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Abstract: Source separation algorithms based on spatial cues generally face two major problems. The 
first one is their general performance degradation in reverberant environments and the second is their 
inability to differentiate closely located sources due to similarity of their spatial cues. The latter problem 
gets amplified in highly reverberant environments as reverberations have a distorting effect on spatial 
cues. In this paper, we have proposed a separation algorithm, in which inside an enclosure, the 
distortions due to reverberations in a spatial cue based source separation algorithm namely model-based 
expectation-maximization source separation and localization (MESSL) are minimized by using the 
Precedence effect. The Precedence effect acts as a gatekeeper which restricts the reverberations entering 
the separation system resulting in its improved separation performance. And this effect is automatically 
transformed into the Clifton effect to deal with the dynamic acoustic conditions.  Our proposed algorithm 
has shown improved performance over MESSL in all kinds of reverberant conditions including closely 
located sources. On average, 22.55% improvement in SDR (signal to distortion ratio) and 15% in PESQ 
(perceptual evaluation of speech quality) is observed by using the Clifton effect to tackle dynamic 
reverberant conditions.

Keywords: blind source separation; reverberation; dynamic acoustic conditions; Precedence effect; 
Clifton effect

________________________________

*Correpondance to: Jaime Lloret, Universitat Politècnica de València, Spain.

†Email: jlloret@dcom.upv.es

Page 1 of 42 International Journal of Communication Systems

mailto:saniagul@hotmail.com
mailto:salmankhan@uetpeshawar.edu.pk
mailto:waqar.shah@uetpeshawar.edu.pk


2

I. Introduction
Source separation systems have been in use for long in many areas e.g. image processing, entertainment, 
medical, defence and communication systems to separate the signal of interest from unwanted signals [1]. 
In the field of communication, the use of source separation is mainly focused on speech enhancement 
(e.g. in hands free communication, Voice over IP, hearing aids, local and long distance communication 
[2]) and speech recognition (e.g. digital assistants, voice signature for banking transactions on call [3], 
security system etc). While machines are far from being excellent, human beings have an unmatched 
capability of sound source separation. They can easily separate sounds of their interest in the presence of 
other competing sounds (cocktail party problem (CPP) [4]). They desire to impart this capability to 
machines and the motivation behind it is to design better hearing aids, to design robust automatic speech 
recognition (ASR) systems, to transcribe old folk music and minutes of meeting from the available audio 
recordings, to improve quality of communication systems and multiple other everyday applications.

There are two approaches generally adopted for acoustic source separation. The first approach uses 
psychoacoustic techniques and the second approach uses purely mathematical techniques. These 
psychoacoustic techniques are grouped under the label computational auditory scene analysis (CASA) 
[5]. CASA refers to computational algorithms used for separating a sound of interest from the mixture by 
using psychophysical and perceptual mechanisms used by human beings to solve the CPP. CASA based 
approaches require just one or two mixtures to separate sources like human beings who require one or two 
mixtures collected at their ears to do the same task. However, listening with two ears has shown to 
improve intelligibility by approximately 5% as compared to listening with one ear in all types of acoustic 
conditions [6].

Human brain separates the sound sources by estimating their direction of arrival (DOA). The same 
technique is used in communication systems for the separating unknown wide band sources encountered 
in astronomy and unauthorized transmissions [7] and in smart antennas for enhancing the desired signal 
quality and reducing co channel interference [8]. Although there are many CASA based approaches 
utilizing the DOA for source separation, here we will focus on one of them i.e. MESSL.

MESSL [9] is a probabilistic time-frequency (TF) masking source separation system utilizing only two 
mixtures to separate many sources. Like human beings, in MESSL, the DOA of active sources is 
estimated from the two spatial cues, the i.e. interaural level difference (ILD) and the interaural time 
difference (ITD) (estimated from interaural phase difference (IPD)). MESSL uses the expectation 
maximization (EM) algorithm to cluster the spatial cues extracted from the mixture into the individual 
sources present inside the room. The EM algorithm is a two-step iterative process in which the process 
switches back and forth between expectation and maximization steps. After a number of iterations, best fit 
(maximum likelihood) parameters are estimated for each cluster. MESSL deals with the problem of 
reverberations present inside the mixture signal by introducing the concept of ‘Garbage Source’ (GS) in 
its model. Such a garbage source is a virtual source. All TF units that are not nearer to the mean values of 
ILD and ITD of any real source are allocated to the GS resulting in quality improvement of all the real 
sources present inside the room. However, there is a general trend of performance degradation in MESSL 
due to reverberations especially at small separation angles between the sources, due to distortion of spatial 
cues by such conditions.
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In the past, many attempts have been made to improve the performance of MESSL. In [10], the authors 
proposed Student’s t-distribution for IPD and ILD of each source resulting in improved performance over 
the original model using Gaussian distribution for these spatial cues. The heavy tailed t-distribution 
covers the outliers of non-stationary speech much better than the Gaussian distribution. In [11], the 
authors replaced the maximum likelihood estimation (MLE) clustering algorithm with variational 
Bayesian (VB) clustering, overcoming the problems of singularity and over-fitting associated with MLE 
algorithm and improving separation especially when sources are in close proximity. In [12] and [13], the 
authors used video in addition to audio mixtures to improve the source localization capability of MESSL 
while in [14]; they implemented spatial covariance in the EM algorithm in their previously proposed 
model of [13]. In [15] and [16], the authors in addition with audio and video, used a circular beamformer 
instead of the two microphone design of [12] to reduce the uncertainties in source localization. With the 
recent advancement in artificial neural networks (ANNs), many researchers have attempted to perform 
source separation using neural networks and found the results quite pleasing. In [17] and [18], 
beamforming and deep neural networks (DNN) are used for improving performance of MESSL. These 
systems use both the spectral and spatial cues for source separation. However these systems need more 
than two mixtures and a lot of training before they can successfully perform the source separation task.

