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ABSTRACT Internet of Things (IoT) widely use analysis of data with artificial intelligence (AI) techniques
in order to learn from user actions, support decisions, track relevant aspects of the user, and notify certain
events when appropriate. However, most AI techniques are based onmathematical models that are difficult to
understand by the general public, so most people use AI-based technology as a black box that they eventually
start to trust based on their personal experience. This article proposes to go a step forward in the use of AI in
IoT, and proposes a novel approach within the Human-centric AI field for generating explanations about the
knowledge learned by a neural network (in particular a multilayer perceptron) from IoT environments. More
concretely, this work proposes two techniques based on the analysis of artificial neuron weights, and another
technique aimed at explaining each estimation based on the analysis of training cases. This approach has been
illustrated in the context of a smart IoT kitchen that detects the user depression based on the food used for each
meal, using a simulator for this purpose. The results revealed that most auto-generated explanations made
sense in this context (i.e. 97.0%), and the execution times were low (i.e. 1.5 ms or lower) even considering the
common configurations varying independently the number of neurons per hidden layer (up to 20), the number
of hidden layers (up to 20) and the number of training cases (up to 4,000).

INDEX TERMS Explainable artificial intelligence, human-centric artificial intelligence, Internet of Things,
multilayer perceptron, smart kitchen, emotion detection.

I. INTRODUCTION
Artificial intelligence (AI) can provide different function-
alities to systems composed with Internet of Things (IoT)
objects, such as (a) providing an intelligent communication
between two devices using different IoT objects [1], (b) smart
collaboration of IoT elements in the context of smart cup-
boards [2], and (c) smart sensing by composing information
from different sensors like in the case of prediction where to
fumigate in precision agriculture [3].

The existing AI techniques such as neural networks
(NNs), support vectormachines (SVM), k-nearest neighbours
(KNN) and random forests, and the newest ones like deep

The associate editor coordinating the review of this article and approving
it for publication was Sherali Zeadally.

learning (based on NNs but with high numbers of layers) are
able to learn from IoT sensor inputs when these are associ-
ated with certain target features. For example, in agriculture,
the AI algorithms can learn from the pictures captured by IoT
objects associated with the known need of irrigation or pes-
ticide, and then the learned models can estimate the need
of irrigation or pesticide when capturing new pictures [4].
In this particular case and other similar ones, the human
user uses the intelligence of the IoT system as a black-box
fashion. They check that it works with a reasonable accuracy
without understanding the reasons behind each decision, and
eventually the user starts trusting the intelligent IoT knowing
that there is an admissible percentage of errors.

Nevertheless, in some domain applications in fields such
as medicine, health, safety and security, the intelligent
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IoT systems can assist humans in taking decisions, but some
actions cannot be directly taken without human supervi-
sion [5]. In some occasions, the AI percentage of errors is
not tolerable due to the repercussion in other human beings.
On the one hand, unsupervised decisions would probably vio-
late human rights or raise serious ethical implications. On the
other hand, supervising decisions would require almost as
much effort as taking decisions from scratch giving the black-
box nature of the common existing AI algorithms.

In this context, the current work proposes to apply human-
centric AI (HAI) in IoT systems, so that IoT systems cannot
only learn from users but also provide easy-to-understand
explanations about decisions or estimations. In this way,
users have the opportunity to understand the reasons behind
AI decisions, to fasten the supervision process confirm-
ing or refuting the decision, based on whether the highlighted
reasons make sense in the given context. In particular,
this work proposes a novel HAI approach for the auto-
generation of explanations based on the analysis of dis-
criminant inputs in the training cases and artificial neuron
weights in the multilayer perceptron (MLP) trained with
backpropagation.

The remainder of this paper is organised as follows. The
next section introduces related works highlighting the litera-
ture gap covered by the current approach. Section III presents
the proposed HAI approach composed of three HAI auto-
generation explanation techniques, determining their algo-
rithms among other aspects. Section IV illustrates the current
approach in the context of a smart IoT kitchen for detect-
ing depression with a simulator developed for this purpose.
Section V evaluates the current approach with the smart
IoT kitchen simulator, assessing the explanations and the
performance of the HAI techniques in terms of execution
time. Section VI discusses the most relevant aspects about
this research and its results, and section VII mentions the
conclusions and our most relevant future research lines.

II. RELATED WORK
HAI is a starting science field that is creating great expecta-
tions and is promoted in the European Union, with the goal of
achieving transparency and trustworthy in the already exist-
ing AI techniques. The community expects that this field rein-
forces and facilitates the collaboration between human beings
and AI. In this research line, [6] recently proposed 18 guide-
lines for human-AI interaction. Among these the guidelines,
they proposed that the AI system (a) shows contextually
relevant information that explains certain decisions or esti-
mations, (b) makes clear why the system did what it did, and
(c) supports efficient correction by users. They conducted a
study with both human-computer interaction (HCI) special-
ists and employees from a software company to determine
these 18 guidelines, extracted from 150 AI-related design
recommendations and three rounds of evaluations. This work
supports the relevance of achieving HAI and, consequently,
the relevance of the current work, but it did not propose any
specific implementation as the current work does.

Several works have applied AI techniques in IoT systems.
For instance, [7] presented an IoT agricultural system that
used a NN for smart irrigation with a proper schedule, based
on the data received from a sensor information unit. Farmers
could use the system in admin mode and then the system
could continue functioning in an automatic monitoring mode
with the learned knowledge. This system achieved an overall
water savings of 67% over the traditional irrigation mech-
anism. In this line of research, [8] proposed to use deep
NNs (DNNs) in IoT-based hydroponic systems. Thanks to
machine-to-machine interaction, they proposed a solution in
which the hydroponic systemwas able to work autonomously
and intelligently. They illustrated their approach with a pro-
totype for tomato plant growth using Tensor Flow for imple-
menting the DNN and a Raspberry Pi3 among other process-
ing units. In addition, [9] developed an IoT fitness system that
collected information from IoT sensors tracking exercisers,
and this system used AI for providing them guidance to
build their bodies. Reference [10] introduced a special issue
that applied AI algorithms for the interoperability of IoT,
such as NNs, swarm intelligence and genetic algorithms.
Reference [8] presented a self-evolving and self-adapted
approach that applied unsupervised self-learning for achiev-
ing data interoperability in IoT systems. Their approach was
tested with dynamic self-organising maps in the context of
real data from a fire department in Australia. Nevertheless,
none of these works developed a system that used HAI for
providing easy-to-understand auto-generated explanations of
the AI decisions.

