

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

Additional Information

http://hdl.handle.net/10251/189085

Liu, X.; Muhammad, K.; Lloret, J.; Chen, Y.; Yuan, S. (2019). Elastic and cost-effective data
carrier architecture for smart contract in blockchain. Future Generation Computer Systems.
100:590-599. https://doi.org/10.1016/j.future.2019.05.042

https://doi.org/10.1016/j.future.2019.05.042

Elsevier

 1

Elastic and Cost-effective Data Carrier Architecture for

Smart Contract in Blockchain

Xiaolong Liu1, Khan Muhammad2, Jaime Lloret3*, Yu-Wen Chen4, and Shyan-Ming Yuan4*

1 College of Computer and Information Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China;

xlliu@fafu.edu.cn

2 Department of software, Sejong University, Seoul 143-747, Republic of Korea; khan.muhammad@ieee.org

3 Integrated Management Coastal Research Institute, Universitat Politècnica de València, C/ Paranimf nº 1, Grao de

Gandía—Gandía, 46730 Valencia, Spain; jlloret@dcom.upv.es

4 Department of Computer Science, National Chiao Tung University, Hsinchu 300, Taiwan; w369gf523@gmail.com,

smyuan@cs.nctu.edu.tw

* Correspondence: Jaime Lloret (jlloret@dcom.upv.es) and Shyan-Ming Yuan (smyuan@cs.nctu.edu.tw)

Abstract—Smart contract, which could help developer deploy decentralized and secure

blockchain application, is one of the most promising technologies for modern Internet of things

(IoT) ecosystem today. However, Ethereum smart contract lacks of ability to communicate with

outside IoT environment. To enable smart contracts to fetch off-chain data, this paper proposes a

data carrier architecture that is cost-effective and elastic for blockchain-enabled IoT environment.

Three components, namely Mission Manager, Task Publisher and Worker, are presented in the data

carrier architecture to interact with contract developer, smart contract, Ethereum node and

off-chain data sources. Selective solutions are also proposed for filtering smart contract event and

decoding event log to fit different requirements. The evaluation results and discussions show the

proposed system will decrease about 20USD deployment cost in average for every smart contract,

and it’s more efficient and elastic compared with Oraclize Oracle data carrier service.

Keywords—Blockchain, blockchain-enabled IoT, smart contract, Ethereum, off-chain data, data

carrier

1. Introduction

In the day-to-day workings of information-oriented society, significant development of

industrial systems has been witnessed with the convergence from wireless networks,

Internet of Things (IoT) to blockchain [1, 2]. IoT is a significant component of industrial

systems, which has recently attracted the interest of stakeholders [3, 4]. Meanwhile,

blockchain is termed as one of the most promising technologies for IoT applications today,

since not being able to modify past transactions and absence of a trusted intermediary make

blockchain solution highly trustworthy [5, 6]. Several projects have examined the positive

mailto:w369gf523@gmail.com

 2

benefit of blockchain-enabled IoT applications, such as digital asset registries, peer-to-peer

(P2P) energy trading, and long-tail personalized economic services [7, 8]. The most

representative application of blockchain was Bitcoin proposed by Satoshi Nakamoto in

2008 [9], which is a peer-to-peer electronic cash system and a distributed ledger. It

eliminates the need for trusted third party for e-commerce payment system. In 2013,

blockchain developers came up with the second-generation blockchain implementation,

Ethereum [10], which contains more features than Bitcoin. It provides not only a

distributed ledger system but also the implementation of smart contract [11].

Ethereum smart contract is the programmable application that manages exchanges

conducted online within Ethereum environment. Intelligence is built directly into the smart

contract through a protocol that automatically identifies, validates, confirms, and routes

transactions within the network. It allows proper, distributed, heavily automated

workflows and brings more certainty and reliability to industrial systems. Recently, a great

diversity of smart contract based applications have been presented, including applications

for IoT, cloud computing, e-commerce and financial [12] Some researches utilize smart

contracts to build access control system to overcome security and privacy issues in IoT

environment [13, 14]. In terms of cloud computing, the smart contract applications could

address the issues of resource management of cloud datacenters, verifiability of outsourced

computation, service level agreement monitoring, negotiation and agreement

establishment [15]. For e-commerce, Smart contract plays important roles in the legal

implications of exchanges conducted on the blockchain [16].

Although Ethereum smart contract has now been serving an important function in the

automation of transactions and multi-step processes, nowadays it lives like in a walled

garden. Smart contract cannot directly communicate with external environment and fetch

off-chain data, such as fed data for assets and energy trading applications in external IoT

system. Because smart contracts are executed within the Ethereum Virtual Machine,

whereas Ethereum Virtual Machine cannot communicate with the external systems. Every

transaction processed by different Ethereum Virtual Machine spreading in same

blockchain should be the same result, while fetching off-chain data are not determined,

neither generating random numbers. This feature highly limits the developing of

decentralized applications in Ethereum environment [17]. Practically, smart contract

 3

developers must setup an agent (i.e. data carrier) to get data off-chain, and call the contract

function to pass data back to the contract.

Oracle is one of the most general solutions for the limitation mentioned above [18]. It is a

new data carrier functionality that provides the connectivity of smart contract to the outside

world. The idea is to fetch off-chain data that provided from more than one data source, and

then execute the data-dependent action if the same answer is provided. Recently, several

implementations of Oracle have been developed. The main solution is to provide an Oracle

contract on the blockchain that serve off-chain data requests by other smart contracts.

