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Abstract
Flying ad-hoc networks enable vast of IoT services while maintaining communication among the 
ground systems and flying drones. The domain research is focusing on flying networks assisted data 
centric IoT applications while integrating the benefits and services of aerial objects such as unmanned 
aerial vehicle and drones. Considering the growing market significance of drone centric flying 
networks, quality of service provisioning is one of the most leading research themes in flying ad-hoc 
networks. The related literature majorly relies on centralized base station monitored communications. 
Towards this end, this paper proposes a drone assisted distributed routing framework focusing on 
quality of service provision in IoT environments (D-IoT). The aerial drone mobility and parameters 
are modeled probabilistically focusing on highly dynamic flying ad-hoc networks environments. 
These drone centric models are utilized to develop a complete distributed routing framework. Neuro-
fuzzy interference system has been employed to assist in reliable and efficient route selection. A 
comparative performance evaluation attests the benefits of the proposed drone assisted routing 
framework. It is evident that D-IoT outperforms the state of the art techniques in terms of number of 
network performance metrics in flying ad-hoc networks environments. 

Keywords

Flying ad-hoc networks, Internet of Things, Quality of Service, Routing, Aerial drone

1. Introduction

Internet of Things (IoT) is one of the leading research domains in recent years due to the growing 
applicability in different new areas [1, 2]. The novel domains such as smart healthcare, smart 
home/city, intelligent transportation, aircraft simulation, pollution monitoring, disaster management, 
industrial IoT, smart agriculture have emerged as prominent themes to revolutionize IoT in day to 
day life [3-5]. In aeronautical applications, for transmitting and viewing data immediately, Internet 
is utilized to connect actuators and sensors inside the aerial objects. After the trip completion, data 
related to flight would be tracked in real-time with the usage of IoT devices and technologies in place 
for downloading data from sensors [6]. 

To Fig.1 illustrates the different aerial communication systems: satellite communication, air-ground 
and air-air communication.  In satellite based communication system, aerial object such as drone 
accesses Internet and remains in contact with ground while utilizing satellite as a relay node to cover 
remote, ocean or polar areas [7]. But these satellite-based centralized aerial communication systems 
have higher operation and maintenance cost. While comprising multi hop ad hoc networking among 
the drones, extension of network architecture is known as Flying ad hoc network [8]. While 
permitting and maintaining communication between drone and ground, over the region without 
communication infrastructure, flying ad hoc network can be utilized as a complementary 
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communication system. Flying ad hoc network facilitates Internet reachability to these drones while 
traversing via these areas, with no usage of costly satellite links and high delay [9]. Therefore, in this 
paper, we focus only on flying ad hoc network and ground communication without involvement of 
satellite system. However, providing reliable and stable communication among drone and ground 
stations in flying ad hoc network assisted flight communication system is a great challenge [10]. 
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Fig.1. Aerial communication systems

In High speed mobility of drones in flying ad hoc networks is the key challenge in ad-hoc aerial 
communication. It causes variation in network topology in frequent and unpredictable manner, which 
results in link breakage in multi hop communication [11]. Consequently, the performance of flying 
ad hoc network degrades in terms of reliability. The requirement of drone networks having efficient 
quality of service (QoS) parameters motivates to design a drone assisted distributed routing 
framework focusing on quality of service provision in drone assisted IoT environments (D-IoT). 
Towards this end, in this paper we propose a drone assisted distributed routing framework focusing 
on quality of service provision to maximize network performance inside D-IoT environment. 
Additionally, we compute route availability factor, residual route load capacity and route delay as 
the route selection metric for the purpose of QoS provisioning while selecting the optimized route.  
Hence, a route having stability and properly balance traffic can be selected between drone and ground 
stations. Further, a best advertisement forwarding (BADF) technique is utilized to reduce the 
overhead related to advertisement flooding generated during route selection process. Then, D-IoT, 
GPSR and ad hoc on demand distance vector (AODV) [12] protocols are evaluated and compared. 
The key contributions of the paper can be summarized as follows:

1) A network model for drone assisted IoT environment is presented focusing the topological 
aspects of aerial drones and its mobility in flying adhoc networks.

2) To optimize Drone network centric QoS provisioning parameters are derived focusing on 
relative velocity of drones, expected link availability period, residual route load capacity and 
route delay.

3) Neuro-fuzzy interference system has been employed to jointly combine three important QoS 
provisioning parameters to assist in reliable and efficient route selection.

4) A drone assisted distributed routing framework is developed based on the drone mobility 
model and QoS parameters.



5) The proposed communication framework is tested to comparatively evaluate the 
performance with the state-of-the-art protocols considering metrics related to flying ad-hoc 
networks environments.

The remainder of this paper is structured as follows. Section II introduces related literatures of recent 
QoS- non provisioning and QoS- aware routing techniques for flying adhoc networks. In Section III, 
the details of the proposed drone assisted distributed routing framework (D-IoT) is presented. Section 
IV discusses the implementation and analysis of simulation results. Conclusion is presented in 
Section V.

2. Related work

In this section, related literature on routing in flying ad-hoc networks has been reviewed while 
focusing on QoS non provisioning routing and QoS aware routing.

2.1 QoS non- provisioning routing

Two novel stability driven clustering schemes have been proposed while establishing stable clusters 
for highly mobile ad hoc networks comprising ships, aircraft, cars and trains as mobile nodes [13]. 
For the scenarios with unknown position information of mobile nodes, first scheme is utilized and 
for the scenarios with known position information (via GPS), second scheme is utilized. This scheme 
lacks data reliability. An automatic dependent surveillance broadcast system based geographical 
routing has been suggested while utilizing aircraft position and velocity to remove beaconing of 
traditional routing [14]. In this scheme, next hop has been selected based on aircraft velocity metric 
while adaptively coping with highly dynamic aircraft and network topology. This scheme does not 
focus on providing optimized load capacity. Reactive greedy reactive routing has been proposed for 
highly mobile and density variable unmanned aerial vehicle communication systems while 
combining the characteristics of reactive routing techniques with geographical routing techniques 
[15]. In this scheme, velocity vector based mobility prediction technique has been utilized to predict 
the aircraft location and two various scoped flooding techniques have been used while reducing 
message overhead. An unmanned aerial vehicle based communication system while providing 
connectivity and deployment modules for emergency disaster recovery has been proposed [16]. This 
system comprises three prominent sub system such as navigation system, communication sub system 
and schemes for formation management. The parameters such as link availability, jitter, throughput 
and packet loss have not been considered in the communication system.
A two-echelon ground vehicle and its mounted drone co-operative routing technique (2E-GUCRP) 
has been proposed for intelligence, surveillance, and reconnaissance (ISR) missions while 
minimizing the overall mission time to meet the operational constraints [17]. QoS constraints are not 
utilized in this routing technique. A glowworm swarm optimization and dragonfly approach based 
hybrid self-organized clustering protocol has been proposed for drone assisted cognitive IoT 
networks [18]. After introducing cluster formation, management and maintenance algorithm, route 
selection function based routing technique has been suggested for optimized route selection in drone 
assisted IoT. This technique reduces energy consumption but does not focus on latency and route 
connectivity. A swarm intelligence based localization and clustering techniques have been proposed 
to facilitate communication in emergency situation inside UAV enabled IoT networks [19]. Firstly 
proposed, swarm intelligence based localization is a particle swarm optimization (PSO) based three 
dimensional technique while utilizing bounding box algorithm to exploit in 3D search space. 
Secondly proposed, a swarm intelligence based clustering is PSO based energy efficient technique 
which derive fitness function for residual energy, geographic location, inter cluster and intra cluster 
distance. This technique minimizes computational cost, energy consumption, but does not improve 
link. 
2.2 QoS- aware routing



