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Abstract
Location awareness is the key to success to many location-based services applications such as indoor navigation, elderly
tracking, emergency management, and so on. Trilateration-based localization using received signal strength measure-
ments is widely used in wireless sensor network–based localization and tracking systems due to its simplicity and low
computational cost. However, localization accuracy obtained with the trilateration technique is generally very poor
because of fluctuating nature of received signal strength measurements. The reason behind such notorious behavior of
received signal strength is dynamicity in target motion and surrounding environment. In addition, the significant localiza-
tion error is induced during each iteration step during trilateration, which gets propagated in the next iterations. To
address this problem, this article presents an improved trilateration-based architecture named Trilateration Centroid
Generalized Regression Neural Network. The proposed Trilateration Centroid Generalized Regression Neural
Network–based localization algorithm inherits the simplicity and efficiency of three concepts namely trilateration, cen-
troid, and Generalized Regression Neural Network. The extensive simulation results indicate that the proposed
Trilateration Centroid Generalized Regression Neural Network algorithm demonstrates superior localization perfor-
mance as compared to trilateration, and Generalized Regression Neural Network algorithm.
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Introduction

Wireless sensor network (WSN) is an important tech-
nology of 21st century that can do smart sensing and
ubiquitous computing, and has plenty of localization
and tracking (L&T)-based applications.1,2 The mea-
surements collected are useful only if knowledge of
source of data is known. Therefore, the underlying tar-
get localization mechanism plays very crucial role in
the WSN-based applications. The L&T is one of the
core application areas of the WSN. Although GPS is
widely used for localization in outdoor environment,
GPS-based location estimates are not accurate and

reliable for indoor environmental setup.3,4 The reason
behind this is unavailability of GPS signals in indoor
environment. Consequently, the indoor L&T applica-
tions require GPS-less architecture. The low cost and
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low power WSN technology is proved to be very useful
to address the problem of indoor L&T. The WSN-
based localization has two major categories namely,
range-free and range (distance)-based.5,6 The range-free
localization is based on relationship between inter node
connectivity and network topology, whereas the range-
based approach is based on computing the distances
between sensor nodes. Generally, the localization accu-
racy is high in latter approach. Out of all the major
range-based techniques, the received signal strength
indication (RSSI)-based approach is widely used in the
WSN-based L&T. The major reason behind this is that
unlike other methods, the RSSI-based system does not
need additional hardware in the process of localization.
The term RSS and RSSI are one and the same, and we
use these words interchangeably in the article.
Although the RSSI is a widely used metric for target
L&T, it generally leads to high localization errors due
to highly fluctuating nature of the RSSI measurements,
and dynamicity in given radio frequency (RF)
environment.7,8

The trilateration technique is widely used in target
L&T because of its implementation simplicity, and low
computational complexity.9–11 It can estimate the
unknown target location with the help of its distances
from three anchors (the nodes whose locations are
known) using RSSI measurements. Many variations in
traditional trilateration-based target localization tech-
nique can be found in the literature. However, either
due to ignorance to error uncertainty propagation
mechanism or the environmental dynamicity, improve-
ment in the localization accuracy is poor or
unsatisfactory.

Depending on the application in hand, the require-
ment of localization accuracy may change. For exam-
ple, if it is a marketing/advertisement case, then roughly
a 5–10 m should serve the purpose. On the other hand
for industrial applications, localization accuracy below
1 m may be required. In this article, we propose cen-
troid and Generalized Regression Neural Network
(GRNN)-based improved trilateration localization
algorithm. The main contributions of this research
work are listed below.

1. We formulated a novel framework based on the
trilateration, GRNN, and centroid for the prob-
lem of RSSI-based localization of single target
moving in indoor environment. We named it as
Trilateration Centroid Generalized Regression
Neural Network (TCGRNN).

2. The proposed TCGRNN algorithm is tested
and verified against dynamicity in the surround-
ing environment as well as target motion
through MATLAB simulations. To realize
dynamicity in the RSSI measurements, we

increased measurement noise in RSS from 3–
9 dB in the steps of 3 dB.

3. We compared the localization performance of
the proposed TCGRNN algorithm with that of
traditional trilateration and our previous
GRNN-based localization algorithm for high
RSSI measurement noise of 9 dB. Simulation
and numerical results demonstrate that the pro-
posed TCGRNN algorithm better deals with
the environmental dynamicity (i.e. high mea-
surement noise in RSS) and abruptly varying
target velocity as compared to trilateration and
GRNN.

The remaining structure of the article is as follows.
Section ‘‘Related work’’ covers the current state of art
in the RSSI-based target L&T followed by the discus-
sion on the proposed TCGRNN architecture in section
‘‘TCGRNN architecture for target localization.’’ We
present system design and results obtained with pro-
posed algorithm in detail through extensive simulations
in section ‘‘System design and assumptions of
TCGRNN-based L&T system’’ and section
‘‘Discussion on results,’’ respectively, followed by con-
clusions at the end in section ‘‘Conclusion and future
scope.’’