However, this solution requires a predefined standard on data format of smart contracts.

Most important, the problem of Oracle is that it increases deployment costs for smart

contract. While deploying smart contract with Oracle as data carrier, original smart

contract needs to inherit extra smart contract, namely Oracle resolver, for interacting with

Oracle. The inherited contract increases the deployment costs, because Ethereum charge

fees when deploying smart contract is according to how much space smart contract takes,

namely, the longer bytecode contract takes the higher fee Ethereum charges. Thus, if

developer want to develop a service which do not depend on single contract, it takes

different contract instance to service different end-user. In addition, due to the adoption of

a standard interface of Oracle, the readability of smart contracts is reduced, and Oracle is

not compatible with smart contracts that do not use Oracle at deployment. Therefore, this

paper would propose a cost-effective data carrier for Ethereum based smart contract to

solve the problems mentioned above.

The objective of this paper is to propose an elastic and cost-effective data carrier

architecture for Ethereum smart contracts that minimize contract deployment costs, and

monitor contract event without subscribing any filter at Ethereum node. The proposed

architecture consists of three components: Mission Manager, Task Publisher and Worker.

It is responsible for the interactions of contract developer register, monitor smart contract,

Ethereum node callback and fetch of external data source and computation source. We also

proposed selective solutions for filtering smart contract event, and decoding event log to fit

different requirements. The comparison result with Oraclize Oracle service in terms of

deployment cost is also presented to show the superiority of the proposed data carrier

system. The main contributions of our proposed data carrier system are the following:

 4

• Reliable: the security model is maintained in this system, users of decentralized

blockchain-enabled IoT applications do not have to trust a third party.

• Elastic: the proposed data carrier system does not require a predefined standard on

data format. It is not necessary for data providers to modify their services to be compatible

with Ethereum protocols.

• Cost-effective: in this system, the original smart contract does not need to inherit

extra smart contract for interacting with external IoT data source, which will efficiently

decrease the deployment cost of every smart contract that need off-chain data carrier

service.

The remainder of this paper is organized as follows. In Section 2, we present the

overview of blockchain and the analysis of related Oracle works with its limitation. The

design and implementation of the proposed data carrier system is described in Section 3.

Section 4 evaluates and discusses the superiority of the proposed system compared with

Oraclize Oracle service. Finally, Section 5 draws conclusion and future work.

2. Related Work

2.1 Blockchain

The blockchain was first stated in the digital cryptocurrency, but its effect is being

observed to be far wider than just the alternative money. Originally block chain is

distributed digital transaction ledger, which is a type of database shared and synchronized

among distributed network. The most representative application of blockchain was a

peer-to-peer digital cash system, Bitcoin, proposed by Satoshi Nakamoto. Its effect is

being witnessed to be far away than just alternative money. Nowadays, blockchain has

been termed as one of the most promising technologies for business and IoT applications

today [19, 20]. The blocks in blockchain record transactions among participants in

peer-to-peer network, such as transaction of asset and energy trading in IoT. The key idea

behind blockchain is that every block in the blockchain has a timestamp and unique

cryptographic signature. Every block refers to the signature of its previous block in the

chain. Therefore, all blocks can be traced, which guarantees an auditable, immutable

history of all transactions in the blockchain [21]. Most importantly, there is no centralized

authority or third-party is involved in the blockchain. Participants in the network conduct

 5

and agree by consensus on the updates of blocks in chain. All the confirmed and validated

transaction blocks are linked and chained from the beginning of the chain to the most

current block.

Ethereum is a second-generation blockchain implementation, which provides not only a

distributed ledger system but also the implementation of smart contract. The purpose of

Ethereum is to create an alternative protocol for building decentralized applications

leverage on blockchain. The main difference between Bitcoin and Ethereum is: For the

first generation distributed ledger likes Bitcoin, confirming an unconfirmed transaction

only means documenting the state of digital currency transfer between two addresses;

Whereas Ethereum extended the ability of transaction by adding capability of computation

to blockchain [22]. It regards reaching consensus for state of program as reaching

consensus for transfer. The feature of Ethereum can deal with reaching consensus for

decentralized computations. To better understand the work in this paper, the following

basic and foundational concepts of Ethereum should be clarified:

1) Smart contract: Smart contract enabled by Ethereum blockchain technology is a

contract implemented, deployed and executed within EVM. It is a set of

commitments that are defined in digital form, including the agreement on how

contract participants shall fulfill these commitments. Smart contract can be regard as

programmable application which consisting of functions that manage exchanges

conducted online. User can create an instance of the contract and invoke functions to

view and update contract data along with execution of some logic.

2) EVM: EVM is the virtual machine and runtime environment for executing code

written in Ethereum smart contracts. It is the fundamental consensus mechanism for

Ethereum. It is sandboxed and completely isolated from the network, file system or

other processes of the host computer system. EVM implementation is run on

Ethereum node in the network and executes the same instructions.

3) Ether: Ether is the currency of Ethereum. Miners of Ethereum who are successful in

generating and creating a block in the chain are rewarded by Ether. It is also the

medium used by Ethereum to pay transaction fees and computing service fees. Ether

can be traded on the foreign exchange market easily by converting to dollars or other

traditional currencies through Crypto-exchanges.

