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Figure 2: Roadmap of the autonomous driving technologies from level 0 to level 5. 

We end up with a discussion on current research areas in the 
DL realm that remain insufficiently studied to date, despite 
their straightforward connection to safety issues in this 
particular application field. 

The remainder of this article is structured as follows: 
Section 2 briefly describes the major control processes of AD. 
Section 3 provides details of the recent DL approaches, their 
strengths and limitations for AD systems. In Section 4, the 
major challenges of safe AD are discussed, and future 
directions are suggested in Section 5. In Section 6, we 
conclude the survey with some concluding remarks and an 
outlook. 

II. MAJOR EMBODIMENTS OF AUTONOMOUS 

DRIVING AND RELATED STUDIES 

This section aims to briefly describe the three-step pipeline 
of measurement, analysis, and execution (MAE) and presents 
several related studies associated with AD. “Measurement” 
refers to data collection from the surrounding environment via 
sensors, cameras, or radars and processing associated to 
detecting road, lane, vehicle, and pedestrian etc. [39]. To this 
end, all the methods of this survey associated to these tasks 

will be covered under “M”. “Analysis” phase uses more 
advanced algorithms for filtering, tracking, and other concrete 
steps for fulfilling a certain set of optimization requirements 
for AD. As a result of analysis, the “execution” part uses 
certain actuators to trigger an alarm or revoke control of 
vehicle. In this phase, automatic braking can be enabled to 
save the vehicle to avoid collision, thus ensuring safety on 
roads for AD systems.  

 
Studies show that MAE is the necessary pipeline to control 

the automatic behavior of such vehicles and thus it is covered 
in this survey. Other aspects of such systems are already 
covered in detail by different surveys mentioned in Table 1. 
For instance, state-of-the-art associated with vision based 
recognition of traffic light for AD, is covered in [33]. 
Similarly, the planning and control aspect of AD for urban 
settings is investigated in [16]. To the best of our knowledge, 
an in-depth study of DL approaches for safe AD is missing in 
current literature and is thus presented in this paper with its 
overview in Figure 3. 

 

 

Table 1. Details of existing surveys related to autonomous driving and our proposal. The surveys covered in this table are 
selected based on relevancy to the main theme “MAE”, publication year, reputation of the publisher, and endorsement of 

associated research community in terms of citations.  
Reference survey Year Theme Remarks 

Deep Learning for Safe 
Autonomous Driving: Current 
Challenges and Future 
Directions (Ours) 

2019 

Investigating deep 
learning-based methods 
for safe autonomous 
driving 

-Only most recent and Deep Learning approaches 
-Complete trend analysis of DL strategies 
-Experimental evaluation of state-of-the-art with key 
findings 
-Detailed highlights about major challenges and 
recommendations for handling them. 

“On the Safe Road Toward 
Autonomous Driving” [5] 

2019 

Discussing radar signal 
processing for functional 
safety in autonomous 
vehicles 

-Analysis of the impact of the phase noise on radar 
performance. 
-Introduced state-of-the-art methods for phase noise 
estimation.  
-Covered the literature only related to radar signal 
processing. 

“Autonomous vehicles that 
interact with pedestrians: a 
survey of theory and practice” 
[40] 

2019 
Understanding the 
interaction and behavior 
of pedestrian 

-Investigated the interaction of pedestrian with traffic 
-Discussed the practical systems that understand the 
pedestrian behavior and communicate with them.    

“The rise of radar for 
autonomous vehicles: signal 
processing solutions and future 
research directions” [24] 

2019 
Focused on radar signal 
technologies for detection 
and controlling  

-Overviewed conventional signal processing 
methods for AD 
-Practical roadway scenarios and signal processing 
based future research directions are highlighted  

“Enhancing transportation 
systems via deep learning: A 
survey” [41] 

2019 
Applications and 
shortcomings of Deep 
Learning in ITS 

-Presented a comprehensive converge for 
applications of Deep Learning in ITS. 
-Summarized the evolving trends of Deep Learning 
based technology. 

“Deep Learning for Large-
Scale Traffic-Sign Detection 
and Recognition” [42] 

2019 

Investigation of large-
scale traffic sign 
detection datasets and 
Deep Learning based 

-Surveyed large-scale datasets with huge number of 
traffic sign categories 
-Recommended several improvements for traffic 
signs detection that resulted in improved 
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solutions performance.  

“A survey on 3D object 
detection methods for 
autonomous driving 
applications” [43] 

2019 

Analysis of dept 
information for object 
detection and collision 
avoidance 

-Studied all aspects of 3D object detection for AD 
-Expensive comparison of 2D and 3D object 
detection for AD 

“Networking and 
communications in 
autonomous driving: a survey” 
[44] 

2018 
Inter- and intra-vehicle 
networks 
communications 

-Covers important aspects related to wired and 
wireless networking in AD 
-Highlighted new trends of communication 
technologies in AD 
-Major focus is on networking for AD 

“A survey of the state-of-the-
art localization techniques and 
their potentials for 
autonomous vehicle 
applications” [45] 

2018 

Evaluating state-of-the-
art vehicle localization 
methods with their 
applicability to 
autonomous vehicles 

-Traditional vision- and sensors-based approaches, 
not DL 
-Certain challenges and recommendations are 
described in some paras but not in detail.  

“Driving style recognition for 
intelligent vehicle control and 
advanced driver assistance: A 
survey” [46] 

2018 
Driving style 
characterization and 
recognition for AD 

-Majority traditional approaches with two methods 
based on neural networks 
-No detailed challenges and recommendations are 
provided; however, necessary directions are given 
while describing applications of intelligent vehicles 

“A survey of scene 
understanding by event 
reasoning in autonomous 
driving” [47] 

2018 
Understanding the 
surrounding scenes of 
autonomous vehicle 

-Focused on scene representation and event detection 
-Analysis of traffic scene in autonomous driving 

"Vehicles of the future: A 
survey of research on safety 
issues” [23] 

2017 
ICT-assisted services for 
safe future connected 
vehicles 

-Only traditional approaches, not DL 
-Three areas are recommended for further research 

"Simultaneous localization and 
mapping: A survey of current 
trends in autonomous driving” 
[34] 

2017 
Simultaneous localization 
and mapping for AD 

-Hand-crafted methods and one Deep Learning 
approach 
-Besides other recommendations, deep CNNs are 
suggested as future directions. 

“An overview of traffic sign 
detection and classification 
methods” [48] 

2017 
Overview of efficient 
techniques for traffic sign 
detection  

-Discussed image processing and learning based 
methods for traffic sign detection.  

“A survey on the coordination 
of connected and automated 
vehicles at intersections and 
merging at highway on-ramps” 
[49] 

2017 

Coordination of 
connected autonomous 
vehicle for mitigating 
traffic accidents 

-Discussed the problem of coordination of CAVs on 
intersections and at highway on-ramps 
-Investigated the centralized and decentralized 
approaches in the coordination of CAVs. 
 

“Computer vision for 
autonomous vehicles: 
problems, datasets and state-
of-the-art” [50] 

2017 
Exploring computer 
vision related AD 
technologies  

-Covered the wide range of various computer vision 
techniques related to AD. 
-Issues and current research challenges are discussed 
in topics such as tracking, motion estimation, end-to-
end learning, etc. 