In order to improve the performance of MESSL in a dynamic reverberant environment, in this paper we 
propose a method which restricts the reverberations entering MESSL by using the Clifton effect. The 
Clifton effect is defined as the dynamic component of the precedence effect which adapts the precedence 
effect to the changing acoustic conditions. The precedence effect [19] is an auditory mechanism that aids 
humans in localizing sounds in reverberant environments by giving more perceptual weight to the direct 
sound compared to the later reflections (reverberations). These late reflections distort the location 
information (spatial cues) present inside the sound and thus make it difficult for the listener to localize the 
source. This is not only true for sound signals, but for any indoor wireless communication, where non line 
of sight (NLOS) signals (reflections) can easily produce errors in location tracking [20]. It is found that, if 
the acoustic conditions are changed, the precedence effect adapts itself according to the new conditions in 
which the listener is situated. This adaptation is caused by the dynamic component of precedence effect, 
called as the Clifton effect. 

Our model is inspired from the work of [21] which models the Clifton effect in its source separation 
system. However, their model parameters do not adapt themselves automatically according to the 
changing acoustic conditions, so we can call it Pseudo-Clifton effect model. In [21], the speech band (50 
Hz to 8000 Hz) is divided into a fixed number of sub bands. Each sub-band is called a ‘channel’ or a 
‘frequency strand’. These channels are subjected to low pass filtering to suppress the reverberations. In 
[21], the number of frequency strands or channels over which low pass filtering is applied to filter out the 
rapid fluctuations caused by reverberations are fixed and the parameters of the low pass filter are adapted 
to match the changing acoustic conditions. Contrarily in our proposed model, the number of frequency 
strands over which low pass filtering is applied, is changed every time with the changing acoustic 
conditions while the parameters of the low pass filter are kept fixed. In [21], the interaural cues of 
individual sources are grouped on the basis of their common azimuth, while in our proposed model this 
grouping is done by using the EM algorithm. As already mentioned above the model of [21] cannot 
update its parameters automatically according to the changing acoustic conditions and needs manual up 
gradation of parameters when the acoustic conditions are changed. But the model parameters are adjusted 
automatically according to the changes in acoustic conditions in our proposed algorithm.
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The rest of the paper is organized as follows. In the following section, we will focus on the Clifton effect 
and its usefulness in dynamic acoustic conditions. We will give our proposed system overview in section 
III. Our algorithm is summarized in section IV. In section V, we will describe the experimental setup, the 
evaluation criteria and the comparison methods. We will present experimental results and comparison 
statistics of different models in section VI. We will compare our proposed algorithm with other 
algorithms in section VII and conclude the paper in section VIII.

II. Related Work
It is observed that source separation performance is improved if the speech mixtures are dereverberated 
before separation. A lot of research has been done so far in this regard. For example, the authors in [22] 
improved their source separation model proposed in [12], by dereverberating the audio mixtures by 
subtracting spectral contents of late reflections and in [23] by subtracting in cascade the spectral and the 
power contents of late reverberations from the speech mixtures. As our proposed model utilizes the 
Clifton effect, so we will put more focus here on those models which utilize this effect for deverberation 
of speech mixtures. 

The authors in [24] proposed a model for source separation which uses the Precedence effect or the law of 
first wave front to tackle the issue of reverberation. Their model inhibits the reverberations, using only the 
initial unaffected wave fronts for source separation. However, this model had fixed ‘inhibitory 
parameters’, which restricts its usefulness in all kinds of acoustic conditions.

So, in [21], the authors pointed out the need to change the parameters of the precedence effect model 
proposed in [24] with the changing acoustic conditions. Different rooms have different acoustic 
conditions e.g. different ITDGs (Initial Time Delay Gaps), DRRs (Direct to Reverberant Ratios) and 
RT60s (Reverberation Times). The authors proposed to use room-specific components (the inhibitory 
parameters: the inhibitory time constant (αp) and the inhibitory gain (G)) in the precedence effect model 
which would improve separation performance. Inhibitory time constant decides how early the inhibition 
must start after the onset and the inhibitory gain decides about the strength of inhibition. In the 
Precedence effect model proposed in [24], the default values of these parameters are G=1 and αp=15ms. 
In [21], the authors carried out experiments in five different rooms which they labeled “X”, “A”, “B”, “C” 
and “D”, all having different acoustic conditions and found the most optimum inhibitory parameters for 
each room (details in [21]).

The authors have not implemented the Clifton effect in its true sense, as their model parameters do not 
adapt to the changing acoustic conditions automatically as discussed in [21]. This restricts the model’s 
usefulness in all those applications which involve user mobility from one acoustic condition to another. 
The system performance degrades in such situations as the model parameters are not updated to the new 
conditions automatically and require manual settings according to the new conditions. In all such 
applications, a self-adapting model is required which can blindly extract the acoustic parameters of the 
room without any prior information and adjust its system parameters accordingly. Unfortunately, few 
datasets are available representing the neurophysiological mechanisms that are responsible for the 
automatic adaptation of the dynamic component of the precedence effect according to the acoustic 
conditions, although the authors in [25] agree that this effect is partially achieved via feedback from the 
higher auditory systems to peripheral auditory systems through the centrifugal pathways.  We will 
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therefore utilize this feedback concept in our proposed model to automatically adjust the parameters 
according to the dynamic acoustic conditions.

III. System Overview
Our proposed system consists of two main blocks connected in cascade with each other as shown in 
Figure 1. The front end consists of the de-reverberation block, which blocks the incoming echoes in 
dynamic reverberant conditions by utilizing the Clifton effect. The backend consists of the source 
separation block, which performs the speech separation task on the two mixtures that it receives from the 
de-reverberation block. We will term the proposed model CMESSL. In this acronym ‘C’ represents the 
Clifton effect and ‘MESSL’ represents model-based expectation-maximization source separation and 
localization algorithm from which the source separation block of our proposed model is inspired.