 6

4) Gas: Gas is the internal currency of Ethereum that measurement roughly equivalent

to computational operation. It determines the normal operation of the Ethereum

network ecosystem. Every operation in Ethereum has Gas expenditure, and the

execution cost is predetermined in terms of Gas units. Gas consists of two parts: Gas

Limit and Gas Price. Gas Limit is the maximum amount of Gas that the user is

willing to pay to perform an action or confirm a transaction. Gas Price is the number

of Gweis that users are willing to spend on each Gas unit.

2.2 Oracle

Although integrating blockchain into the IoT is relatively recent, several proposals have

already been presented to improve current IoT technology [23-25], where Ethereum is

shown as the most popular platform for IoT–blockchain applications. In particular, smart

contracts are presented to revolutionize many industries by replacing the need for both

traditional legal agreements and centrally automated digital agreements [26]. Smart

contracts in blockchain-enable environment will inevitably require high-assurance

versions of off-chain data, such as smart contracts that require access to APIs reporting

market prices, and need data feeds about IoT data related to energy trading. Unfortunately,

Ethereum smart contracts cannot directly fetch off-chain data with the outside world, since

they are executed within EVM with underlying consensus protocols. Therefore, smart

contracts that with functions of random numbers, decentralized exchanges, and external

information, required Oracle data carrier functionality to connect outside world [27]. Fig. 1

shows the conceptual architecture of Oracle. The concept of it is to enable smart contract to

fetch off-chain data through Oracle external agent. The main solution is to provide an

Oracle contract on the blockchain, which serves off-chain data requested by user smart

contracts. While deploying smart contract with Oracle, original user smart contract needs

to inherit extra smart contract, namely Oracle resolver, with a predefined standard on data

format. The Oracle resolver is responsible for interacting with Oracle contract, which is

designed to present a simple API to a relying user contract for its requests to external data

source. As shown in Fig.1, Oracle contract accepts query datagram from Oracle resolver

and generates event log to external agent for fetching off-chain data. At the end, external

agent will launch a callback and return corresponding data for user contract.

 7

Fig. 1. The conceptual architecture of Oracle

In reality, Oracle has various ways to implement. In 2014, Ripple Labs [28] published a

white paper of Smart Oracles and implemented a system of smart oracles, called Codius

[29], in which rules can be written in any programming language. Codius enables smart

contracts to interact with any service that accepts cryptographically signed commands.

Later, Ellis et al. proposed a decentralized Oracle network named ChainLink that provides

for contracts to gain external connectivity [30]. They presented both a simple on-chain

contract data aggregation system, and a more efficient off-chain consensus mechanism.

ChainLink can securely push data to APIs and various legacy systems on behalf of a smart

contract. Recently, the leading Oracle service for smart contracts and blockchain

applications is Oraclize [18], which serves thousands of requests every day on Ethereum

platforms. Oraclize provides part of the infrastructure needed to build smart and useful

decentralized applications, and its service guarantee the correctness of data.

Generally, the first benefit of Oracle is that if users have multiple contracts that need

external data, traditionally, they should program responder and launch one responder for

each smart contract. But if users take the architecture of Oracle, the only event emitted by

contract that needs off-chain data would be Oracle contract, which makes Oracle become

the agent of all contracts that needs off-chain data. The second benefit is that Oracle does

not need to manage contract’s application binary interface. In general, anyone wants to

interact with specific contract, two elements will be required, i.e. contract address and

application binary interface. However, Oracle users do not need to provide any application

binary interface for Oracle provider. Because the Oracle data carrier system, such as

Oraclize, contains a virtual function used for callback, user needs to inherit standard

 8

callback function to receive external data.

However, the feature that Oracle does not need application binary interface is a

double-edged sword. Its shortcoming is everyone can easily decode transaction event, even

trigger the callback function when contract programmer does not limit the message sender

of callback function. Appropriately, although the purpose of application binary interface

does not encrypt the transaction, it still increases the risk of smart contract [31]. Moreover,

the original smart contract needs to inherit extra smart contract of Oracle for interacting

with external data source. The inherited contract increases the original smart contract

content. Since the more content contract takes the higher fee Ethereum charges, the

deployment costs will be increased while deploying Ethereum smart contract with Oracle

as data carrier. To solve the problems mentioned above, in this paper, we will propose an

elastic and cost-effective data carrier for smart contract to interact with the outside data

source.

3 System Design and Implementation

This section will introduce the propose data carrier architecture for smart contract in

blockchain-enabled IoT environment to interact with the outside data sources. The

overview of the proposed architecture and details of each component will be illustrated

accordingly.

Fig. 2. The interactions of the proposed data carrier

 9

Fig. 2 shows the interactions of the proposed data carrier system. At the very beginning,

it is responsible for the register of original smart contract developer, including constructing

mission and registering mission. After that, the data carrier system would monitor the

corresponding Ethereum smart contract that needs external off-chain data. Once being

activated by any transaction, the managed smart contract will fetch off-chain data from

external environment and callback the fetched results to smart contract through Ethereum

node. Generally, there are two kinds of off-chain data that need to be handled in the data

carrier service for smart contract. The first one is the general data that provided by external

data source, and the other one is the results that computed in computation source.

