proposed in Contribution (viii)
aims at achieving a filtering procedure which is robust in removing impulsive
noise and preserving fine details. This performance is achieved by using two
different values of the m parameter in the noise detection process. First, a set
of noise-free pixels of high reliability is determined by applying a demanding
condition on the peer group cardinality. Afterwards, an iterative detection
process is used to refine the initial findings by detecting additional noise-free
pixels. The remaining, undetected pixels represent impulses.

As it is explained in Section 11.3 and analogously to Contribution (iv),
the proposed method uses fuzzy metrics between colour vectors to determine
the peer groups and also to perform the filtering of noisy pixels. The proposed
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filtering method is defined in Section 11.4 and illustrated in Figures 11.3 and
11.4. The proposed procedure performs first the noise detection as follows.

(i) For each image pixel F;, if there can be found a peer group Py (F;, W, d, m)
then the pixel F; is declared as noise-free. In other case, the pixel F; is
declared as mon-assigned.

(ii) For each non-assigned pixel F;, let W’ be the set of noise-free pixels in
W. If there can be found a peer group P (F;, W’ d, 1), then the pixel
F; is declared as moise-free. Note that this condition is fulfilled if there
exists some pixel F; € W’ such that M(F;,F;) > d.

(iii) If new noise-free pixels were determined in the previous step, repeat (ii).
(iv) Each non-assigned pixel is finally declared as noisy .

Above, W size is n x n, m = n + 1 and Py, denotes the peer group
determined by using the fuzzy metric M as distance criterion. The fuzzy
metrics used in this contribution are described in Section 11.3.

In step (i), the proposed method detects a set of pixels which can be
declared as moise-free with a high reliability since they are similar to a con-
siderable number m of their neighbors. In steps (ii) and (iii), initial findings
are refined. The underlying idea is that if a pixel, which was initially marked
as non-assigned, is similar to some noise-free neighbor then it should be
considered as noise-free, as well. After the iterative procedure is completed,
the remaining (undetected) pixels represent the noise. The noisy pixels are
corrected using the filter proposed in Contribution (i).

Computational analysis of the proposed method, that is detailed in Ap-
pendix of Chapter 11, demonstrates that the computational complexity of
the proposed method is lower than the one of the VMF and quite similar to
the one of the method in [9].

The filter parameters have been set experimentally as it is described in
Section 11.5.1. The Parrots, House, Peppers, Baboon and Pills images have
been used to compare the filter performance in front of other state of the art
filters. These images have been corrupted with different densities of fixed-
value and random-value impulsive noise and mixed Gaussian-impulsive noise.
The results in Tables 11.2-11.7 and Figures 11.8-11.10 show that the proposed
method is able to outperform all the methods in the comparison in terms of
objective quality measures and that it generates visually pleasing images. Ex-
periments over images corrupted with mixed Gaussian-impulsive noise (see
Table 11.6 and Figure 11.11) have shown that the method is able to reduce
impulsive noise even in the presence of Gaussian noise. However, the perfor-
mance of the proposed method in the mixed noise case is sometimes even
inferior to the VMF because the switching structure is not appropriate to
remove mixed noise and it is only able to reduce the impulses. In addition,
the proposed method has been tested using real noisy images (see Figures
11.12-11.13) and its performance has been compared with the method in [9].
It can be seen that the proposed method is able to perform a more accurate
noisy-pixel selection and that the generated output images are less smoothed.
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3.8 Contribution (ix): A new fuzzy impulse noise
detection method for colour images

In this contribution we develop a new fuzzy impulse noise detection method.
The proposed method processes colour images taking into account the cor-
relation between the colour channels but in a different way that the vector
approach. Vector-based methods have these two major drawbacks: (i) the
higher the noise level is the lower the noise reduction capability is in com-
parison to the component-wise approaches and (ii) they tend to cluster the
noise into a larger array which makes it even more difficult to reduce. The
reason for these disadvantages is that the vector-based approaches consider
each pixel as a whole unit, while the noise can appear in only one of the three
components.

