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Abstract—Both limited main memory size and memory inter-
ference are considered as the major bottlenecks in virtualization
environments. Memory deduplication, detecting pages with same
content and being shared into one single copy, reduces memory
requirements; memory partition, allocating unique colors for
each virtual machine according to page color, reduces memory
interference among virtual machines to improve performance. In
this paper, we propose a coordinate memory deduplication and
partition approach named CMDP to reduce memory require-
ment and interference simultaneously for improving performance
in virtualization. Moreover, CMDP adopts a lightweight page
behavior-based memory deduplication approach named BMD to
reduce futile page comparison overhead meanwhile to detect
page sharing opportunities efficiently. And a virtual machine
based memory partition called VMMP is added into CMDP to
reduce interference among virtual machines. According to page
color, VMMP allocates unique page colors to applications, virtual
machines and hypervisor. The experimental results show that
CMDP can efficiently improve performance (by about 15.8%)
meanwhile accommodate more virtual machines concurrently.

Index Terms—Main memory, memory deduplication, memory
partition, virtualization, performance.

I. INTRODUCTION

W ITH the ability to scale computing resources on de-
mand and provide a simple pay-as-you-go business

model for customers, cloud computing is emerging as an eco-
nomical computing paradigm, and has gained much popularity
in the industry [1]. Currently, a number of big companies such
as Netflix and Foursquare [2] have successfully moved their
business services from the dedicated computing infrastructure
to Amazon Elastic Computing Cloud (EC2) [3]. Undoubtedly,
more customers and enterprises will leverage the cloud to
maintain or scale up their business while cutting down the
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budget, as reported by the International Data Corporation
(IDC) that the business revenue brought by cloud computing
will reach $1.1 trillion by 2015 [4].

In cloud computing, multiple virtual machines (VMs) can
be collocated on a single physical server, and they can operate
independently with virtualization technology [5, 6], which
provides flexible allocation, migration of services, and better
security isolation. In the virtualization environment, physical
resources (such as main memory) are managed by a software
layer called hypervisor (or Virtual Machine Monitor, VMM),
and the primary goal of a hypervisor is to provide efficient
resource sharing among multiple co-running virtual machines
[7].

However, with the number of VMs keep increasing on one
physical server (it will be up to 8 VMs on one physical core
in desktop cloud environment), meanwhile the interference
among different VMs is more and more serious, virtualization
has placed heavy pressure on memory system for both larger
capacity and better independence. The demand for memory
capacity is much advance to the increasing speed, therefore,
both memory size and reducing interference are two of the
major bottlenecks to improve performance of the whole server.
Memory deduplication detects and reduces page duplication
to alleviate the memory demands; memory partition divides
memory resource among threads/VMs to reduce interference
for improving performance. Both techniques have demon-
strated great opportunities in improving memory performance
respectively.

Kernel Samepage Merging (KSM) [8], which is the im-
plementation of memory deduplication and adopted by Linux
kernel, is running transparently in the hypervisor layer and
requires none modification to guest operating systems. KSM
scans memory pages of guest VMs periodically to detect all
identical pages of the same content. All guest VMs which have
the identical pages share one single physical page, therefore,
all the other redundant physical pages can be reclaimed to
the hypervisor. In this way, KSM can efficiently reduce the
memory demands of the VMs. Difference Engine [9] reported
memory deduplication can save memory 50% across VMs
absolutely, and VMware [10] reported about 40% memory
savings. Although memory deduplication can save memory, it
exists two problems. The first one is that the overhead of page
comparing is too costly to use. The second one is that memory
deduplication can’t solve the memory contention problem. In
the virtualization, VMs running concurrently contend with
each other for the shared memory, especially memory. Hence,
VM can be slowed down compared to when it runs alone and
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entirely owns the memory system, which causes system unfair-
ness and overall system performance degradation. Moreover,
memory streams of different VMs are interleaved and interfere
with each other at DRAM memory, which destroys original
spatial locality and bank level parallelism of individual VMs,
thus severely degrading system performance [11-14]. As the
both number of cores and VMs in the server continue to grow,
the contention and interference will be more serious [15].

Memory partition, containing channels/rank/bank partition,
divides memory resource among VMs/threads to reduce inter-
ference. MCP [16], map memory intensive and non-intensive
threads onto different channel(s), speeds up non-intensive
threads for preventing interference from memory intensive
threads. However, system unfairness is more serious for physi-
cally exacerbating intensive threads contention. Bank partition
[11, 13, 14], map cores onto different memory banks,isolates
memory access streams of different threads to eliminate in-
terference. Although memory partition solves the interference
issue, the improvement of system throughput and fairness is
limited.