Related work

As mentioned in the ‘‘Introduction’’ section, the trila-
teration technique is widely used in target L&T because
of its implementation simplicity, and low computa-
tional complexity. The base for the work in Bouchard
et al.9 is the idea: smaller the error in distance estima-
tion, the higher the location estimation quality. This
method selects three smallest estimated distance values
to formulate trilateration equations for localization.
However, the applicability of these equations with the
real-time environment is poor. In Li et al.,10 an
advanced trilateration-based technique is proposed to
alleviate the problem non-existence of intersection
points during trilateration steps. This work is based on
establishing a proper confidence interval. An improved
trilateration localization algorithm named ITL-
MEPOSA is proposed in Yan et al.11 which is based on
optimized selection of anchors and minimum uncer-
tainty propagation arising from distance estimation
result. With ITL-MEPOSA, the optimized selection of
anchor nodes is attained through a single scan-sliding
window. Although ITL-MEPOSA algorithm provides
high target location estimation accuracy as compared
to trilateration, but computational complexity involved
is quite high. Although coupled with various advan-
tages, the localization accuracy of the trilateration
method is influenced by three factors:9–11
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Noise uncertainty in RSSI measurements: It arises
due to issues such as NLOS condition, attenuation
of RF signal, multipath fading,
Non-linear system dynamics: Due to fluctuations in
RSSI measurements and abrupt variations in target
velocity,
Error propagation: It occurs especially in the track-
ing problem in which the localization error induced
during each iteration step gets accumulated and pro-
pagated in the subsequent iterations.

Many times, the calibration of parameters of given RF
environment of the theoretical signal propagation
model is very difficult and time consuming process. The
major reason for inaccurate computation of calibrated
parameters is highly fluctuating nature of RSSI mea-
surements and non-linear system dynamics. The work
in Mari et al.12 proposed a novel kernel online sequen-
tial extreme learning machine (KOS-ELM) technique
for RF fingerprinting in the offline stage, followed by a
hybrid wireless LAN-based approach during online
localization stage. The proposed algorithm incorpo-
rates both RF fingerprinting and trilateration for target
localization, followed by K-nearest neighbor (KNN)-
based approach for online estimation of location of the
target. Systems that use RSSI measurements for locali-
zation adopt RF fingerprinting for calibration of given
RF environment. But it is very time consuming process,
and if the calibration is inaccurate, then it leads to high
localization errors. The authors in Barsocchi et al.13

proposed two novel virtual calibration techniques
which only need the RSSI measurements between
anchors for the calibration of given RF environment.
The authors named these as global virtual calibration
(G-procedure) and per-wall virtual calibration (W-pro-
cedure). The simulation experiments carried out
demonstrate the improved localization performance as
compared to time consuming RF fingerprinting-based
approach. The authors in Crane et al.14 proposed a
novel filtering technique Emender that identifies the
noisy RSSI measurements which effect the localization
performance adversely. Based on the proposed
Emender-based approach, a novel trilateration
approach is adopted for indoor localization. The real-
time experiments in a building using Emender-based
system demonstrate accurate location estimate of the
target with less time complexity.

To deal with above problems, the traditional trila-
teration technique must be coupled with some appro-
priate advanced signal processing technique to solve
the problem of RSSI-based target L&T. Looking the
L&T problem from another perspective, the concept of
centroid can be very useful to provide accurate estimate
if the underlying RSSI dataset is sparse.15,16 Recently
the weighted centroid-based localization (WCL) using
RSSI measurements has been found to be an attractive

low complexity solution for target L&T.15,16 The
WCL-based localization algorithm uses position of
anchors that are in the communication radius of
unknown node whose position is to be estimated. The
WCL algorithm generally yields low localization accu-
racy, especially if the unknown node is outside a poly-
gon established by the anchors. Some researchers have
proved that by fusing the centroid concept with some
other existing localization framework, the localization
error can be significantly reduced. The authors in
Phoemphon et al.15 have proposed a fuzzy-based cen-
troid localization (FCL) algorithm for localization. In
proposed FCL, the anchor nodes are prioritized using
fine-tuned weights. In Zhang et al.,16 the authors pro-
posed a particle centroid drift (PCD) algorithm for
large-scale WSN with an objective to reduce the dis-
tance estimation errors. In PCD-based system, centroid
algorithm is combined with particle distribution func-
tion to form in high-quality particles.