The field of eXplainable AI (XAI) is very related to HAI,
and focuses on the generation of explanations for AI algo-
rithms. In particular, [11] proposed to use neural logic net-
works (NLN) to implement XAI. In NLNs, a NN structure
with the appropriate weights is used to represent a set of
flexible operations. They introduced a supervised incremen-
tal learning algorithm with neural logic. They provided an
illustrative example based on a decision tree, to describe how
an explanation could be generated from a NLN. The survey
about XAI of [12] discussed how much XAI was neces-
sary highlighting the needs of (1) explaining for justifying
AI decisions, (2) explaining for later controlling the system,
(3) explaining for improving the system, and (4) explaining
for discovering new knowledge. They also introduced the
categories of XAI for respectively (a) global interpretation of
the learning model, and (b) understanding of specific cases
estimated with a learned model for concrete input values.
Both of these categories have been considered in the current
approach. They also mentioned some useful applications in
the fields of healthcare, law, finance and military, and indi-
cated XAI still needs of novel solutions for overcoming the
technical challenges around XAI.

In this content, the current work proposes several solu-
tions for advancing HAI and XAI in the context of MLP
in IoT environments, which are novel to the best of the
authors’ knowledge. We illustrated our HAI solutions with
a smart IoT kitchen simulator, towards partially covering the
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FIGURE 1. Block diagram of the smart IoT kitchen simulator.

literature gap about empowering HAI techniques in IoT sys-
tems for making users understand and trust AI decisions in
IoT systems.

III. HAI APPROACH FOR IOT
The proposed HAI approach is composed of a training
phase of the IoT system and a phase of normal use
(referred also as the validation phase to align with the
AI and machine learning literature). Figure 1 provides an
overview of this approach with a block diagram. Although
the approach is generic for different IoT systems, we have
preferred to illustrate this overview with the particular case
study of a smart IoT kitchen simulator (later presented
in section IV), to avoid continuously using abstract terms
such as inputs and outputs, and facilitate the understand-
ing for a wider audience. The user can decide either (a) to
train the IoT system to be properly customised or (b) to
use some pre-loaded knowledge from a database (DB).
In both cases, the IoT system provides an explanation of the
AI behaviour (implemented with a MLP), by describing
the most relevant aspects, with two algorithms (‘‘Most-
weighted-path’’ and ‘‘Most-weighted-combination’’) that are

later introduced respectively in sections III-A and III-B.
The user can use the IoT system and get an estimation for
each usage case, whose most relevant aspect is explained
with the ‘‘Maximum-frequency-difference’’ algorithm, later
presented section III-C.

In its conception, HAI could be applied to any AI tech-
nique. The presented HAI approach proposes to use a MLP
(a common type of NN) for training the IoT system with
backpropagation [6], which is a common learning algorithm
for this kind of NN. For the training, the inputs are the
sensed information from the sensors of the IoT system, and
the outputs for these inputs should be assigned by a human
based on a known truth. The outputs can be either labels
in classification problems or numeric values in regression
problems. Most common labels of IoT systems are related to
the estimation of the user’s states, for example the detection
of (a) whether the user has fallen or not, (b) whether the user
is getting depressed, or (d) whether the user is sleeping.

After MLP is trained, the learned MLP model can be used
to estimate the output such as certain user’s state for new
IoT sensor inputs. The learned model is mainly the input
weights of each neuron. The output is obtained by calculating
each neuron’s output from the weighted inputs and applying
a sigmoid function, each neuron layer after the previous one
starting from the MLP input, until the MLP provides an
output.

The novel contribution of this approach is to add an expla-
nation after training the MLP and for each prediction of the
IoT system, so the user can understand the reason behind
the learned model. This approach proposes three alternative
techniques for automatically generating HAI explanations.

The first two proposed HAI techniques analyse the MLP
learnedmodel for explaining its most relevant features in gen-
eral, right after the training phase. These techniques are based
on the analysis of weights of artificial neuron inputs (also
referred as dendrites). The third proposed HAI technique
explains the MLP estimation for each input case based on
the analysis of training cases. The following three subsections
respectively present the three proposed HAI techniques.

A. MOST-WEIGHTED-PATH EXPLANATION
We denote our first technique as the ‘‘Most-weighted-path’’
explanation, and it is generated with the algorithm 1. It basi-
cally starts from the output neuron, and selects the most
weighted input. Then, it analyses the neuron connected to
this input in the same manner, going again to the neuron
of the previous neuron layer connected with the highest
weight. It continues this process recursively until it reaches
to an IoT input through the most weighted dendrite of the
corresponding neuron of the input layer of neurons. Then,
it creates an auto-generated explanation indicating that one of
the most relevant features considered in this training model
for estimating the positive output category is the IoT input
reached by the algorithm.

An example of Most-weighted-path explanation is ‘‘In the
learned model for the smart kitchen, the most relevant input
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Algorithm 1 Most-Weighted-Path Explanation: It Pro-
vides a HAI Explanation Based on the Path From the Output
to theMost Relevant Input Based on the Selection of theMost
Weighted Dendrites
1: function explainMostWeightedPath(mlp, names)
2: current← mlp.outputNeuron
3: while mlp.isNeuron(current) do
4: dendrite← mostWeightedDendrite(neuron)
5: current← mlp.connectedTo(dendrite)
6: input← current
7: inputName← names.inputs[input]
8: explanation ← ‘In the learned model for the

‘+names.IoTsystem+’, the most relevant input for esti-
mating that you are ‘+ names.highestOutputValue+’ is
that ‘+names.userAction+’ ‘+ inputName+’.’

9: return explanation

for estimating that you are depressed is that you are eating
chocolate.’’

In order to further formalise this HAI approach, we define
equations about the analysis of dendrite weights of neurons
in the MLP using the following notation:
• Li is the layer of the MLP in the level i, where 0 is the
level of inputs, {1, . . . ,N − 1} are the hidden layers
where the first one is the closest to the inputs, and
N is the layer with the neuron that provides the output;

• s(Li) is the size of a layer Li, indicating either the number
of inputs or the number of neurons

• N is the number of layers in the MLP;
• n refers to a particular neuron (or an input in case of layer
0), normally referred as belonging to a particular layer;

• ni,j is the neuron (or input in the case of layer 0) in the j
position in the layer Li;

• x and xi respectively refer to anyMLP input and the input
in the i position;

• X refers to the set of all the inputs;
• w is the weight of a dendrite, normally referred as
belonging to a neuron; and

• wi,j,k refers to the weight of the dendrite belonging to
a neuron ni+1,j that is in the k position, so this dendrite
connects the input/neuron ni,k with neuron ni+1,j.