Link availability estimation-based routing has been proposed while utilizing the link availability 
parameter for the selection and updates of a route [20]. First of all, semi- Markov mobility model has 
been presented to imitate the behavior of airliners, then link availability period, pdf of relative speed 
between two aircrafts and expected link lifetime have been used to select the reliable route. In this 
scheme, relative speed of the derivation for link availability metric and pdf of the link lifetime have 
been utilized to select reliable route. Still metric of load balance has not been comprised. A joint 
internet gateway allocation, scheduling and routing scheme has been suggested to minimize the 
average packet delay in mobile aeronautical adhoc networks [21]. Inside it, a mathematical 
programming scheme has been proposed, while comprising two steps: weighted hop 
countminimization for scheduling and average delay reduction for routing. Further a genetic 
algorithm has also been formulated to reduce computational complexity in large mobile network. But 
this scheme does not provide optimized link life time.
A routing and scheduling technique based on hybrid genetic approach has been proposed while 
supporting the communication among ground vehicle and multiple drones for efficient delivery of 
parcels [22]. Further hybrid genetic approach consists of population initialization, low visit cost 
crossover algorithm and three hierarchical education algorithm for fair distribution inside population 
while avoiding premature convergence and minimizing the total delay. But this technique does not 
provide optimized link life time. Two multi-trip vehicle routing problems have been suggested for 
drone delivery to minimize the delivery time related to budget constraint [23]. A model for energy 
consumption has been derived and validated while considering payload and battery weight. The other 
QoS parameters such as link availability, jitter etc. have not been considered. A vehicle assisted 
multi-drone scheduling and routing technique has been proposed while optimizing anchor point 
selection, tour assignment and route planning in each iteration [24]. This technique minimizes total 
finish time but does not consider residual route load capacity and route availability. A traffic load 
balancing technique has been suggested to minimize latency for drone based fog network inside IoT 
[25]. Two algorithms: heuristic and user association have been utilized sequentially, to solve the 
traffic load balancing problem.
A motion driven packet forwarding scheme has been suggested in micro aerial vehicle networks 
while utilizing two predictive heuristics to integrate delay tolerant routing and location aware end-
to-end routing [26]. This technique focuses on link connectivity and route delay, but does not 
consider load balancing and energy efficiency. A multi-UAV routing technique has been proposed 
to solve the multi-UAV coverage task to launch the UAVs while utilizing minimum number of 
vehicles with minimum delay [27]. This technique reduces the mission time but lacks the other QoS 
matrices. A jamming-resilient multipath routing technique has been suggested while considering the 
three major routing matrices: link quality, traffic load and spatial distance in drone based flying ad 
hoc networks [28]. Enhanced link quality and light traffic load are positive factors of this technique, 
but this technique does not minimizes the route latency. A deep reinforcement learning based solution 
for 3D continuous movement control of multiple drones has been suggested to maximize the energy 
efficiency and connectivity of drone network [29]. On the basis of coverage fairness, QoS 
requirements and energy utilization inside drone networks, a reward function has been formulated. 
The penalty for disconnected drone networks has been introduced while reducing the reward function 
value drastically. This technique only works in centralized adhoc network not in decentralized 
network [31-34].

Table 1 Notations

Notation Description Notation Description

𝑣 ∝ Target velocity 𝑐𝑘 Load capacity of node k

∅ ∝ Horizontal direction 𝐶𝑖  Load capacity of route i



𝒗" Relative velocity 𝐶𝑚𝑎𝑥 Max route load capacity

𝒗𝒎 Velocity vector of node 𝐷𝑖 Total delay of route i

𝐸(𝑇) Expected link availability period L Availability factor

𝐿𝑖 Availability factor of route i 𝐶 Residual load capacity

X Sender’s X coordinate D Delay

Y Sender’s Y coordinate 𝑇𝑠 Time stamp

V Sender’s velocity 𝐵𝑖𝑑 Broadcast ID

3. QoS provisioning Drone Communication (D-IoT)

In this section, the proposed drone assisted distributed routing framework focusing on quality of 
service provision is presented in detail. Firstly, a network model comprising mobility model of drone 
in flying adhoc networks is discussed. Then QoS metrics: route availability factor, residual route load 
capacity and route delay are formulated. Hence, route selection approach based on QoS metrics, and 
broadcast optimization technique have been described. 

3.1 Drone Network mobility model

The network model consists of three components: drone, ground stations and drone controller station. 
Here ground stations work as Internet gateways (IGs). This scenario concerns only about the 
communication between drone and IGs, not satellite based communication. For simplification, the 
some assumptions have been considered. The distribution of all drones is done in a plane. Physical 
layer, transmission power and transmission range related to all drones are uniform.  Automatic 
dependent surveillance-broadcast(ADS-B) system is being equipped for all drones to acquire real-
time state vector such as position, velocity, ID and other information.
On the basis of airliner’s mobile trace in the sky, we can categorize a drone node movement in to 
five phases: acceleration phase, steady climb, middle smooth, steady down and deceleration. In the 
acceleration phase, velocity of drone increases until the target velocity . Drone selects targeted 𝑣 ∝

horizontal direction   in the range [0, 2π]. In the steady climb phase, drone climbs in the target ∅ ∝

vertical direction  in the range  and moves with constant velocity . Here  is ∅ ∝ [0,𝜋 2] 𝑣 ∝ 𝑣 ∝

randomly considered in the range 20-50 km/hr and is considered as standard velocity in various drone 
models. During the middle smooth phase, movement of drone is steady and smooth according to 
Gauss Markov model [30]. Further in steady down phase, velocity of drone is equal to . The drone 𝑣 ∝

selects horizontal direction equals to  and vertical direction in the range [ ]. In the end, in ∅ ∝ 𝜋 2, π
deceleration phase, drone uniformly decreases the velocity in one direction until it stops. In the 
starting, in acceleration phase, drone takes 5 min. for takeoff and in the end in deceleration phase, it 
also takes 5 min. for landing. 