Fig. 3. The architecture of the proposed data carrier

Fig. 3 shows the conceptual architecture of the proposed data carrier system. Basically, it

contains three components: Mission Manager, Task Publisher and Worker. Mission

Manager is used to receive mission registered by system user. A mission contains event

hash, contract address, ways to respond event, and the queue topic response for event. Task

Publisher will perform four phases action for each block pended, including, collect

transactions on new block, filter out unconcerned transaction, fetch argument in event, and

send generated task to specific Worker. Worker will retrieve data according to the task,

encode data with application binary interface, and make function call transaction as event’s

callback. While using the proposed system, users need to do only two things. The first

thing is to register in the system, which is part of the Mission Manager. The second thing is

 10

to build Worker themselves if they are not using the features provided by the system

maintainer, and connected this Worker to Task Publisher.

3.1 Mission Manager

Mission Manager consists of front-end and back-end. The front-end is mainly

responsible for constructing mission and registering mission to back-end. The data source

information collected by frontend of Mission Manager is mission requisition template

(MRT), which is described in Table 1. Front-end will transform MRT into mission and

send it to back-end via http post to register mission.

Table 1

The standard format of mission requisition template (MRT)

Key Format Description

contractAddress String The contract address which is monitored

eventName String Target event’s name

contract_interface
JSON

Array
Contract application binary interface

command String
Command template, executing command after filling

in parameter part.

callbackFunctionName String
Name of function which is used to receive external data

or computation result.

messageQueueChannel String Used to identify worker connection port.

To build service back-end, the Express web framework [32] is used. It is designed for

building web applications and APIs, and hosted within the node.js runtime environment.

We use Express to set up a RESTful API for users to register mission, and store it in

MongoDB. The standard format of mission that is sent from front-end is described in Table

2. The stored mission provides the necessary information for monitoring Ethereum

blockchain, how to send external data back to the smart contract, and how does worker

retrieve the external data.

 11

Table 2

The standard format of mission

Key Format Description

contractAddress String The contract address which is monitored

eventHash String Hash of the event name and parameter type.

eventInterface JSON Array
A part of contract application binary interface, used

to decode event.

command String
Command template, executing command after filling

in parameter part.

callbackInterface JSON Array
A part of contract application binary interface, used

to encode transaction data.

messageQueueChannel String Used to identify worker connection port.

3.2 Task Publisher

Task Publisher will perform four phases action for each block pended, including collect

transactions on Ethereum node, filter out unconcerned transaction, fetch argument in event,

and send generated task to specific Worker. Fig. 4 shows the general architecture of task

publisher, which is mainly consist of filter module, decoding module and publishing

module. The transaction information is retrieved from Ethereum node, which can be

practically parsed from public Ethereum block explorer website directly, or retrieve data

via website provided APIs. The Task Publisher is implement by Node.js with the

characteristic of event-driven and non-blocking I/O model. The following subsections will

illustrate each module of Task Publisher in details.

Fig. 4. The architecture of Task Publisher

 12

3.2.1 Filter module

Filter module is triggered when every new block header comes in to find out whether

managed Ethereum smart contract is activated by any address. In order to know when can

we check new block on Ethereum blockchain, it subscribes Ethereum node with web3

package. Block header information retrieved from Ethereum node can be used as timer to

check for changes on the blockchain. After retrieving block header, we could know the

number of newest block pended to blockchain. After that we could get the detailed block

information by web3 method “web3.eth.getBlock”. The block information contains

transaction hash, which is the hash of the signed transaction object. It is unique for each

transaction, and by which Ethereum user can trace their transaction. With this transaction

hash, the “target address” of the transaction will be retrieved from Ethereum node. The

target address is the address of the transaction receiver, if the transaction is used for trigger

smart contract function, the target address will be the smart contract address.

After that, we can already know which smart contract in Ethereum is triggered, and could

know whether the smart contract hosted by our system has been triggered or not by

checking Key “contractAddress” in the mission database. Since each transaction can

trigger multiple events in smart contract, we can further use the key “eventHash” store in

mission database to filter out the event we are responsible for.

3.2.2 Decoding module

The goal of decoding module is to decode the arguments in the filtered event from filter

module, and generate task for Worker. Since we don't qualify the user's event record

arguments sequence and type, we need the event interface to perform decode event. Fig. 5

shows the workflow of task generating. At the very beginning decoding module will

obtains the filtered event from filter module and the mission from the database. In mission,

we can additionally know the message queue channel that is responsible for the event. The

key “eventInterface” of mission, which is part of contract application binary interface, will

be used to decode the event’s log arguments. After that, the decoded content will replace

the “command” of mission into an actual comment of task.

 13

Fig. 5. The workflow of Task Generating

Fig. 6 shows an example of how decoding module replace command template. In this

example user supposes to generate random numbers range from 10 to 100 for the smart

contract. As shown in Fig. 6, the command contains a python command template with

variables “$lowerBound” and “$upperBound”. The decoded log contains the log

arguments decoded by the decoding module, where the values of lowerBound is 10 and

upperBound is 100. During command replacement, log arguments 10 and 100 will be used

to replace the variables “$lowerBound” and “$upperBound” in the python command

template, respectively. Therefore, after replacing the variables in command by log

arguments, decoding module will get the actual command, which will be “command:

python random.py 10 100” in this example. The final task will be generated by combining

the “replaced command” with “contractAddress” and “callback_interface” of mission.

