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Robust Image Hashing based Efficient Authentication 

for Smart Industrial Environment

Abstract—Due to large volume and high variability of editing tools, 

protecting multimedia contents and ensuring their privacy and 

authenticity has become an increasingly important issue in cyber-

physical security of industrial environments, especially industrial 

surveillance. The approaches authenticating images using their 

principle content emerge as popular authentication techniques in 

industrial video surveillance applications. But maintaining a good 

trade-off between perceptual robustness and discriminations is the 

key research challenge in image hashing approaches. In this paper, 

a robust image hashing method is proposed for efficient 

authentication of keyframes extracted from surveillance video 

data. A novel feature extraction strategy is employed in the 

proposed image hashing approach for authentication by 

extracting two important features: the positions of rich and non-

zero low edge blocks and the dominant DCT coefficients of the 

corresponding rich edge blocks, keeping the computational cost at 

minimum. Extensive experiments conducted from different 

perspectives suggest that the proposed approach provides a 

trustworthy and secure way of multimedia data transmission over 

surveillance networks. Further, the results vindicate the suitability 

of our proposal for real-time authentication and embedded 

security in smart industrial applications compared to state-of-the-

art methods. 
 

Index Terms—Industrial surveillance, digital authentication, 

image hashing, embedded security 

I. INTRODUCTION 

ULTIMEDIA content is considered to be one of the best 

sources for the delivery of information in many practical 

applications such as healthcare and industrial 

surveillance [1]. But the existence of editing tools for 

overwhelming diffusion of these multimedia contents, 

protecting their integrity and authenticity, and security of the 

systems from various undesired manipulations, has become an 

increasingly important issue. There are several elements for 

security and privacy consideration in an industrial setup. Taking 

industrial video surveillance application as an example, a 

mechanism is required for the authentication and protection of 

multimedia data from tampering and distortion during the 

transmission via different networks. The involvement of 

resource-constrained devices in surveillance setup for using low 

bandwidth brought some additional challenges in terms of 

computation and storage for authentication operations. In short, 

due to network-connected technologies [2], expertise is easily 

available for attackers, making surveillance networks 

vulnerable to different attacks and threats. Therefore, security 

has become an important issue in industrial surveillance, which 

may cause a huge economical damage. 

The existing literature for the authentication of digital 

images can be grouped into three major classes: image forensic 

based [3, 4], watermark based [5-8], and image hashing based 

techniques [9-13]. Image hashing technology has a key role in 

ensuring the security and privacy of information during 

transmission, which contribute to the overall cyber-physical 

security system for smart industrial environments. Besides 

these authentication schemes, many encryption schemes are 

also used for industrial surveillance data [14]. 

Recently, the approaches authenticating images using their 

principle content, known as image hashing [15-24], emerge as 

the popular authentication techniques in video surveillance 

applications. Using image hashing approaches, the invariant 

features of the original image on the sender side are extracted 

and then represented as a numeric value called a hash. This hash 

value is then sent with the original image to the destination. In 

the authentication phase at the destination, the same hash 

generation algorithm is used to compute a hash value. Both hash 

values are compared to check the authenticity and integrity of 

the received image. Typically, a good image hash [9] should be 

reasonably short, robust to ordinary image manipulations, and 

sensitive to tampering. It should be also unique in the sense that 

the produced hash is fully dependent on the actual contents of 

the image and produces the same hash values for images that 

have a similar appearance to the human eye.  

In industrial surveillance it is very challenging to meet all 

the requirements simultaneously, especially on balancing 

perceptual robustness and sensitivity to discrimination in an 

image hashing method. In other word, the generation of a hash 

that is independent of content-preserving manipulations like 

noise addition, JPEG compression and scaling, is a very 

difficult task. Also, an image hashing approach must be able to 

differentiate between content-preserving and content-degrading 
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manipulation. This leads to the fact that the features extracted 

for hash generation must be robust in terms of content-

preserving manipulation. On the other hand, selection of a 

suitable threshold for balancing perceptual robustness with 

discrimination is another challenge in an image hashing 

method. Technically, the same images with different size and 

compression level or having noise could have different digital 

representation. So, maintaining a good trade-off between 

perceptual robustness and discriminations is the key research 

challenge.  