Assume that the number of active sources W present inside the room is known a priori and there are k 
microphones, recording the audio mixtures where k = {1, 2}. Each source si  is convolved with the room 
impulse response (RIR) hki that exists between the source si and the kth microphone and added together 
with other convolved sources to form mixture xk  at the kth  microphone. The process of mixture formation 
is shown in Figure 2 below and is given at the kth  microphone by equation (1) as:

𝒙𝒌(𝑡𝑠) =
𝑊

∑
𝑖 = 1

𝑠𝑖(𝑡𝑠) ∗ ℎ𝑘𝑖 (𝑡𝑠)                      (𝟏)

Source 
reconstruction 

Short-time Fourier 
transform of mixtures

Feedback 
signal 

 X2

    De-reverberation block

Channel 
summation 

Gammatone filter bank 

IS
Hilbert 
envelop 
εik

Low pass 
filter (hlp)

Subtraction
G

fc1

fcN

Phase 
alignment 
of channels

Classifier ILD and IPD 
of all TF units

Expectation-
maximization for 
TF units clustering

Source separation block

x1

x2

Figure 1: Block diagram of CMESSL, showing the application of the Clifton-effect on speech mixtures followed 
by source separation process
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where ‘*’represents the convolution operation and ts represents the sampling time index when the 
sampling frequency at which mixture samples are taken is fs. The assumption is made that except for the 
active W sources, there are no unidentified noise generators which are contributing to the mixtures.

s1(ts)
s2 (ts)

si (ts)

x1(ts) x2 (ts)

X1(ω, t) X2(ω, t)

STFT STFT

h11

h21
h12 h22

h2i h2i

The two mixtures are then entered the de-reverberation block where each mixture passes through the 
Gammatone Filter Bank (GTFB). It is a fourth-order filter bank [26] with each filter having impulse 
response in continuous time domain given by equation (2)

𝑔(𝑡) = 𝑡3e ―2πbtcos (2πf0t)u(t), t ≥ 0   ( 𝟐)

where f0 is the centre frequency, u(t) is the unit step function and b is the bandwidth parameter [21] and t 
represents continuous time. The purpose of the gammatone filter bank is to select the frequency strands or 
the channels over which low pass filtering will be applied later on. These channels are equally spaced on 
the Equivalent Rectangular Bandwidth (ERB) scale [27]. Number of channels (N) is the parameter 
providing Clifton-effect in our model. Each channel i which comes out of the GTFB is represented by ℋi,k 
where k is the mixture index. After this stage, the instantaneous Hilbert envelop εik(n) of each channel is 
extracted as in [21] and this envelope is passed through the Low Pass Filter (LPF) with impulse response 
hlp to create the inhibitory signal (IS) as given in equation (3):

𝐼𝑆(𝑛) =  ℎ𝑙𝑝 (𝑛) ∗  𝜀𝑖𝑘(𝑛)                              ( 𝟑)

where αp is inhibitory time constant, A is set to have unity gain at zero frequency, ‘*’ ℎ𝑙𝑝 = An𝑒
―

𝑛
𝛼𝑝, 

represents the convolution operation and n is the discrete time index. This inhibitory signal is afterwards 
multiplied by inhibitory gain factor G, and later subtracted from the corresponding GTFB channel ℋi,k to 
obtain the output channel  ri,k  as shown in equation (4):

𝑟𝑖,𝑘(𝑛) = [ℋ𝑖,𝑘(𝑛) ― 𝐺(𝐼𝑆(𝑛))] +                    (𝟒)

Figure 2: Signal notations. The two mixture signals are transformed to the time frequency domain X1(ω, 
t) and X2(ω, t) by STFT.
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The superscript “+” represents half wave rectification. The subtraction operation results in suppression of 
steady state portion of channel ri,k  leaving only the signal transients which contain localization cues of the 
source.  Finally, all channels corresponding to each mixture are phase-aligned and added together again 
creating two mixtures which will then enter the source separation block.

In the source separation block, the mixtures are first converted from the time domain to the time 
frequency (TF) domain by taking their STFT (Short Time Fourier Transform) as in (5):

𝑋𝑘(𝜔,𝑡) = ℱ(𝒙𝒌)                                         (𝟓)

Then the interaural spectrogram is obtained by taking the ratio of the two mixtures X1(ω, t) and X2(ω, t) at 
each TF point as shown in equation (6) below.

𝑋1(𝜔,𝑡)
𝑋2(𝜔,𝑡) = 10

𝛼(𝜔,𝑡)
20 𝑒𝑗𝜙(𝜔,𝑡)                          (𝟔)

where  is the ILD in dB and  is the observed IPD. IPD must lie in the region {-π, π} to avoid  𝛼(𝜔,𝑡) 𝜙(𝜔,𝑡)
spatial aliasing. We will use θGS

ΩΩ mode of MESSL [9] in our source separation block, in which both ILD 
and IPD are modeled as frequency dependent parameters and the Garbage Source (GS) is used to deal 
with reverberations. As given in [9], this mode performs the best among all possible modes of MESSL.  

The observed IPD values from the mixtures i.e.  at each TF point do not always map to correct ∠
𝑋1(𝜔,𝑡)
𝑋2(𝜔,𝑡)

ITD due to spatial aliasing. So a top down approach is used for the calculation of ITD, where IPD is 
estimated by plugging in different values of delay (τ) in the range {-15:0.5:+15} samples. The τ which 
produces the closest match to the observed IPD is selected. However, it is required that the delay (τ) and 
the length of RIR must be smaller than the STFT frame length. Any portion of RIR above the STFT 
frame length would be treated as noise.