Fig. 6. An example of command replacement

3.2.3 Publishing module

After replacing command and generating task, we should push the task to the message

 14

queue according to “messageQueueChannel” of mission in the database. In practice,

rabbitMQ [33] is used to implement through the Rabbit.js package, which provides a

simple, socket-oriented API for messaging in Node.JS. The message queue mode we use is

PUSH/WORKER mode. WORKER socket will receive a share of the messages, and

require calling of acknowledgement function to acknowledge that each message has been

processed. Any messages left unacknowledged when the socket closes, or crashes, will be

requeued and delivered to another connected socket. A WORKER socket is read-only, and

has the additional method which acknowledges the oldest unacknowledged message, and

must be called once only for each message.

Since there may be an error task at the worker side, it requires to ensure that each task

will be processed correctly. Worker cannot immediately acknowledge the queue after

obtaining the data. If the worker obtains the task that cannot be processed, it will be

corrupted before worker informs the system that the task cannot be executed. In addition,

on both publisher and worker side, we set option “persistent” in RabbitMQ to be true. The

option “persistent” could govern the lifetime of messages, and setting it to be true means

RabbitMQ will keep messages over restarts by writing them to disk. This is an option for

all sockets, and crucially, sockets connected to the same address must agree on persistence.

The “persistent” feature ensures that even if the system crashes, tasks that have not yet

been executed by the Worker will not be lost.

3.3 Worker

Worker is responsible for retrieving data according to the task sent by Task Publisher,

encoding data with application binary interface, and making function call transaction as

event’s callback. Fig. 7 shows the general architecture of Worker, which consists of

execution module, transaction module, fetching agent that could fetch external data, and

computing agent that provide external computation.

 15

Fig. 7. The architecture of Worker

The Execution module would execute receiving “command” from task in message queue

to obtain data. It uses the child_process package of Node.js to generate an external

execution program. This program can be fetching agent or computing agent, the working

scenarios are shown in Fig. 8. The execution can be processed as external computation or

simply fetch data from external data source, which makes Worker highly flexible. After

execution, both working scenarios require to output the parameters of smart contract to

standard output as a JSON array. The worker will obtain this output for the transaction

module as callback parameter.

Fig. 8. The working scenarios of Worker

The transaction module is responsible for passing the results generated by the execution

module back to the smart contract via function calls. The functions responsible for

receiving external data are data callback functions. To interact with smart contract in

Ethereum node, we only need to manage the parameters to be transmitted and use the

 16

callback function interface to encode transaction. Therefore, with help of the proposed data

carrier system, external data and computation source can be efficiently fetched for smart

contract to interact with the outside world.

4 Evaluation Results and Discussions

4.1 Evaluation results

The comparison results of the proposed data carrier system with Oraclize Oracle service

are presented in this section. The main difference between the data carrier architecture

proposed in this paper and the Oracle system is the deployment costs of smart contracts.

Fig. 9 shows the default deployment scenario of the proposed system. While deploying

smart contract with the proposed data carrier system, the contract developers only require

to compose their original smart contract and assign corresponding mission. The proposed

system will automatically response transaction events, and no extra smart contract

deployment is required. On the contrary, while deploying smart contract with Oracle as

data carrier, original smart contract needs to inherit extra smart contract for interacting

with Oracle. The inherited contract increases the deployment costs, because Ethereum

charge fees when deploying smart contract is depended on how much space smart contract

takes, namely, the longer bytecode contract takes the higher fee Ethereum charges.

Fig. 9. Default deployment scenario of the proposed data carrier system

The evaluation is presented to demonstrate that the proposed system can accurately

decrease deployment costs of smart contracts compared with Oracle. The example smart

contract used in the evaluation is KrakenPriceTicker.sol [34], which is a smart contract that

fetch Bitcoin price at Kraken digital asset trading platform. To KrakenPriceTicker smart

contract to fetch external data in Oracle service, user should deploy the Oracle contract at

 17

the same time.

Table 3

Deployment Costs of KrakenPriceTicker and Oracle contracts

Optimization KrakenPriceTicker (Gas) Oracle (Gas) Total (Gas)

No 433,800 2,563,800 2,997,600

Yes 393,000 1,719,200 2,112,200

Table 3 shows the deployment costs of krakenPriceTicker and Oracle contracts, where

optimization refers to whether the smart contract functions are optimized by the smart

contract developer or not. The deployment of original krakenPriceTicker smart contract

costs 433,800Gas before optimization and 393,000Gas after optimization. On the other

hand, Oracle contract costs about 2,563,800Gas before optimization, and the deployment

cost is 1,719,200Gas even if the optimization is conducted. It indicates that the deployment

of krakenPriceTicker smart contract in Oracle would cost about 2,112,200Gas after

optimization. As shown in Table 3, the deployment cost of Oracle contract may even be

several times higher than the original krakenPriceTicker smart contract. This is because

Oracle provides a lot of additional functions that are redundant for users, which results in a

very large storage consume and deployment cost during deploying smart contract in

Oracle. Table 4 shows the Ethereum fee schedule during deployment. According to Table

4, we can find that the main cost of smart contract deployment is charge for placing code in

smart contract creation and carried data size in transaction. Therefore, the more data

carried by smart contract and transaction, the higher the fee Ethereum charged.

Table 4

Ethereum fee schedule during smart contract deployment.