We know that artificial neural network (ANN) once
trained with appropriate dataset can deal with almost
any non-linear system dynamics.17,18 The authors in
Zhou et al.19 designed a novel hybrid hypothesis test
based on the idea of asymptotic relative efficiency
(ARE), which takes into account the signal distribu-
tions from different Wi-Fi access points. In this
research work, the Jarque-Bera (JB) test is utilized to
perform the normality test on the Wi-Fi signal distribu-
tion, and then to obtain contribution degree of each
access point, the chi-square automatic interaction
detection (CHAID) approach is adopted. The target
location estimates are obtained by using the KNN. The
extensive experimental results using the proposed
approach lead to higher localization accuracy and
enhanced robustness as compared with other existing
Wi-Fi-based localization techniques. Choosing appro-
priate ANN architecture for the given indoor L&T
application is very crucial. The GRNN is found to be
suitable to variety of target L&T applications involving
highly non-linear system dynamics.20,21 Unlike other
ANN architectures, the GRNN has only one control
parameter. That is GRNN smoothing factor. We have
previously used the concept of GRNN and applied it in
several ways to solve the problem of single mobile tar-
get L&T. For instance, we proposed and verified two
algorithms namely GRNN + KF and
GRNN + UKF to address uncertainty in RSSI mea-
surement noise in Jondhale and Deshpande.20,21 In
these works, the GRNN architecture is trained with
training dataset that consists of input vectors (four
RSSI measurements) and corresponding output vector
(actual 2D locations of target). Here the location esti-
mates obtained with developed GRNN architecture are
applied to KF and UKF to further smooth the GRNN
location estimates. These GRNN + KF and
GRNN + UKF algorithms are also validated in a
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real-time experiment carried out in our institute labora-
tory.20 In this experiment, we proved that the moving
person can be tracked efficiently using wireless commu-
nication network formed using smartphone and PSOC
BLE nodes. Although the algorithms presented in show
improved localization results than that with trilatera-
tion, GRNN, RSSI + KF, and RSSI + UKF algo-
rithms, the RSSI measurement noise is kept constant
(i.e. 3 dB). Motivated by the benefits of trilateration,
GRNN, and centroid concept, we propose novel
TCGRNN architecture for indoor target L&T prob-
lem. Unlike Jondhale and Deshpande,20,21 to focus
only the architectural design aspect, we have not fused
the proposed TCGRNN architecture with KF frame-
work in this work. Unlike our previous GRNN archi-
tecture, input vector dimension for the proposed
TCGRNN architecture is made 8. Unlike localization
analysis in our previous works,20,21 a new parameter
for localization performance evaluation is introduced
(i.e. regression coefficient R)

TCGRNN architecture for target
localization

The RSS used in this research work is generated using
log normal shadow fading model (LNSM) as given
below20,21

z‘j, k =Pr d0ð Þ � 10n log dlj, k=d0

� �
+Xs ð1Þ

where,
(z‘j, k) is the RSS received at the node N‘ with coordi-
nates (x‘k , y‘k) at time k. It is assumed to be transmitted
by node Nj with coordinates (xjk , yjk), Pr(d0) is the RSS
at receiver kept at a distance d0(1 m), and h is the path
loss exponent. Like Jondhale et al.,18 here also it is kept
2.84, and Xs is the normal random variable with some
value of variance, and standard deviation. It represents
Xs ; N (3, 1): In Case II and Case III, standard devia-
tion is kept same as 1 dB but variance is changed to 6
and 9 dB, respectively.

Trilateration is the traditional process of localization
wherein the target location can be computed using its
distances from at least three anchor nodes (say R1, R2,
and R3), and coordinates of these anchor nodes.9–11 As
we are aiming at 2D localization of the mobile target,
let us consider at particular time instance during
motion, the target location is (x, y) and is at distances
d1, d2, and d3 from R1, R2, and R3, respectively.
Although, the trilateration can also be used for the
localization of 3D scenario. Thereafter, 3D location
estimates of trilateration and 3D centroid locations can
be applied to our proposed TCGRNN architecture to

produce 3D result. In other words, the proposed
TCGRNN architecture dimension for 3D localization
scenario would be 10. With this input dimension (i.e.
10), and output dimension (i.e. 3), the proposed
TCGRNN architecture would be required to be
trained. To keep things simpler, we tested the proposed
TCGRNN architecture for 2D localization scenario

d2
1 = x1 � xð Þ2 + y1 � yð Þ2

d2
2 = x2 � xð Þ2 + y2 � yð Þ2

d2
3 = x3 � xð Þ2 + y3 � yð Þ2

ð2Þ

Solving above equations for x and y, we get

x=
AY32 +BY13 +CY21

2 x1Y32 + x2Y13 + x3Y21ð Þ ,

y=
AX32 +BX13 +CX21

2 y1X32 + y2X13 + y3X21ð Þ

ð3Þ

where

A= x2
1 + y2

1 � d2
1 , B= x2

2 + y2
2 � d2

2 , C = x2
3 + y2

3 � d2
3

ð4Þ

X32 = x3 � x2ð Þ, X13 = x1 � x3ð Þ, X21 = x2 � x1ð Þ
Y32 = y3 � y2ð Þ, Y13 = y1 � y3ð Þ, Y21 = y2 � y1ð Þ

ð5Þ

It is well known that the GRNN can converge any
linear or non-linear regression surface (sparse datasets)
very quickly. For estimating output, it measures the dis-
tance of given input vector from vectors used in the
training dataset. The detailed study of GRNN can be
found in Jondhale and Deshpande.20,21 In this work, we
designed the proposed TCGRNN architecture by fus-
ing the ideology of trilateration and centroid in it (see
Figure 1). The input to the proposed TCGRNN is X (an
input vector consisting of four RSSI measurements, tri-
lateration estimated location, and centroid location),
and its output is M(output vector that includes esti-
mated 2D location) (see Figure 1). As the dimension of
X for the proposed TCGRNN architecture is 8 (see
Figure 1), there are eight nodes in the input layer corre-
sponding to eight parameters of X . The number of
nodes in the input layer and pattern layer is the same
(i.e. 8). Each node in the input layer is connected with
each node in the pattern layer. Whereas, the GRNN
algorithm in Zhang et al.16 has input X (an input vector
consisting of only four RSSI measurements), and its
output is M(output vector that includes estimated 2D
location). Thus, the dimension of X for the GRNN
architecture in Jondhale and Deshpande20 is 4.
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The mathematical equations for estimations with
TCGRNN architecture are the same as that with
GRNN architecture. These are as given below