“Vision for looking at traffic 
lights: Issues, survey, and 
perspectives” [33] 

2016 

Vision based traffic light 
recognition with 
construction of a new 
dataset 

-Majority traditional approaches with two methods 
based on neural networks 
-No detailed challenges and recommendations 

“A survey of motion planning 
and control techniques for self-
driving urban vehicles” [16] 

2016 
Planning and control 
algorithms with focus on 
urban settings 

-Only traditional approaches, not DL 
-Major challenges and recommendations are not 
properly highlighted except few lines in the future 
work 
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“A review of motion planning 
techniques for automated 
vehicles” [39] 

2015 
Navigation and motion 
planning techniques  

-Motion planning techniques for automated driving 
-Path selection, planning, and optimization methods 
for urban vehicles 

“Vision-Based traffic sign 
detection and analysis 
for intelligent driver assistance 
Systems: 
Perspectives and Survey” [51] 

2012 
Segmentation, feature 
extraction, and final 
sign detection 

-Features extraction methods for traffic sign patterns 
representation 
-Covered driver assistance context and traffic sign 
recognition systems 
 

 

III. PROPOSED METHODOLOGY 

In this section, the state-of-the-art DL approaches 
mentioned in Table 2 are briefly described, considering the 
target seven tasks. Despite the fact that there are many studies 
about different parts of the AD system such as sensing, image 
processing, and communication etc., which work collectively 
for enabling it to drive itself, certain parts have achieved more 
attraction due to its huge impact on the overall performance of 
such vehicles. The most important parts are the seven tasks 
associated to MAE, in context of which the concerned studies 
are explored as follows: 

A. Road Detection 
This task aims at detecting round boundaries and areas 

where autonomous vehicle can possibly drive. In this context 
four representative works are selected. The first framework 
[52] applies CNNs to estimate longer distance road course for 
augmented reality applications. The second one investigates 
cascaded end-to-end CNN (CasNet) for accurate road 
detection and localization of centerline in the presence of 
complex backgrounds and significant occlusions of trees and 
cars as given in [53]. The other works present a Siamese fully 
convolutional network based framework for accurate detection 
of road boundaries using RGB images, semantic contours, and 
location priors [54] and a completely end-to-end model called 
as RBNet [55] for road as well road boundary detection in a 
single network. 

B. Lane Detection 
Lane detection has a key role in ensuring the safety of 

autonomous vehicles via lane keeping and lane departure 
control systems, enabling them to be on their specified lane, 
minimizing the chances of collision. In this context, four DL 
recent approaches are selected as examples. In the first 
approach, [56] utilized multi-sensor data and passed it through 
a deep neural network for lane detection in 3D space. The 
second approach investigates waveforms and CNNs for 
detecting lane markings for safe AD as discussed in detail in 
[57]. In the third work, an energy-friendly lane detection and 
classification strategy is proposed using stereo vision and 
CNN for lateral positioning of ego-car and issuing forward 
collision warning for safe AD [58]. In the next work [59], a 
recurrent neural network is utilized for road lane detection. 
Thus, it ensures both lane detection as well as collision 
avoidance. 
C. Vehicle Detection 

In order to avoid possible accident, the autonomous 
vehicle needs to detect and track other vehicles on the road. 
For this task, it needs to estimate different aspects of 
surrounding vehicles such as its shape, relative speed, size, 
and 3-dimensional locations. In this context, some of the state-
of-the-art techniques are described as an example from recent 
literature. The first one is an automatic approach for vehicle 
detection and counting using convolutional regression neural 
network for traffic management and safe AD with detailed 
discussion in [60]. Chen et al. [61]  presented a framework for 
3D object detection  by utilization of deep CNN model for 
object, location, and contextual boxes prediction. Similarly, 
Rajaram et al. [2] presented a mathematical strategy for object 
localization. They utilized Faster-RCNN along with RefineNet 
and region of interest pooling for vehicle detection and 
localization. Another work is a vehicle detection framework 
using multi-task deep CNN and voting strategy of region-of-
interest [62]. Both enable the autonomous vehicle to detect 
other on-road car vehicles to initiate safety measures, thus 
increasing the safety level of AD. 
D. Pedestrian Detection 

Vehicle-to-pedestrian accident is a common scenario and 
mostly happen on roads. For autonomous vehicle, it is 
necessary to differentiate other objects from humans due to 
their higher importance. Thus, visual cameras are installed on 
autonomous vehicle for detection, tracking, and possible 
recognition of pedestrians for avoiding collision and different 
other purposes. For instance, Ouyang et al. [63] presented a 
joint framework of deep features extraction, handling 
deformation and occlusion, and classification for pedestrian 
detection that helps increasing the safety of AD. Another 
approach presented by Cai et al. [64] formulated complexity 
aware cascade training for pedestrian detection. They 
integrated cascade with the CNN to enable accurate pedestrian 
detection at a faster speed. Similarly, Wang et al. [65] 
proposed a pedestrian detection approach by investigating 
body part semantics and contextual information with complex 
handling of occlusions, achieving highly accurate localization 
results, which consequently increase the safety of AD. 

 
E.  Drowsiness Detection 

This task is related to drivers and especially for level 1 to 
level 3 autonomous vehicles as level 4 and level 5 vehicles are 
fully driverless. It is one of the key contributors for safety 
applications as it can automatically take necessary action once 
driver seems distracted or any drowsy state is detected. To do 
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proposed a novel end-to-end collision avoidance system using 
deep neural network from noisy sensory measurements.  
G. Traffic Sign Detection 

This task is mainly related to the control of the vehicles 
from collisions at zebra crossing and road junctions, to reduce 
speed at speed jumps, notify the driver before turns, and 
suggest about U-turn, etc. Its function is simple, yet very 
important and challenging to make decision as discussed in 
several studies. For instance, Y. Zhu et al. [72] developed an 
object proposal-based framework for traffic sign detection and 
recognition. The searching area for traffic signs is reduced 
through CNN and then the detection and classification are 
performed using R-CNN and EdgeBox methods. X. Li et al. 
[73] proposed traffic light sign recognition model for on-
vehicle cameras by using prior frame information that keeps 
the previous frame detection record and aggregate channel 
features that analyze the interframe information. G. Wang et 
al. [74] recognized traffic light signs in dynamic images using 
a lightweight deep learning model. A dual-channel mechanism 
is proposed for traffic light detection in dark frames and a 
lightweight CNN model is developed to classify them in real-
time. For dark channel saliency model is developed to extract 
light from different colors simultaneously. Jensen et al. [75] 

applied real-time object detector algorithm for traffic light 
signs detection using various YOLO versions and achieved 
state-of-the-art results over challenging datasets. Z. Ouyang et 
al. [76] used heuristic candidate region selection module for 
traffic light sign identification and developed a lightweight 
traffic light detection (TDL) model for its classification. The 
model is evaluated on both collected and benchmark datasets. 
Also, the model is tested through offline simulation and an on-
road test. The model is integrated with Nvidia Jetson for on-
road testing in normal traffic over a bus and car. Y. Yuan et al. 
[77] developed VSSA-NET architecture for traffic sign 
detection and treated it as a regression and sequence 
classification task. The network architecture is based on 
vertical spatial sequence attention and multi resolution feature 
learning module. Also, the contextual information are 
extracted through regression and classification with attention 
procedure. In a similar method, D.Tabernek et al. [78] used 
mask R-CNN object detection algorithm with different 
adaptation of the network to achieve the final detection. For 
better performance, appearance and geometric distortion 
distributions are applied as data augmentation to increase the 
data. All these tasks contribute to the overall safety of AD and 
thus researchers are increasingly investigating these areas. 

 

Table 2. Summary of Deep Learning strategies in terms of MAE for the target seven missions for safe AD systems 

Domain Ref Measurement Analysis Execution Theme 

Road 
detection 

[52] ✓ ✓ ✓ 
A road prediction system for augmented reality-
based navigation applications via CNNs and 
suitable to work in night scenarios is presented. 