Name Value (Gas) Description

Code deposit 32000 Paid for a CREATE operation

Create 200 Paid per byte for a CREATE operation to place code into state

Transaction 21000 Paid for every transaction.

Txdatazero 4 Paid for every zero byte of data or code for a transaction.

Txdatanonzero 68 Paid for every non-zero byte of data or code for a transaction.

In this evaluation, we intent to calculate how much cost can be saved by our data carrier

system compared with Oracle for every smart contract. Basically, the difference between

 18

our data carrier system and Oracle is that additional Oracle contract should be inherited and

deployed in Oracle environment. Therefore, at lease 1,719,200Gas can be saved in our data

carrier system according to Table 3. The equation for calculating the actual cost of

deploying a smart contract list is defined as follows:

Deployment Cost = Gas Used ∗ Gas Price ∗ Ether Price, (1)

where Gas Used is the total Gas used to deploy the smart contract, which is decided after

compiling the smart contract (more specifically, it was decided during the deployment).

When deploying smart contracts, the cost mainly comes from the size of the original data,

the space occupied by the smart contract after deployment, and the constructor operating

costs. Gas price refers to the amount of Ether users are willing to pay for every unit of Gas,

and is usually measured in “Gwei”, which equals to 10-9 Ether. Ether price is the actual

exchange rate of Ether to dollar in real world.

To evaluate the actual deployment cost, we list the actual price of Ethereum Gas and

Ether from February to May 2018 [35, 36], which are shown in Fig. 10 and Fig. 11,

respectively. After calculation, the results in Table 5 show that the average Gas and Ether

Prices are 17.15973Gwei and 668.7079USD, respectively. Since Oracle contract takes

about 1,719,200Gas as shown in Table 3, the actual cost of deploying Oracle contract is

1,719,200Gas * 17.15973Gwei* 668.7079USD≈ 19.72USD. It indicates that 20USD

deployment cost can be saved for averagely by our data carrier system compared with

Oracle.

Fig. 10. Gas Price (2018.2-2018.5)

 19

Fig. 11. Ether price (2018.2-2018.5)

Table 5

Average Gas and Ether Prices from February to May 2018

Average Gas Price Average Ether Price

17.15973 Gwei 668.7079 USD

4.2 Discussions

The evaluation results have demonstrated that the proposed system can accurately

decrease deployment costs of smart contracts compared with Oracle. The other problem in

Oracle is it requires a predefined standard on data format. It is not compatible with the

smart contracts that do not use Oracle standard during deployment. In Decoding module of

Task Publisher in the proposed architecture, event interface is used to decode the event logs.

Although we can use the standard interface of Oracle, the system would not be compatible

with smart contracts that didn't have automatic callbacks, since Oracle standard interface is

pre-specified. In addition, malicious attackers can easily decode the event in Oracle

standard interface, even trigger the callback function when contract programmer does not

limit the message sender of callback function. Although the purpose of application binary

interface does not encrypt the transaction, it still increases the risk of smart contract.

Moreover, if the standard interface of Oracle is used, this interface may be compatible with

different types of data. Therefore, the readability of smart contracts will reduce, which will

also cause users writing null data in the event log and incur additional costs inevitably.

 20

Fig. 12. The frameworks of double source consensus solutions

On the other hand, in data carrier service for smart contract, if the external data is

off-chain data the data source consensus problem will arise. Although both the proposed

system and Oracle service can guarantee that the source of the data is original source of the

request and the calculated results have not been tampered, the use of data source cannot

guarantee the correctness itself. If the smart contract is a type of contract like insurance, the

information imported from the off-chain should be based on mutual agreement from

different data resource parties. Generally, to solve data source consensus issue in Oracle

service, the traditional way is that both parties should upload data and manage it by smart

contract, and the other way is to verify it by decentralized computation solution, such as

TrueBit [37]. However, in the proposed data carrier architecture, the off-chain data

resource consensus problem can be solved more efficiently by using different Workers

instead of managing mutual data in smart contract. The frameworks of double source

consensus solutions in the proposed architecture are shown in Fig.12, the Workers could be

simply assigned by single Task Publisher or assigned by different Task Publishers,

respectively.

In terms of security, Oracle provides authenticity proofs for smart contract developer,

but they are optional functions in Oracle, which means the use of authenticity proofs in

Oracle requires the payment of an extra fee. The cost depends from the data source type

used and by the authenticity proof requested. In addition, not all proofs are compatible with

all data source types. Therefore, smart contract developer not only needs to cover the gas

consumption of inheriting the basic data fetching functions in Oracle, but also needs to pay

extra fees if authentication proofs are required. Compared with Oracle, the most significant

contribution of the proposed system is it can help smart contract developers reduce their

gas consumption during smart contract deployment. However, since the proposed system

is deployed in off-chain environment, some users may doubt the transaction security in our

 21

system. Since the system components are designed elastic, there are different deployment

scenarios of the proposed data carrier system. For users who require more trustworthy data

fetching service, we provide a more trustworthy deployment scenario, as shown in Fig. 13.

In this scenario, Worker component is suggested to deployed on user-side and maintained

by themselves. Because Worker component contains transaction module which is the key

module for passing fetched results to the smart contract. The data carrier system will be

more trustworthy if users deploy Worker in their local sides.