M Xð Þ=

Pn
i= 1

Mi exp
�Di

2

2s2

� �
Pn

i= 1

exp �Di
2

2s2

� � ð6Þ

Di
2 = X � Xið ÞT : X � Xið Þ ð7Þ

where M is the estimated 2D location, X is the input
vector consisting of four RSSI measurements,
trilateration-estimated location, and centroid location,
s is the smoothing factor, and n is the dimension of
input vector. Here n= 8:

Choosing appropriate value of s is very important in
case of GRNN and TCGRNN for accurate output esti-
mation.18 To compare our previously published GRNN
architecture with the proposed TCGRNN architecture,
we took s = 3:5:

System design and assumptions of
TCGRNN-based L&T system

In this work, an indoor area of 100 m 3 100 m is
simulated using MATLAB 2016a as shown in Figure 2.
Total 16 WSN nodes are assumed to be utilized for the
proposed target L&T problem, out of which 15 are
considered to be anchor nodes. The remaining one
node is assumed to be carried by the target during
motion. All the anchor nodes are supposed to be con-
figured in transmitter mode, whereas the node carried
by the mobile target is assumed to be configured in
receiver mode. The anchor nodes are deployed at loca-
tions as given in Table 1 and shown in Figure 2. The
anchor node locations randomly chosen in the given
indoor layout of 100 m 3 100 m are static in nature.

Figure 1. Proposed TCGRNN architecture for target L&T.

Table 1. Deployment of anchor nodes in the simulations.

Anchor node
number

2D location Anchor node
number

2-D location

1 (14, 8) 9 (92, 40)
2 (25, 30) 10 (68, 18)
3 (35, 45) 11 (59, 80)
4 (37, 80) 12 (48, 50)
5 (50, 65) 13 (32, 41)
6 (70, 70) 14 (10, 40)
7 (62, 42) 15 (67, 32)
8 (85, 70)

Figure 2. Simulated indoor environment and deployment of 15
anchors.
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Changing the locations of these anchor nodes can
change RSSI measurements received at the mobile tar-
get. The deployment of anchor nodes is kept same dur-
ing training as well as testing of the proposed
TCGRNN localization architecture for the considered
indoor target tracking problem. So we believe that
changing anchor location deployment setup might not
have huge impact on the localization performance. The
total number of unknown target locations to be esti-
mated in this work is 35. The location estimations are
carried out using trilateration technique, GRNN algo-
rithm, and the proposed TCGRNN algorithm. Figure
3 illustrates the proposed TCGRNN architecture-based
L&T system.

The operational difference between the GRNN
architecture and TCGRNN architecture is input vector.
The input vector for GRNN architecture consists of
any four random RSSI measurements (see equation
(8)), whereas input vector for TCGRNN architecture
includes the same four random RSSI measurements,
and centroid coordinates of anchors which produced
those four RSSI measurements (see equation (9)). Thus,
the input vector dimensions for GRNN and TCGRNN
architectures are 4 and 8, respectively

Xi = RSSI1,RSSI2,RSSI3,RSSI4½ �, i= 1, 2, ::::75 ð8Þ

Xi = RSSI1,RSSI2,RSSI3,RSSI4, xT , yT ,C1,C2½ �,
i= 1, 2, ::::75

ð9Þ

where Xi is the ith input vector for GRNN architecture,
RSSI1 to RSSI4 is the four RSS obtained from random
four anchor nodes, xT and yT are the x and y

coordinates estimated by trilateration, and C1 and C2

are the x and y coordinates of centroid of four anchors.
Let us consider the coordinates of anchors who

generated RSSI1, RSSI2,RSSI3, and RSSI4 are (x1, y1),
(x2, y2), (x3, y3), and (x4, y4), respectively. Then C1

and C2 can be computed using coordinates of anchors
who generated RSSI1 to RSSI4 as given below in
equation (10)

C1 =
x1 + x2 + x3 + x4

4

� �
, C2 =

y1 + y2 + y3 + y4

4

� �

ð10Þ

The GRNN and TCGRNN architectures are trained
with the help of 75 sets of input vector (field measure-
ments) and corresponding output vector (actual 2D
location of target corresponding to those field measure-
ments) (see Figure 3). This training dataset is obtained
through one any random trial of target motion as
described by equations (11)–(16). Once the proposed
TCGRNN is trained, it is ready for any random input
vector generated during real-time target motion in the
online localization stage, whereas the trilateration tech-
nique does not need such training prior to its real-time
application. The Figure 3 is also applicable for GRNN-
based L&T system. To visualize GRNN-based L&T
system, all we have to replace TCGRNN architecture
box by GRNN box, and Xi in equation (9) by Xi in
equation (8). During target motion, target node receives
15 RSSI measurements from 15 anchor nodes for each
of the 35 target locations. Out of these 15 measure-
ments, three higher values of RSSI measurements are
utilized to estimate the target location in case of

Figure 3. System block diagram of TCGRNN-based target L&T system.
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trilateration, whereas the GRNN and TCGRNN work
with any four random RSSI measurements during
online estimation phase. The MATLAB simulations
are carried out on hp platform with Core i5, and 4 GB
RAM. The transmission power and communication
radius of node are assumed to be 1 mW and 50 m,
respectively.