In order to formally define the most weighted path,
we define a path with the tuple P composed with an input
and N − 1 neurons when the following condition is satisfied:

P(< p0, p1, . . . , pn >)⇔ (∀i ∈ [0,N ] : pi ∈ Li) (1)

We define that a path is the most weighted with the M
predicate, by means of the following equation:

M (< p0, p1, . . . , pn >)

⇔ (P(< p0, p1, . . . , pn >) ∧

(∀i ∈ [0,N − 1] : (∃wi,j,k ∈ ni+1,k :

(pi = ni,j) ∧ (pi+1 = ni+1,k ) ∧

wi,j,k = (Max.y ∈ [0, s(Li)− 1] : wi,j,y)))) (2)

An input x is classified as relevant with the R predicate,
which is defined as follows:

R(x)⇔ (∃ < x, p1, . . . , pn >∈ L0 × L1 × . . .× Ln :

M (< x, p1, . . . , pn >)) (3)

The auto-generated explanation for the most-weighted-
path is generated for the x input that satisfies the R(x) rel-
evance condition.

B. MOST-WEIGHTED-COMBINATION EXPLANATION
The second proposed HAI technique is denoted as the ‘‘Most-
weighted-combination’’ explanation, and algorithm 2 imple-
ments this technique. It is based on the selection of the most
weighted dendrite between the input layer of neurons and
the first hidden layer of neurons. From the input neuron
connected to it, the algorithm selects the two most weighted
IoT inputs as a relevant combination if their weights sur-
pass certain threshold. Otherwise, it continues with the neu-
ron of the input neuron layer connected through the most
weighted dendrite from the first hidden neuron layer, and so
on. It presents the reached combination of two inputs as one
of the most relevant ones to the user properly explained.

An example of most-weighted-combination explanation is
‘‘In the learned model for the smart kitchen, the most relevant
input combination for estimating that you are depressed is
that you are eating pasta and a spicy condiment.’’
To precisely determine the meaning of a relevant pair

combination, we start by defining the predicate B as a pair of
inputs xy and xz connected to a neuron n1,j of the first hidden
layer with the most weighted connections, considering all the
inputs connected to this neuron, with the following equation:

B(< xy, xz, n1,j >) ⇔ (∀i ∈ [0, s(L0)− 1] :

(xi=xy) ∨ (xi=xz) ∨ ((w0,i,j≤w0,i,y)

∧(w0,i,j ≤ w0,i,z))) (4)

We define the S surpass predicate for a pair of inputs xy
and xz and a neuron n1,j if all these satisfy the previous
B predicate and the weights related to these inputs and the
neuron surpass a certain threshold T :

S(< xy, xz, n1,j >)⇔ B(< xy, xz, n1,j >) ∧

(w0,y,j > T ) ∧ (w0,z,j > T ) (5)

The most relevant combination C predicate is defined as
the most weighted combination of inputs that are connected
to the neuron that has the most weighted connection with
the second hidden layer, considering in the first layer only the
neurons that have pairs of inputs that surpass the T threshold:

C(< xy, xz >)

⇔ (∃n1,j ∈ L1 : S(< xy, xz, n1,j) ∧

(∀<xa, xb>∈X × X : (6 ∃n1,q ∈ L1 : S(< xa, xb, n1,q) ∧

((Max.k ∈ [0, s(L2)− 1] : w1,q,k ) >

(Max.k ∈ [0, s(L2)− 1] : w1,j,k ))) (6)
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Algorithm 2 Most-Weighted-Combination Explanation:
It Provides a HAI Explanation Based on the Most Relevant
Combination of Two Inputs Based the Most Weighted Den-
drites of the First and Second Neuron Layers
1: function explainMostWeightedCombination(mlp,

names)
2: layer← 1 F Second layer, as count starts on 0
3: numInputs← 2
4: dendrites← mlp.getDentritesLayer(layer)
5: quicksortByWeightDescendentOrder(dendrites)
6: found← false
7: i← 0
8: while i<dendrites.length and not found do
9: dendrite← dendrites[i]
10: inputNeuron← mlp.connectedTo(dendrite)
11: inputDendrites← mlp.mostWeightedDendrites(
12: neuron, numInputs)
13: found← true
14: for j ∈ [0, numInputs) do
15: if inputDendrites[j].weight>threshold then
16: combination[j]← mlp.connectedTo(
17: inputDendrites[j])
18: else
19: found← false
20: i← i + 1
21: if found then
22: explanation ← ‘In the learned model

for the ‘+names.IoTsystem+’, the most
relevant input combination for estimating
whether you are ‘+names.highestOutputValue+’
is that ‘+names.userAction+’ ‘+
names.inputs[combination[0]]+’ and
‘+names.inputs[combination[1]]+’.’

23: else
24: explanation← ‘No combination of two inputs is

especially relevant.’
25: return explanation

The most-weighted-combination explanation is generated
for the pair of inputs that fulfil the C predicate.

C. MAXIMUM-FREQUENCY-DIFFERENCE EXPLANATION
The last technique is to store the whole training dataset in a
database, and then retrieve the most similar cases for each
IoT system input case. This technique then analyses which
sensor inputs have been the most discriminative ones in
favour of the output provided by the trained MLP. In par-
ticular, this technique is designed assuming that each IoT
sensor provides binary values (either true/false or zero/one
regarding the preferred encoding) that are used as inputs of
the MLP. The MLP output is also assumed to be binary (for
instance distinguishing between two user states). For each
activated input (meaning its value is true) of the IoT system,
this technique calculates the percentage of cases that have

the same activated input for separately (a) the cases with the
same output as the one predicted by the MLP, and (b) the
cases with a different output from the predicted byMLP.After
this, it calculates the difference of percentage as the former
percentage minus the latter one. This is performed with the
algorithms 3 and 4.

Algorithm 3 It Calculates the Difference of Percentages of
Cases That Have an Activated Input Between the Ones that
Match and the Ones That Mismatch a Predicted Output Value
1: function diffPercen(inputName, prediction)
2: match← percentage(inputName,prediction,true)
3: mismatch ← percentage(inputName,prediction,

false)
4: return match− mismatch

Algorithm 4 It Calculates the Percentage of Cases That Have
an Activated Input That Match/Mismatch a Given Output
1: function percentage(nameInput, outputValue, match)
2: if match then
3: op← ‘ =′

4: else
5: op← ‘ <>′

6: total ← ‘SELECT COUNT(*) FROM training ‘ +
7: ’WHERE training.output’+op+ outputValue
8: selected ← ‘SELECTCOUNT(*) FROM training’+
9: ’WHERE training.’+nameInput+’ = true’+
10: ’AND training.output’+op+ outputValue
11: return 100 ∗ selected/total

The last proposed HAI technique is implemented with
algorithm 5, and we denote it as the ‘‘Maximum-frequency-
difference’’ explanation. This algorithm explores all the dif-
ferences of percentages, and it provides an explanation based
on the input that has the highest difference of percentages.

An example of explanation generated with this HAI algo-
rithm is the following: ‘‘The smart kitchen estimates that you
are depressed because among other reasons you are eating
spicy condiments, which is 41.3% more frequent in people
in this emotional state than in people with other emotional
states’’.