Fig. 13. More trustworthy deployment scenario of the proposed data carrier system

In addition to deploying Worker in user-side, an alternative for enhancing security of

proposed system is adopting trusted hardware, such as Intel‘s Software Guard Extensions

(SGX). SGX is a set of new instructions that confer hardware protections on user-level

code, which has been used in Town Crier (TC) [38] for scraping HTTPS- enabled websites

and serving source-authenticated data to relying smart contracts. In the future, we will try

to incorporate Town Crier’s design, such as integrating Worker component with Intel SGX

instruction set, to present a more cost-effective and trustworthy data carrier system in

server-side. trustworthy data feeds.

5 CONCLUSIONS

This work proposes an elastic and cost-effective data carrier architecture for smart

contracts in blockchain-enabled IoT environment that requires communication with

external off-chain data. The proposed architecture consists of three components: Mission

 22

Manager, Task Publisher and Worker. Selective solutions for filtering smart contract event

and decoding event log to fit different requirements are presented. The proposed system is

designed to minimize contract deployment costs and monitor contract event without

subscribing any filter at Ethereum node. In the evaluation, we show that it will save about

20USD deployment cost for average by our data carrier system compared with Oracle

service. We also discuss the deployments of solving data resource consensus problem

caused by fetching off-chain data, and trustworthy scenario for users who require more

secure data fetching service. Compared with Oracle, the proposed data carrier system is

demonstrated more efficient, elastic and cost-effective. In the future, to make a great deal

of improvement in security, we will try to combine the proposed components with Intel

SGX instruction set and decentralized technologies, such as Raiden Network [39], to

present a more cost-effective and secure data carrier system.

ACKNOWLEDGMENTS

This work was supported by the fund of National Natural Science Foundation of China

(Grants No. 61702102), Natural Science Foundation of Fujian Province, China (Grant No.

2018J05100), Foundation for Distinguished Young Scholars of Fujian Agriculture and

Forestry University (Grant No. xjq201809), and in part by the MOST of Taiwan (Grant No.

107-2623-E-009-006-D).

REFERENCES

[1] R. Li, T. Song, B. Mei, H. Li, X. Cheng, L. Sun, Blockchain for large-scale internet of things data storage

and protection, IEEE Transactions on Services Computing, 2018, DOI: 10.1109/TSC.2018.2853167.

[2] D. Liu, Y. Xu, X. Huang, Identification of location spoofing in wireless sensor networks in

non-line-of-sight conditions, IEEE Transactions on Industrial Informatics, 2018, 14(6), 2375-2384.

[3] Z. Yan, J. Liu, A. V. Vasilakos, L. T. Yang, Trustworthy data fusion and mining in internet of

things, Future Generation Computer Systems, 2015, 49(C), 45-46.

[4] K. Muhammad, R. Hamza, J. Ahmad, J. Lloret, H. H. G. Wang, S. W. Baik, Secure surveillance

framework for IoT systems using probabilistic image encryption, IEEE Transactions on Industrial

Informatics, 2018, 14(8), 3679-3689.

[5] A. Reyna, C. Martín, J. Chen, E. Soler, M. Díaz, On blockchain and its integration with IoT. challenges

and opportunities, Future Generation Computer Systems, 2018, 88, 173-190.

https://doi.org/10.1109/TSC.2018.2853167

 23

[6] J. Kang, R. Yu, X. Huang, S. Maharjan, Y. Zhang, E. Hossain, Enabling localized peer-to-peer

electricity trading among plug-in hybrid electric vehicles using consortium blockchains, IEEE

Transactions on Industrial Informatics, 2017, 13(6), 3154-3164.

[7] M. A. Khan, K. Salah, IoT security: review, blockchain solutions, and open challenges, Future

Generation Computer Systems. 2018, 82, 395-411.

[8] Y. Zhang, J. Wen, The IoT electric business model: using blockchain technology for the internet of

things, Peer-to-Peer Networking and Applications, 2017, 10(4), 983-994.

[9] S. Nakamoto, Bitcoin: a peer-to-peer electronic cash system. Consulted, 2008, Available:

https://bitcoin.org/bitcoin.pdf.

[10] V. Buterin, A next-generation smart contract and decentralized application platform, Etherum 2014, 1–

36. https://doi.org/10.5663/aps.v1i1.10138

[11] D. Magazzeni, P. Mcburney, W. Nash, Validation and verification of smart contracts: a research agenda,

Computer, 2017, 50(9), 50-57.

[12] M.Alharby, A. Aldweesh, A. V. Moorsel, Blockchain-based Smart Contracts: A Systematic Mapping

Study of Academic Research, ICCBB 2018: International Conference on Cloud Computing, Big Data

and Blockchain, 1-6.

[13] M. Y. Afanasev, Y. V. Fedosov, A. A. Krylova, S. A. Shorokhov, An application of blockchain and

smart contracts for machine-to-machine communications in cyber-physical production systems, IEEE

Industrial Cyber-Physical Systems (ICPS), 2018, DOI: 10.1109/ICPHYS.2018.8387630.

[14] A. Kosba, A. Miller, E. Shi, Z. Wen, C. Papamanthou, Hawk: the blockchain model of cryptography and

privacy-preserving smart contracts, IEEE Security & Privacy, 2016, pp.839-858.