The state of moving target at time instant k is
defined by the vector Xk =(xk , yk , _xk , _yk)

0, where xk and
yk specify the position, _xk and _yk specify the speed in x

and y directions, respectively, at kth time instance, and
is given by following equations

xk = xk�1 + _xk dt ð11Þ

yk = yk�1 + _yk dt ð12Þ

where dt is discretization time step between two succes-
sive time instants such that dt= k � (k � 1) and is kept
1 s. The target motion undergoes the variation in velo-
city during T seconds as given by equations (13)–(16).
In this work, T = 35 s

_xk = 2, _yk = 5, for 0\k\9 s ð13Þ
_xk = 5, _yk = 2, for 9 ł k ł 15 s ð14Þ

_xk = 0, _yk = 0, for 16 ł k ł 17 s ð15Þ
_xk = 2, _yk = � 3, for 18 ł k ł 35 s ð16Þ

To evaluate the localization performance of the pro-
posed TCGRNN algorithm, two parameters are con-
sidered namely, average localization error and root
mean square error (RMSE). For every kth time
instance, one target location is estimated. As there are
total 35 target locations and time for estimating one
location is 1 s, the total simulation period is T = 35s.
Therefore, k represents both location number as well as
time instance. For each time instance k, we get two val-
ues of localization error: one associated with x coordi-
nate estimate (x̂k � xk), and other with y coordinate
estimate (ŷk � yk). So the localization error for kth time
instance can be computed by averaging these two error
values. Then, the overall localization error (we named
it as average localization error) for total simulation
period T can be computed using equation (17). Lower
the values of these two parameters, high will be the tar-
get localization (or tracking) accuracy. In the corre-
sponding result figure, we get a value of coefficient of
correlation (R). R is a measure of correlation between
actual and estimated value. R varies from 21 to +1.
R= � 1 indicates inverse correlation between target
and output, whereas R= + 1 indicates a perfectly lin-
ear positive correlation. Unlike Jondhale and
Deshpande,20,21 we have also used R for performance
evaluation of all the considered techniques

Average localization error=
1

T

XT

k = 1

x̂k � xkð Þ+ ŷk � ykð Þ
2

ð17Þ

where (x̂k , ŷk) is the estimated target location for kth
time instance, (xk , yk) is the actual target location at kth
time instance

RMSEx =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXT

k = 1

x̂k � xkð Þ2

T

vuut ð18Þ

RMSEy =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXT

k = 1

ŷk � ykð Þ2

T

vuut ð19Þ

RMSEavg =
RMSEx +RMSEy

� �
2

ð20Þ

Discussion on results

To realize the real-time indoor environment, Xs(see
equation (1)) is varied in Case I (Xs ; N ( 3, 1 )), Case
II (Xs ; N ( 6, 1 )), and Case III (Xs ; N ( 9, 1 )). For
each of the simulation case, the target is assumed to
start from (10, 10) and stop at (97, 10). Numeric results
obtained in all the three cases are average of 50 simula-
tion trials (refer Tables 2–8).

� Case I: Xs ; N ( 3, 1 )

Figure 4 plots actual target track, and corresponding
location estimates obtained with trilateration, GRNN,
and TCGRNN methods. Here, black dark circles are
anchor nodes that continuously broadcast RF signal to
be received by mobile target node. The red square indi-
cates 35 actual target locations during its motion,
whereas blue plus, black plus, and green plus symbols
are the location estimations with trilateration, GRNN,
and the proposed TCGRNN architecture, respectively,
against these 35 actual target locations. The overall
(average) localization error in estimating x and y coor-
dinates of mobile target can be computed by taking
average of individual localization errors in estimating x

and y coordinates. The average localization error with
trilateration varies between 0 m and approximately
220 m, whereas that with GRNN and TCGRNN is
below 20 m (see Figure 5).

We want to highlight few important observations
regarding the result in Figure 4.

� For few locations, the estimation with
TCGRNN can be seen, but the corresponding
GRNN-based estimates are not visible. The
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Table 3. Comparison of estimations of sample target locations with trilateration, GRNN, and proposed TCGRNN.

Location
number

Actual
coordinate

Coordinates
estimated with
trilateration

Coordinates
estimated
with GRNN

Coordinates
estimated
with CGRNN

1 (10, 10) (4.60, 16.96) (10.49, 11.21) (12, 15)
8 (24, 45) (285.88, -128.54) (23.97, 44.45) (24, 45)
27 (79, 37) (83.10, 30.03) (74.63, 43.54) (79.70, 35.96)
35 (95, 13) (93.36, 24.09) (91.37, 18.44) (84.79, 28.31)

GRNN: Generalized Regression Neural Network; TCGRNN: Trilateration Centroid Generalized Regression Neural Network; CGRNN: Centroid

Generalized Regression Neural Network.

Table 4. Comparison of R values obtained with trilateration, GRNN, and proposed TCGRNN algorithms through linear regression.