The phase residual error  is defined as the difference between the observed IPD and estimated IPD and 𝜙
given in equation (7) as:

𝜙 = ∠
𝑋1(𝜔,𝑡)𝑒 ―𝑗𝜔𝑡

𝑋2(𝜔,𝑡)                                       (𝟕)

lies in the interval {-π, π}. Both ILD and IPD residual are modeled as normal distributions. Let ƍ(ω) 𝜙 
and η2(ω) be the mean and variance of ILD(α) and ξ(ω) and σ2(ω) be the mean and variance of IPD 
residual ( respectively. Then ILD and IPD models for each source si at each TF point are given in (8) 𝜙) 
and (9) as:

𝑝(𝛼(𝜔,𝑡)│ƍ𝑖(𝜔),𝜂𝑖
2(𝜔)) = Ɲ(𝛼(𝜔,𝑡)│ƍ𝑖(𝜔),𝜂𝑖

2(𝜔))                               (𝟖)

𝑝(𝜙(𝜔,𝑡;𝜏)│𝜉𝑖,𝜏(𝜔),𝜎𝑖,𝜏
2(𝜔)) = Ɲ(𝜙(𝜔,𝑡;𝜏)│𝜉𝑖,𝜏(𝜔),𝜎𝑖,𝜏

2(𝜔))                    (𝟗)

The subscripts with mean and variance symbols in equation (8) show that the ILD distribution parameters 
are dependent only on frequency ω, while those in equation (9) show that the IPD parameters are 
dependent on both frequency ω and delay τ. Implementing the correlation that is known to exist between 
ILD and ITD in the respective means of these distributions and assuming conditional independence of 
only their noisy part, the joint probability of ILD and IPD models is given in (10) as:
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where𝑝(𝛼(𝜔,𝑡),𝜙(𝜔,𝑡;𝜏)|𝜽) = Ɲ(𝛼(𝜔,𝑡)│ƍ𝑖(𝜔),𝜂𝑖
2(𝜔)).Ɲ(𝜙(𝜔,𝑡;𝜏)│𝜉𝑖,𝜏(𝜔),𝜎𝑖,𝜏

2(𝜔))                        (𝟏𝟎)

represents all model parameters for source si. ψi,τ  is the mixing  𝜽 = {ƍ𝑖(𝜔),𝜂𝑖
2(𝜔),𝜉𝑖,𝜏(𝜔),𝜎𝑖,𝜏

2(𝜔),𝜓𝑖,𝜏}
weight i.e. the proportion of the total TF points of mixture belonging to source si at delay τ in the 
Gaussian Mixture model which manifest itself due to mixing of many such Gaussian distributions 
belonging to different combinations of sources and delays. The log likelihood, given the observation  𝛉
over all TF points is given in (11) as:

𝐿(𝜽) = ∑
𝜔,𝑡

log 𝑝(𝜙(𝜔,𝑡),𝛼(𝜔,𝑡)│𝜽)          (11)

Marginalizing over all sources and all delays, the log likelihood function is given as in (12).

𝐿(𝜽) = ∑
𝜔,𝑡

log ∑
𝑖,𝜏

[Ɲ(𝛼(𝜔,𝑡)│ƍ𝑖(𝜔),𝜂𝑖
2(𝜔)).

Ɲ(𝜙(𝜔,𝑡;𝜏)│𝜉𝑖,𝜏(𝜔),𝜎𝑖,𝜏
2(𝜔))].𝜓𝑖,𝜏]            (𝟏𝟏2)

The Maximum Likelihood solution is given as in (13).

𝐿(𝜽) = 𝑚𝑎𝑥𝜃∑
𝜔,𝑡

log 𝑝(𝜙(𝜔,𝑡),𝛼(𝜔,𝑡)│𝜽)                  (13)

This solution is achieved by using the expectation maximization (EM) algorithm where the system 
switches back and forth between E and M step, until the maximum likelihood solution is obtained or the 
processor completes the pre-set number of iterations. In the E step, likelihood of each TF point belonging 
to source and delay  is given as in (14)𝑖 𝜏

𝑣𝑖,𝜏(𝜔) ∝ 𝜓𝑖,𝜏.Ɲ(𝛼(𝜔,𝑡)│ƍ𝑖(𝜔),𝜂𝑖
2(𝜔)).Ɲ(𝜙(𝜔,𝑡;𝜏)│𝜉𝑖,𝜏(𝜔),𝜎𝑖,𝜏

2(𝜔))       (14)

In the M step, new model parameters  are estimated from all TF points, weighted by their corresponding  𝜽
likelihood probabilities (calculated in E step) by the formulae given in (19) to (23) in [9]. At the end, the 
probabilistic mask for each source is formed as in (15)

𝑀𝑖(𝜔,𝑡) = ∑
𝜏
𝑣𝑖,𝜏                                                         (𝟏𝟐)

The desired source is extracted by applying this mask to the mixture and then inverse STFT is performed 
to get the time domain signal. The volume of sound is then adjusted according to the listener’s 
requirement.

The classifier block (outside the dotted blocks) performs the automation of the Clifton effect which is 
needed if a user is roaming in dynamic acoustic conditions. The details of its working are given in Section 
VI-C below.

IV. Algorithm Summary
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Our proposed model takes two mixtures collected at the microphones and de-reverberate individual 
channels of each mixture (selected by the gammatone filter bank (GTFB)), align and add them together to 
again create two mixtures which then enter the source sparation block. Here the spatial features are 
extracted from the mixtures which are then used to cluster the TF units of mixtures into individual sources 
by employing the EM algorithm.  Our proposed algorithm is summarized as given below. 

Input: Speech mixtures collected at two microphones.

Output: Separated speech sources.

1. Prepare the mixtures from the sources as given in equation (1) and depicted in Figure 2.
2. De-reverberate the mixtures by following the procedure given in equation (2)-(4) over the 

frequency strands selected by gammatone filter bank.  
3. Enter these de-reverberated mixtures in source separation block and convert them to time 

frequency (TF) domain by applying short time Fourier transform as given above in equation (5).
4. Use PHAT algorithm [28] for initialization of certain parameters and run the EM algorithm to 

achieve maximum likelihood parameters of each source 𝜽 = {ƍ𝑖(𝜔),𝜂𝑖
2(𝜔),𝜉𝑖,𝜏(𝜔),𝜎𝑖,𝜏

2(𝜔),𝜓𝑖,𝜏}
si.

5. This maximum likelihood solution is then used to create time frequency masks for each source as 
shown in equation (14) and (15) above.