[53] ✓ - - 

Investigation of cascaded end-to-end CNN (CasNet) 
for accurate road detection and localization of 
centerline in the presence of complex backgrounds 
and significant occlusions of trees and cars. 

[54] ✓ ✓ - 

A Siamese fully convolutional network-based 
framework for accurate detection of road boundaries 
using RGB images, semantic contours, and location 
priors.   

[55] - ✓ - 
A specific neural network (RBNet) designed for 
road and road boundary detection in a single 
process. 

Lane 
detection 

[56] ✓ ✓ - 
A novel deep neural network for LiDAR and 
camera sensors to estimate the lane area effectively. 

[57] ✓ - - 
Investigation of waveforms and CNN for detecting 
lane markings for safe AD. 

[58] ✓ - ✓ 

An energy-friendly lane detection and classification 
strategy is proposed using stereo vision and CNN 
for lateral positioning of ego-car and issuing 
forward collision warning for safe AD. 

[59] - ✓ - 
A multitask deep convolution neural network for 
several objectives and a recurrent neural network 
that automatically detects lane boundaries. 

Vehicle 
detection 

[60] ✓ ✓ - 

An automatic approach for vehicle detection and 
counting using convolutional regression neural 
network for traffic management and safe AD.  
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[61] - ✓ - 
A CNN pipeline for 3D object detection using a 
monocular image.  

[2] - ✓ - 
A framework combines Faster R-CNN with 
RefineNet and region of interest pooling for vehicle 
detection. 

[62] ✓ ✓ - 
A vehicle detection framework using multi-task 
deep CNN and voting strategy of region-of-interest. 

Pedestrian 
detection 

[63] ✓ ✓ - 

A joint framework of deep features extraction, 
handling deformation and occlusion, and 
classification for pedestrian detection. 

[64] - ✓ - 

Complexity-aware cascaded pedestrian detectors are 
investigated using combining features of very 
different complexities.  

[65] ✓ ✓ - 

A pedestrian detection approach via body part 
semantics and contextual information with complex 
handling of occlusions, achieving highly accurate 
localization results.  

Drowsiness 
detection 

[66] - ✓ ✓ 

A multi-granularity based deep framework by 
intelligent usage of CNN and LSTM drowsiness 
detection in videos. 

[67] ✓ - - 

Three different state-of-the-art CNN models are 
fused for the recognition of driver’s drowsiness 
using facial landmarks. 

[68] - ✓ - 
A DDD network consisting of three Deep Learning 
models for driver drowsiness detection in RGB 
videos 

[69] ✓ ✓ ✓ 
Investigation of CNN and LSTM for drowsiness 
detection. 

Collision 
avoidance 

[58] ✓ - ✓ 

Apart from lane detection and classification, this 
work can forward collision warning, increasing the 
safety of AD. 

[70] ✓ ✓ - 

An intelligent Deep Learning system to detect 
obstacles and then recognize and track them to 
avoid collision.  

[71] - ✓ ✓ 
A novel end-to-end collision avoidance system 
using deep neural network from noisy sensory 
measurements.  

Traffic Sign 
Detection 

[72] - ✓ - 

A dual deep learning component model is 
developed for traffic sign detection and recognition, 
consisting of fully convolutional network and deep 
convolutional neural network. 

[73] ✓ ✓ - 

A traffic light recognition method is developed by 
integrating interframe analysis and prior frame 
features. 

[74] - ✓ ✓ 

Developed a lightweight deep learning model for 
traffic light recognition which is based on HDR 
images and can perform recognition in both bright 
and dark images. 



 

IV

com
app
eva
me
(A
hav
ach
ma
the
wh
har
bet
Eq

uti
me
me
pre
gen
cur

wh
ord
per
res
KI
cha
det
It 
urb
(ha
Fo

V. PERFORM
A

This section 
mparison of 
plied to tasks 
aluated using 
easure, precisio

AP), area under 
ve discussed 
hieved via a 
ajority of the r
e F-measure s
hich considers
rmonic mean 
tween them. It

q. 1.  

𝐹

 
Similarly, the

ilized AP and 
ean average pr
etric for object 
ecision (Eq. 2
nerally, AP is 
rve in the rang

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜

 

𝑅𝑒𝑐𝑎𝑙𝑙

 
Likewise, AU

here true positi
der to know 
rforms well. 
sults achieved
ITTI’s [79] be
allenging datas
tection, pedest
is divided into
ban multiple m
ard) and has 2
r instance, RB

[75] 

[76] 

[77] 

[78] 

MANCE EVA
AUTONOMO

has been or
different state
closely relate
multiple eva

on, recall, over
the curve (AU
only those 

common asses
road detection

score. F-measu
s both precisi

of both valu
t can be calcul

𝐹1 2 ∗

e mainstream 
AUC for its e

recision (mAP
detectors, whi

2) for recall 
used to find 

e 0 to 1.  

𝑜𝑛
 

 

UC is used fo
ives are plotte
that at which
Figure 4 (a) 

d by differen
enchmark data
sets for AD tas
trian detection 
o three sets, w
marked lanes (m
289 training im
BNet [55] has a

✓ 

- 

✓ 

✓ 

ALUATION O
OUS DRIVING

rganized for 
e-of-the-art D
ed to AD safe
aluation metho
rall accuracy, a
UC), and runtim
evaluation re
ssment criterio

n techniques ar
ure is also kn
ion and reca

ues and captur
ated using the 

∗
 

techniques fo
evaluation. AP

P)) is a perform
ich computes th
(Eq. 3) value
area under the

 

 

 

 

for the analysi
ed against false
h threshold th

visualizes th
t Deep Learn
set. This datas
sks such as roa
on road, and v

which are urba
moderate) and
mages and 290
achieved the c

✓ 

✓ 

✓ 

✓ 

OF THE SAFE
G 

the performan
L models wh
ety. Each task
ods including 
average precis
me. However, 
sults which 
on. For instan
re assessed us
own as F1-sc
ll, calculating
res the trade-
formula given

   

or lane detect
P (also known
mance evaluat
he AP value fr
es 0 to 1. M
e precision-rec

   (

   

is of AI mod
e positive rate

he trained mo
e state-of-the-
ning models 
set is one of 
ad detection, la
vehicle detecti

an marked (eas
d urban unmark
0 testing imag
current highest

9 

- 

U
t
a

✓ 

I
t
l
s

- 

D
t
s
l

- 
P
b

E 

nce 
hen 
k is 

F-
ion 
we 
are 

nce, 
ing 
ore 

g a 
-off 
n in 

(1) 

ion 
n as 
ion 

rom 
ore 
call 

(2). 