3.2Route availability factor

Route availability factor between the non-neighboring drones, is defined as the minimum link 
availability factor between intermediate nodes in the present route. Link availability factor is the 
measure of link reliability based on the expected link availability period. Assuming, drone nodes   𝑀
and  are two intermediate nodes and these drones lie in the transmission range of each other.𝑁



3.2.1 Probability density function of relative velocity

Let  and  are velocity vectors of two drone nodes  and  and  is relative velocity between 𝒗𝒎 𝒗𝒏 𝑀 𝑁 𝒗𝒓
them.  According to fig.3, α is the angle between two nodes and uniformly distributed between [0, 
π]. Let ,  and  are modulus of vectors ,  and . According to cosine theorem, 𝑣𝑚 𝑣𝑛 𝒗𝒓 𝒗𝒎 𝒗𝒏 𝒗𝒓

                                           (1)𝑣𝑟 = 𝑣 2
𝑚 + 𝑣2

𝑛 ‒ 2𝑣 2
𝑚𝑣2

𝑛cos 𝛼 

Since ,  and α are independent, therefore joint probability density function  can 𝑣𝑚 𝑣𝑛 𝑓𝑣𝑚,𝑣𝑛,α(𝑣𝑚,𝑣𝑛,α)
be expressed as 

(2)𝑓𝑣𝑟(𝑣𝑟) = 𝑓𝑣𝑚(𝑣𝑚)𝑓𝑣𝑛(𝑣𝑛)𝑓α(α)

where , , and  are the probability density functions of ,  and  respectively 𝑓𝑣𝑚(𝑣𝑚) 𝑓𝑣𝑛(𝑣𝑛) 𝑓α(α) 𝑣𝑚 𝑣𝑛 α
and ,  and and  are minimum and maximum velocities of two drone nodes  and 𝑣𝑚𝑖𝑛

𝑚 𝑣𝑚𝑎𝑥
𝑚 𝑣𝑚𝑖𝑛

𝑛 𝑣𝑚𝑎𝑥
𝑛 𝑀

. For simplicity, we assume = = . The joint pdf  can be written as 𝑁 𝑣𝑚 𝑣𝑛 𝑣 𝑓𝑣𝑚,𝑣𝑛,α(𝑣𝑚,𝑣𝑛,α)

(3)𝑓𝑣𝑟(𝑣𝑟) = 𝑓2
𝑣(𝑣)𝑓α(α)

Now probability density function  can be calculated as 𝑓α(α)

= (4)𝑓α(α) 𝑘1 2𝑣 1 ‒ cos α

Where , on solving, we get . Similarly, the probability 𝑘1 2𝑣∫𝜋
0

1 ‒ cos α𝑑α = 1 𝑘1 = 1
4𝑣

density function  can be calculated as 𝑓𝑣(𝑣)

= (5)𝑓𝑣(𝑣) 𝑘2 2 1 ‒ cos α 𝑣

Where , 𝑘2 2 1 ‒ cos α∫(𝑣𝑚𝑎𝑥)2

(𝑣𝑚𝑖𝑛)2 𝑣𝑑v = 1

we get           . 𝑘2 = 2
1 ‒ cos α((𝑣𝑚𝑎𝑥)2 ‒ (𝑣𝑚𝑖𝑛)2)

Therefore, the probability density function  can be expressed as𝑓𝑣,α(𝑣,α)

(6)𝑓𝑣𝑟(𝑣𝑟) =
𝑣2 2 ‒ 2cos 𝛼

 ((𝑣𝑚𝑎𝑥)2 ‒ (𝑣𝑚𝑖𝑛)2)2
 

α 

M Nvm
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Fig.2. Analysis for the relative velocity of two drones

3.2.2 Expected link availability period

Here first derivation for cumulative distribution function for link availability period between 
neighboring drone nodes is estimated. Then expected link availability period is formulated. 
Assuming starting distance vector between drone nodes M and N lies in y-axis direction and  is 𝑑0
starting distance value. The starting relative velocity vector between nodes M and N is shown in fig.3 



We assume angle between initial distance vector and initial relative velocity vector is  distributed ∅
in uniform manner ranging from 0 to π. Link distance of two neighboring drone nodes, M and N is 
formulated as follows

                                                                                                   (7)𝑑𝑚 = 𝑑0cos ∅ + 𝐾2 ‒ 𝑑2
0𝑠𝑖𝑛2∅

Then PDF of link distance of two neighboring drone nodes, M and N is formulated as follows

                                                                                                                                (8)𝑓𝑑m
(𝑑m) = 𝑓𝑑0

(𝑑0)𝑓∅(∅)

PDF of  is expressed as∅

                                                                                                                                          (9)𝑓∅(∅) =
1
π

PDF of  can be calculated as𝑑0

                                                                                    (10)𝑓𝑑0
(𝑑0) = ℎ(𝑑0cos ∅ + 𝐾2 ‒ 𝑑2

0𝑠𝑖𝑛2∅)

Where,  ∫𝑑max
𝑑min

ℎ(𝑑0cos ∅ + 𝐾2 ‒ 𝑑2
0𝑠𝑖𝑛2∅)d𝑑0 = 1

On solving, we get       ℎ =
6𝑑max𝑠𝑖𝑛2∅

3𝑑 2
𝑚𝑎𝑥cos∅ ‒ 2(𝑘2 ‒ 𝑑 2

𝑚𝑎𝑥𝑠𝑖𝑛2∅)
3

2
‒

6𝑑min𝑠𝑖𝑛2∅

3𝑑 2
𝑚𝑖𝑛cos∅ ‒ 2(𝑘2 ‒ 𝑑 2

𝑚𝑖𝑛𝑠𝑖𝑛2∅)
3

2

Then PDF  can be expressed as𝑓𝑑m
(𝑑m)

(    (11)𝑓𝑑m
(𝑑m) =

𝑑0cos ∅ + 𝐾2 ‒ 𝑑2
0𝑠𝑖𝑛2∅

π
6𝑑max𝑠𝑖𝑛2∅

3𝑑 2
𝑚𝑎𝑥cos∅ ‒ 2(𝑘2 ‒ 𝑑 2

𝑚𝑎𝑥𝑠𝑖𝑛2∅)
3

2
‒

6𝑑min𝑠𝑖𝑛2∅

3𝑑 2
𝑚𝑖𝑛cos∅ ‒ 2(𝑘2 ‒ 𝑑 2

𝑚𝑖𝑛𝑠𝑖𝑛2∅)
3

2

Link availability period  between nodes  and  is expressed as𝑡  𝑀 𝑁

                                                                                                                                              (12)t =
𝑑m

𝑣𝑟

Using Eq. 7 to 14, PDF of link availability period between nodes  and  is is expressed as 𝑀 𝑁

             𝑓𝑇(𝑡) = ∫𝑣𝑚𝑎𝑥

0 𝑣𝑟𝑓𝑑m𝑣𝑟
(𝑣𝑟𝑡, 𝑣𝑟)𝑑𝑣𝑟

                                                                    (13)= ∫𝑣𝑚𝑎𝑥

0 𝑣𝑟[𝑓𝑑m
(𝑑m)]𝑑m = 𝑣𝑟𝑡

[
𝑣2 2 ‒ 2cos 𝛼

 ((𝑣𝑚𝑎𝑥)2 ‒ (𝑣𝑚𝑖𝑛)2)2
 
]𝑑𝑣𝑟

Then expected link availability period is estimated as

                                                                                                                         (14)𝐸(𝑇) = ∫∞
0 𝑡𝑓𝑇(𝑡) 