In the present paper, we aim at proposing a new robust and 

secure image hashing based authentication method using 

keyframes extraction in industrial surveillance application. The 

objective is to provide a reasonably robust image hash with 

good perceptual robustness and sensitivity to discrimination. 

We use the keyframes extracted from industrial CCTV 

surveillance video data and convert it into standard size to 

ensure a fixed length for the hash. An edge detector is applied 

to the luminance component of the keyframe to obtain the real 

edges map. The keyframe is then divided into non-overlapping 

blocks of equal size, followed by their categorization into rich 

information and low information blocks, based on the edges 

map. The final hash is constructed from the dominant DCT 

coefficients of the rich information blocks and the difference in 

the positions of the corresponding rich and low information 

blocks in the sequence, which can be used for authentication. In 

addition to hash generation, our scheme automatically 

generates a key from the extracted features for encryption, 

considering its emphasis on the runtime environment for 

industrial video surveillance. Our key contributions are 

highlighted as follows: 

• A novel three-fold robust and secure image hashing based 

authentication approach using salient structural feature for 

smart industrial surveillance applications is proposed. This 

authentication approach will guarantee the secure 

transmission of representative frames in industrial 

surveillance with interconnected vision sensors in 

networks.  

• The edge detection mechanism in our proposed scheme 

generates a grayscale edge image from eight binary maps 

of different thresholds using Canny operator, in which 

edges are classified into strong and weak edges. By using 

this new strategy, content-preserving modified image by 

noise and compression will not have any effect on edges, 

and false edges can be neglected very easily, which 

increase the accuracy of detecting rich information blocks. 

• The experimental results prove that the proposed solution 

can effectively improve the perceptual robustness with 

discrimination over existing state-of-the-art methods [15-

18]. Our approach can play a vital role in cyber-physical 

security for image and video data authentication during 

transmission in industrial surveillance networks. 

The rest of this paper is organized as follows. Section II and III 

present the proposed methodology and experimental results, 

respectively. Conclusions and future research directions are 

given in Section IV. 

II. THE PROPOSED FRAME WORK  

The proposed scheme for image authentication in industrial 

surveillance consists of three steps: 1) pre-processing, 2) feature 

extraction, and 3) hash/key generation, and these are briefly 

discussed separately in the subsequent sections. Fig. 1 

illustrates the proposed hashing scheme diagrammatically. 

2.1 Pre-processing 

To generate a uniform size for the hash value from images with 

different dimensions, the input image Io is first resized to M×M 

pixels using bilinear interpolation, which is computationally 

efficient and has higher quality index score than other 

interpolation techniques [25], resulting in a standard-sized 

image Io'. Next, a Gaussian low-pass filter is applied to the 

resized image Io' as a convolution mask, to avoid the effect of 

noise on the final hash value using Eq. (1) as follows: 
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where  𝛿  is the standard deviation of the distribution for 

coordinates (i, j). After this, the noise-free image is transformed 

from the RGB to the HSV color model. As the luminance 

information of HSV color space contains rich information about 

structural and geometric features, it is retrieved as a secondary 

image I  

2.2 Feature Extraction 

The feature extraction phase involves the conversion of the 

secondary image I into the salient edge structure and the 

retrieval of the positions of rich and low information blocks 

through edge detection and selective sampling. These steps are 

explained in subsections A and B. 

A. Salient Edge Detection 

In our proposed scheme, a double-threshold edge detector 

known as a Canny operator is used for edge detection. The 

Canny operator is applied to the secondary image I, through 

which a binary map B is obtained. The Canny operator uses the 

magnitude of the intensity gradient values handled by two 

threshold values, i.e., the low threshold value TL and the high 

threshold value TH. The edge pixel gradient values are divided 

into three categories based on the aforementioned thresholds as 

follows: i) edge pixels with a gradient greater than TH are 

marked as strong pixels, representing the low edge sensitivity; 

ii) edge pixels with a gradient less than TH but greater than TL 

are marked as weak edge pixels, which represent high edge 

sensitivity; and iii) edge pixels with a gradient smaller than TL 

are neglected. A complete edge image is then obtained by 

connecting strong pixels with weak pixels to avoid false edges 

[26, 27]. The selection of suitable thresholds for edge detection 

is a complex task since low threshold values are sensitive to 

false edges detection and do not work for noisy images. On the 

other hand, the selection of high threshold values results in 

some true edges being neglected. The image hashing schemes  
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Fig. 1: Framework of our proposed system

given in [28, 29] also use the Canny operator for edge detection, 

but use a single pair of thresholds; due to this, the positions of 

rich information blocks are not the same for a given input image 

and its content-preserving modified image. 