(3) 

dels 
e in 
odel 
-art 
on 
the 
ane 
on. 
sy), 
ked 
ges. 
t F-

measure
for feat
boundar
a learni
process
Conv [
measure
s-FCN-
followe
2 and 0
The Up
frame, b

 

Figure 4
includin
RBNet 

Utilized YOLO
traffic light det
and weather co

Investigated se
time traffic ligh
lightweight CN
simulation and
Developed an e
traffic sign det
sequence atten
learning modul
Proposed traffi
based on RNN

e score. It reso
ture extraction
ry detection. T
ing rate equal 
ed frame. Th
82] have achi
e score, respec
loc [81] uti

ed by complex 
0.4 seconds of 
p Conv [82] t
but its accuracy

4: (a) The com
ng DNN [80],
[55] (b) comp

O object detect
tection over dif
ondition image

everal deep lear
ht detection an

NN model whic
d real word scen
end-to-end dee
tection based o
ntion and multi 
le. 
ic sign detectio

N integrated wit

orts to five co
n, followed by
The model is tra

to 0.01, amou
he DNN [80], 
ieved 93.43%,
ctively. Furthe
lized very d
post-processin
processing tim

takes only 0.0
y is lower than

mparison of the
, s-FCN-loc [
parison of the 

tion algorithm 
fferent illumin

es. 

rning models f
nd developed 
ch is tested in b
narios. 
ep learning mo
n vertical spati
resolution feat

on and recognit
th CNN. 

onvolutional lay
y post-processi
ained for 100k
unting to 0.18 

s-FCN-loc [8
, 93.26%, and
ermore, the DN
deep CNN a
ng. As a result,
me per frame, 
083 seconds pe
n that of the RB

e road detectio
81] , Up Con
lane detection

for 
nations 

for real 

both 

odel for 
ial 
ture 

tion 

yers, DCNN 
ing for road 

k epochs with 
seconds per 

81], and Up 
d 93.83% F-
NN [80] and 
architectures, 
 they require 
respectively. 
er processed 

BNet [55]. 

n techniques 
nv [82], and 
n techniques 



 

inc
[84

the
Th
wh
str
sco
and
VG
ful
tra
we
Th
req
bac
lay
mu
and
exp
ext
wh
val
the
gra
vis

Fig
det
Po
and
mo

bee
sco
thr
eva
the
bou
are
dat
obj
are
mi
pix
has
74

cluding SNN [
4], CNN [84], a

 
Figure 4 (b) 

e-art methods f
hey used the 
hich contains 
eets of Pasade
ore for the eva
d 84.7 scores
GG16 CNN arc
lly connected 
ained this exten
eight decay of
heir model is no
quires 0.115 se
ckbone. Simila
yers and fully
ultitask object 
d the second 
perimented R
tracted from f
here the RNN p
lue of 0.99. W
e AUC values 
aph representa
sualization.  

gure 5: Perfo
tection metho
intNet [87], M
d Faster-RCN
oderate, and ha

The pedestria
en evaluated 
ores on KITTI
ree scenarios 
aluation includ
e benchmark d
unding box he
e fully visible 
ta, the minimu
jects are partly
e very much 
inimum height
xels. For easy, 
s achieved m
.46, respectiv

83] and DMS 
and SVM [84]

shows the co
for lane detect
Caltech lanes 
1225 challeng
na. The SNN 

aluation of thei
s, respectively
chitecture as its
layers added 

nded model wi
f 0.0001 using
ot efficient for
econds of proc
arly, Li et al. 

y connected la
detection, wh
one estimates

RNN, CNN, a
fully connected
performed wel

We represented 
are between 

ation we have 

rmance comp
ods including 
MM-MRFC [8
NN [90] with
ard scenarios. 
an detection tec

using the me
’s [79] benchm
have been ch

ding easy, mo
datasets. In the
ight for the ob
without any o

um bounding b
y occluded. In 

occluded and
t of the bound
moderate, and

maximum mAP
vely. They u

[56] using AP
using AUC va

mpassion of d
tion using AP 

dataset [85] 
ging images ta
[83] and DMS
ir techniques a

y. The SNN 
s backend, with
for road detec

ith a learning r
g “poly” learn
r real time proc
cessing time du
[84] utilized tw

ayers architect
ere the first ta
s the geometr
and SVM af
d layers for m
ll and reached 
0.99 as 99 in t
0 and 1. How
normalized th

parison of diff
CompACT-M

8], 3DOP [89
h respect to 

chniques given
ean average p

mark dataset.  I
hosen for ped
derate, and ha
e easy scenario
bject is 40 pixe
cclusion. In th
box height is 2

the hard scen
d difficult to 
ding box for 

d hard data, the
P scores of 87
utilized 2D 

P score and RN
alues.  

different state-
and AUC scor
for experime

aken in the bu
S [56] utilized 
and achieved 5
[83] utilized 
h three additio
ction. They ha
rate of 0.01 an
ning rate poli
cessing becaus
ue to the VGG
wo convolutio
ture followed 
ask detects obj
ry output.  Th
fter the featu

multitask learni
the highest AU

the graph becau
wever, due to 
he scores just 

fferent pedestr
MSCNN [86], 

], Mono3D [6
mAP for ea

n in Figure 5 ha
precision (mA
n state-of-the-

destrian detect
ard as defined 
os, the minim
ls and the obje

he moderate le
25 pixels and 

narios, the obje
see, where 

the object is 
e F-PointNet [
7.81, 77.25, a
and 3D CN

10 

NN 

-of-
res. 
ents 
usy 
AP 
9.5 
the 

onal 
ave 

nd a 
icy. 
e it 

G16 
onal 

by 
ject 
hey 
ures 
ng, 
UC 
use 
the 
for 

 
rian 

F-
61], 
asy, 

ave 
AP) 
art, 
ion 
by 

um 
ects 
evel 
the 

ects 
the 
25 

87] 
and 
NN 

architec
MM-M
and ach
process
the stat
moderat
less tha
safe an
detectio
moderat

 

Figure 6
for vehi
3DOP 
Faster R

 
Simi

detectio
scenario
Figure 
detectio
method
maximu
cases 8
SubCNN
ground 
reason a
the grou
output 
optimiz
CNNs 
network
is not d
multiple
process
limited 

 

𝑂

 

ctures and the
MRFC [88] util

hieved the se
ing time of 0.
te-of-the-art i

ate it is under 7
an 65%. There
nd trustworthy 
on should reach
ate, and hard lev

6: Comparison
icle detection i
[89], SubCNN

R-CNN [90].l

ilar to pedestr
on is also pe
os of KITTI’

6. The eval
on has been per
ds have perform
um of 93.04 b
88.64 and 79.2
N [91]. The 
plane as well

about free spa
und. They utili
pairs and lea

zation function
architectures b
k and 2) object
discussed in t
e CNNs based 
ing due to hu
importance to 

𝑣𝑒𝑟𝑎𝑙𝑙 𝑎𝑐𝑐𝑢𝑟𝑎

ir fusion for p
lized color, m

econd highest 
05 seconds. T

in easy scena
70% and 80%,
efore, this is a 

AD, where t
h the level of h
vels. 

n of different D
in easy, modera
N [91], SDP 

rian detection, 
erformed in e
s [79] benchm
luation of the
rformed using 
med well in t
by 3DOP [89
27 maximum 
3DOP [89] en

l as several de
ace, point cloud
ized structured
arns the param
n. SubCNN [91
based Fast R-
t detection net
the article, bu
methods are n

uge computati
AD.  

𝑎𝑐𝑦
 

pedestrian det
motion, and de

accuracy with
The overall per
arios is aroun
, and for the ha
very challengi

the accuracy o
human percept

Deep Learning
ate, and hard s
[92], RefineN

 the evaluatio
easy, moderate
mark dataset 
ese methods 
the AUC. The

the easy cases
9], for modera

AUC values 
ncodes object 

epth informed 
d densities and
d SVM, which
meters by the
1] exploited tw
-CNN; 1) regi
twork. The pro
ut it is greatly 
not well suited 
ional complex

   

  

ection.  The 
epth features 
h per frame 
rformance of 
nd 85%, for 
ard case it is 
ing issue for 
of pedestrian 
tion for easy, 

g approaches 
scenarios i.e., 

Net [93], and 

n of vehicle 
e, and hard 
as given in 
for vehicle 

e mainstream 
s, reaching a 
ate and hard 
achieved by 
size priors, 

features that 
d distance to 

h takes input-
eir proposed 
wo very deep 
ion proposal 

ocessing time 
agreed that 

for real-time 
xity, thus of 

 
 (4) 



 