Fig.3. Link availability period between drone nodes M and N

3.2.3 Route availability factor calculation

Link availability period between nodes  and  is expressed as follows from fig.3𝑀 𝑁

                                                                                                           (15)𝑇𝑀𝑁 =
𝑑0cos ∅ + 𝐾2 ‒ 𝑑2

0𝑠𝑖𝑛2∅

𝑣"

Link availability factor between nodes  and  is formulated as𝑀 𝑁

                                                                                                                      (16)𝐿𝑀𝑁 = 𝑚𝑖𝑛( 𝑇𝑀𝑁

𝐸(𝑇),1)
Let  is the route availability factor of route , then  is estimated as𝐿𝑖 𝑖 𝐿𝑖

                                                                                                                              (17)𝐿𝑖 = min {𝐿𝑀𝑁}

A B C D

Route 
AD

LCD
 = 0.9LBC

 = 0.7LAB
 = 0.8

Fig.4. Route availability factor calculation

According to fig.4, link availability factor which is minimum in this route has been considered as the 
route availability factor of the route AD. That is to say 

 .𝐿𝐴𝐷 = 𝐿𝐵𝐶 = 0.7

3.3 Residual Route load capacity

In In this section, residual load capacity of route between two nodes is formulated.  Residual route 
load capacity is defined as the minimum residual load capacity amongst all node’s residual load 

Φ 

d0

dm K

M N

x

y

z

v”



capacity along the route. Assuming,  is the residual load capacity for drone node . Hence  is 𝑐𝑘 𝑘 𝑐𝑘

expressed as

                                                                                                                       (18)𝑐𝑘 = 𝛿 ‒ ∑𝑚
𝑘 = 1𝜔𝑘𝑙𝑘

Where,  is the maximum load capacity for drone node , while  and  are the average packet 𝛿 𝑘 𝑙𝑘 𝜔𝑘
size related to traffic and average packet arrival rate of  sources, respectively. Let  be the residual 𝑚 𝐶𝑖

load capacity for route , the  is formulated as𝑖 𝐶𝑖

                                                                                                                                 (19)𝐶𝑖 = min {𝑐𝑘}

A B C D

CA = 4 CB = 3 CC = 4 CD = 5

Route 
AD

Fig.5. Residual route load capacity calculation

In this protocol, route having minimum residual load capacity is prefer in route finding process. Fig.5 
shows the calculation process for residual load capacity for route AD, where residual load capacity 
of node B  having minimum residual load capacity equals to 3 is the residual load capacity of route 
AD.

3.4 Route Delay 

Route delay is defined as the time required to send a data packet from source drone node to 
destination drone node. Usually route delay mainly comprises queuing delay, propagation delay and 
transmission delay based on scheduling techniques, traffic control schemes of nodes, residual link 
bandwidth, processing power of ports and traffic characteristics. Here leaky bucket control strategy 
as illustrates in fig.6 is utilized to control communication volume of drones. Assuming λ is the bucket 
capacity,  is the input flow rate and  is the service rate. As service rate at each drone varies, 𝜇𝑖𝑛 𝜇𝑜𝑢𝑡
so highest data flow of link is dependent on the drone node which has least service rate, therefore

𝜇𝑜𝑢𝑡 = min {𝜇 1
𝑜𝑢𝑡,𝜇 2

𝑜𝑢𝑡, 𝜇 3
𝑜𝑢𝑡, ……, 𝜇 𝑛

𝑜𝑢𝑡 }

If  is the queuing delay then according to the leaky bucket strategy,𝑑

                                                                                                                             (20) λ + 𝜇𝑖𝑛𝑑 < 𝜇𝑜𝑢𝑡𝑑

hence 

                                                                                                                                     (21)𝑑 =
 λ

𝜇𝑜𝑢𝑡 ‒ 𝜇𝑖𝑛

For the links,  where  is sudden traffic depended on the network and  represents λ = ρ ‒ 𝑛𝑆𝑚𝑎𝑥 ρ 𝑆𝑚𝑎𝑥

maximum packet size, then queuing delay is expressed as

                                                                                                                                    (22)𝑑 =
 ρ ‒ 𝑛𝑆𝑚𝑎𝑥

𝜇𝑜𝑢𝑡 ‒ 𝜇𝑖𝑛

Let  is the total delay of route , and  and  are bandwidth and propagation delay of link j 𝐷𝑖 𝑖 𝐵𝑗 𝑝𝑗
respectively. The route delay can be expressed as 

                                                                                              (23)𝐷𝑖 =
 ρ ‒ 𝑛𝑆𝑚𝑎𝑥

𝜇𝑜𝑢𝑡 ‒ 𝜇𝑖𝑛
+ ∑𝑛

𝑗 = 1
𝑆𝑚𝑎𝑥

𝐵𝑗
+ ∑𝑛

𝑗 = 1𝑝𝑗
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Fig.6. Leaky bucket strategy

3.5 Single metric

Initially, In D-IoT, all the QoS metrics: route availability factor, residual route load capacity, and 
route delay are jointly considered for the purpose of finding the optimized route. Let  is considered 𝑃𝑘

as the single metric for route . The metric  is evaluated by employing a neuro-fuzzy inference   𝑘 𝑃𝑘

system (NFIS). It is far better than fuzzy logic inference system because of unlike another artificial 
neural network, NFIS have higher capability to adapt an environment’s requirement in the learning 
process and adjust the weight of membership function of fuzzy logic inference system and reduces 
the error rate in determining the rules in fuzzy logic [38]. It is a feed-forward adaptive neural network 
which uses supervised learning algorithm for learning process. NFIS follows the learning process of 
Takagi-Sugeno fuzzy inference system. The basic architecture of NFIS with three input parameter 
route availability factor (L), residual route load capacity (C), route delay (D) and one output single 
metric (P) are shown in fig 7. 
Each of these three input parameters have three membership functions, according to Takagi- Sugeno 
fuzzy inference model that contains 27 rules. NFIS consists of five layer architecture; Fuzzy layer, 
T-norm layer, normalized layer, defuuzy layer and aggregated layer. The first fuzzy layer (aso known 
as membership/antecedent layer) and fourth defuuzy layer (consequent layer) are adaptive in nature 
because they are updated according to results obtained and rest of the layers are non-adaptive in 
nature. 
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Table 2 Fuzzy rules database