6. Apply the mask on the mixture to retrieve the desired sources.

The flow chat of our proposed algorithm is given in Figure 3 below.

Input the 
mixtures 

De-reverberate the 
mixture 

Convert the de-
reverberated mixture 
into TF domain 

Initialization of 
individual source 
parameters

Apply EM algorithm to 
calculate the likelihood of 
every TF point belonging 
to each source si and 
then update the 
parameters of all sources

Specified 
number of 
EM iterations 
done?

Calculate the TF 
mask for each 
source

Apply the masks over 
the mixture to 
extract the individual 
sources.

Convert the sources 
from TF to time 
domain

Start

ENDYes

No

Figure 3: Flow Chart of our proposed algorithm
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V. Experimental Evaluation Parameters
We will evaluate the performance of our proposed algorithm in two main sets of experiments. In the first 
experiment, separation performance of our proposed algorithm is compared with three other speech 
separation algorithms with varying separation angles. In the second experiment, the effect of applying the 
Clifton effect on a spatial cue based source separation algorithm at small angles is investigated. Both sets 
of experiments are performed under real room impulse responses. And finally, the automatic adaptation 
procedure, according to the acoustic conditions is discussed. 

A brief detail of the experimental set-up including room layout, data set, room impulse responses (RIRs), 
evaluation metrics, model parameters and overview of different algorithms used in our experiments is 
given below.

A. Room Layout

We perform our experiments in six different rooms listed in Table 1. According to the room impulse 
responses (RIRs) used in our experiments, our equipment setup can be visualized as given in Figure 4. 
The distance between the two microphones is 0.14 m (equal to the average distance between two human 
ears) and the radial distance between the centre of microphones and each source is 1.5m in rooms {X, A, 
B, C, D} [21] and 1m in room {S} [29]. We perform the experiments with two sources in each room; one 
is target, the other interferer. So we are designing the solution for ‘determined or square case’ de-mixing 
problem where the number of simultaneous sources is equal to the number of microphones [30]. Like all 
other source separation systems, performance will degrade by increasing the number of sources due to 
decline of sparseness [31] and closeness of sources.

B. Dataset

Each speech mixture is generated by using two sources randomly selected from the TIMIT corpus [32]. 
This corpus contains 6300 sentences, with 10 sentences spoken by each of 630 Native American English 
speakers. The sources are selected carefully so that the mixtures consists of all the three possible 
combinations i.e. male-male, male-female and female-female. The sources are cropped to an equal length 

  M
icrophones

Interferer

Target
00

900

Figure 4: The room layout showing one of the approximate positions of the sources and the sensors.
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of 2.5 s to avoid the variable silence period of each speaker at the end of the sentence. At each angular 
separation of target and interferer, five mixtures are separated and the results are averaged. The mixture at 
each microphone is generated by first convolving each source signal separately with the room impulse 
response (RIR) that exists between the microphone and that source, and later adding the convolved 
sources. 

C. Real Room Impulse Responses (Real RIRs)

We will use the RIRs of the rooms given in Table 1. TheRT60s of these rooms are in the range {0, 1} 
seconds, since these RT60s are representative of most of the real world acoustic conditions. The RIRs of 
rooms {X, A, B, C, D} were captured by keeping the distance of 1.5 m between the loudspeaker and 
HATS (Head and Torso Simulator) (details in [21]). And the RIRs of room S are recorded by keeping 
distance of 1m between the KEMAR (Knowles Electronic Manikin for Acoustic Research) dummy head 
and the loudspeaker (details in [29]). We will only use the RIRs of room S recorded in the centre of room.

D. Evaluation Criteria

We will use two objective evaluation metrics to compare our model performance with other models. 
These are signal-to-distortion ratio (SDR) [33] and Perceptual Evaluation of Speech Quality (PESQ) [34].

SDR measures the overall signal distortion in decibels and PESQ measures the quality of separated 
speech as perceived by the listener and has a value range between -0.5 to 4.5 (the higher, the better).

E. Model Parameters
Before taking readings in each room, the number of channels or frequency strands N in gammatone filter 
bank in the de-reverberation block of our proposed model needs to be adjusted according to the acoustic 
conditions. All values of N ranging from 2 to 32 are tested and the most optimum values of N providing 
the best separation results in each room are listed in Table 1.

Table 1: Optimum values for number of channels (N) in Gammatone Filter Bank in each room.

Rooms RT60(seconds) Number of channels (N)
X 0 10
A 0.32 8
B 0.47 6
C 0.68 6
D 0.89 6
S 0.565 5

However, as already mentioned, there is no need to change the inhibitory parameters in each room in our 
proposed model and they are kept at their default values (G=1 and αp= 15ms). The value of N is high for 
rooms having lower values of RT60s and vice-versa. In highly reverberant situations, keeping a large value 
of N would cause additional distortion of spatial cues (which are already highly devastated due to echoes) 
by the low pass filtering to be applied on now more number of channels, resulting in increased 
degradation in performance. On the other hand, reducing the number of channels in filter bank below N 
specified for each room in Table 1 would cause insufficient cleaning of reverberations, again causing 
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decline in performance. The STFT parameters used in the source separation block of our proposed model 
are summarized in Table 2.

Table 2: STFT parameters of CMESSL

Sampling frequency 16 kHz
STFT frame length 1024 samples
Hop size 256 samples
Velocity of sound 343 m/s
Source signal duration 2.5 s

F. Overview Of Competing Algorithms

We will evaluate the performance of our proposed model CMESSL by comparing its results with three 
other time-frequency based source separation algorithms in [35], [21] and [9]. The model proposed in 
[35] is called Degenerate Un-mixing Estimation Technique (DUET). It is a binary time-frequency (TF) 
masking system, which assumes W-Disjoint Orthogonality of sources present inside the mixture. It can 
separate any number of speech sources with only two mixtures. The TF points of mixtures are clustered 
on the basis of attenuation and delay at each point.  This system is designed for source separation in 
anechoic environment. Its performance degrades rapidly in presence of echoes.