To avoid this problem, we introduce a new concept using eight 

threshold values for edge detection; from these, we obtain eight 

different binary maps, and we then construct a single edge 

grayscale image Eimg from these eight binary maps, representing 

the classified edges of the secondary image I using Eq. 2.  
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where BT1, BT2, …, BT8 are binary maps of the secondary image 

I constructed by the Canny operator using thresholds T1, T2.. 

…, T8. The mechanism for constructing the classified edges 

grayscale image Eimg is described as follows. The presence of 

the edge pixel at the same position in all the eight binary edges 

maps is first counted; this total is then multiplied by 32 to obtain 

a single pixel value for the grayscale edge image using raster 

scanning. Hence, an edge pixel that is present in all eight binary 

maps results in a dark edge pixel in the grayscale edge image 

and is referred as a strong or true edge pixel. In this way, edges 

are classified into eight different bands according to their 

presence in the binary maps. Thus, in the grayscale edge image 

Eimg, all non-zero pixels indicate classified edges of the contents 

of the secondary image I, while zero pixels indicate the 

background of the secondary image I. An example of the 

construction of the binary maps and grayscale edge image Eimg 

from the secondary image I and the binary maps, respectively, 

is shown in Fig. 2. The overall mechanism is given in Algorithm 

1. 

B. Selective Sampling of Rich and Low Information Blocks 

In our proposed scheme, we not only concentrate on the salient 

region but also protect non-salient regions. For this purpose, we 

divide the secondary image I and the grayscale edge image Eimg 

into non-overlapping blocks of equal size.  

Algorithm 1: Edge Grayscale Image Construction Algorithm 

Inputs: Secondary image I, Threshold Tn= [TL, TH] for Canny operator  

1. Set initial threshold T1 as TL=0.1 and TH=0.3 
2. For i=1 to 8 

             Apply Canny operator on I with threshold Ti to obtain binary map Bi 

    Increment TL by 0.2 
    Increment TH by 0.03 

3. Combine all 8 binary maps using equation (2) to get edge grayscale image 

Eimg 
Output: Edge grayscale image Eimg 

The total number of blocks for an image of size M× M pixels 

and block size k× k pixels can be calculated using (𝑀/𝑘)2. The 

block representation is given in Eqs. (3) and (4). 
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 Fig. 2: Illustration of salient edge detection using a Canny operator (with 
eight different thresholds) and construction of grayscale edge image. 

To categorize the EBi,j blocks of Eimg into salient and non-salient 

edge information blocks, we sum all the pixel values of each 

EBi,j block using the raster-scanning order of the blocks, to get 

the structure information value Si,j  using Eq. (5) . 

( ) 
= =

==
k

i

k

j

jijiji
pEBS

1 1

,,,
    (5) 

where φ (.) is a function which sums all the pixel values in the 

EBi,j block, and Ῥi,j  refers to the pixel values of the EBi,j block. 

In this way, we get a salient edge structure information matrix 

Sinfo of size M/k ×  M/k, as given in Eq. (6). 
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A high value of Si,j represents rich information of the edges that 

exist in the corresponding EBi,j block, while a low value refers 

to low information; these blocks must be non-zero. Then, a 

number N of corresponding rich information blocks IBi,j are 

sampled in the secondary image I on the basis of the high values 

of Si,j in the edge structure information matrix Sinfo, which 

contain richer structural information. Fig. 3 shows selective 

sampling using the grayscale edge image Eimg taken from 

CCTV surveillance. Fig. 3(a) is the classified edge image Eimg, 

illustrating the salient edges. In Fig. 3(b), the red and blue 

squares indicate the rich and low edge information blocks EBi,j, 
respectively, based on the six largest and six lowest non-zero 

values of Si,j in the Sinfo matrix (N = 6). In Fig. 3(c), six 

corresponding rich information blocks IBi,j are sampled in the 

secondary image I. 