IF THEN IF THEN
Rule L C D P Rule L C D P
1. 𝐿1 𝐶1 𝐷1 𝑃3 15. 𝐿2 𝐶2 𝐷3 𝑃3
2. 𝐿1 𝐶1 𝐷2 𝑃3 16. 𝐿2 𝐶3 𝐷1 𝑃2
3. 𝐿1 𝐶1 𝐷3 𝑃1 17. 𝐿2 𝐶3 𝐷2 𝑃1
4. 𝐿1 𝐶2 𝐷1 𝑃2 18. 𝐿2 𝐶3 𝐷3 𝑃1
5. 𝐿1 𝐶2 𝐷2 𝑃3 19. 𝐿3 𝐶1 𝐷1 𝑃7
6. 𝐿1 𝐶2 𝐷3 𝑃1 20. 𝐿3 𝐶1 𝐷2 𝑃6
7. 𝐿1 𝐶3 𝐷1 𝑃2 21. 𝐿3 𝐶1 𝐷3 𝑃5
8. 𝐿1 𝐶3 𝐷2 𝑃2 22. 𝐿3 𝐶2 𝐷1 𝑃5
9. 𝐿1 𝐶3 𝐷3 𝑃1 23. 𝐿3 𝐶2 𝐷2 𝑃3
10. 𝐿2 𝐶1 𝐷1 𝑃4 24. 𝐿3 𝐶2 𝐷3 𝑃3
11. 𝐿2 𝐶1 𝐷2 𝑃3 25. 𝐿3 𝐶3 𝐷1 𝑃2
12. 𝐿2 𝐶1 𝐷3 𝑃2 26. 𝐿3 𝐶3 𝐷2 𝑃1
13. 𝐿2 𝐶2 𝐷1 𝑃4 27. 𝐿3 𝐶3 𝐷3 𝑃1
14. 𝐿2 𝐶2 𝐷2 𝑃3

The linguistic variables for three input parameters are given as follows: route availability factor (L) 
= {below, good, top} and is denoted by { }, residual route load capacity (C) = {min, avg, 𝐿1,𝐿2,𝐿3
max} that is denoted by , route delay (D) = {low, medium, high} as { }and output {𝐶1,𝐶2,𝐶3} 𝐷1,𝐷2,𝐷3
single metric ( ) = {weakest, weaker, weak, medium, strong, stronger, strongest} as {𝑃𝑘 𝑃1,𝑃2,𝑃3,𝑃4,

}. The first layer’s membership nodes follow the rules influenced by If-Then rules as shown 𝑃5,𝑃6,𝑃7
in table -2. The antecedent parts of rules in the table-1 represent the input fuzzy subspace and 
consequent part of rule in the table shows the output inside the fuzzy subspace. We developed for 
three input parameters with three linguistic variables If-Then rules for the proposed NFIS (33) 27 
architecture governed by Takagi-Sugeno fuzzy inference system. The rules can be expressed as  
Rule 1 = If L is , C is  and D is  Then  𝐿1 𝐶1 𝐷1 𝑃1 = 𝑞1𝐿 + 𝑟1𝐶 + 𝑠1𝐷 + 𝑡1
Rule 2 = If L is , C is  and D is  Then 𝐿1 𝐶1 𝐷2 𝑃2 = 𝑞2𝐿 + 𝑟2𝐶 + 𝑠2𝐷 + 𝑡2
Rule 3 = If L is , C is  and D is  Then 𝐿1 𝐶1 𝐷3 𝑃3 = 𝑞3𝐿 + 𝑟3𝐶 + 𝑠3𝐷 + 𝑡3
Rule 4 = If L is , C is  and D is  Then  𝐿1 𝐶2 𝐷1 𝑃4 = 𝑞4𝐿 + 𝑟4𝐶 + 𝑠4𝐷 + 𝑡4
.

.
Rule 25 = If L is  is  and D is  Then 𝐿3,C 𝐶3 𝐷1 𝑃25 = 𝑞25𝐿 + 𝑟25𝐶 + 𝑠25𝐷 + 𝑡25
Rule 26 = If L is  is  and D is Then  𝐿3,C 𝐶3 𝐷2 𝑃26 = 𝑞26𝐿 + 𝑟26𝐶 + 𝑠26𝐷 + 𝑡26
Rule 27 = If L is  is  and D is Then 𝐿3,C 𝐶3 𝐷3  𝑃27 = 𝑞27𝐿 + 𝑟27𝐶 + 𝑠27𝐷 + 𝑡27

Where ,  are membership function of input parameter antecedent (If) part, while  𝐿1 𝐶1, 𝐷1  𝑞1, 𝑟1, 𝑠1 
 are linear parameters of consequent (then) part of Takagi-Sugeno model. The operation of 𝑎𝑛𝑑 𝑡1

NFIS to select single metric output  describe by layer wise as follows.𝑃𝑘

1) Fuzzy Layer- the nodes in this layer are represented by square, which are adaptable in nature 
during backward pass. Each node resembles to membership function of input parameters. The 
output of this layer is degree of membership govern by input membership function in the range 
of 0 and 1. The membership function can be triangular, trapezoidal, Gaussian, and generalized 
bell membership function. In this work, we considered Gaussian (Eq. 24) and generalized bell 
membership function (Eq .25).

                                                                                 (24)𝜇𝐿𝛼(𝐿) = 𝑒𝑥𝑝[ ‒ (𝐿 ‒ 𝑧𝛼

2𝑥𝛼 )2]



                                                                                  (25)𝜇𝐿𝛼(𝐿) =
1

1 + |𝑚 ‒ 𝑧𝛼
𝑥𝛼 |2𝑦

The output of first layer is given by
 𝑂1,𝛼 = 𝜇𝐿𝛼(𝐿),      𝛼 = 1,2,3

𝑂1,𝛼 = 𝜇𝐶𝛼(𝐶),     𝛼 = 1,2,3
 𝑂1,𝛼 = 𝜇𝐷𝛼(𝐷),     𝛼 = 1,2,3

Where and  are membership functions of adaptive node  and respectively 𝜇𝑀𝛼 , 𝜇𝑁𝛼 𝜇𝑂𝛼  𝐿, 𝐶  𝐷 
and  and  are premises parameters of membership functions that are responsible for 𝑥𝛼 , 𝑦𝛼 𝑧𝛼
customize the shape of membership functions. The membership function represents the 𝑂1,𝛼 
degree to which L satisfies the input parameter .  𝐿𝛼

2) T-Norm Layer- this layer determines the firing strength of each rule associated with input 
signals. All the nodes in this layer are non-adaptive in nature and are depicted by circle with 
labeled . The output of T-norm (rule) layer evaluated as multiplying all the incoming signals to  𝜋
node and delivered output to the next layer nodes. The T-Norm layer applies generic AND 
operator to multiply all the input signals to evaluate the firing strength of rules and generates 
output  as follows.𝑂2𝛼( 𝑇𝛼)

                     𝑂2𝛼 =  𝑇𝛼 = 𝜇𝐿𝛼(𝐿) ∗ 𝜇𝐶𝛼(𝐶) ∗ 𝜇𝐷𝛼(𝐷),   𝛼 = 1,2,3

                                                                   (26)𝑂2𝛼 =  𝑇𝛼 = 𝜇𝐿𝛼(𝐿)˄ 𝜇𝐶𝛼(𝐶)˄ 𝜇𝐷𝛼(𝐷),   𝛼 = 1,2,3

3) Normalized layer- The firing strength of each rule is normalized corresponding to summation 
of all rules firing strength. The nature of node in this layer is also non-adaptive and labeled with 
N within circle.  The normalized firing strength of rule can be expressed the output  as 𝑂3𝛼
follows.   