As explained in Section 12.2, in comparison to the vector-based ap-
proaches the proposed method is performed in each colour component sep-
arately. This implies that a fuzzy membership degree (within [0, 1]) in the
fuzzy set noise-free will be assigned to each colour component of each pixel.
When processing a colour, the proposed detection method examines two dif-
ferent relations between the central colour and its neighbouring colours to
perform the detection: it is checked both (i) whether each colour component
value is similar to the neighbours in the same colour band and (ii) whether
the value differences in each colour band corresponds to the value differences
in the other bands.

According to Section 12.2, expressions (12.1)-(12.3) are used to compute
the degree in which each central colour component is similar to the neighbors
in the same colour band. So that, we denote by p, u¢ and pu? the degree
of similarity of the central colour with respect to its neighbors in the Red,
Green and Blue colour bands, respectively. In addition, expressions (12.4)
and (12.5) are used to compute the degree in which the observed differences
in a colour band are similar to the observations in the other colour bands.
Indeed, we denote by pf*%, '8 and u&P the mentioned degree between the
Red-Green, Red-Blue and Green-Blue colour bands, respectively. Notice that
some fuzzy similarity measures are used in the above computations.

Finally, the membership degrees of the central colour components in the
fuzzy set noise-free, that are denoted by NFFOR, NFpc and NFFOB7 respec-
tively, are computed using the following fuzzy rule. The calculation is illus-
trated for the R component only but is performed in an analogous way for
the G and B component.

Fuzzy Rule 2 Defining the membership degree NFF(fa for the red component
F{ in the fuzzy set noise-free:
IF upf islarge AND pf*¢ islarge AND p€ islarge OR
u® is large AND pB is large AND pP is large
THEN the noise-free degree of F{' is large
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A colour component is considered as noise-free if (i) it is similar to its
neighbour values (') and (ii) the observed differences with respect to its
neighbours are similar to the observed differences in the other colour com-
ponents (¢ and p%P). In addition, the degrees of similarity of the other
component values with respect to their neighbour values, i.e. u& and p?, are
included so that a probably noisy component (with a low u& or u? value)
can not be taken as a reference for the similarity between the observed dif-
ferences. The example of the proposed noise detection performance which is
shown in Figure 12.2 demonstrates the accuracy of the method.

Section 12.3 explains an image denoising method that uses the above
fuzzy detection. The image is denoised so that (i) each colour component
is smoothed according to its noisy degree and (ii) the colour information is
used to estimate the output values. We propose to compute a weight for each
colour component in order to calculate a weighted averaging to obtain the
output. Now we illustrate the case of the R component but it is done in an
analogous way for the G and B components. The denoised R component is
obtained as follows

Z WFRF

ER = (3.22)

Z Wrp

where FOR denotes the estimated value for the R component, F,f”,k =
0,...,n%2 — 1 denote the R component values in the filter window and WF,?
are their respective weights. The weight of the component being processed
Wgr is set proportionally to its noise-free degree NFpr so that it will be
less weighted, and therefore more smoothed, if its noise-free degree is lower.
The weight of the neighbour components is set inversely proportional to the
noise-free degree of the component being denoised NF) FR- Therefore, the
neighbours are more weighted as N F’ FR s lower. In addition, in order to take
into account the colour information, we will weigh more those components
FE for which it can be observed that F¢ is similar to F or that FP is
similar to FP. The underlying reasoning is that if two colours have similar
G or B components then it is observed that the R component is also similar.

Section 12.4 explains that the filter parameters have been set experimen-
tally. Also in this section, the proposed method is assessed both visually and
in terms of the PSNR quality measure. The Baboon, Boats and Parrots im-
ages have been corrupted with different densities of random-value impulsive
noise and the filter performance has been compared with other state-of-the-
art filters including gray-scale filters applied in a componentwise way, some
vector filters and some fuzzy colour image filters. Experimental results are
shown in Tables 12.1 and 12.2 and Figure 12.3. Numerical results show that
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the proposed method achieves the best results in almost all cases. By visually
analyzing Figure 12.3 it can be seen that the best visual results were obtained
by the proposed method. We observe that the proposed method reduc