In order to get N rich and low information blocks, we re-arrange 

all the non-zero edge blocks IBi,j of the secondary image I in 

descending order on the basis of the edge information matrix 

Sinfo, as Di (i = 1, 2, …, v). Here, v is the total number of non-

zero edge blocks (i.e., v = total blocks – no. of zero edge blocks) 

and a smaller value of i indicates a richer information block in 

Di. The first and last N blocks in D represent the richest and 

lowest edge information blocks, respectively. Next, the 

positions of the corresponding N sampled blocks in the 

secondary image I are retrieved. i.e., the abscissa i and the 

ordinate j of IBi,j, symbolized by p1 and p2 respectively, to get 

the position matrices of the rich information blocks PRmat and 

the low information blocks PLmat using Eqs. (7) and (8). 

 
Fig. 3: Illustration of the concept of selective sampling using the grayscale edge 

image with N = 6: (a) grayscale edge image; (b) grayscale edge image with six 
rich and six low information blocks; (c) secondary image with corresponding 

sampled blocks. Red indicates rich information blocks, while blue color blocks 
contain low information 

𝑃𝑅𝑚𝑎𝑡 = [𝑝𝑟𝑛]𝑡 = [𝑝1𝑛 , 𝑝2𝑛]     n = 1, 2, . . . N (7) 

𝑃𝐿𝑚𝑎𝑡 = [𝑝𝑙𝑛]𝑡 = [𝑝1𝑛 , 𝑝2𝑛]     n= v, v-1, . . . v-N (8)  

To extract further structure features from the secondary image 

I, we apply DCT to each of the N sampled rich information 

blocks IBi,j  of size k× k. As a result, we get two dominant DCT 

coefficients, as given in Eqs. (9) and (10). 
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Here Cv denotes the DCT coefficient matrix of size k×k for the 

block Di. Since the elements in the top left-hand corner of the 

DCT matrix represent high information for the whole matrix, 

we therefore retrieve only the second coefficient in the first row 

Cv(1, 2) and the second coefficient of the first column Cv(2, 1) 

as qv1 and qv2, respectively, to get a DCT coefficient matrix Q 

of size 2×N, as given in Eq. (11).  
 

  ( ) ( ) 1,2,2,12,1
VVvvV

CCqqQQ ===   v= 1, 2, . ., N (11) 

2.3 Hash and Key Generation 

As a result of the previous steps, we get three matrices, i.e., 

PLmat, PRmat and Q, which are used in the generation of a key 

and a hash value. In our proposed scheme, the key is generated 

automatically, since our algorithm is designed for real-time 

industrial surveillance systems with minimum human 

intervention. We use a novel approach for key generation using 

the position information of the rich edge blocks PRmat, which is 

used to encrypt the final hash as well as provide feature 

information in the authentication phase. The flowchart for key 

and hash generation from these matrices is illustrated in Fig. 4.  

Firstly, the position matrix of the rich edge information PRmat is 

subtracted from the position matrix of low edge information 

matrix PLmat. The resultant position difference matrix PDmat is 

then concatenated with the DCT coefficient matrix Q to get a 

feature matrix F of size N× 4 using Eq. (12). Next, the feature 

matrix F is converted into a one-dimensional array. In Eq. (13) 

hk denotes the k-th element of feature matrix F, which is 

traversed in raster scanning order (k=1,2, . . ,4N) to get an 

intermediate hash Hʹ of length 4N, as given in Eq. (13). 
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Fig. 4: Flowchart for key and hash generation 
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To generate the key, the position information matrix of the rich 

information blocks PRmat is converted into a one- dimensional 

array and is then encrypted to increase the security of the overall 

framework. Next, we encrypt the intermediate hash Hʹ using the 

generated key to get the final encrypted hash H, using Eq. (14). 

( )KHH ,=    (14) 

Here, ᴪ is a function that encrypts the intermediate hash H’ 

using key K. The encryption algorithm encrypts the position 

information matrix of the rich information blocks PRmat to 

obtain a key, and then encrypts the intermediate hash H’ to 

increase the security and robustness of our method. Finally, we 

get a key K and encrypted hash H. The generated key is 

sufficiently sensitive that any minor alteration in the key leads 

to completely different hash; this is an important distinguishing 

characteristic of our algorithm. The encryption method is given 

in Algorithm 2. 