Fig
mo
Fa
[68

ma
are
all 
giv
per
Dr
to 
in 
rea
so 
Al
[96
62
VG
con
is n
[96
tun
the
ful
tun
eno
fea
ens
inc
has
dan
Th
fut
pre
qu
exp
acc
put
ob
cri
con

gure 7: Comp
odels for drow
ceNet [95], L
8], and FFA [9

Drowsiness d
atric and the re
e compared in 

test samples, 
ven in Eq. 4. T
rcent, with 
rowsiness detec
detect it is very
day and nigh

ached the maxi
far achieved 

exNet [94], VG
6], and DDD-F
.99%, and 70

GG-FaceNet 
ntaining 60 an
not efficient fo
6] is originally
ned for drowsy
e input image 
lly connected 
ning process fr
ough for trus
atures from t
sembled for 
creased the ov
s also increas
ngerous in dri

herefore, its acc
ture work for
edictive mode
antification o
plainability of 
countability of
t at risk huma
serves in its 
itical factor fo
nstraints. 
 

arison of the 
wsiness detect
LRCN [96], F
7]. 
detection is as
esults of well-k
Figure 7. The 
what proporti

The overall acc
100% accura
ction is very ch
y difficult and 
ht scenarios a
imum accuracy

in drowsines
GG-FaceNet [9
FFA [68] achi
0.81%, respect
[95] are ver

nd 138 million 
or real time tas
y trained for ac
y states such a
sequence. It h
layers and the
om 101 to 4 cl

stable AD. D
the FC layers

drowsiness 
erall accuracy
sed up to thr
iving and is a 
curacy should b
r safe AD, j
ling that are 
of the mode
f the knowledg
f predictions. S
an life, the nee

input for pro
or the sake o

state-of-the-ar
tion i.e., Alex
lowImageNet 

ssisted using 
known Deep L
overall accurac
ion were mapp
curacy is usual
acy being a 
hallenging task
the average ac

are only 80%
y of 75.57 wh
ss detection. F
95], LRCN [96
ieved 65.85%,
tively. The A
ry deep CN
parameters, re

sk like AD. Th
ction recogniti
as face and he
has five convo
e final layer is
lasses. It is fast
DD-FFA [68]
s of three C
detection. Th
; however, the

ree times. Dro
frequent reas

be considered 
jointly with o
often overlook
el’s output 

ge captured by 
Since in safe A
ed for explaini
oducing its ou
f its viability

rt Deep Learn
xNet [94], VG

[96], DDD-F

overall accura
Learning metho
cy tells us “out
ped correctly”
lly expressed a

perfect mod
k even for hum
ccuracy of hum
 [68]. The F

hich is the high
Furthermore, 

6], FlowImageN
 67.85%, 61.5

AlexNet [94] a
NN architectur
espectively wh
he FlowImageN
ion but it is fin
ead gestures fr
olutional and t
s changed in f
t but not effect
] and FFA [9

CNN models 
his strategy h
e processing ti
owsiness is v
on for acciden
to improve in 
other aspects 
ked, such as 
confidence, 
the model or 

AD decisions m
ng what a mo
utput becomes
 with regulato

11 

 
ing 

GG-
FA 

acy 
ods 
t of 

” as 
as a 
del. 

man 
man 
FA 

hest 
the 
Net 
5%, 
and 
res, 

hich 
Net 
ne-
om 
two 
fine 
tive 
97] 
are 
has 
ime 
ery 
nts. 
the 
in 

the 
the 
the 

may 
odel 
s a 
ory 

Figure 
sign de
includin
R-CNN
 

The 
evaluate
(IOU). 
traffic-s
shown i
contains
CNN [7
MR Fe
precisio
99.18%
92.9%, 
this task
recognit
evaluate
boundin
high in
detectio
the-art t
results 
VIVA [
and con
green, r
long-dis
illumina
applicat
method 
making 
results 
detectio
25%, 21
[100], Y
SSD [1
and the 
44% on
results, 
accurac
attention
conside
Furtherm
the con

8: Precision a
etection mod
ng R-CNN [72

N[78], MR Feat

mainstream t
ed using preci
Precision an

sign dataset (S
in Figure 8. Th
s 19236 imag
72], FCN [72]
eatures [77], a
on score of 91.

%, respectively
94.6%, 96.7%
k is more abo
ition therefore
es the results 
ng box and the
ntersection ra
on model and v
traffic sign det
are achieved o
[99], which is
ntains almost 
red, and their r
stance images
ations. Traffic
tions of the A

d and its proces
g to control v

of faster ye
on. The very 
1%, 18%, and 
Yolo3 [101], a
02] and Faster
recent Rttld d

n VIVA traffic
we can see t

cy on the give
n from researc

ered to impr
more, this task

nditions are cha

and recall valu
dels achieved 
2], FCN [72], 
tures [77], and 

techniques for 
ision, recall, an

nd recall scor
STSD) [98] u
he STSD is ve

ges of 20 traff
, Faster R-CN

and MR Featu
.2%, 97.7%, 95

y, and achieve
%, 93.96%, and
out detection ra
e, the researc
by comparing

e area of groun
ate means go
vice versa. Th
tection models 
on a very cha
s captured in e
all of the traf

related right an
s in different 
c sign detectio
AD, where bot
ssing time are v
ehicles. There
et effective m
famous Yolo 
16% of IOU fo
and Yolo3-tiny
r RNN [90] ac
detector [76] ac
c light detecti
that several fa
en challenging
chers. Therefo

rove in futur
k is related to 
anging accordi

ues of  mainst
on STSD d
Faster R-CNN
MR Features+

r traffic sign d
nd intersection

res achieved 
using different 
ery challenging
fic sig categor

NN[78], Mask 
ures+VSSA [7
5.4%, 97.5%, 
ed recall score
d 94.42%, resp
ather than clas
chers utilized 
g the area of
nd truth to be d
ood performa
he performance

is given in Fig
allenging datas
extremely com
ffic light signa
nd left turns wi

day/night con
on is one of 
th the effectiv
very important
efore, we inve
methods for 
and its varian

for Yolo2 [100]
y [101], respe
hieved 10% an
chieved the hig
ion dataset [99
amous detecto
g dataset, nee
ore, its accurac
re works for

the open env
ing to differen

 
tream traffic 
dataset [98] 
N[78], Mask 
+VSSA [77]. 

detection are 
n over union 
on Swedish 

t models are 
g dataset that 
ries. The R-
R-CNN[78], 

77] achieved 
98.83%, and 
e of 87.2%, 
pectively. As 
ssification or 

IOU. IOU 
the detected 

detected. The 
ance of the 
e of state-of-
gure 9. These 
et known as 

mplex scenes 
als including 
th short- and 
nditions and 

the prompt 
veness of the 
t for decision 
estigated the 
traffic sign 

nts achieved 
], Yolo2-tiny 
ectively. The 
nd 12% IOU 
ghest IOU of 
9]. From the 
ors have less 
ding serious 
cy should be 
r safe AD. 
ironment, so 

nt places and 



 

we
fut

Fig

tec
AD
non
and
pro
com
me
ser
env
con
com
dis

ind

eather condition
ture work to be

 

gure 10: M

The competen
chniques in th
D reveal many
ne of them is 
d execution t
omising resul
mputationally 
ethods are fun
rvers, which i
vironments as 
nsumption, or 
mplexity, there
scussed in the n

V. CHALLEN

Despite sign
dustry in AD 

ns, therefore m
e considered fo

Major challen

nce and perfo
e capacity of 
y challenges. I
capable to enc
ogether. Even
lts for their 
very complex
nctional with 
s not a realis
it neglects im
prediction late
e exist several
next section. 