The second model proposed in [21] is the Clifton source separation model which also requires only two 
mixtures to separate many sources. It is again a binary TF masking system which uses the Clifton effect 
(although not in its true sense as the system requires manual adjustment for any change in acoustic 
conditions) to deal with reverberations. It then performs cross-correlation of the two de-reverberated 
mixtures to estimate the ITD of each source.  This ITD is mapped to corresponding azimuth by lookup 
table. ILD is calculated from the envelopes of the two de-reverberated mixtures and is used to dropout 
those TF units which are dominated by noise or reverberations. We will term this model CLIFTON in our 
future discussion.

The third method proposed in [9] is MESSL. It is a probabilistic time-frequency source separation model 
requiring only two mixtures to separate the sources. Its basic principle of working is already given in 
Section I. In this paper, we will use θΩΩ

GS mode of MESSL, where the subscript ‘ΩΩ’ denotes that both 
ILD and ITD models of each source are frequency-dependent and the superscript ‘GS’ shows that garbage 
source is activated. We have used the term MESSL to refer to this model in our entire discussion.

VI. Experimentation and Results

A. CASE 1: Comparison with other algorithms
In this experiment, performance of four systems namely CMESSL, MESSL, CLIFTON and DUET are 
compared in all the rooms mentioned in Table 1. The target source is fixed at 0o with respect to the 
perpendicular bisector of the axis passing through the microphones and the interferer is moving in an arc 
around the microphones with target-interferer angular separation starting from 150, incrementing in step 
size of 150 and reaching the maximum at 900 as depicted in Figure 4 above.

The results are given in Figures 5 to 10 below.
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Figure 5: Comparison of algorithms in Room X with RT60 of 0ms.
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Figure 6: Comparison of algorithms in Room A with RT60 of 320ms.
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Figure 7: Comparison of algorithms in Room B with RT60 of 470ms.
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Figure 8: Comparison of algorithms in Room C with RT60 of 680ms.
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Figure 9: Comparison of algorithms in Room D with RT60 of 890ms.
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Figure 10: Comparison of algorithms in Room S with RT60 of 565ms.
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Figure 5 shows the results of comparing our proposed algorithm CMESSL with other algorithms in dry 
chamber (RT60 = 0ms). Although our proposed model CMESSL shows improvement over other competing 
algorithms yet this improvement is not substantial as there are no echoes in the room which needs to be 
filtered out so the output is almost equal to that of MESSL. DUET performance is also good in such 
situation as it is designed specifically for anechoic conditions. While the performance of CLIFTON 
model was good at smaller separations, it declines slightly at larger separations. 

Figure 6 depicts the comparative result in room A where there are low reverberations (RT60 = 320 ms). As 
there are reverberations so here our models start showing its potential by suppressing the echoes which 
may be detrimental to source separation performance. In such conditions, our proposed model gives an 
average SDR of 8.37 dB which is 1.633 dB higher than MESSL, 7.94 dB higher than CLIFTON and 7.16 
dB higher than DUET. Likewise, in terms of PESQ, our proposed model has an average of 1.25, which is 
0.166, 0.38 and 0.34 points higher than MESSL, CLIFTON and DUET respectively.

Figure 7 shows the results in room B where environment can be regarded as medium reverberant (RT60 = 
470 ms). In terms of SDR, again our proposed algorithms improves SDR and PESQ at almost all 
separation angles, while the performance of CLIFTON shows major drop after the source-interferer 
separation increases beyond 45o.

Figure 8 shows the results in room C which also comes under the medium echoic conditions (RT60 = 680 
ms). In this room the most notable behavior is that of CLIFTON model which shows a zigzag rising trend 
in terms of SDR and continuous rise in terms of PESQ for increasing separations.

Figure 9 shows the comparison in room D which is the most difficult situation to handle by source 
separation algorithms due to presence of echoes which continue to interfere with direct path signal for 
much longer durations as the echo die-out time is very large (RT60  = 890 ms). Even in such situations, our 
proposed model out performs the other three algorithms both in terms of SDR and PESQ. Its average 
SDR in room D is 3.51 dB which is 1.02 dB, 3.24 dB and 4.98 dB higher than MESSL, CLIFTON and 
DUET respectively. And in terms of PESQ, our proposed model has an average of 1.8, which is 0.5, 1.17 
and 1.03 points higher than MESSL, CLIFTON and DUET respectively.

Figure 10 shows the results in room S (RT60 = 565 ms). As clear from the figure our proposed model is 
better than the rest of algorithms under consideration. The average SDR of our proposed model is 8.93 dB 
which is 0.79 dB, 8.89 dB and 7.73 dB higher than MESSL, CLIFTON and DUET respectively and our 
model’s average PESQ is 1.44 which is 0.08, 0.46 and 0.47 points higher than the above three mentioned 
models respectively.

The results above indicate that our proposed model’s performance is the best in all kinds of acoustic 
conditions both in terms of SDR and PESQ. It gives substantial improvement over all other competing 
algorithms including its strongest competitor MESSL. 

CLIFTON shows good performance at small separation angles but its performance drops down with 
increasing separation angles in all the rooms except room C. For example, in all rooms except room C, 
the average SDR is 3.516 dB higher at the first three smaller angles  (15, 30 and 45 degrees), than the 
average SDR at three larger angles (45, 60 and 90 degrees). So, a general conclusion can be made that the 
strength of CLIFTON model is its better performance at small separation angles in almost every acoustic 
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condition. This is because this model uses cross correlation between the two mixtures to estimate the ITD 
of active sources which reduces as the separation between the sources increases resulting in performance 
decline at larger separation angles.

In contrast, MESSL shows better performance at larger separation angles than at the smaller ones in all 
the rooms as instead of cross correlation between mixtures it uses PHAT algorithm which is a more 
accurate source locator at separations larger than 10o. For example, its average SDR in all six rooms at the 
three smaller angles i.e.  15, 30 and 45 degrees is 1.7 dB higher than the SDR at the three larger angles 
mentioned above. So, the strength of MESSL is its better performance at large separation angles in all 
types of acoustic conditions.