In order to formally define the maximum-frequency-
difference, we will use the following notations:

• D is the dataset for training, which is a set of cases
represented as tuples < X , o > where X are the values
of IoT system inputs and o is the boolean correct output;

• X [i] is the boolean input value in i position of the IoT
system input X ; and

• s(X ) is the number of inputs.

The following equation defines the f function for cal-
culating the frequency of cases that have a given input in
position i with a true value, considering only the ones with
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Algorithm 5 Maximum-Frequency-Difference Explana-
tion: It Provides a HAI Explanation Based on the Most
Discriminative Input, Measured as the One With the Highest
Difference of Frequency Percentage for the Given Prediction
1: function explainMaxFreqDiff(caseInputs, prediction,

names)
2: maxDiff← minIntValue
3: maxInputName← ‘’
4: for i ∈ [0,names.inputs.length) do
5: if caseInputs[i] then
6: inputName← names.inputs[i]
7: diff← DiffPercen(inputName,prediction)
8: if diff>maxDiff then
9: maxInputName← inputName
10: maxDiff← diff
11: explanation ← ‘The ‘+names.IoTsystem+’ esti-

mates that you are ‘+prediction+’ because among other
reasons ‘+names.userAction+’ ‘+maxInputName+’,
which is ‘‘+maxDiff+’% more frequent in people
in this ‘+names.state+’ than in people with other
‘+names.states+’.’

12: return explanation

a certain o output:

f (i, o) =
(Count. < X , o′ >∈ D : X [i] ∧ o = o′)

(Count. < X , o′ >∈ ∧o = o′)
(7)

This approach calculates the difference of the frequencies
between the ones that have a particular input in the i position,
when comparing the ones with the o output and the ones with
the opposite output, with the d function determined below:

d(i, o) = f (i, o)− f (i,¬o) (8)

The E predicate determines that for a given input X and
estimation o, the most discriminative input is the one in the
position i, and is defined as follows:

E(X , o, i)⇔ (∀j ∈ [0, s(X )− 1] : d(j, o) ≤ d(i, o)) (9)

In this way, given an input case X and an estimated out-
put o, the maximum-frequency-difference explanation is pro-
vided with the name of the input in i position where E(X , o, i)
is satisfied. The difference of frequencies is provided by the
value calculated with 100 × d(i, o), in which the purpose of
the multiplication by 100 is to present a percentage instead of
a ratio.

IV. CASE STUDY WITH THE SIMULATION OF A SMART
KITCHEN
In order to illustrate this approach, we applied it in the context
of a smart kitchen where the different shelves of the fridge,
the compartments of cupboards and drawers of other pieces
of furniture are tracked with sensors. The kitchen constitutes
an IoT system that is assumed to know the content of the
different spaces, organised according to a pre-established
classification. The purpose is to train the IoT system about

FIGURE 2. Smart IoT kitchen simulator in the training phase.

the relation of the food the user eats and whether they are
depressed.

This smart-kitchen scenario is relevant because once the
IoT system is trained it could detect the depressions without
requiring any specific action from users besides their daily
activities. This could be useful for people suffering diseases
such as different cancer types where their emotional states are
relevant for surviving them.

In order to simulate this scenario, we have developed a
Python application, in which the user can select the com-
partments/shelves/drawers represented as buttons with their
food category written on it, in a user interface (UI). In this
way the user can simulate all the ingredients that they would
take for preparing a meal. Figure 2 presents the UI of this
smart kitchen simulator in the training phase. The selected
items are represented by changing the background colour
to pink. When they have stopped selecting ingredients for
a meal, the user clicks the ‘‘Done’’ button to tell this to the
system. In the real-life scenario, the system would detect the
end of the selection of ingredients of a meal by a timeout. For
example, when the user would not take any food formore than
30 min, the system would assume that the user has finished
taking ingredients for a meal.

The smart kitchen simulator can assist both phases of HAI,
the training of the system and its validation. The phase is
indicated in the bottom of the UI, and the user can change
from training phase to validation phase by clicking on the
‘‘Finish Training’’ button.

In the training phase, the user has to select their emotional
state in the right side of the UI, indicating their state between
normal and depressed, besides indicating the ingredients for
their meal. When the user clicks on the Done button, the sys-
tem stores the information locally associating the ingredients
of each meal with the user is depressed or not. Once the
user clicks on the button to finish the training phase, all the
collected data are uploaded to a table called ‘‘training’’ in
a database in MariaDB (a fork of MySQL) database man-
agement system (DMBS) within a XAMPP environment.
Alternatively, if the user just wants to use the training dataset
previously stored in the database, they can do it by just
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FIGURE 3. Smart IoT kitchen simulator explaining the learned model by
means of the analysis of neuron weights.

clicking on the Finish Training button without storing any
meal before.

The application creates a MLP with the implementation
provided with a Scikit-learn [13] library with the class
‘‘MPLClassifier of the ‘‘sklearn.neural_network’’ package.
In particular, we used a ‘lbfgs’ solver (an optimizer in the
family of quasi-Newtonmethods), a 10−5 alpha, 15 and 5 hid-
den layer sizes and a random state of 1. We trained the MLP
using the common backpropagation algorithm implemented
in the ‘‘fit’’ method of this classifier.

The IoT smart kitchen simulator applies the novel tech-
nique most-weighted-path introduced in the previous section
about the analysis of weights of neurons inputs in order to
detect the highest priority path from the neuron to one input,
presenting this input as one of the highest priority. In addition,
it also analyses whether there is any combination of IoT
inputs of special relevance with most-weighted-combination
technique with a weight threshold of 0.5 (see previous section
to remind how this threshold is used). The smart IoT kitchen
simulator shows the auto-generated explanations to the user
in one paragraph describing the most relevant aspects of the
trained model, as one can observe in the example of Figure 3.
In this way, the user can understand the most relevant reasons
behind the model learned from the training.

In the validation phase, the user simulates taking ingredi-
ents from the smart kitchen by clicking on the corresponding
buttons. In the real-life scenario, once the system is properly
trained, the validation phase would be the normal usage in
which the user would use the smart kitchen and this would
estimate the user state between normal and depressed. In the
simulator application, when the user finishes taking food
(i.e. simulated by clicking on Done), the system uses the
MLP trained model with the corresponding food inputs, and
estimates the user’s emotional state between normal and
depressed. The UI displays this by setting the corresponding
state with pink background colour, and showing a message in
the bottom of the application.

The smart IoT kitchen simulator provides an explanation
for each estimation of the user state, as one can observe in

FIGURE 4. Smart IoT kitchen simulator explaining the estimation for one
specific meal.

the example of Figure 4, using the novel HAI maximum-
frequency-difference technique introduced in the previous
section. The system indicates which ingredient has been one
of the most decisive indicating the difference of frequency
percentages of this ingredient between the estimated user’s
emotional state and the other possible emotional state.