NGES IN SAFE

nificant invest
technology, ce

model evaluatio
or traffic sign d

nges and po

ormance of the
seven mission

In our investig
counter measu

n though these
targeted mi

x. Furthermore
high-specs G

tic setting for
mportant aspect
ency. Besides t
l other open ch

E AUTONOMOU

ment of both
ertain aspects 

on is an import
detection.  

ossible recom

e aforemention
ns, targeting s
gated techniqu
urement, analy
e methods sh
ssion, they 
, the mainstre

GPUs and clo
r real applicat
ts such as ener
the computatio
hallenges that

US DRIVING 

h academia a
of these syste

12 

tant 

 

Figure 9
sign det
[100], Y
[102], F

mmendations 

ned 
safe 
ues, 
sis, 

how 
are 

eam 
oud 
ion 
rgy 

onal 
are 

and 
ems 

are stil
discusse

a) Comp
of de
probl
impro
is dep
overa
[104]
select
makin
their 
decisi
There
comp
contro
less r
plann

9: Performanc
tection models
Yolo2-tiny [10
Faster RNN [90

for intellige

ll facing diff
ed as follows:

plexity of AD 
ecision-making
lem is the inpu
ovement can b
ependency of i
all AD system
] presented a m
tion of most su
ng is divided i
proposal is saf
ions need to 
efore, an effi
patible with 
oller. On the 

robust [105], n
ning approach 

e of different 
s on VIVA [99
00], Yolo3 [10
0], and Detecto

ent and saf

fficulties due 

Systems: AD 
g problems w
ut to another 

be noted in cert
individual par

m [103]. For in
multiple criteri
uitable driving
into successive
fety critical. H

be taken sim
icient motion 

only an en
other hand, si

needing less en
of significan

state-of-the-art
9] dataset, incl
01], Yolo3-tiny
or + RTTLD [7

fe autonomou

to numerous

systems consis
where the solu

one. Although
tain parts, but 
rts on the per
nstance, Furda
ia decision ma
g move where 
e stages. The f

However, there 
milar to huma

planner of A
nergy-intensiv
impler control
ergy but will n

nt detail. Thus

t traffic light 
uding Yolo2 

y [101], SSD 
76]. 

us driving.

s challenges 

st of a series 
ution of one 
h, significant 
overall there 

rformance of 
a and Vlacic 
aking for the 
the decision 

first stage in 
are multiple 

an thinking. 
AD can be 

ve feedback 
llers may be 
need motion-
s, intelligent 



13 
 

frameworks need to be developed to balance such 
conflicting metrics and come up with an optimal solution on 
the fly.  

b) Dynamicity of Road Environment: It is agreeable that 
current cities are becoming more dynamic due to significant 
digitization on roads with colored advertisements and 
illumination. Researchers have presented multiple sensors-
based solutions including radar [106], vision [2], lasers 
[107], and different other modality-based solutions [108], 
however, in dynamicity of road scenarios the level of 
accuracy is still very low. There is also greater tendency of 
humans for keeping personal luxury vehicles, increasing the 
traffic on road. These practices make the environment of 
autonomous vehicles further complex, thus increase its 
challenges by affecting the detection, tracking, and 
recognition accuracy of different tasks associated with AD. 

c) Big Data and Real-Time Processing: To keep the 
autonomous vehicle well aware of its surrounding 
environment, a variety of sensing devices including sensors 
[109], cameras  [2], LIDAR [110] etc., are attached to it, 
capturing data continuously, resulting in big data. In 
addition, high quality data [111-113] (e.g., videos of higher 
resolution) are collected, considering the critical nature of 
AD. Thus, processing such huge amount of data in real-time 
is a big challenge, considering the accuracy, power 
consumption, and cost [114]. 

d) Intelligent Data Prioritization: As discussed, a significant 
amount of data of different nature is captured, resulting in 
big data. Literature shows that it is infeasible for an 
autonomous vehicle to process all captured data and thus 
data prioritization mechanism [115, 116] is needed to filter 
only important contents for further processing and discard 
unnecessary data. This prioritization mechanism should be 
intelligent enough to prioritize a variety of data captured in 
different environmental scenarios [117]. 

e) Robustness and Adaptability: Studies [56-65] suggest that 
it is comparatively easy to capture and process data for 
autonomous vehicle in certain environment. Most of the 
mainstream AI techniques for AD are trained on data 
collected in certain environment and not reliable in cross 
weather conditions. This issue is recently encountered by 
Google team and they presented an idea of all-weather 
autonomously driven vehicle. However, it becomes 
inherently challenging when the environment is uncertain 
with captured data affected by snow, rain [118], and fog 
[119]. Thus, the system for different tasks associated with 
MAE should be robust enough to adapt itself with the 
surrounding environment.  

f) Integration/Fusion of Sensory Data for Dynamic Decision 
Making: In the real-world applications, it is very hard to 
achieve ideal performance and target accuracy using single 
sensor. So, there are a wide use of the decision-making 
algorithms for processing fusion data acquired from 
multisensory [120, 121]. The two major types of sensors are 
used in autonomous vehicles i.e., environment perception 
and localization. The environment perception used to detect 
surrounding objects of the vehicle while localization track 
the location of the vehicle. The fusion algorithms are 
categorized into two groups: 1) machine learning methods 

(deep neural network) and 2) multi sensor information 
fusion for measuring the state i.e., Kalman filter (KF). In the 
literature many sensor fusion based models are proposed 
using various sensors and fusion algorithms. These 
frameworks more focused on improving the accuracy but 
the implementation feasibility of these methods is less 
explored. The main challenges in the autonomous driving: 
perception, real time computing and communication, and 
learning based controls methods. There is a huge space for 
efficient, lightweight, and robust fusion based pipeline for 
autonomous vehicle [122]. 

g) Fairness, Accountability and Transparency in Deep 
Learning for AD: Recent studies have stressed on the 
utmost necessity of explaining decision provided by AI 
models in scenarios where such decisions ultimately impact 
on humans’ lives (e.g. health, law, etc.) [123, 124]. AD 
harnessing DL approaches is not an exception to this 
requirement for model explainability, particularly due to the 
black-box nature of this kind of AI models. By virtue of 
eXplainable AI (XAI) techniques [125], it is possible not 
only to shed light on the internals and knowledge learned by 
DL models, but also to ease the traceability and post-
mortem analysis of incorrect decisions (accountability) for 
model refinement. Likewise, ensuring that DL models [126] 
for AD are not affected by severely imbalanced or scarce 
training samples (i.e. lack of model bias) guarantees 
improved generalization performance, hence a more reliable 
contextual awareness of the vehicle, and a compliance with 
eventual regulatory constraints [127]. Interpreting what the 
model has learned and constructing plausible 
counterfactuals via XAI techniques has the potential to 
delimit the performance boundaries of the model, unveil 
possible sources of bias, and analyze how decisions were 
made in search for possible deficiencies in the model. 
Without advances in model explainability, AD 
functionalities harnessing the powerful modeling capability 
of DL will be far from practicality. 

h) Online Learning Capabilities in Autonomous Driving: 
One of the major challenges in the autonomous driving is 
dealing with various environments with a scalable model. 
For instance, a model trained for urban environment may 
not be applicable in rural areas, since the traffic rules are 
quite different in both scenarios. Similarly, this condition 
can be applied due to newly constructed areas, weather 
condition, and climates changes etc. [128]. This problem 
can be tackling with online learning strategy (updating 
model with new data). Recently, researcher apply online 
learning strategies in many domains such as surveillance 
[129] where the deep model iterative fine-tune itself and 
update the parameters of trained model to adopt the changed 
environment. Similarly, Guaranteed Safe Online Learning 
via Reachability (GSOLR) [130], Stochastic Online 
Learning [131], and Online Learning via meta-learning 
[132] are the recent approaches which can be adopted to 
online learning in autonomous driving cars to update 
different Deep models using maps, weather conditions and 
visual changes accordingly. 