DUET is the worst performer among all algorithms as it faces the problems of spatial aliasing and 
reverberations, the conditions for which it was not designed. The SDR drops below 2 dB as soon as the 
RT60 rises above 0 ms and even slides down below 0 dB in highly reverberant conditions of room C and 
D.

So, we consider DUET as the baseline and measure the overall improvement achieved by other 
algorithms with reference to DUET. The results of improvement of all algorithms over DUET in each 
room are given in Figure 11 below which indicates the supremacy of CMESSL over all algorithms under 
consideration, in all kinds of acoustic conditions.
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Figure 11: Relative improvement of different models over DUET

B. CASE B: Effect of using Clifton effect with MESSL at small separation angles
In this experiment, we will compare the performance of CMESSL with MESSL at small separation 
angles. As we do not have RIRs of room S at small separation angles of 50 and 100, so we will not 
consider room S in this experiment. We will compare the two algorithms at target-interferer separation 
angles of 50  and 100. The results under different acoustic conditions are given in figure 12 to figure 16 
below.
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Figure 12: Comparison of MESSL and CMESSL at small separations in Room X (RT60 = 0s)

5 10 15
-4

-2

0

2

4

6

8

Angles (degrees)

S
D

R
 (d

B
)

RT60=0.32s (ROOM A )

5 10 15
0.9

1

1.1

1.2

1.3

1.4

1.5

Angles (degrees)

P
E

S
Q

CMESSL
MESSL

Figure 13: Comparison of MESSL and CMESSL at small separations in Room A (RT60 = 0.32s)
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Figure 14: Comparison of MESSL and CMESSL at small separations in Room B (RT60 = 0.47s)
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Figure 15: Comparison of MESSL and CMESSL at small separations in Room C (RT60 = 0.68s)
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Figure 16: Comparison of MESSL and CMESSL at small separations in Room D (RT60 = 0.89s)

These results show an average improvement of 43% in SDR and 20% in PESQ at 50 separations and an 
improvement of 146 % in SDR and 12% in PESQ at 100 separations in all the rooms listed in Table 1 
above, excluding the room S.

So, even at smaller separations, our model out-performs MESSL in all types of acoustic conditions 
proving our supposition that implementing the Clifton effect in dynamic acoustic conditions for a spatial 
cue based source separation system will improve its separation performance for sources in close 
proximity.

C. CASE C: Automation Process

As pointed out by [21], the system parameters must adapt themselves with the changing acoustic 
condition to enable user mobility. So, to enable self-optimization system, we design the automation 
process, which will work for the rooms in [21]. To adjust the number of channels in gammatone filter 
bank according to the current acoustic conditions, we need to first find out the RT60 of the room. Although 
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the algorithm in [36] can estimate the room acoustic conditions directly from the individual sources 
without any prior training, but there are three problems with this algorithm. Firstly, it requires a long 
duration signal (at least one minute) for accurate RT60 estimation, secondly it works fine for individual 
source but fails for mixtures which contain two or more sources and thirdly it cannot estimate RT60s 
below 0.2s.

In our proposed model, the values of SDR (Signal to Distortion Ratio) and PESQ (Perceptual evaluation 
of Speech Quality) of the separated sources are heavily dependent on the room in which the separation is 
being carried out. So, the SDR and PESQ values can be used as the discriminating features which will 
decide the class of a test sample. 

The classification process consists of two phases; the training phase and the testing phase. In the training 
phase, the number of channels (N) in the Gammatone Filter Bank is initially set to the value which is 
common for most of the rooms. So looking at Table 1, we set the initial value of N to six. All training of 
first classifier is done at this initial value of N.

We will use Bayesian classifier with five classes as the number of rooms in which the automation is 
sought is five. Each class has an equal prior probability. The SDR and PESQ are recorded at the initial 
value of N for hundred mixtures, at each angle in the range {150:150:900} in all the rooms. This makes a 
total of 600 samples of each class. Out of these six hundred samples, 480 samples of each class are used 
for training and 120 samples for testing. 
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Figure 17: Test samples in five rooms (‘X’, ‘A’, ’B’, ‘C’and ‘D’)

As can be seen in the scatter plot (Figure 17 above) of the training data in the five rooms in [21], Class X 
is easily discriminated from all other classes. Any misclassification of test data belonging to class B, C or 
D to one another does not make any difference as all of them require the same number of channels in the 
gammatone filter bank as shown in Table 1. However, the samples of class 'A' are uniformly scattered in 
all other classes and are mainly responsible for lowering the overall accuracy of the classifier. The 
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accuracy is around 80%. The accuracy can be improved by using advance classification algorithms but it 
is out of scope of the present paper.

 According to the class decided for the test sample, the number of channels (N) in the gammatone filter 
bank is adjusted. The system carries out this classification process at the output of our proposed model 
after every 2.5 seconds (this duration depends on the requirement that how fast the system should adjust 
to the new conditions) by choosing the classifier trained at the current value of N and adapt itself 
according to the current acoustic conditions. A feedback signal is sent to the gammatone filter bank to 
adjust its number of channels (N) according to the detected conditions mimicking the process of [25]. It is 
emphasized again, that this automation process is only applicable for five rooms with two active sources 
at separation angles in the range {150:150:900}. 

VII. Discussion and Comparison
Inside a specific acoustic environment, our proposed model uses the Precedence-effect to block the 
reverberations responsible for the poor performance of generally all spatial cue based source separation 
systems. The root cause of their poor performance was deformation of spatial cues in reverberant 
environment, especially when sources were in close proximity. So, these reverberations are blocked to 
enter our proposed model. Also our proposed model has the ability to adapt itself automatically in 
dynamic acoustic conditions by utilizing the Clifton effect, where the model parameters are adjusted 
automatically according to the changing conditions. In its source separation block, our proposed model 
uses the concept of garbage source (the concept inspired from MESSL) to group up those spatial cues 
which are coming from the virtual sources created due to reverberations [37], preventing them from 
messing up with the cues of real sources. 