In the authentication phase, the key is used to encrypt the hash 

generated from the image under consideration, for comparison 

with the received hash. The key is first decrypted using the 

decryption algorithm, and details of the rich information blocks 

are extracted for hash generation. This reduces the 

computational process of sampling the rich information blocks 

since the positions have already been extracted from the key. 

This novel mechanism increases the suitability of the proposed 

framework for deployment in real CCTV surveillance systems 

for authentication. 

III. EXPERIMENTAL RESULTS  

We conducted various experiments to evaluate the performance 

of our method and achieve the required trade-off between 

perceptual robustness and discrimination. In our experiments, 

bilinear interpolation was used to resize the input image to 

512× 512 pixels, i.e., the parameters are set to M=512 and the 

block size of EBi,j and IBi,j is set to 32× 32 pixels with k=32. The 

number of selective blocks IBi,j of the secondary image I is set 

to N=25. Hence, the final hash of an input image consists of 

4× 25= 100 decimal numbers, i.e., two position vector 

differences and two dominant DCT components. The 

thresholds for the Canny operator are set to 0.1and 0.3 for low 

threshold and high threshold to construct the first binary image. 

The interval of 0.02 for low threshold and 0.03 for high 

threshold is set for the next seven binary images. Further details 

Algorithm 2: Encryption Algorithm 

Inputs: Position information matrix of rich information blocks PRmat, 

intermediate hash H’ 

1. Convert PRmat  into one-dimensional array. 

2. Convert PRmat  and H’ into binary to get keybits Kbits and hashbits 
Hbits, respectively. 

3. Perform bitxor operation of  Kbits and logical 1. 

4. Shuffle Kbits by replacing first four bits with last four bits in every 
eight-bit combination.  

5. Perform bitxor operation of Hbits  and logical 1 using Kbits  

If Kbits (i) equals 1, 
Perform bitxor(Hbits(i), logical 1) 

                  End 

6. Convert Kbits and Hbits into decimal to get key K and final hash H. 

Output: key K and final hash H 

of the conducted experiments are given in the subsequent 

sections. 

3.1 Hash Similarity Measurements  

In the literature, many typical measurements have been reported 

for comparing the similarity of hash values, such as Euclidean 

distance, L2-norm, Hamming distance, and cosine similarity. In 

our experiments, we used the correlation coefficient (CC) to 

measure the similarity of the hashes of two images. The 

motivational reason for this is its widespread usage in 

measuring the linear correlation of two variables. Furthermore, 

it can identify a statistical relationship between two random 

variables or observed datasets [23,24]. We assume that H(1) = 

[h1(1), h2(1), … , h𝑞(1)] and H(2)= [h1(2), h2(2), … , h𝑞(2)] are 

two hashes of length q for two input images. Then, the CC 

between H(1) and H(2) can be calculated using Eqs. (15) and (16) 

as follows. 
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where 𝛟 is a function providing the CC between H(1) and H(2) 

and 𝛍1 and 𝛍2 are their mean values individually. 𝜉 is a constant 

nearly equal to zero, maintaining the denominator in Eq. (15) 

as not equal to zero. The range of 𝛟 lies between −1 and 1. For 

the interpretation of images, the CC score is treated as follows: 

a CC score greater than a pre-determined threshold T indicates 

that the two images are visually identical, while if the score is 

less than the threshold T, the images under consideration are 

treated as different or modified. 

 
Fig. 5: Five test images from the USC-SIPI data set: (a) Splash (b) Airplane 

(c) Baboon (d) Peppers (e) Lena 
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Fig. 6: Perceptual robustness test against different image manipulations: (a) average filtering; (b) Gaussian filtering; (c) Gaussian noise; (d) speckle noise; (e) 

JPEG compression; (f) scaling 
 

3.2 Performance Evaluation 

A. Perceptual Robustness 

The robustness of an image hashing method is measured by its 

ability to withstand different attacks, such as noise, 

compression and blurring. A perceptual robustness test is 

therefore conducted to evaluate the perceptual robustness of our 

scheme in this section. The experiments are conducted using a 

standard dataset (USC-SIPI Image Database Volume 3: 

Miscellaneous) of standard color images. Overall, 20 images 

were selected for testing, of which five are given in Fig. 5. Six 

different image manipulation techniques were applied to these 

20 images to obtain 1120 modified images for testing. The 

details of these six manipulation techniques with their 

parameters are given in Table II. 