V. EVALUATION
In order to evaluate this approach with the presented case
study, we used 30 meals from the first Google entries
retrieved by the words ‘depression meals’ that actually pro-
vided a list of ingredients that mainly matched our categories,
and the 30 meals from first Google entries retrieved by the
words ‘healthy meals’ with the same conditions. We ran-
domly shuffled the meals of each category. We split the data
in three groups, so that each one had 20 depression meals and
20 healthy meals. We randomly shuffled again each group.
We performed a 3-fold cross validation, in which in each
round, we trained the system with two groups and validated
with the remaining one. We repeated this three times so
that the validation group was different in each group. Thus,
we had the data from 60 predictions about both depression
and healthy meals, in which each prediction was performed
with a meal unknown by the trained system, so in this man-
ner we could assess the capacity of the HAI approach in
predicting and explaining unknown data. In this way, cross-
validation avoided bias of the results because of overfitting as
commonly done in the literature [14].

After training the model in each round with two thirds of
the dataset, the system provided the explanations indicated
in table 1, as the concatenation of most-weighted-path and
most-weighted-combination explanation.

The human user indicated that all the three pairs of expla-
nations made sense given the training datasets used in each
round, and were easy to understand.

In the estimations of the cases, we collected the 60 expla-
nations for the 60 estimations resulting from the 3-fold
cross validation. Table 2 presents the explanations pro-
vided the smart IoT kitchen simulator for the different
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TABLE 1. HAI explanations provided for the three learned models in the
3-fold cross validation.

validation cases indicating their absolute frequencies. The
human experimenter read these explanations, and indicated
which explanations made sense. The ‘‘made sense’’ column
indicates the number of cases in which each explanationmade
sense, or ‘‘All’ if it was in all cases. For the explanations that
were provided only once, we just indicate whether it made
sense with ‘‘Yes’’ or ‘‘No’’. Figure 5 shows the frequencies
of the explanations graphically indicating in the legend which
of these made sense (with the reasonable and non-reasonable
adjectives). Notice that we have gathered explanations that
only slightly varied in the difference of frequency in eat-
ing certain food element for the sake of brevity, and these
differences appeared because cross-validation used different
training subsets.

As one can observe, the explanations made sense in 58 out
of the 60 estimation cases, which represented 96.67% of these
cases. The human experimenter mentioned that he found easy
to understand all the explanations that made sense. Each of
the two explanations that did not made sense only appeared
once considering a pull of 60 cases. Thus, each of the two
non-sense explanations only appeared in the 1.67% of the
cases. We checked the estimations in these two cases, and
in both cases the estimations were wrong, meaning that they
did not match the real classification. Thus, a non-reasonable
explanation of an estimation may be a good indicator of the
non-reliability of this estimation.

The accuracy of the system in determining whether meals
were relatedwith depressionwas 81.67%, the sensitivity (also
called true positive rate) was 86.67%, and the specificity
(also called the true negative rate) was 76.67%, considering
unknown cases that were not used in the training, as common
done in cross-validation. Figure 6 graphically shows these
classification measurements. The results of these classifi-
cation metrics show that our proposed approach was able
to explain an AI model that relatively worked properly in
a particular domain, in this case a MLP applied to detect
depressions by analysing the combinations of common meal
components.

TABLE 2. HAI explanations provided for the validation cases.

To further present the classification performance of the IoT
system, we calculated the three metrics accuracy, sensitiv-
ity and specificity in the same cross-validation as described
before, but changing the number of neurons. Figure 7 shows
the results with the MLP with two layers of hidden neurons,
both of which with the same number of neurons in each
trial. One can observe that the classification metrics had high
variations with low numbers of neurons (e.g. up to three).
From five neurons forward, the variations were smaller. For
larger numbers (i.e. from 15 neurons forward), all the clas-
sification metrics were mainly in the range 80 to 90% with
some exceptions. Generally, the sensitivity was higher than
specificity, and the accuracy was the average of these two.

We also assessed different configurations of numbers of
layers. Figure 8 shows the results of accuracy, sensitivity and
specificity in the cross-validations previously introduced but
with different numbers of hidden layers, each of which with
10 neurons. It is worth highlighting that it achieved relatively
appropriate results up to 5 layers, but from 6 layers forward
the system started getting very low results in at least one of
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FIGURE 5. Frequency of the explanations for particular estimations
indicating whether they were reasonable.

FIGURE 6. Measurements with classification metrics.

the metrics (varying which one was the lowest) specially with
8 layers and forward. This worsening of the metrics for high
numbers of neurons might have been due to overfitting [15],
because theMLP could have been excessively customized for
the training dataset and have not performed well in unknown
data. In this analysis, the sensitivity had values higher than
the specificity for some numbers of neurons, and some other
times was the other way around.

In order to estimate the performance of each explanation
type, Figure 9 shows the execution time of the three proposed
HAI explanation techniques for different numbers of neurons
per hidden layer, with a MLP of two hidden layers, trained
with 40 meals associated with the corresponding outputs.

FIGURE 7. Classification metrics with different numbers of neurons per
hidden layers.

FIGURE 8. Classification metrics with different numbers of hidden layers.

In particular, we measured all the possible number of neurons
from 1 to 200. In order to be able to measure the necessary
short times (in the range of microseconds) and to obtain-
ing representative results, each measurement of time was
taken by repeating each explanation method 1,000 consec-
utive times, and calculating the average execution time of
each technique by dividing the total time by the number of
repetitions.

As one can observe, the most-weighted-path is the tech-
nique that obtained the quickest explanations, in this con-
figuration in the range from 1 to 200 neurons. In the MLPs
up to 200 neurons per hidden layer, the maximum exe-
cution time was 109 µs. It increased the execution time
with the number of neurons but relatively slow, compared
to the most-weighted-combination explanation. This latter
explanation type increased linearly in respect to number of
neurons but more steeply than the former. The maximum-
frequency-difference explanation type for each case had
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FIGURE 9. Processor execution time of the three HAI explanation
approaches for different numbers of neurons per hidden layer.

longer responses for most of the range of neurons from 1 to
200 compared with the other two ones, but had the advantage
of not increasing in respect to the number of neurons. This
constant computational cost makes it the most robust for
MLPs with very high numbers of neurons per hidden layer.