                                                                           (27)𝑂3𝛼 = 𝑇𝒏𝛼 =
𝑇𝛼

∑
𝛼𝑇𝛼

,     𝛼 = 1,2,3

4) Defuzzy Layer- Nodes in this layer are adaptive in nature and labeled with R within square. The 
output of adaptive node is the multiplication of normalized firing strength of rule and premises 
parameter of input parameter. The output is also known as consequent parameter and can be 
expressed as    

                                                          (28)𝑂4𝛼 = 𝑇𝒏𝛼 𝑃𝛼 = 𝑇𝒏𝛼 (𝑞𝛼𝐿 + 𝑟𝛼𝐶 + 𝑠𝛼𝐷 + 𝑡𝛼)

Where normalized firing strength of rule is obtained from previous (third layer) and  is 𝑇𝑛𝛼 𝑃𝛼
premises parameter of the node.

5) Aggregated Output layer- Non-adaptive nature of single node is used to estimate the output, 
which measures the overall system performance.  The output is the summation of all the 
incoming signals to this layer, labeled as  inside the circle to represent the aggregated output.∑

                                                                            (29)𝑂5𝛼 = 𝑃𝑘 = ∑
𝛼𝑇𝒏𝛼 𝑃𝛼 =

∑
𝛼𝑇𝛼𝑓𝛼

∑
𝛼𝑇𝛼

We present a neuro-fuzzy selection algorithm (Algorithm-I) to describe the process of NFIS. NFIS 
uses hybrid learning algorithm based on gradient descent and least mean square to train the 
membership function of input parameter worked on two passes: forward pass and backward pass. 
The first layer and fourth layer node are updated over time. In forward pass, the input signals (premise 
parameter) are fixed in nature and propagated till to fourth layer from first layer. The output of fourth 
layer consequent parameter is updated using recursive least square estimator. After this input 
parameter is returned back to input (first) layer and output is obtained. This output is compared with 
actual output and error is recorded.  While in the backward pass, error occurred in forward pass is 
sent back to input (first) layer and at the same time membership function of input premises are 
updated using learning process of  gradient descent method. The hybrid learning process of one level 
is known as epochs.



Algorithm 1: Neuro-fuzzy Selection Algorithm (NFSA)    

1. Begin
2. Input: Given input parameter {L, D, C} and maximum number of Epoch (E) to . 𝐸𝑚𝑎𝑥
3. Output { }𝑃𝑘

4. Process
5. For E=1 to .  𝐸𝑚𝑎𝑥
6. Input the nonlinear premises into first layer of Takagi- Sugeno inference engine. 
7. Adaptive Fuzzy layer produced the parameter Membership function  for each node 𝜇𝐿𝛼(𝐿)

using Eq. (24) and (25).
8. T-norm layer customize the firing strength of each node ( ) through Eq. (26).𝑇𝛼
9. Normalize the firing strength of each node ( ) using Eq. (27) in normalized layer.   𝑇𝒏𝛼
10. Adaptive Defuzzification layer responsible for updating of consequent parameter of each 

node using Eq. (28). 
11. Aggregated output  is produced for overall system is obtained through Eq. (29).𝑃𝑘

12. End

Packet. 
Type
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Address Location Velocity LGAD Broadcast 

ID
Destination

Address CGAD DGAD

Fig. 7. Structure of IG advertisements (IGAD) message

3.6 Best advertisement based forwarding (BADF) technique

In this section, best advertisement based forwarding (BADF) technique is discussed, with the 
involvement of three aspects for controlling the overhead related to advertisement flooding. Firstly, 
the IP address of originator, and broadcast ID of previously received IG advertisements (IGADs), 
and newly received IGADs are checked by a drone. If drone finds duplicate IGADs, having similar 
IP address of originator, broadcast ID of previously received and newly received IGAD, then the 
duplicate IGADs are discarded by this drone. Hence, the congestion caused by duplicate IGADs is 
avoided based on the advertisement flooding in the network. 
Secondly, the drones not yet taken off or already landed (having zero velocity) discard all the 
received IG advertisements. These drones are not involved during routing table computation. 
Therefore, this results in the form of limited broadcasting and reduction in network congestion.
In the last, a drone rebroadcasts the IGADs with route availability factor and residual route load 
capacity, higher as compared to threshold value and route delay lower than threshold value. Hop 
count between drone node and IG should be lower as compared to maximum hop count. Hence, this 
minimizes the traffic overhead caused by broadcasting advertisement.
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Fig.8. Optimal route and IG selection process of D-IoT

3.7 QoS provisioning Drone assisted routing

The In this protocol, IGs broadcast IGADs for advertising their QoS metrics  periodically (𝐿.𝐶, 𝐷)
inside the network. Further, drone node knows their information on the basis of IGADs. In this 
protocol, we assume all IGs have the same IGAD interval. Let IGADs for  and  are ,   𝐿, 𝐶 𝐷 𝐿𝐺𝐴𝐷 𝐶𝐺𝐴𝐷

and .   is timestamp or time at which packet is sent. The format for IGAD message is 𝐷𝐺𝐴𝐷 𝑇𝑠

illustrated in fig.7.

Algorithm 2: QoS provisioning Drone assisted routing

Input: Loc, V, , , , ;𝐿𝐺𝐴𝐷 = 0 𝐶𝐺𝐴𝐷 𝐷𝐺𝐴𝐷 = 0 𝐵𝑖𝑑

Process: 
1. IGAD (Loc, V, , , , )𝐿𝐺𝐴𝐷 = 0 𝐶𝐺𝐴𝐷 𝐷𝐺𝐴𝐷 = 0 𝐵𝑖𝑑

2. IG sends IGADs periodically.
3. Drone node  receives IGAD packet.𝑘
4. if received packet based on BADF scheme condition then
5. Node  computes ,  and according to Eq. (16) and (18) and (23).𝑘 𝐿𝑘 𝐶𝑘 𝐷𝑘

6. if  || then(𝐿𝐺𝐴𝐷 = 0 𝐿𝑘 < 𝐿𝐺𝐴𝐷)
7. .𝐿𝐺𝐴𝐷 = 𝐿𝑘

8. end if
9. if then (𝐶𝑘 < 𝐶𝐺𝐴𝐷)
10. .𝐶𝐺𝐴𝐷 = 𝐶𝑘

11. end if
12. .𝐷𝐺𝐴𝐷 = 𝐷𝐺𝐴𝐷 + 𝐷𝑘

13. Update IGAD packet while replacing, Loc and  with and , and updating  .𝑉 𝐿𝑜𝑐𝑘 𝑉𝑘 𝑇𝑠

14. Update route QoS metrics  in routing table of node . (𝐿.𝐶, 𝐷) 𝑘
15. Forward IGAD packet based on BADF scheme
16. else discard IGAD packet;
17. end if
18. Compute  for each route  using NFSA 𝑃𝑘 𝑘
19. 𝑃𝑟 = max {𝑃𝑘}
20. Select the route with 𝑃𝑟