To collect the results, we generate hash values for all 20 test 

images and their manipulated versions obtained using the six 

manipulation techniques listed in Table I. Then, the similarity 

between the original image hash and its corresponding 

processed image hash is judged using the CC based on Eq. (15). 

For ease of understanding, we present the results of this 

perceptual robustness test in two ways: i) the results of five 

TABLE I 
TYPES AND PARAMETERS OF IMAGE MANIPULATIONS  

 Manipulation Description Parameters 

Average filter Kernel size KS 3, 5, . . . . .,17 

Gaussian filter Standard deviation Sd 0.4, 0.6, . . . . .,1.8 

Gaussian noise Noise mean Nm 0.02, 0.04 . . ., 0.2 

Speckle noise Noise variance Nv 0.02, 0.04 . . ., 0.2 

JPEG compression Quality factor Qf 55, 60 . . . . ., 100 

Scaling Scaling ratio Sr 0.2, 0.4 . . . . ., 2.0 

standard test images of Fig. 5 are shown graphically in Fig. 6; 

and ii) the overall results for the 20 test images are given in 

Table II. In each sub-graph of Fig. 6, each single point 

represents the CC of the original image hash and the 

corresponding processed version by the parameter given on the 

abscissa. The ordinate in the graphs shows the range of the CC. 

In Table II, the results are displayed as the maximum, minimum 

and mean CCs between the original image hash and the 

processed version image hash for all 20 test images. It is notable 

that the maximum value of all the CCs for any image 

manipulation is closely equal to 1.00, the minimum mean value 

of any image manipulation is 0.95, and all CCs are greater than 

0.85 for any image manipulation. This proves the robustness of 

our method against various image processing operations such 

as average and Gaussian filtering, Gaussian and speckle noise, 

JPEG compression and scaling. Our results also suggest that a 

suitable threshold T can be chosen as 0.85 for a CC, based on 

which we can classify visually similar and visually different 

images as authentic and non-authentic, respectively, in 

surveillance applications. Fig. 7 demonstrates video frames 

obtained from industrial surveillance and their manipulated 

versions with detected rich information blocks. 

B. Hash Discrimination Test  

To prove that our proposed scheme produces significantly 

different image hashes for two visually distinct images, a test is 

conducted called a hash discrimination test. For this test, a 

dataset of 200 different images was used, which included 30 

images collected by the authors using a digital camera, 70 from 

the UCID dataset, and 100 from the Video Surveillance Online 

Repository (VISOR) [30]. The size of images ranged from 

256×256 to 1024×1024 pixels. Firstly, the hash value was 

calculated for all 200 images using the proposed scheme, and 

then the hash similarity was calculated between each hash pair, 

giving 19,900 results for correlation coefficients, as shown in 

Fig. 8. In Fig. 8, the abscissa presents the image pairs and the 

ordinate shows the values of the corresponding correlation 

coefficients. In the results, only three cases of correlation 

coefficients (i.e., 0.8023, 0.8191, and 0.8261) were observed 
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Fig. 7: Sample frames from industrial surveillance with six rich information 

blocks. (a) original frames, (b) manually manipulated frames. The difference 
can be noticed based on changed positions of rich information blocks. 

that exceeded the limit of 0.8; however, these scores are still 

less than the predetermined threshold T=0.85. Hence, it is 

proved that our proposed scheme balances perceptual 

robustness and discrimination capability, since all CC values 

are less than the specified threshold T=0.85. 

TABLE II 

MEAN, MAX AND MIN CORRELATION COEFFICIENTS OF TWENTY IMAGES FOR 

DIFFERENT IMAGE PROCESSING OPERATIONS 

Manipulation Parameters 
Correlation Coefficient 

Mean Max. Min. 