In this paper, we propose a coordinate memory dedupli-
cation and partition approach named CMDP to reduce mem-
ory requirement and interference simultaneously for improv-
ing performance in virtualization. CMDP contains memory
deduplication and memory partition techniques simultaneously
to play their respective advantages and avoid shortcomings.
Therefore, CMDP can improve system performance and re-
duce interference simultaneously. Moreover, a virtual machine
based memory partition called VMMP is added into CMDP
to reduce interference among virtual machines. VMMP dy-
namically maps hypervisor, VMs and applications running
on VMs onto different memory banks. Hypervisor, different
VMs and different applications running on different VMs use
independent memory banks to eliminate interference. Also,
CMDP adopts a lightweight page behavior-based memory
deduplication approach named BMD to reduce futile page
comparison overhead meanwhile to detect page sharing oppor-
tunities efficiently. In BMD, pages are grouped into different
classifications based on both page behavior and belonged
banks. Pages belonged to memory banks of VMs are more
possibility with the same content, moreover, pages with similar
behavior, especially access behavior, are suggested to have
higher possibility with same content. So pages belonged to
memory banks of VMs and with similar behavior are grouped
into the same classification. Therefore, performing page com-
parisons is restricted into the same classification, never ex-
ceeding to different classifications, which will do many futile
comparisons. In this way, BMD can reduce overhead of futile
comparisons to make our CMDP be more efficient.

In summary, the paper aims to make the following contri-
butions through the proposal of CMDP:
(1) Coordinate memory deduplication and partition to improve

performance and reduce interference simultaneously.
(2) CMDP adopts VMMP, which maps hypervisor, VMs

and applications running on VMs onto different memory
banks. In this way, hypervisor, different VMs and different
applications running on different VMs use independent
memory banks to eliminate interference.

Fig. 1. organization of a modern memory subsystem

(3) Because pages belonged to memory banks of VMs are
more possibility with the same content, moreover, pages
with similar behavior, especially access behavior, are
suggested to have higher possibility with same content,
so pages belonged to memory banks of VMs and with
similar behavior are grouped into the same classification
for reducing comparison range. In our proposed BMD,
page comparisons is restricted into the same classification
to reduce overhead of futile comparisons.

The rest of this paper is organized as follows. Section 2
elaborates on essential background and research motivations.
Section 3 explains our coordinating memory deduplication and
partition platform. Section 4 describes experimental method-
ology and section 5 presents the results of our experiments.
We discuss the related work in section 6. Finally, section 7
concludes this paper.

II. BACKGROUND & MOTIVATION

We provide a brief overview of modern memory subsys-
tems, then profile interference and memory sharing, finally
analyze the comparison overhead of KSM.

A. DRAM Organization

Figure 1 illustrates the multiple levels of organization of the
memory subsystem. To service memory accesses, the memory
controller (MC) sends commands to the DIMMs on behalf
of the CPU’s last-level cache across a memory bus [29]. As
shown, recent processors have integrated the MC into the
same package as the CPU. To enable greater parallelism, the
width of the memory bus is split into multiple channels. These
channels act independently and can access disjoint regions of
the physical address space in parallel [17].

Multiple DIMMs may be connected to the same channel.
Each DIMM comprises a printed circuit board with register
devices, a Phase Lock Loop device, and multiple DRAM
chips. The DRAM chips are the ultimate destination of the
MC commands. The subset of DRAM chips that participate
in each access is called a rank. The number of chips in a rank
depends on how many bits each chip produces/consumes at a
time. Each DIMM can have up to 16 chips, organized into 1-4
ranks.

Each DRAM chip contains multiple banks (typically 8
banks nowadays), each of which contains multiple two-
dimensional memory arrays. The basic unit of storage in an
array is a simple capacitor representing a bitłthe DRAM cell.
Thus, in a x8 DRAM chip, each bank has 8 arrays, each
of which produces/consumes one bit at a time. However,
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Fig. 2. row buffer hit rate under different running configurations

each time an array is accessed, an entire multi-KB row
is transferred to a row buffer. This operation is called an
“activation” or a “row opening”. Then, any column of the row
can be read/written over the channel in one burst. Because
the activation is destructive, the corresponding row eventually
needs to be “pre-charged”, that is, written back to the array.

B. Profiling of Interference

With the core number and VM number keep increasing
in the server, one of major challenges on memory system is
interference. Usually a single thread’s memory requests have
good locality and can exhibit good row buffer hit rate. But the
locality is significantly reduced in a multi-core server with
running many VMs parallel. Therefore, row buffer hit rate
decreases sharply, leading to poor overall system performance.
Figure 2 demonstrates that the row buffer hit rate decreases
significantly with the thread number and VM number in-
creased. The y-axis shows the row buffer hit rate, and the
x-axis presents the different running configurations. The n-T-
m-VM represents there is m VMs with n threads in the server,
and every VM has n/m threads.