Name of L&T
algorithm

R for actual x coordinate
and estimated x coordinate

R for actual y coordinate
and estimated y coordinate

GRNN 0.9877 0.95754
TCGRNN 0.98969 0.95591

GRNN: Generalized Regression Neural Network; TCGRNN: Trilateration Centroid Generalized Regression Neural Network; L&T: localization and

tracking.

Table 2. Comparison of RMSE and average localization errors with trilateration, GRNN, and proposed TCGRNN.

Name of localization algorithm RMSE for x coordinate RMSE for y coordinate Average RMSE Average localization error

Trilateration 44.3057 30.9665 37.6361 10.6564
GRNN 5.0493 5.6000 5.3247 4.4338
TCGRNN 4.5488 5.2766 4.9127 3.3949

RMSE: root mean square error; GRNN: Generalized Regression Neural Network; TCGRNN: Trilateration Centroid Generalized Regression Neural

Network.

Table 5. Comparison of RMSE and average localization errors with trilateration, GRNN, and proposed TCGRNN.

Name of localization algorithm RMSE for x coordinate RMSE for y coordinate Average RMSE Average localization error

Trilateration 49.3993 32.7464 41.0728 19.3160
GRNN 9.4868 12.6859 11.0864 8.7478
TCGRNN 8.1011 9.8501 8.9756 6.3698

RMSE: root mean square error; GRNN: Generalized Regression Neural Network; TCGRNN: Trilateration Centroid Generalized Regression Neural

Network.

Table 6. Comparison of R values obtained with trilateration, GRNN, and proposed TCGRNN algorithms through linear regression.

Name of L&T algorithm R for actual x coordinate and
estimated x coordinate

R for actual y coordinate
and estimated y coordinate

GRNN 0.93444 0.72989
TCGRNN 0.96099 0.82586

GRNN: Generalized Regression Neural Network; TCGRNN: Trilateration Centroid Generalized Regression Neural Network; L&T: localization and

tracking.
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reason behind this is that the estimations with
GRNN and TCGRNN are almost the same. To
clarify this observation, kindly check estimation
results of GRNN and TCGRNN for target loca-
tion 8 (24, 45) (refer Table 3). For location 8, the
estimation results with GRNN and TCGRNN
are almost the same and are (23.97, 44.45) and
(24, 45), respectively. For remaining locations,
the results with trilateration, GRNN, and
TCGRNN are distinct (for instance, kindly refer

estimation results for location 1, location 27,
and location 35 (see Table 3)).

� Few location estimates of target with trilatera-
tion are not seen. The reason behind this is that
the location estimates obtained with trilateration
are out of the considered WSN area. For loca-
tion 8 (24, 45), the location estimate obtained
with trilateration is (285.88, 2128.54) (refer
Table 3).

Figures 6 and 7 plot regression of x and y coordi-
nates of actual target locations with corresponding x and
y estimations of GRNN and TCGRNN, respectively (see

Figure 4. Case I: Comparison of target location estimations
using trilateration, GRNN, and TCGRNN.

Figure 5. Case I: Plot of average localization errors with
trilateration, GRNN, and TCGRNN.

Table 7. Comparison of RMSE and average localization errors with trilateration, GRNN, and proposed TCGRNN.

Name of localization algorithm RMSE for x coordinate RMSE for y coordinate Average RMSE Average localization error

Trilateration 155.1363 175.6030 165.3697 41.9073
GRNN 11.9235 14.6204 13.2720 9.6411
TCGRNN 9.5537 10.8687 10.2112 8.0577

RMSE: root mean square error; GRNN: Generalized Regression Neural Network; TCGRNN: Trilateration Centroid Generalized Regression Neural

Network.

Table 8. Comparison of R values obtained with Trilateration, GRNN, and proposed TCGRNN algorithms through linear
regression.

Name of L&T
algorithm

R for actual x coordinate
and estimated x coordinate

R for actual y coordinate and
estimated y coordinate

GRNN 0.9122 0.64512
TCGRNN 0.95141 0.87218

GRNN: Generalized Regression Neural Network; TCGRNN: Trilateration Centroid Generalized Regression Neural Network; L&T: localization and

tracking.
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corresponding R values in Table 4). It can be seen that the
R values obtained with the proposed TCGRNN algorithm
are higher as compared to that with other two algorithms.
Thus, results in Case I indicate that the location estima-
tion with TCGRNN, GRNN, and trilateration is best,
moderate, and poor, respectively.

� Case II: Xs ; N ( 6, 1 )

Figure 8 illustrates the comparison of location esti-
mations with TCGRNN, GRNN, and trilateration
techniques. By comparing Figure 8 (Case II) with
Figure 4 (Case I), one can conclude that as the mea-
surement noise in RSSI is doubled, the localization
errors are also increased. However, significant rise in
localization error can be noted down in case of

trilateration only (see Table 5). The % rise in localiza-
tion error with TCGRNN is lowest as compared to
that with trilateration and GRNN. Figure 9 plots aver-
age localization errors with trilateration GRNN and
TCGRNN. From Figure 9, we can see that the highest
localization error with the traditional trilateration,
GRNN, and the proposed TCGRNN is approximately
200, 25, and 22 m, respectively, whereas lowest locali-
zation error with the traditional trilateration, GRNN,
and the proposed TCGRNN is approximately 4, 3, and
0 m, respectively. Thus, the proposed TCGRNN archi-
tecture outperforms the rest of the other two tech-
niques. Figures 10 and 11 plot regression of x and y

coordinates of actual target locations with correspond-
ing x and y estimations of GRNN and TCGRNN,
respectively. It can be seen that the R values obtained

Figure 6. Case I: Comparison of regression in x coordinate estimation for GRNN and TCGRNN.