Our proposed model shows improvement over other algorithms listed in this paper for comparison with 
our proposed algorithm in all kinds of acoustic conditions. It combines best of both, namely, better 
performance of CLIFTON at smaller separation angles and better performance of MESSL at larger 
separation angles. Also our model requires a single parameter (the number of channels N in the 
gammatone filter bank) while CLIFTON model requires two parameters (the inhibitory parameters: the 
inhibitory time constant (αp) and the inhibitory gain (G)) to be adjusted with changing acoustic 
conditions. This parameter in our model is automatically adjusted according to the changing acoustic 
conditions while it was not possible in CLIFTON. Also our proposed automation process does not require 
long duration signals, nor it is sensitive to any value of RT60  or has limitations about the number of 
sources in the room.  Comparison of different aspects of DUET, CLIFTON and MESSL with our 
proposed model ‘CMESSL’ in dynamic acoustic conditions is summarized in Table 3 given below.

Table 3 : Comparison of our proposed model with DUET, CLIFTON and MESSL in dynamic acoustic conditions

Requirements in 
dynamic acoustic 
conditions

DUET CLIFTON MESSL CMESSL

Mechanism to deal 
with reverberations

Not available Pseudo-Clifton 
effect 

Garbage source Clifton effect + 
garbage source

Spatial cue clustering By maximum 
likelihood 
algorithm

On the basis of 
common azimuth

By EM 
algorithm

By EM algorithm
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Model parameters up 
gradation 

Not supported Manual Not supported Automatic

User mobility Not supported Not supported Not supported Supported

Table 3 shows that our proposed algorithm uses the Clifton effect to deal with dynamic reverberant 
conditions, the same psychoacoustic effect used by human brain to deal such situations. The spatial cues 
are clustered by EM algorithm which provides better source separation as can be verified by the results 
(higher average SDR and PESQ values) in all kinds of acoustic conditions ranging from anechoic to 
highly echoic and the system supports user mobility, the most highlighted feature of our proposed model 
not supported by DUET, CLIFTON or MESSL.

Better separation results over other competing algorithms (namely DUET, MESSL and CLIFTON) in all 
types of acoustic conditions, blind extraction of acoustic conditions from the output quality of separated 
sources, adjustment of model parameters automatically according to the existing conditions and improved 
performance for closely located sources are the key strengths of our proposed model which make it stand 
out among the competitors.

VIII. Conclusion and Future Work
Our model gives general idea of improvement under dynamic reverberant conditions in spatial source 
separation systems using the Clifton effect considering only the two source case. However, its results are 
generally applicable for more number of sources but due to the reduction in sparseness and increased 
ambiguity in resolving the similar spatial cues for closely located sources, there will be an observable 
decline in separation performance. The automation process makes this model useful for source separation 
when the user is roaming in dynamic acoustic conditions. Also, our proposed algorithm shows 
improvement over other spatial source separation algorithms for sources in close proximity due to 
effectively suppressing the echoes which were responsible for distorting the spatial cues used by these 
systems for segregation of sources. The task of source separation utilizing spatial cues, only two mixtures, 
and automatic adaptation to acoustic condition make our proposed model an excellent addition to CASA 
based approaches of source separation.  In 2008, voice processing chip based on CASA technology was 
announced by Audience Inc. [38] to improve mobile phone call quality. This chip achieved noise 
suppression of 25 dB. This chip if equipped with our proposed algorithm will not only suppress the noise 
but also the reverberations entering the phone when user is standing or roaming in enclosed area where 
reverberations and noise are among the key factors effecting the voice quality.

Future work will focus on the improvement of accuracy of automation process in scenarios where the user 
is allowed to roam freely both inside the room and from one room to another. Another interesting 
application would be to use our proposed algorithm in assisted protection headphones for separating noise 
from the required signal. These headphones are designed to prevent hearing loss to construction workers, 
workers of factories, musicians and workers of night clubs who are exposed to occupational noise  for 
long durations [39]. The headphone model proposed in [40] suppresses both the signal of interest and 
noise without any discrimination between them when their level increases beyond the pre-set threshold. 
However, using our proposed model in these headphones, the user can smartly turn off the noise without 
suppressing the signal of interest. 
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Figure 1: Block diagram of CMESSL, showing the application of the Clifton-effect on speech mixtures 
followed by source separation process 
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Figure 2: Signal notations. The two mixture signals are transformed to the time frequency domain X1(ω, t) 
and X2(ω, t) by STFT. 
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Figure 3: Flow Chart of our proposed algorithm 
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Figure 4: The room layout showing one of the approximate positions of the sources and the sensors. 
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Figure 5: Comparison of algorithms in Room X with RT60 of 0ms. 
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Figure 6: Comparison of algorithms in Room A with RT60 of 320ms. 
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Figure 7: Comparison of algorithms in Room B with RT60 of 470ms. 
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Figure 8: Comparison of algorithms in Room C with RT60 of 680ms. 
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Figure 9: Comparison of algorithms in Room D with RT60 of 890ms. 
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Figure 10: Comparison of algorithms in Room S with RT60 of 565ms. 
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Figure 11: Relative improvement of different models over DUET 
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Figure 12: Comparison of MESSL and CMESSL at small separations in Room X (RT60 = 0s) 
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Figure 13: Comparison of MESSL and CMESSL at small separations in Room A (RT60 = 0.32s) 
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Figure 14: Comparison of MESSL and CMESSL at small separations in Room B (RT60 = 0.47s) 
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Figure 15: Comparison of MESSL and CMESSL at small separations in Room C (RT60 = 0.68s) 
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Figure 16: Comparison of MESSL and CMESSL at small separations in Room D (RT60 = 0.89s) 
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Figure 17: Test samples in five rooms (‘X’, ‘A’, ’B’, ‘C’and ‘D’) 
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