The interference mainly derives from three aspects:
1) Hypervisor interfere VMs. The hypervisor presents the

guest operating systems with a virtual operating platform
and manages the execution of the guest operating sys-
tems. Multiple instances of a variety of operating systems
may share the virtualized hardware resources. The hy-
pervisor takes responsible for the resources management.
Therefore, VMs need to request the hypervisor to allocate
physical resources, like the memory resource, during their
lifetime. In the process of memory allocation, hypervisor
may disturb the origin memory access stream of VMs,
which is one aspect of the memory interference.
Above situation has been shown in the figure 2. 1-
T which represents one thread running on operating
system without hypervisor is better than 1-T-1-VM which
represents one thread running on one VM with hypervisor
in row buffer hit rate. The advantage is mainly from the
hypervisor interference-free.
Moreover, in order to detailed analyze the interference
effect from hypervisor, we count the proportion caused by

hypervisor to the VM row buffer misses. Figure 3 demon-
strates the VM row buffer misses proportion caused by
hypervisor in different configurations. The x-axis presents
the different benchmarks from PARSEC running on VM.
This figure has proven hypervisor contributes great row
buffer misses.

2) VM interfere applications running on it.In order to get
the service of the guest operating system (OS), applica-
tions need to invoke system calls frequently during their
lifetime. To access guest OS’s address space, applications
have to switch to the kernel state. After the service
finished, the state returns back to the user state, which is
the address space of applications originally. For a simple
system call, kernel only uses a small part of a page, while
it has to complete the above steps, which may lead to two
additional row-buffer misses. Although guest OS invoca-
tions are usually short-lived, they are invoked frequently
[18], which leads to the frequently switches between
kernel state and user, intensifying interference. Figure
4 demonstrates row buffer misses proportion caused by
guest OS to different benchmarks. In the figure, we
run different benchmarks on VM to count the misses
proportion caused by invoking system calls and other
guest OS interference. This figure has clearly shown guest
OS contributes most row buffer misses to applications.

3) Interference among VMs and threads on one VM.VMs
and threads on one VM running concurrently contend
shared memory in both CMP systems and virtual CMP
(VCMP) systems. Therefore, memory streams of different
VMs and threads are interleaved and interfere with each
other at DRAM memory and virtual memory address
space respectively. The results of figure 2 have proven
the interference among VMs and threads on one VM. 1-
T-1-VM which represents one thread running on one VM
is better than 4-T-4-VM which represents four threads
running on four VMs and each VM has one thread in row
buffer hit rate. Briefly, one VM is better than four VMs
simultaneously running in row buffer miss rate. Moreover,
as the threads number of one VM increased, such as 1-T-
1-VM, 4-T-1-VM, 64-T-8-VM and 256-T-16-VM, from
one thread to 16 threads on one VM, the row buffer
miss rate decreases seriously. Interference among VMs
and threads on one VM needs to alleviate for memory
performance improvement.

C. Profiling of Memory Sharing
Basically, memory deduplication of reducing memory re-

quirements is based on the assumption that a system has many
identical contents. However, in the virtualization, a physical
server mostly hosts multiple VMs to run simultaneously for
different services. The software as well as the data used in
VMs can be similar [19]. Therefore, through merging those
identical pages, the physical system can release additional free
pages.

Moreover, the guest OS running on each VM also have
many identical contents. Figure 5 demonstrates the identical
pages proportion between two VMs without applications run-
ning on them. In the figure, the x-axis presents the two guest
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Fig. 3. VM row buffer misses proportion caused by hypervisor in different
configurations

Fig. 4. row buffer misses proportion caused by guest OS

Fig. 5. identical pages proportion between two VMs without applications

OS which compares the identical pages, and U12.04 presents
Ubuntu 12.04 version, R6.0 presents Redhat Linux 6.0 version,
win7 presents windows 7 version, xp presents windows xp
version. The results of the figure 5 show two VMs of the
same guest OS and same version have a large proportion of
the identical pages, even more than 90%. Two VMs of the
same guest OS but with different versions also have a good
proportion of the identical pages, more than 75%. Although
two VMs of the different guest OS have not as many identical
pages as above situations, more than 40%, each server can
only one kind of guest OS for service. Therefore, there is
good opportunity to alleviate memory request using memory
deduplication.

D. Comparison Overhead Analysis of KSM

KSM is the implementation of Content Based Page Sharing
(CBPS) using in the Linux kernel, which is base on scanning.
KSM not only targets kernel virtual machines (KVMs) but also
processes running on the host Linux kernel. This scheme uses
two red-black trees to detect identical pages, one is named
stable tree and the other is named unstable tree. Stable tree is
used for recording shared pages, and unstable tree is used for
recording single used pages. In each scan round, a candidate
page is firstly compared with pages in the stable tree. If there
is a match, the candidate page will be merged and shared times
plus one. Otherwise, compare with the unstable tree: If there
is a match, the single used page is changed to shared and
inserted into stable tree; if there is no match in the unstable
tree, the candidate page is inserted into the unstable tree.