21. Select the IG with 𝑃𝑟



22. Output: Optimized route and IG

After receiving IGAD packet, drone node estimates the values of ,  and  on the basis of eq. 𝐿𝑘 𝐶𝑘 𝐷𝑘

(16), (18) and (23). If the values of  or/and  are lower than the values of  or/ and  , 𝐿𝑘 𝐶𝑘 𝐿𝐺𝐴𝐷 𝐶𝐺𝐴𝐷

then QoS metrics are updated in drone’s routing table and location ( , ), velocity  and  (𝐿.𝐶, 𝐷) 𝑋 𝑌 𝑉 𝑇𝑠

are updated in IGAD packet. Otherwise current  or/and  are utilized in the routing table 𝐿𝐺𝐴𝐷 𝐶𝐺𝐴𝐷

and IGAD also. Further, the value of   is updated by adding the value of . Then, on the basis 𝐷𝐺𝐴𝐷 𝐷𝑘

of BADF technique IGAD packet is further forwarded inside the network. The basic procedure for 
route selection is presented by algorithm-II. The message for route updates is sent to the source drone 
node by the intermediate drone node, if there is possibility of novel link establishment or current link 
breakage along the route.
In this way, based on updated route parameters, source drone node decides a potential route to 
transmit packet. The drone node preserves the records of QoS parameters for each route to IGs in the 
routing table. The optimal route and IG selection process of D-IoT is also presented in Fig.8.

4. Experimental Results and Discussion

In this section, simulation results are carried out for the analysis of the performance related to the 
proposed Drone assisted distributed routing framework focusing on QoS in IoT environment (D-
IoT). Simulations carried out to assess the performance related to the proposed D-IoT framework in 
drone assisted IoT environment is presented focusing on simulation settings, parameters, and 
comparative analysis. The simulations related to the proposed D-IoT framework for QoS based 
optimal route selection in Drone assisted IoT environment are carried out using network simulator 
(ns-2). The performance of D-IoT is evaluated and compared with the state-of-the-art protocols 
AODV [13], and GPSR [12]. Table 3 presents the list of simulation parameters utilized for the 
configuration of the simulation scenario.

Table 3 Simulation setup

Parameters Values Parameters Values

Area 50km ×50km MAC protocol TDMA

Simulation time 150 min CBR packet size 512 bytes

Trans/Receiv antenna Omnidirectional CBR interval 0.01 𝑠𝑒𝑐

IGAD interval Uniform(3.5,4.5) s A-A link bandwidth 5 𝑚𝑏𝑝𝑠

A-A trans range 2km A-G link bandwidth 10 mbps

A-G trans range 2km Packet Type 𝑈𝐷𝑃

Number of drone 200 Channel Type 𝑊𝑖𝑟𝑒𝑙𝑒𝑠𝑠

Propagation model Free space

4.1 Analysis of Results

Two scenarios: experimental results with same weight factors and experimental results with varying 
weight factors are considered to analyze the performance of proposed D-IoT with the state-of-the-art 
protocols.



4.1.1 Analysis of results (with same weight factors)

In this section, experimental results have been described while assigning equal weightage for all the 
metrics: route availability factor, residual route load capacity, and route delay. 
Packet delivery ratio (PDR) is described as the ratio of the number of successfully transmitted packets 
to the number of total transmitted packets. Fig 9 shows the variation in PDR as departure gap of 
drones and number of drones increase for all the compared protocol: AODV, GPSR and D-IoT. 
According to fig.9, in the starting till threshold value of departure gap (40 min), PDR enhances 
gradually in case of all the compared protocols.  But when departure gap increases more than 40 min, 
then PDR reduces for each protocol. D-IoT performs better than the state of the art protocols: AODV 
and GPSR, for higher departure gap (having > 30 min). In case of AODV and GPSR, overhead 
increases rapidly, therefore PDR reduces quickly after a threshold. While for D-IoT, unstable routes 
are discarded, therefore PDR is higher as compared to AODV and GPSR.In case of AODV and 
GPSR, PDR decreases gradually when number of drones are 40 or more than 40, but for D-IoT, PDR 
starts decreasing when number of drones are 100.  From the fig.9, it is clearly illustrated that PDR 
for D-IoT is far higher as compared to AODV and GPSR, because D-IoT could select next hop with 
the shortest queue of packets among all the possible nodes. Thus this results the avoidance of local 
blocking.
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Fig.9.Behavior of PDR with Number of drones and Departure gap

Fig.10 illustrates the impact on PDR as traffic load and number of drones vary, while keeping 
departure gap equals to 25 min. As shown in fig.10, PDR decreases as traffic load increases for all 
the compared protocols. It is clearly enunciated that PDR in case of proposed D-IoT is higher than 
AODV and GPSR because of consideration of route load balancing factor in the proposed D-IoT but 
not in the state of the arts protocols. In case of D-IoT, PDR is higher than PDR in case of GPSR and 
AODV, when traffic load varies from 100 kb/s to 500 kb/s. 
Overhead is defined as the amount of excess packets generated for the successful delivery of actual 
number of packets between the source and the destination. Fig.11 illustrates the variation in the 
overhead as departure gap and quantity of drones increase. As departure gap increases overhead 
decreases, but when number of drones increase then overhead also increases. Due to utilization of 
BADF scheme to minimize overhead, in case of D-IoT is far lower than AODV. But GPSR results 
less overhead as compared to both D-IoT and AODV, because GPSR utilizes smaller periodic hello 
packet for neighbor discovery as compared to IGAD packet of D-IoT.
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Stability is defined in terms of number of the handoffs, and is inversely proportional to number of 
handoffs. Fig.12 illustrates the impact of departure gap and number of drones on the average handoffs 
per hour for all three routing protocols. The performance of D-IoT is better than the state of the art 
protocols in terms of number of handoffs (stability) because D-IoT comprises better path duration 
for new route selection. Whereas no path stability metric is considered in case of AODV and GPSR. 
The results in fig.12 also show the variation in stability in terms of average number of handoffs when 
number of drones is considered as 40, 80, 120, 160 and 200. It is clearly enunciated that stability 
decreases as number of drones increases in case of all the compared protocols. Further with the 
increment in number of drones, there is slow and less increment in the number of handoffs in case of 
D-IoT as compared to AODV and GPSR. This is because, the more the drones, the larger air 
communication traffic, and then, D-IoT is more likely to find the next hop more stable with less node 
delay. As AODV utilizes the hop count as the only metric, and AODV and GPSR both always find 
the shortest path, which do not comprise link stability. Consequently drones reach their maximum 
range in more frequent manner, hence, it is prone to cause handoff.