Moreover, we analysed the execution times using from 1 to
200 hidden layers, with a fixed amount of five neurons per
hidden layer. We used all the same parameters as in the previ-
ous analysis of execution time. Figure 10 shows the execution
times of the three proposed HAI explanation techniques.
The execution times of both the most-weighted-combination
and the maximum-frequency-difference explanations did not
depend on the number of layers. The most-weighted combi-
nation was quite faster than maximum-frequency difference.
The execution time of the most-weighted-path increased lin-
early with the number of hidden layers, although the absolute
value was low (469 µs) even for 200 hidden layers.
Furthermore, we also measured the execution times

using different sizes of training datasets going from 20 to
4,000 cases, increasing 20 cases in each step. In all the
remaining parameters we used the same values as the ones
indicated for the case study in section IV. Figure 11 shows
the execution times for the three proposed HAI techniques.

One can observe that the execution time of most-weighted-
path and most-weighted-combination explanations did not
increase with the size of the training datasets. This makes
sense as both methods analyse the learned weights of the
MLP once this NN has already been trained. However,
the execution time of the maximum-frequency-difference
explanation increases with the training dataset size. This
is reasonable as it analysed the cases of the used training
dataset for giving explanations to specific estimations. This
increase was not really steep although the execution time
had a high range of variation (a SD=243µs for an average
of 845µs). The app still kept low absolute execution times
(the maximum was only 1.50 ms) for up to 4,000 cases,
maybe because the app used MariaDB DBMS, and DBMSs

FIGURE 10. Processor execution time of the three HAI explanation
approaches for different numbers of hidden layers.

FIGURE 11. Processor execution time of the three HAI explanation
approaches using different training dataset sizes.

generally include optimizations for ameliorating the negative
performance impact of large datasets.

We also compared the execution times of the most-
weighted-path and the most-weighted combination explana-
tions with the time in training theMLPwith backpropagation,
so we can evaluate whether how much our HAI techniques
increase the time after the training process. For the measuring
backpropagation, we only used 10 repetitions for calculating
the average time, as these times had a complete different
order of magnitude. Figure 12 shows the execution of the
configuration of the MLP introduced in the previous section,
but changing the number of training cases from 20 to 300,
in steps of 20 cases.

The execution time of our HAI algorithms were negligible
in comparison to the backpropagation time. The sum of both
explanation timeswere only the 6.77∗10−7%of the execution
time of backpropagation in average. The most-weighted-path

VOLUME 7, 2019 125571



I. García-Magariño et al.: Human-Centric AI for Trustworthy IoT Systems With Explainable Multilayer Perceptrons

FIGURE 12. Processor execution time of the three HAI explanation
approaches using different training dataset sizes.

andmost-weighted path times were visually overlapped in the
x-axis because of this difference of magnitude.

VI. DISCUSSION
The current work has presented three novel HAI auto-
generation explanation techniques in the context of IoT for
explaining the behaviour of a MLP. These techniques cover
both (a) the explanation of the learned model in general
with the concatenation of two different explanations types
describing respectively the most relevant IoT sensor input
and the most relevant combination of two sensor inputs,
and (b) the explanation of each single prediction based on
the most discriminative shared IoT input according to the
training dataset. In the illustrated case study with a smart
IoT kitchen, all the six explanations about the model made
sense (presented in three pairs). In the 60 explanations for
specific predictions, 58 of these made sense. In total 64 out
of 66 explanations made sense, which represents a 96.97%
of reasonable explanations. Therefore, the proposed HAI
approach automatically generated mainly reasonable expla-
nations in natural language, fulfilling one of the main goals of
HAI established in the literature [6], which is the justification
of AI decisions.

It is worth highlighting that the two non-reasonable auto-
generated explanations were explaining predictions that did
not match the correct classification. Thus, the proposed HAI
approach may be useful so that human users can have hints
about non-reliable estimations when the explanations do not
make sense. This can be considered a step forward towards
another property highlighted as desirable and challenging in
the XAI literature [16], which is detection of non-reliable AI
estimations by properly generating explanations so humans
can revise them.

The execution times of the proposed techniques are
considered efficient as each of the most-weighted-path,
most-weighted-combinations and the maximum-frequency-
difference explanation techniques only depend on one vari-
able from respectively number of layers, number of neurons,
and the number of training cases. However, the approxi-
mate backpropagation training depends on all these variables.

The processing time for generating explanations about the
whole training model was normally much less than the time
necessary for the backpropagation training (a percentage of
6.77 ∗ 10−7% in average in our experiments), and conse-
quently the former time was unnoticed by the user. Regarding
the time execution for generating the explanations may also
be unnoticed, as even for large training datasets (e.g. up to
4,000 meals for training depression detection), the maximum
execution time was 1.5 ms, which is much lower than the
minimum duration time for being perceived by human eye
(i.e. 200 ms) according to the common standards of HCI
field [17]. Thus, users will perceive the generation of these
explanations as instantaneous. In all the tests performed with
the other explanations based on the analysis of the weights of
the MLP for explaining the whole trained model, the execu-
tions times were 0.61 ms or lower considering MLPs up to
200 neurons in two hidden layers, and MLPs of 200 layers
with five neurons per hidden layers. Thus, in this context, all
the explanation generations were perceived as instantaneous
and are far away from the human-noticeable duration time.

We observed that the combinations obtained by the most-
weighted-combination technique were not necessarily related
with the highest value but with the relevance in predicting
any value. Thus, we changed the generated explanation to
highlight this fact, and repeated the experiments, so that in
the explanation about the learned model made sense. This
fact occurred because if a relevant combination was detected
based on the analysis of dendrites weights between layers
0 and 2 (i.e. from the input to second neuron layers), then this
values could be used for detecting either true or false outputs
(i.e. depressed or normal in our case study), depending on
the signs and values of the weights between layer 2 and the
output.

The classification metrics in average of 81.67% was rel-
atively high if compared to the recent works in the field of
emotion detection, such as the ones about emotion detection
from touch interactions when typing on smartphones [18] and
emotion detection from body poses [19]. Notice that in the
context of our case study, emotions are very subjective as well
as the opinions about what meals are usually eaten or recom-
mended in certain emotional states.

It is worth noting that the proposed maximum-frequency-
difference explanation used the maximum difference of
frequency percentage considering only the active inputs.
Another possible explanation could have been to also con-
sider the negative difference of frequencies in the non-
activated inputs. This could have provided explanations such
as that the system has selected a certain output because the
system did not detect a certain input and this input was
a certain percentage more frequent in the opposite output.
In the particular case study, a possible explanation could
be ‘‘The system predicted you were normal because among
other reasons you did not eat sugar, and depressed people eat
sugar 32% more frequently than people in a normal emo-
tional state.’’ We avoided this kind of explanations because
of the known difficulty of understanding when using multiple
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negations [20], but we will explore this in the future to assess
whether this kind of explanations can be useful and easy-to-
understand by users.