Figure 7. Case I: Comparison of regression in y coordinate estimation for GRNN and TCGRNN.
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Figure 10. Case II: Comparison of regression in x coordinate estimation for GRNN and TCGRNN.

Figure 11. Case II: Comparison of regression in y coordinate estimation for GRNN and TCGRNN.

Figure 8. Case II: Comparison of target location estimations
using trilateration, GRNN, and TCGRNN.

Figure 9. Case II: Plot of average localization errors with
trilateration, GRNN, and TCGRNN.
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with the proposed TCGRNN algorithm for x and y

estimations are better than that obtained with GRNN
algorithm (see Table 6).

� Case III: Xs ; N ( 9, 1 )

Figures 12 and 13 illustrate the comparison of loca-
tion estimations and average localization errors with
TCGRNN, GRNN, and trilateration techniques,
respectively, whereas Figures 14 and 15 show the com-
parison of regression for GRNN and TCGRNN in x

and y coordinate estimation, respectively (for numeric

values, see Table 8). Therefore, as the measurement
noise is increased by thrice in Case III as compared to
that in Case I, a significant rise in estimation errors is
observed in Case III for all the three implementations.
However, still the % rise in localization error with
TCGRNN is lowest as compared to that with trilatera-
tion and GRNN (see Tables 7 and 8). The average
localization error with trilateration varies between 0 m
and approximately 1000 m (see Figure 13). Thus, the
traditional trilateration technique completely fails to
provide acceptable localization performance in the con-
text of very high environmental dynamicity (i.e. very
high measurement noise in RSSI readings).

Figure 12. Case III: Comparison of target location estimations
using trilateration, GRNN, and TCGRNN.

Figure 13. Case III: Plot of average localization errors with
trilateration, GRNN, and TCGRNN.

Figure 14. Case III: Comparison of regression in x coordinate estimation for GRNN and TCGRNN.
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Speaking about the efficacy of the proposed
TCGRNN algorithm, although it ranges in the scale of
3–10 m in the three cases, it is certainly far better than
the traditional trilateration technique. In addition, the
localization accuracy of the proposed TCGRNN archi-
tecture is also better than the GRNN architecture in all
the investigated cases (see Tables 2–8). From these
numeric results, it is clearly observed that as the mea-
surement noise in RSSI goes beyond 6 dB, the tradi-
tional trilateration technique yields worst localization
results (i.e. average RMSE = 165.3697, and average
localization error = 41.9073) (see Table 7) as com-
pared to GRNN and TCGRNN. Thus, the traditional
trilateration technique is not at all recommended for
highly dynamic RF environment with measurement
noise in RSSI greater than 6 dB. Augmenting four
extra parameters (i.e. centroid and trilateration-based
estimation) in input vector for TCGRNN architecture
certainly improves the target localization performance
as compared to that with plain GRNN architecture.

Conclusion and future scope

This article presents a novel improved trilateration
technique based on TCGRNN architecture to deal with
the issues of dynamic RF channel and non-linear sys-
tem dynamics to solve the problem of indoor L&T of a
mobile target. To realize uncertainty in the noise in
RSSI measurements, the normal random variable para-
meter in LNSM path loss model is varied from 3–9 dB
in the steps of 3 dB during simulations (Case I, Case II,
and Case III). The extensive simulation results prove
that the proposed improved trilateration-based
TCGRNN architecture demonstrates superior localiza-
tion performance as compared to trilateration and even

GRNN architecture. Looking at localization from
another perspective, we know that depending on the
application in hand, the requirement of localization
accuracy may change. For example, if it is a marketing/
advertisement case, then roughly a 5–10 m should serve
the purpose. On the other hand, for industrial applica-
tions, localization accuracy below 1 m may be required.
Yes, we believe that the localization accuracy for the
proposed TCGRNN architecture-based algorithm can
be improved further by fusing the results with some
more advanced technique such as Kalman filter or its
variants such as Extended Kalman Filter (EKF) or
Unscented Kalman Filter (UKF). Thus, the proposed
TCGRNN architecture-based localization system is
useful in localization applications wherein the demand
of localization accuracy is in the range of 3–8 m. The
proposed TCGRNN architecture can also be applied
to multitarget tracking scenario in indoor environment.
We believe that fusing the proposed TCGRNN archi-
tecture with KF framework may further refine localiza-
tion accuracy to the scale of 1 m, and it even can solve
the problem of 3D localization of the target.

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest with
respect to the research, authorship, and/or publication of this
article.

Funding

The author(s) received no financial support for the research,
authorship, and/or publication of this article.

ORCID iDs

Satish R Jondhale https://orcid.org/0000-0003-2908-5610

Figure 15. Case III: Comparison of regression in y coordinate estimation for GRNN and TCGRNN.