i) Robustness Against Adversarial Attacks: analogously to 
the above, much has been lately said around the weakness of 
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DL models against intelligently crafted examples that even 
if visually imperceptible, lead them to incorrect decisions 
(e.g. misclassification [133]). Adversarial attacks pose 
enormous challenges in the vehicular domain, as has been 
exemplified with traffic signs being wrongly classified by 
vehicular cameras due to physical adversarial modifications 
in the form of printable stickers [134]. Although the activity 
around defense strategies against adversarial attacks is 
vibrant at the time, definitely there is still road ahead in 
regard to the compliance of its effectiveness with design 
specifications and admissible risk limits.  

j) Variability of Traffic Sign Boards: The object detection 
models are usually trained with fixed size resolution data. 
However, most of the traffic signs appear to be very small 
and when high resolution images are resized to the required 
input size of the model, large size sign board can be easily 
captured in the resized image, however, this leads to the 
misdetection problem of small size traffic sign boards [42]. 
Furthermore, when the vehicle travels with a very high 
speed i.e., 100 km/h, such high-speed camera motion 
destroys the structure of small size sign boards. This is a 
very challenging task to detect and recognize all types of 
traffic sign boards, which can be possibly achieved by using 
high resolution images as input to the model and not the 
resized images.  

VI. RECOMMENDATIONS FOR FUTURE RESEARCH 

In the light of challenges raised in Section 5 and literature, 
a list of important areas for further research in safe AD is 
presented with brief details for industry and academia. 
Improvement in these directions can increase the significance 
of AD systems and can contribute to their safety and 
reliability. 

a) Energy-Friendly Convolutional Neural Networks (CNNs): 
A study of several surveys shows that CNNs have obtained 
state-of-the-art achievements in various computer vision 
tasks associated to AD such as tracking [2, 135], speed 
control [136], and obstacles avoidance [137, 138] etc. 
However, their high memory requirement and 
computational complexity limit their usefulness. Thus, 
energy-friendly and efficient CNN models should be 
designed for improving the driving safety of AD 
technology. 

b) Reinforcement Learning for Autonomous Driving:  
Reinforcement learning is an active research focus in 
various domains of AD, such as control [139, 140] and path 
planning [141, 142]. Reinforcement learning techniques 
have at no doubt achieved good performance levels, 
evincing the capability of these techniques to learn near-
optimal policies to efficiently operate different subsystems 
of the autonomous vehicle. Nevertheless, most research 
contributions reported so far in the literature have been 
conducted on various simulators or restricted trial 
environments due to a manifold of reasons, ranging from 
established regulatory restrictions to the availability of 
vehicle prototypes, or the earliness of research outcomes. As 

a result, current RL models cannot fully cope with real-
world environments, which are full of uncertainties that 
hinder the provision of safety guarantees [143]. Even though 
simulators allow generating driving scenarios at a low cost, 
models are trained off-line over virtual environments, but 
cannot be expected to perform that effectively in real 
conditions, and ultimately cannot be deployed directly. 
Therefore, further research is needed towards ensuring good 
generalization properties of RL models when used in 
simulated and real environments. To this end, several 
directions should be targeted in the near future, such as 
increasingly higher levels of realism attained by vehicular 
simulation software (e.g. procedural generation of urban 
scenarios), the latest advances in data augmentation 
methods (to e.g. imprint varying meteorological conditions 
on data captured on driving tests), or specific algorithmic 
proposals aimed at improving the generalization of RL 
models to unseen environments and/or tasks (Meta 
Reinforcement Learning [144], with initial findings in the 
ITS domain appearing very recently [145]. 

c) Sequence Learning and Generative Adversarial Network 
for AD: Vision sensors deployed on AV capture pedestrians 
performing different activities. The patterns underlying 
these activities cannot be captured from a single frame, but 
they rather require learning over a sequence of consecutive 
frames [129]. This augmented information substratum 
requires efficient techniques for sequence learning for 
pedestrian activity recognition in the AV surroundings, 
considering additional elements of complexity such as 
partial occlusions or different camera angles over time. To 
this end, data augmentation techniques capable of 
imprinting these effects in the data from which sequence 
learning models are built constitute a promising path to 
follow. Similarly, generative adversarial networks (GAN) 
can be investigated to generate accurate environments in 
simulation for training self-driving car policies. GANs can 
learn to re-render a scene from a different viewpoint, which 
could be useful for laying new learning environments for 
Reinforcement Learning methods, and ultimately producing 
more generalizable policies for self-driving cars. 

d) Reliable and Efficient Motion Planners and Feedback 
controllers: Motion planner and feedback controller are one 
of the critical parts of AD systems as they have a key role in 
the overall running time of the system [146]. However, they 
are working in an inverse way as described in Section 4. 
Thus, further investigation is needed to come up with a 
reliable and efficient motion planner and feedback controller 
to balance the computational burden, speed, and safety 
[147]. 

e) Universal Benchmark Datasets: Despite the available 
datasets [148-151] for evaluating different individual 
aspects of AD systems (such as KITTI benchmark [79] and 
publicly accessible datasets [152]), there is a need to make 
universal benchmark datasets to measure the overall 
performance of AD prototypes. Such efforts will make AD a 
hot topic for both academia and industries, helping in 
benchmarking and arranging competitions for the concerned 
research community to improve different individual aspects 
as well as overall performance of AD systems. 
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f) Industrialization and Personalization: Although significant 
research is in progress for improving almost every aspect of 
AD such as tracking [153-155], velocity control [156, 157], 
localization and mapping [34, 158], path planning [159-
162], and visual guidance [103, 163], such systems are yet 
not globally recognized and adoptable due to safety risks 
and lack of large-scale industrialization. Thus, AD models 
should be made mature enough to be universally trusted and 
adoptable at large scales. Further, personalization (such as 
preliminary explorations for cruise control [164] and lane 
departure [165, 166]) can be another interesting research 
direction for users to adjust their preferences in terms of 
safety, speed limit, available features, and cost. As an 
example, companies like Google and NVIDIA are building 
powerful AI-based self-driving cars, investing resources 
towards dedicated high-processing GPU and TPU devices 
for AD that can efficiently run Deep Learning models as the 
ones addressed in this study. 

g) Edge Computing for Autonomous Vehicles: To guarantee 
the safety and robustness of AD, AV are equipped with 
various smart sensors and high-computing embedded 
devices. Data acquired from these sensors are processed 
through DL models for accurate decisions. In this context, 
one of the main challenges is to properly balance the 
tradeoff between the cost of processing devices and the 
competence of the computational model [167, 168]. In 
general, manufacturing industries prioritize the fabrication 
of sensors at minimum costs with maximum performance 
[169]. This paves an unprecedented opportunity for Edge 
Computing to contribute to safe AD. Edge Computing for 
deep learning [170] require research for online training over 
the Edge because vehicular data dynamically changes over 
time [171]. The traditional training process is often 
performed on devices with high computational resources, 
and then, once trained, they are installed on the edge. This 
strategy is far from effective when adopted for tasks 
associated to AD, due to the need for refreshing the 
knowledge captured by the model. This is challenging 
research direction, requiring effective and optimized online 
learning mechanisms for training Deep Learning models 
over the edge [172]. 
This is challenging research direction, requiring effective 
and optimized online learning mechanisms for training Deep 
Learning models over the edge. Specifically, there is a 
growing need for mature software frameworks capable of 
federating Deep Learning models learned locally across 
different distant contexts, without compromising protected 
data. This federated learning scenario fits perfectly in safe 
AD, wherein models can be enriched by sharing model 
information among vehicles rather than the captured data 
themselves. The relative youth of this research area deserves 
further attention from the community towards extrapolating 
the early findings achieved with already existing 
frameworks to the automotive domain, placing an emphasis 
on crucial implementation aspects such as latency, 
reliability/reputation of the federated models and the 
obsolescence of the model [173]. 