We also performed some initial tests using the approach
of selecting different combinations of input and graphically
representing the output of the MLP. We found that this was
intuitive in two numerical inputs and one numeric output. For
a higher number of inputs, the system could have obtained
projections. However, we did not find this easy-to-understand
for users, and for a high number of inputs (e.g. 15 like in
the presented case study), the number of possible projections
would have been too high. We plan to further experiment
this option by for instance automatically selecting the most
relevant projections with a reasonable computational cost,
for example using the two IoT sensor inputs of the most-
weighted-combination explanation.

In the proposed most-weighted-combination explanation,
we only considered combinations of two inputs. In the future,
we plan to also highlight combinations of more than two
inputs, considering for example a threshold weight in the
dendrites connected to the IoT sensor inputs and a higher limit
of possible inputs. We think that even this limit can be higher
than two, it should not be too high to avoid that explanations
are too difficult to be understood by end users.

In the case study of this work, we have mainly used a MLP
for classification of certain binary inputs coming from IoT
sensors. However, this approach could probably be applied
for inputs with more states or a continuous range of values.
In addition, MLP could also be used as regressor. We plan to
further evaluate all these scenarios with future case studies.

VII. CONCLUSION AND FUTURE WORK
The current work has introduced three novel techniques
for auto-generating HAI explanations from MLPs in IoT
environments, and has presented their corresponding algo-
rithms so that other researchers can reproduce these exper-
iments or enhance them. Two of these techniques focus on
explaining the whole learned model in general, by analysing
weights of artificial neurons. Another technique explains
each prediction by analysing similar cases used in the training
of the MLP. In the case study about a smart IoT kitchen
simulator trained and validated with different meals associ-
ated with either depression or healthy meals, the proposed
approach generated explanations, 97.0%ofwhichmade sense
according to a human experimenter. The two explanations
that did not make sense were explaining two wrong predic-
tions, so these explanations could help humans in detect-
ing non-reliable predictions. The computational cost of each
proposed HAI explanation technique depended only from
respectively one of the three variables (1) number of neurons
per hidden layer, (2) number of hidden layers, and (3) number
of training cases. Each proposed technique did not depend on
the other two variables. The time in generating these expla-
nations will keep unnoticeable, since its cost is lower than
the one for training the MLP with backpropagation, which
depends on all these three variables. In addition, the execution

time was relatively low for the common configurations of
the MLP used in the presented case study (1.5 ms or lower),
which is much lower than human eye can notice (200 ms).

In order to fully achieve a HAI that can actually makes
IoT further trustworthy, we plan to develop more HAI auto-
generation explanation techniques based on other AI tech-
niques such as SVM, KNN and random forest. We also plan
to further assess the proposed HAI explanation techniques in
other IoT systems and evaluate the explanations with large
groups of users to determine whether the explanations are
actually easy to understand. We also plan to implement the
proposed approach in real smart cupboards, and test it with
cancer survivors at their homes to track whether they are get-
ting into a depression to warn contact people, like familiars,
doctors or friends.

REFERENCES
[1] O. Bello and S. Zeadally, ‘‘Intelligent device-to-device communication

in the Internet of Things,’’ IEEE Syst. J., vol. 10, no. 3, pp. 1172–1182,
Sep. 2016.

[2] I. García-Magariño, F. González-Landero, R. Amariglio, and J. Lloret,
‘‘Collaboration of smart IoT devices exemplified with smart cupboards,’’
IEEE Access, vol. 7, pp. 9881–9892, 2019.

[3] I. García-Magariño, R. Lacuesta, and J. Lloret, ‘‘ABS-SmartComAgri:
An agent-based simulator of smart communication protocols in wireless
sensor networks for debugging in precision agriculture,’’ Sensors, vol. 18,
no. 4, p. 998, 2018.

[4] K. Jha, A. Doshi, P. Patel, and M. Shah, ‘‘A comprehensive review
on automation in agriculture using artificial intelligence,’’ Artif. Intell.
Agricult., vol. 2, pp. 1–12, Jun. 2019.

[5] N. Scarpato, A. Pieroni, L. D. Nunzio, and F. Fallucchi, ‘‘E-health-IoT
universe: A review,’’ Int. J. Adv. Sci., Eng. Inf. Technol., vol. 7, no. 6,
pp. 2328–2336, 2017.

[6] S. Amershi, D. Weld, M. Vorvoreanu, A. Fourney, B. Nushi, P. Collisson,
J. Suh, S. Iqbal, P. N. Bennett, K. Inkpen, J. Teevan, R. Kikin-Gil, and
E. Horvitz, ‘‘Guidelines for human-AI interaction,’’ in Proc. CHI Conf.
Hum. Factors Comput. Syst., 2019, pp. 1–3.

[7] N. K. Nawandar and V. R. Satpute, ‘‘IoT based low cost and intelligent
module for smart irrigation system,’’Comput. Electron. Agricult., vol. 162,
pp. 979–990, Jul. 2019.

[8] R. Nawaratne, D. Alahakoon, D. De Silva, P. Chhetri, and N. Chilamkurti,
‘‘Self-evolving intelligent algorithms for facilitating data interoperability
in IoT environments,’’ Future Gener. Comput. Syst., vol. 86, pp. 421–432,
Sep. 2018.

[9] B. Yong, Z. Xu, X. Wang, L. Cheng, X. Li, X. Wu, and Q. Zhou, ‘‘IoT-
based intelligent fitness system,’’ J. Parallel Distrib. Comput., vol. 118,
pp. 14–21, Aug. 2018.

[10] A. Ahmad, S. Cuomo, W. Wu, and G. Jeon, ‘‘Intelligent algorithms and
standards for interoperability in Internet of Things,’’ Future Gener. Com-
put. Syst., vol. 92, pp. 1187–1191, Mar. 2019.

[11] L. Ding, ‘‘Human knowledge in constructing AI systems—Neural logic
networks approach towards an explainable AI,’’ Procedia Comput. Sci.,
vol. 126, pp. 1561–1570, Jan. 2018.

[12] A. Adadi and M. Berrada, ‘‘Peeking inside the black-box: A sur-
vey on explainable artificial intelligence (XAI),’’ IEEE Access, vol. 6,
pp. 52138–52160, 2018.

[13] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel,M. Blondel, P. Prettenhofer, R.Weiss, V. Dubourg, J. Vanderplas,
A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay,
‘‘Scikit-learn: Machine learning in Python,’’ J. Mach. Learn. Res., vol. 12,
pp. 2825–2830, Oct. 2011.

[14] L. Prechelt, ‘‘Automatic early stopping using cross validation: Quantifying
the criteria,’’ Neural Netw., vol. 11, no. 4, pp. 761–767, 1998.

[15] J. Rynkiewicz, ‘‘General bound of overfitting forMLP regressionmodels,’’
Neurocomputing, vol. 90, pp. 106–110, Aug. 2012.

[16] B. Mittelstadt, C. Russell, and S. Wachter, ‘‘Explaining explanations
in AI,’’ in Proc. Conf. Fairness, Accountab., Transparency, 2019,
pp. 279–288.