Jondhale et al. 13

https://orcid.org/0000-0003-2908-5610


Jaime Lloret https://orcid.org/0000-0002-0862-0533

References

1. Viani F, Rocca P, Oliveri G, et al. Localization, tracking,

and imaging of targets in wireless sensor networks: an

invited review. Radio Sci 2011; 46: 1–12.
2. Patwari N, Ash JN, Kyperountas S, et al. Locating the

nodes: cooperative localization in wireless sensor net-

works. IEEE Signal Proc Mag 2005; 22: 54–69.
3. Higgins MB. Heighting with GPS: possibilities and lim-

itations. Comm Int Fed Surv 1999; 5: 1–10.
4. Bin Tariq Z, Cheema DM, Kamran MZ, et al. Non-

GPS positioning systems. ACM Comput Surv 2017; 50:

1–34.
5. Jondhale SR and Deshpande RS. Modified Kalman fil-

tering framework based real time target tracking against

environmental dynamicity in wireless sensor networks.

Ad Hoc Sens Wirel Ne 2018; 40: 119–143.
6. Jondhale S and Deshpande R. Self recurrent neural net-

work based target tracking in wireless sensor network

using state observer. Int J Sens Wirel Commun Control

2019; 9: 165–178.
7. Jondhale SR and Deshpande RS. Tracking target with

constant acceleration motion using Kalman filtering. In:

2018 international conference on advances in communica-

tion and computing technology (ICACCT), Sangamner,

India, 8–9 February 2018. New York: IEEE.
8. Jondhale SR, Deshpande RS, Walke SM, et al. Issues

and challenges in RSSI based target localization and

tracking in wireless sensor networks. In: 2016 interna-

tional conference on automatic control and dynamic opti-

mization techniques (ICACDOT), Pune, India, 9–10

September 2016. New York: IEEE.
9. Bouchard K, Fortin-Simard D, Gaboury S, et al. Accu-

rate trilateration for passive RFID localization in smart

homes. Int J Wirel Inf Netw 2014; 21(1): 32–47.

10. Li J, Yue X, Chen J, et al. A novel robust trilateration

method applied to ultra-wide bandwidth location sys-

tems. Sensors 2017; 17(4): 795.
11. Yan X, Luo Q, Yang Y, et al. ITL-MEPOSA: improved

trilateration localization with minimum uncertainty pro-

pagation and optimized selection of anchor nodes for

wireless sensor networks. IEEE Access 2019; 7:

53136–53146.

12. Mari SK, Kiong LC and Loong HK. A hybrid trilatera-

tion and fingerprinting approach for indoor localization

based on WiFi. In: 2018 fourth international conference

on advances in computing, communication & automation

(ICACCA), Subang Jaya, Malaysia, 26–28 October

2018. New York: IEEE.
13. Barsocchi P, Lenzi S, Chessa S, et al. Virtual calibration

for RSSI-based indoor localization with IEEE 802.15.4.

In: 2009 IEEE international conference on communica-

tions, Dresden, 14–18 June 2009. New York: IEEE.
14. Crane P, Huang Z and Zhang H. Emender: signal filter

for trilateration based indoor localization. In: 2016 IEEE

27th annual international symposium on personal, indoor,

and mobile radio communications (PIMRC), Valencia, 4–

8 September 2016. New York: IEEE.
15. Phoemphon S, So-In C and Leelathakul N. Fuzzy

weighted centroid localization with virtual node approxi-

mation in wireless sensor networks. IEEE Internet Things

J 2018; 5(6): 4728–4752.
16. Zhang Z, Zhang C, Li M, et al. Target positioning based

on particle centroid drift in large-scale WSNs. IEEE

Access 2020; 8: 127709–127719.
17. Jondhale SR, Shubair R, Labade RP, et al. Application

of supervised learning approach for target localization in

wireless sensor network. In: Singh P, Bhargava B, Papr-

zycki M, et al. (eds) Handbook of wireless sensor net-

works: issues and challenges in current scenario’s, vol.

1132. Cham: Springer, 2020, pp.493–519.
18. Jondhale SR, Sharma M, Maheswar R, et al. Compari-

son of neural network training functions for RSSI

based indoor localization problem in WSN. In: Singh P,

Bhargava B, Paprzycki M, et al. (eds) Handbook of wire-

less sensor networks: issues and challenges in current

scenario’s, vol. 1132. Cham: Springer, 2020, pp.112–133.
19. Zhou M, Li Y, Tahir MJ, et al. Integrated statistical test

of signal distributions and access point contributions for

Wi-Fi indoor localization. IEEE Trans Veh Technol 2021;

70(5): 5057–5070.
20. Jondhale SR and Deshpande RS. GRNN and KF frame-

work based real time target tracking using PSOC BLE

and smartphone. Ad Hoc Netw 2019; 84: 19–28.
21. Jondhale SR and Deshpande RS. Kalman filtering

framework-based real time target tracking in wireless sen-

sor networks using generalized regression neural net-

works. IEEE Sens J 2019; 19(1): 224–233.

14 International Journal of Distributed Sensor Networks

https://orcid.org/0000-0002-0862-0533