h) Privacy-Aware Knowledge Sharing: In safety matters, 
human is the last asset to put at risk. Therefore, the 

community should synergistically aim at more accurate 
models. Unfortunately, the huge variability of vehicular 
situations and environments makes it complicated to build 
DL models capable of maintaining their performance levels 
across diverse environmental scenarios. In this context, a 
need emerges for feeding models with diverse datasets that 
can represent as many practical safety-critical situations as 
possible. However, technical aspects aside and despite 
ultimately targeting an increase of safety, this workaround 
becomes complex to implement in competitive markets with 
stakeholders reluctant to share the data acquired from their 
portfolio of clients. Bearing this in mind, the focus should 
be drifted onto Federated Learning [174], a new distributed 
computing paradigm with DL at their core, by which locally 
trained models deployed at vehicles can share their 
knowledge (embodied in their adjusted parameters delivered 
to a central server), and exploit it locally towards improving 
their performance [175]. Interestingly, this distributed 
computation is accomplished without compromising the 
privacy of the data from where local models were trained. 
We foresee an exciting application scenario of federated DL 
in vehicular perception, allowing manufacturers to attain 
unprecedented levels of vehicular perception without major 
concerns with respect to the privacy and confidentiality of 
their datasets. 

i) Internet of Everything for Increased Safety: In the future 
smart cities [176], different entities associated with roads 
such as vehicles, sign-boards, traffic lights, etc., will be 
connected with each other for sharing useful information 
[177, 178]. Of course, they need to be interoperable and 
thus, a diverse set of communication standards need to be 
investigated for autonomous vehicles so that there is no 
interoperability issue [179, 180]. This will enable 
autonomous vehicles to get necessary information about 
traffic jams, real-time best available route suggestions, and 
expected collisions and can increase the safety of AD. 

j) Risk Assessment: One of the goals of AD is to reduce road 
fatalities and eliminate human error on roads. However, 
AVs are not completely risk-free due to the prevalence of 
real-world uncertainties. Therefore, risk assessment is 
crucial in order to improve the safety of AD. A plentiful 
strand of literature has focused on the various aspects of the 
AD including path planning, motion planning, scene 
segmentation and understanding, DL based solutions, and 
pedestrian’s receptivity towards fully AVs to reduce the risk 
of AD in real environments. For instance, Martin et al. [181] 
studied the ethical framings of AD technology to reduce the 
risk. Further, the challenge of the AD relies in how AVs 
perceive the external environment to understand different 
situations that could minimize the overall risk of the AD. A 
survey conducted on the road and lane detection by Bar et 
al. [182], suggests that path planning for AVs involves two 
strategies: 1) bounding-box detection, maximizing the 
likelihood of detecting an object inside the box and 2) 
semantic segmentation by classifying each pixel in the input 
frames. However, for both the scenarios, the performance of 
the neural networks is dominantly successful in AVs that 
could efficiently segment the lanes to follow road up to the 
final destination. Moreover, there is a high probability of 
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risks when AVs are exposed to drive autonomously on a 
completely new environment. To minimize the risk of AD 
in such environments, new large scale datasets have been 
proposed [183] for benchmarking the scene understanding. 
For example, SYNTHIA dataset [184] containing images 
for scene understanding, and [185] algorithm for real time 
scene segmentation in AVs to reduce risks in AD. 
Furthermore, Johnson-Roberson et al. [186] gathered more 
than 200,000 images of the computer game “Grand Theft 
Auto V”, for the vehicle detection and speed optimization 
of AVs to reduce the risk in real environments. The 
experimental results showed that using virtual environment 
images in training process significantly reduced the risk of 
AVs in real-world environments.  
Besides the significant achievements of DL in AVs, a large 
limitation of DL-based perception systems is the inadequate 
feedback of uncertainty. Martin et al. [187] reviewed the 
challenges of AI based decision making, its risks, and 
societal benefits. Bayesian DL is the bridge between DL and 
Bayesian probability that offers principled risks analysis 
within DL. Furthermore, the uncertainty assessment of the 
model can be measured using Monte Carlo dropout 
sampling via circulating the input data through the network 
multiple times with various dropout weights. Furthermore, 
as suggested by McAllister et al. [188], using the Bayesian 
network to estimate and propagate the risk assessment 
would enable AVs to cope with uncertainty. Other 
techniques related to risk assessment should be inspected 
further in the years to come towards addressing this issue. 
Another risk factor of AD is the autonomous vehicle itself 
because it involves certain complex tasks where several 
motors and cognitive actions are simultaneously applied and 
sometimes in a quick succession. Also, the performance of 
the AVs is profoundly dependent on the varying weather, 
lightning condition, and road surface. Moreover, the 
pedestrian behavior is also a critical factor that imprints 
additional uncertainty to the vehicle’s decisional 
environment [189]. Due to these challenges, it is perhaps not 
surprising that if anything goes wrong, the cost it does will 
be very high. For the reliability of AVs in public, they must 
be driven for billions of miles in complex environments and 
varying conditions. 

VII. CONCLUSION  

The recent emergence of sensing, perception, and signal 
processing technologies have brought significant improvement 
to the maturity of autonomous driving, thereby reducing 
human drivers’ efforts and contributing to the overall safety of 
autonomous driving. Deep Learning strategies recently solved 
numerous complex problems related to different areas in 
general and autonomous driving, however, their detailed 
investigation on control processes for autonomous driving is 
not covered by current literature. This article pointed out the 
key strengths of Deep Learning methods and surveyed state-
of-the-art approaches for safe autonomous driving, covering 
both their major achievements and limitations. In addition, this 
survey identified the major embodiments of autonomous 
driving pipeline i.e., measurement, analysis, and execution 

(also known as control processes) and investigated the 
performance of Deep Learning methods for several safety-
related AD tasks, including road, lane, vehicle, pedestrian, 
drowsiness detection, collision avoidance, and traffic sign 
detection. Lastly, this paper highlighted the major challenges 
and issues faced by autonomous driving community and 
suggested recommendations for future research in further 
development towards safe AD. 

Research on safe AD has been on the spotlight of the ITS 
community of decades. Deep Learning experts are in 
continuous race to reach a sufficient level of maturity in the 
AVs domain to make vehicles achieve a thorough, reliable 
context awareness through sensors endowed with this family 
of powerful modeling approaches. We advocate for a new 
time in which investigations should not only aim at improving 
the accuracy of modern Deep Learning flavors, but also 
inspect aspects related to their usability and practicability 
[190], such as the need for explanations, robustness to 
adversarial attacks, the assessment of epistemic uncertainty 
and risk characterizing such models, or the derivation of 
neural architectures capable of lowering their energy 
consumption. Unless these directions are actively pursued by 
the research community, Deep Learning will remain relegated 
to academic research and controlled trial environments, and 
vehicular safety will not harness the enormous potential of this 
branch of Artificial Intelligence. 
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at the University of Fortaleza, Fortaleza. He has experience in 
computer systems, mainly in the research fields of applied 
computing, intelligent systems, visualization and interaction, 
with specific interest in pattern recognition, artificial 
intelligence, image processing and analysis, Internet of 
Things, Internet of Health Things, as well as automation with 
respect to biological signal/image processing, image 
segmentation, biomedical circuits, and human/brain–machine 
interaction, including augmented and virtual reality simulation 
modeling for animals and humans. 

 