VOLUME 7, 2019 125573



I. García-Magariño et al.: Human-Centric AI for Trustworthy IoT Systems With Explainable Multilayer Perceptrons

[17] C. S. Miller, ‘‘Relating theory to actual results in computer science
and human-computer interaction,’’ Comput. Sci. Educ., vol. 13, no. 3,
pp. 227–240, 2003.

[18] S. Ghosh, K. Hiware, N. Ganguly, B. Mitra, and P. De, ‘‘Emotion detection
from touch interactions during text entry on smartphones,’’ Int. J. Hum.-
Comput. Stud., vol. 130, pp. 47–57, Oct. 2019.

[19] I. García-Magariño, E. Cerezo, I. Plaza, and L. Chittaro, ‘‘A mobile appli-
cation to report and detect 3D body emotional poses,’’ Expert Syst. Appl.,
vol. 122, pp. 207–216, May 2019.

[20] F. Blanchette and M. Nadeu, ‘‘Prosody and the meanings of English
negative indefinites,’’ J. Pragmatics, vol. 129, pp. 123–139, May 2018.

IVÁN GARCÍA-MAGARIÑO received the Ph.D.
degree in computer science engineering from the
Complutense University of Madrid, in 2009. He
is currently a Lecturer and a Contributor to the
GRASIA Research Group, Complutense Univer-
sity of Madrid. Prior to commencing this position,
in 2018, he was a Ph.D. Assistant Professor with
the University of Zaragoza, from 2014 to 2018,
and a Lecturer with Madrid Open University, from
2010 to 2014. He actively collaborates with the

City, University of London (UK) on Human-centric AI and security-privacy
projects, the EduQTech Research Group, University of Zaragoza, on m-
health projects, the HCI Laboratory, University of Udine, Italy, on human–
computer interaction projects, the Technological University of Dublin, Ire-
land, on datamining projects, and the Multicultural Alzheimer Prevention
Program (MAPP) of the Massachusetts General Hospital and Harvard Uni-
versity, USA, on m-health projects. Among journals, book chapters, con-
ferences, and workshops, he has over 125 publications (54 in journals with
ISI Thomson JCR). His main research interests include artificial intelligence
(AI), human-centric AI, agent-based simulators, multi-agent systems, and
cryptocurrency/blockchain, all of these applied to different fields, such as
the IoT, security, and health. He was a recipient of an FPI Scholarship, from
2006 to 2010. He has been a Guest Editor in several special issues in journals
with impact factor. His website is http://grasia.fdi.ucm.es/ivan/.

RAJARAJAN MUTTUKRISHNAN received the
B.Eng. and Ph.D. degrees from the City, Uni-
versity London, in 1994 and 1999, respectively,
where he has been a Research Fellow, since 1999.
In August 2000, he moved to Logica as a Telecom-
munication Consultant. After a few years in the
industry, he is currently a Professor of secu-
rity engineering. He is also the Program Direc-
tor for the Engineering with Management and
Entrepreneurship Program. He is also a member

of IET and an Associate Member of the Institute of Information Security
Professionals (IISP) and a member of the Technical Program Committees
for PIERS 2010, eHealth 2010, SECURECOM2011, TrustBus 2011, Digital
Economy 2012, IFIPTM 2012, and IFIP SEC 2012. He is also the General
Chair of SECURECOMM 2011, London. He also sits on the Editorial
Boards ofWireless Networks (Springer/ACM),Health Policy and Technology
(Elsevier), and Information Management and Computer Security (Emerald).

JAIME LLORET (M’07–SM’10) received the
B.Sc. and M.Sc. degrees in physics and electronic
engineering, and the Ph.D. (Dr. Ing.) degree in
telecommunication engineering, in 1997, 2003,
and 2006, respectively. He worked as a Network
Designer and an Administrator in several enter-
prises. He is currently an Associate Professor with
the Polytechnic University of Valencia. He is also
a Cisco Certified Network Professional Instruc-
tor. He is also the Head of the ‘‘Active and col-

laborative techniques and use of technologic resources in the education
(EITACURTE)’’ Innovation Group. He is also the Director of the Univer-
sity Diploma ‘‘Redes y Comunicaciones de Ordenadores.’’ He has been
the Director of the University Master ‘‘Digital Post Production’’ for the
term 2012–2016. He has authored 22 book chapters and has more than
480 research articles published in national and international conferences
and international journals (more than 220 with ISI Thomson JCR). He
is also a Senior Fellow of ACM and a Fellow of IARIA. He is also the
Chair of the Integrated Management Coastal Research Institute (IGIC). He
was the Vice-Chair for the Europe/Africa Region of Cognitive Networks
Technical Committee of the IEEE Communications Society for the term
2010–2012 and the Vice-Chair of the Internet Technical Committee of the
IEEE Communications Society and Internet Society for the term 2011–
2013. He has been the Internet Technical Committee Chair of the IEEE
Communications Society and the Internet Society for the term 2013–2015.
He is also an IARIA Journals Board Chair (eight journals). He is also the
Chair of the Working Group of the Standard IEEE 1907.1. He has been the
General Chair (or Co-Chair) of 45 international workshops and conferences.
He has been a Co-Editor of 40 conference proceedings and a Guest Editor
of several international books and journals. He is also the Editor-in-Chief of
Ad Hoc and Sensor Wireless Networks (with ISI Thomson Impact Factor),
Network Protocols and Algorithms, and International Journal of Multimedia
Communications. He is also an Associate Editor-in-Chief of Sensors in the
Sensor Networks Section and an Advisory Board Member of the Inter-
national Journal of Distributed Sensor Networks (both with ISI Thomson
Impact factor). He is (or has been) an Associate Editor of 46 international
journals (16 of themwith ISI Thomson Impact Factor). He has been involved
in more than 450 program committees of international conferences and more
than 150 organizations and steering committees. He has led many local,
regional, national, and European projects. Since 2016, he has been a Spanish
Researcher with the highest h-index in the Telecommunications journal list
according to Clarivate Analytics Ranking.

125574 VOLUME 7, 2019


	INTRODUCTION
	RELATED WORK
	HAI APPROACH FOR IOT
	MOST-WEIGHTED-PATH EXPLANATION
	MOST-WEIGHTED-COMBINATION EXPLANATION
	MAXIMUM-FREQUENCY-DIFFERENCE EXPLANATION

	CASE STUDY WITH THE SIMULATION OF A SMART KITCHEN
	EVALUATION
	DISCUSSION
	CONCLUSION AND FUTURE WORK
	REFERENCES
	Biographies
	IVÁN GARCÍA-MAGARIÑO
	RAJARAJAN MUTTUKRISHNAN
	JAIME LLORET