Average filter Ks=3 0.9994 1.000 0.9991 

Average filter Ks=17 0.9947 1.000 0.9439 

Gaussian filter Sd = 0.4 1.0000 1.000 1.0000 

Gaussian filter Sd = 1.8 0.9997 1.000 0.9983 

Gaussian noise Nm = 0.04 0.9948 0.999 0.9521 

Gaussian noise Nm = 0.20 0.9878 0.999 0.8564 

Speckle noise Nv = 0.04 0.9968 0.999 0.9893 

Speckle noise Nv = 0.20 0.9521 0.998 0.8798 

JPEG Qf =55 0.9999 1.000 0.9992 

JPEG Qf =100 1.0000 1.000 1.0000 

Scaling Sr=0.4 1.0000 1.000 1.0000 

Scaling Sr =1.0 1.0000 1.000 1.0000 

3.3 Performance Comparison with State-of-the-Art Methods 

We compared our proposed method with four state-of-the-art 

techniques using the standard dataset images used in Section 

3.2 (A). In Fig. 10, the six subfigures correspond to six different 

kinds of image manipulations, in which the abscissa of each 

subfigure presents the parameter value of applied manipulation 

and the ordinate shows the average score for 20 CCs between 

the original image and its processed version. It is clearly visible 

from Fig. 10 that the CC scores for our method are greater than 

those of the four competing schemes [15-18]. This dominance 

is due to the unique characteristics of our approach in terms of 

preprocessing, features extraction and hash generation. In 

addition to the above experiments, the computational 

 
Fig. 8: Hash discrimination test based on 200 images 

complexity and hash length of our algorithm were compared 

with the schemes in [15-18]. The average time consumed by 

each hashing scheme was calculated using a computer with the 

following specifications: 2.40 GHz Intel i3 processor, 4.00 GB 

memory, and Windows 8.1 (64bit) operating system. 

The implementation tool used was MATLAB 2016a. Time 

complexity and hash length comparisons are given in Table III, 

demonstrating the strength of our method in balancing 

perceptual robustness and discrimination with a reasonable 

hash length and fast execution speed. This makes the proposed 

system suitable for embedded devices, particularly, for the 

authentication of keyframes in industrial surveillance systems. 

TABLE III 
COMPARISON BASED ON HASH LENGTH AND AVERAGE RUNNING TIME 

Schemes Hash Length 
Average Time 

(seconds) 

Scheme in [15] 64 0.728 

Scheme in [16] 180 0.749 

Scheme in [17] 64 1.125 
Scheme in [18] 84 1.4 

Proposed scheme  100 0.616 

3.4 Key-Dependent Security 

In this section we verify the sensitivity of the key used in the 

proposed method. For this analysis we generated 1000 random 

wrong keys, given as the abscissa in Fig. 9, and average values 

of twenty CCs between the hash pairs of images of Section 3.2 

(A), represented by the ordinate of Fig. 9; the latter were 

collected using correct and wrong secret keys. It is evident from 

Fig. 9 that most of the CCs are in the interval 0.4, −0.4. This 

indicates that it is difficult for an adversary to guess or identify 

the correct key. Hence, this analysis verifies the heavy 

 
Fig. 9: Key sensitivity test based on 1000 wrong keys 
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Fig. 10: Performance comparison of our method with state-of-the-art schemes for perceptual robustness: (a) average filtering; (b) Gaussian filtering; (c) Gaussian 

noise; (d) speckle noise; (e) JPEG compression; (f) scaling 

 

dependence of our approach on the secret key, thus satisfying 

the security requirements dictated by Kirchhoff’s principle [31, 

32]. 

IV. CONCLUSIONS 

This article proposes a secure efficient image hashing method 

for secure data dissemination for smart industrial surveillance 

networks, with a focus on balancing robustness and 

discrimination. Our method uses perceptual structure features  

extracted from the input image after pre-processing for image 

regularization. A single grayscale edge image, representing the 

classified edges is generated by combining eight binary edges 

images using Canny operator. Rich and non-zero low edge 

blocks are then sampled in the secondary image using the 

grayscale edge image. The final hash is then generated by 

combining the dominant DCT coefficients of the sampled rich 

edge image blocks and the difference of the rich and low edge 

block positions. To increase the security of industrial 

surveillance network, the final hash is encrypted using an 

automatically generated key from the rich edge block position 

vector. Through extensive experiments, it was concluded that 

our method can achieve better performance in terms of 

perceptual robustness and discrimination with a reasonable 

length of hash and running time, as compared with state-of-the-

art image hashing methods. In future, we aim to investigate 

deep neural networks for detecting salient regions and 

generating hash codes from them with focus on efficiency for 

resource constrained devices, which can be easily adjusted in 

surveillance networks. 
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