Route delay is defined as the time required to transmit a data packet from source node to destination 
node. Fig.13 shows the impact on route delay with the variation in number of drone and CBR traffic 
load. Route delay in case of D-IoT is lower than GPSR because route delay is considered as one of 
the route selection metrics in D-IoT, but not in GPSR. D-IoT also considers local dynamic queue 



delay for node which avoids the congestion. Whereas, D-IoT has slightly higher route delay as 
compared to AODV because packets are forwarded through shortest path in case of AODV, but is 
unstable.
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4.1.2 Analysis of results (with varying weight factors)

The performance of the proposed D-IoT is optimized while performing the simulation with the 
consideration of varying weightage corresponding to route metrics according to Neuro-fuzzy system. 
Three scenarios are presented in simulation for this purpose. In first scenario, the highest priority is 
given to route availability factor metric. The protocol in this scenario is expressed as D-IoT1. In 
second scenario, the metric: residual route load capacity is prioritized and this scenario is denoted as 
D-IoT2. In third scenario, the metric: route delay is preferred. The protocol in third scenario is 
expressed as D-IoT3. Further the performance of D-IoT1, D-IoT2 and D-IoT3 are compared with D-
IoT0 (without weights), AODV and GPSR protocols.
A comparison of PDR between D-IoT in all scenarios, and the state of the art protocols with varying 
traffic load and quantity of drones is shown in fig.14. Fig 14(a), 14(b), 14(c) and 14(d) shows the 



comparison between PDR and traffic load, when no of drones are considered as 40,80,120 and 200. 
As shown in all scenarios of fig 14, PDR is increasing until no of drones are 80 and then decreasing 
when quantity of drones are increased in case of all protocols.  It is also illustrated that PDR is lesser 
and decreasing rapidly in case of AODV and GPSR, as compared to PDR in D-IoT0, D-IoT1, D-
IoT2 and D-I0T3. PDR in case of D-IoT3 is lesser than rest scenarios of D-IoT, because of more 
consideration of route delay as compared to route availability factor and residual route load capacity. 
D-IoT0, D-IoT1, D-IoT2 and D-IoT3 perform almost same in terms of PDR, while perform better as 
compared to the state-of-the-art protocols: GPSR and AODV because of consideration of route load 
balancing factor. It is clearly illustrated that stability and load balancing must be prioritize for heavy 
traffic in order to improve PDR. 

CBR traffic load [kb/s
100 200 300 400 500

Pa
ck

et
 d

el
iv

er
y 

ra
tio

 [%
]

70

75

80

85

90

AODV
GPSR
D-IoT0
D-IoT1
D-IoT2
D-IoT3

No of drones=40

 CBR traffic load [kb/s
100 200 300 400 500

Pa
ck

et
 d

el
iv

er
y 

ra
tio

 [%
]

65

70

75

80

85

90

95

AODV
GPSR
D-IoT0
D-IoT1
D-IoT2
D-IoT3

No of drones=80

(a)                                                                                         (b)

CBR traffic load [kb/s
100 200 300 400 500

Pa
ck

et
 d

el
iv

er
y 

ra
tio

 [%
]

65

70

75

80

85

90

AODV
GPSR
D-IoT0
D-IoT1
D-IoT2
D-IoT3

No of drones=120

 CBR traffic load [kb/s
100 200 300 400 500

Pa
ck

et
 d

el
iv

er
y 

ra
tio

 [%
]

60

65

70

75

80

85

AODV
GPSR
D-IoT0
D-IoT1
D-IoT2
D-IoT3

No of drones=200

(c)                                                                                     (d)

Fig.14.Variation in PDR and Traffic load when Number of drones are (a) 40, (b) 80, (c) 120 and (d) 200

Fig.15 shows the behavior of D-IoT in all scenarios in terms of number of handoffs (stability) while 
varying the departure gap of drones and number of drones. In fig. 15(a), 15(b), 15(c) and 15(d) 
performance metrics: number of handoffs and departure gap between drones are compared, when no 
of drones are considered as 40, 80, 120 and 200 respectively. As shown in all scenarios of figure 17, 
average handoffs per hour increase (stability decreases) with the increment in quantity of drones in 
case of all protocols. It is also illustrated from fig.15 that handoffs/hour is inversely proportion to 
departure gap because handoffs/hour reduce when departure gap increases in case of all protocols. 
In case of D-IoT1, number of handoffs are slightly lesser as compared to D-IoT0, but in case of D-
IoT2 and D-IoT3, are slightly higher than D-IoT0. But D-IoT in all scenarios performs much better 



than GPSR and AODV in terms of number of handoffs because no path stability metric is considered 
in case of GPSR and AODV.
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Fig.15.Variation in Handoffs and Departure gap when Number of drones are (a) 40, (b) 80, (c) 120 and (d) 200

 

The results in fig.16 illustrates the variation in route delay with the increment in number of drones 
and CBR traffic load for all the scenarios of D-IoT. In fig. 16(a), 16(b), 16(c) and 16(d) performance 
metrics: route delay and traffic load are compared, when no of drones are considered as 40, 80, 120 
and 200 respectively. As shown in all scenarios of figure 16, route delay is proportional to number 
of drones because route delay increases when number of drones increase in case of all protocols. It 
is also illustrated from fig.17 that for particular quantity of drones, route delay increases with the 
increment in traffic load. From all scenarios of fig.16, it is clearly enunciated that D-IoT3 
outperforms D-IoT0, D-IoT1, D-IoT2 and GPSR, because in D-IoT3 highest priority is given to route 
delay while considering weight factor equals to 0.7 for route delay. But D-IoT3 has slightly higher 
route delay as compared to AODV because packets are forwarded through shortest path in case of 
AODV, but is unstable. Still, D-IoT0, D-IoT1, D-IoT2 has better performance than GPSR in terms 
of route delay because of consideration of local dynamic queue delay for node which avoids the 
congestion.
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The results considering different weight factors show the enhancement in route stability, route 
delay and packet delivery ratio considering various scenarios inside the network.

5. Conclusion

In this paper, a drone assisted distributed routing framework focusing on QoS provision (D-IoT) is 
presented for the enhancement of the network performance in IoT environment. An aerial drone 
mobility model is presented for deriving probability density function related to relative speed 
between two drones, and link availability period to compute route availability factor. Further, three 
QoS metrics: route availability factor, residual route load capacity and route delay, based route 
selection algorithm is suggested, while utilizing BADF technique to minimize the overhead related 
to traffic. Through simulation experiments, the performance of proposed D-IoT with respect to the 
state-of-the-art protocols: GPSR and AODV is analyzed and compared in terms of packet delivery 
ratio, overhead, route stability and route delay. The simulation results show that D-IoT outperforms 
the state of the arts protocols. In the future research, the authors will focus on consideration of energy 
utilization as performance metric including the design modification. The authors will also explore 
the work in diverse scenarios, and applications.
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