[15] C. Dong, Y. Wang, A. Aldweesh, P. McCorry, and A. van Moorsel, Betrayal, distrust, and rationality:

Smart counter-collusion contracts for verifiable cloud computing, in Proceedings of the 2017 ACM

SIGSAC Conference on Computer and Communications Security, pp. 211–227, ACM, 2017.

[16] P. Ryan, Smart contract relations in e-commerce: legal implications of exchanges conducted on the

blockchain, Technology Innovation Management Review, 2017, 7(10), 14-21.

[17] K. Christidis, M. Devetsikiotis, Blockchains and smart contracts for the internet of things, IEEE Access,

2016, 4, 2292-2303.

[18] Oraclize, API documentation. Available online: http://docs.oraclize.it/ (22 08 2018).

[19] C. Prybila, S. Schulte, C. Hochreiner, I. Weber, Runtime verification for business processes utilizing the

bitcoin blockchain, Future Generation Computer Systems.2018, DOI: 10.1016/j.future.2017.08.024.

[20] T. T. A. Dinh, R. Liu, M. Zhang, G. Chen, B. C. Ooi, J. Wang, Untangling blockchain: a data processing

view of blockchain systems, IEEE Transactions on Knowledge & Data Engineering, 2018, 30(7),

1366-1385.

[21] M. Swan, Anticipating the economic benefits of blockchain, Technology Innovation Management

Review, 2017, 7(10), 6-13.

https://bitcoin.org/bitcoin.pdf
https://doi.org/10.5663/aps.v1i1.10138
http://docs.oraclize.it/

 24

[22] Y. Yuan, F. Y.Wang, Blockchain and cryptocurrencies: model, techniques, and applications, IEEE

Transactions on Systems Man & Cybernetics Systems, 2018, 48(9), 1421-1428.

[23] P. Veena, S. Panikkar, S. Nair, P. Brody, Empowering the edge-practical insights on a decentralized

internet of things, IBM Institute for Business Value, 2015, 17.

[24] G. Prisco, Slock it to introduce smart locks linked to smart ethereum contracts, decentralize the sharing

economy, Available

online: https://bitcoinmagazine.com/articles/slock-it-to-introduce-smart-locks-linked-to-smart-ethereu

m-contracts-decentralize-the-sharing-economy-1446746719/. (22 08 2018).

[25] Chain of things, Available online: https://www.chainofthings.com/. (22 08 2018).

[26] J. Liu, W. Li, G. O. Karame, N. Asokan, Toward fairness of cryptocurrency payments, IEEE Security &

Privacy, 2018, 16(3), 81-89.

[27] Understanding-oracles, Available online: https://blog.oraclize.it/understanding-oracles-99055c9c9f7b

(22 08 2018).

[28] Ripple Labs, Available online: https://ripple.com (22 08 2018).

[29] Codius, Available online: https://github.com/codius/codius-wiki/wiki/White-Paper (22 08 2018).

[30] S. Ellis, A. Juels, S. Nazarov, Chain link a decentralized oracle network, Chainlink, 2017, 1-38.

[31] N. Atzei, M. Bartoletti, T. Cimoli, A survey of attacks on ethereum smart contracts (SoK), International

Conference on Principles of Security and Trust, Springer, Berlin, Heidelberg, 2017, 164-186.

[32] Express, Available online: http://expressjs.com (22 08 2018).

[33] Rabbitmq, Available online: www.rabbitmq.com (22 08 2018).

[34] KrakenPriceTicker, Available online:

https://dapps.oraclize.it/browser-solidity/#version=soljson-v0.4.19+commit.c4cbbb05.js&optimize=fal

se&gist=ad3d1f6007942b727f5909b55e6445d2 (22 08 2018).

[35] Ether Historical Prices, Available online: https://etherscan.io/chart/etherprice (22 08 2018).

[36] Transaction Fees, Available online: https://etherscan.io/chart/transactionfee (22 08 2018).

[37] T. Jason, R. Christian, A scalable verification solution for blockchains, Ethereum, 2017, 1-50.

[38] F. Zhang, E. Cecchetti, K. Croman, Town Crier: An Authenticated Data Feed for Smart Contracts, Acm

Conference on Computer & Communications Security, 2016, 1-20.

[39] R. Joseph, D. Thaddeus, The bitcoin lightning network: Scalable off-chain instant payments, 2016,

https://lightning.network/lightning-network-paper.pdf.

https://bitcoinmagazine.com/articles/slock-it-to-introduce-smart-locks-linked-to-smart-ethereum-contracts-decentralize-the-sharing-economy-1446746719/
https://bitcoinmagazine.com/articles/slock-it-to-introduce-smart-locks-linked-to-smart-ethereum-contracts-decentralize-the-sharing-economy-1446746719/
https://www.chainofthings.com/
https://blog.oraclize.it/understanding-oracles-99055c9c9f7b
https://github.com/codius/codius-wiki/wiki/White-Paper
http://expressjs.com/
https://dapps.oraclize.it/browser-solidity/#version=soljson-v0.4.19+commit.c4cbbb05.js&optimize=false&gist=ad3d1f6007942b727f5909b55e6445d2
https://dapps.oraclize.it/browser-solidity/#version=soljson-v0.4.19+commit.c4cbbb05.js&optimize=false&gist=ad3d1f6007942b727f5909b55e6445d2
https://etherscan.io/chart/etherprice
https://etherscan.io/chart/transactionfee