As the increasing capacity of main memory, the size of
these two global trees expands proportionally. One candidate
page needs to be compared content with a large number of
pages, but those pages have low possibility to share with the
candidate page. For example, pages of hypervisor have low
possibility to share with VM and applications. In order to
reduce useless comparisons, we can take sharing possibility
into account. For a candidate page, it only compares with
pages of high possibility pages sharing with it. The figure 5
has shown VMs of the same guest OS have high possibility to
share pages. Therefore, only candidate pages of VMs need to
be compared with pages belonged to VMs, which can reduce
much useless comparisons.

Moreover, identical pages always have the same behavior,
especially access behavior. One page is used for storing in-
structions is usually for reading, never for writing. Otherwise,
the data page contains a large proportion of writing. So,
different access behavior pages are hardly identical. Before
comparing page contents, check whether they have different
behaviors, give up comparing if their behaviors are different
for impossible identical. In this way, the comparisons are
reduced further.

III. COORDINATE MEMORY DEDUPLICATION AND
PARTITION (CMDP)

In this section, we firstly introduce the overview of coordi-
nate memory deduplication and partition (CMDP) in subsec-
tion 3.1. Then we introduce a virtual machine based memory
partition called VMMP to allocate unique page colors to
applications, virtual machines and hypervisor in subsection
3.2. Finally, we introduce a lightweight page behavior-based
memory deduplication approach named BMD to reduce futile
page comparison overhead in subsection 3.3.

A. Overview of CMDP

To reduce memory requests and interferences simultane-
ously, we propose coordinate memory deduplication and par-
tition (CMDP). It contains two parts of the CMDP. First,
to reduce interferences among VMs, VMMP of the CMDP
dynamically maps hypervisor, VMs and applications running
on VMs onto different memory banks instead of accessing
all memory banks. Through isolating their memory requests
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Fig. 6. the CMDP framework containing memory partition and memory
deduplication

from others, the spatial locality can be reserved. Second, to
reduce memory requests, BMD of the CMDP groups pages
into different classifications based on both belonged banks and
page accessed behavior. Pages belonged to memory banks of
VMs are more possibility with the same content, moreover,
pages with similar behavior, especially access behavior, are
suggested to have higher possibility with same content. So
pages belonged to memory banks of VMs and with similar
behavior are grouped into the same classification. Therefore,
performing page comparisons is restricted into the same clas-
sification, never exceeding to different classifications, which
will do many futile comparisons.

Figure 6 demonstrates our CMDP, which contains mem-
ory partition and memory deduplication simultaneously. In
CMDP, we implement memory partition based on our pro-
posed VMMP, which partitions memory banks into group,
each group is mapped to hypervisor, VMs or applications
of one VM. In this way, hypervisor, VMs and applications
access unique memory banks to prevent interference with each
other; similarly, we implement memory deduplication based on
our BMD, which restricts page sharing into banks for VMs,
because the identical pages mainly in the this memory domain.
Moreover, BMD adds the page access behavior to reduce com-
parisons, which partition pages into different classifications
according to their behavior and compare page content within
each classification to further reduce comparisons.

B. Virtual Machine based Memory Partition (VMMP)

To partition memory banks, we need to understand the
memory request of each part. The memory request is mainly
defined by three components: memory intensity, row buffer
locality, and bank level parallelism [14].

Memory intensity. Memory intensity is the frequency of an
application generating memory requests.

Row buffer locality. In current DRAM memory systems,
each bank contains a row buffer for providing temporary data
storage of a DRAM row. If continuous accesses in the same
row, which called row-buffer hit, the only column accesses
need to occur; otherwise, row-buffer conflict occurs, then
memory controller precharges the opened row, activate another
row, finally to perform column access.

Bank level parallelism. Memory bank is a set of independent
memory arrays inside a DRAM device, which can be accessed
parallel. In modern out-of-order processors, due to the high
latency of off-chip DRAM, more and more memory accesses
need to be performed parallel to improve system performance.
If threads generate multiple memory accesses to different
banks, they can proceed in parallel in memory system.

According to the three components of each application,
allocate each application the suitable memory banks to reduce
interference while improving performance. Applications of
low memory intensity are no performance changes with the
bank amount. Memory intensive applications are sensitive to
the number of banks, but not more banks better performance.
The request of the bank number is limited [14].

In this paper, we assume all VMs have the same guest
OS and each VM provide one single service in one server.
In cloud computing center, there are many servers. If one
server hosts VMs of the same guest OS, which will increase
the possibility of sharing pages. Nowadays, each VM is used
for special service, so one VM provides one single service
normally. Threads for one service are usually sharing address
space.

Based on above hypothesis and the memory requests of
applications, we partition memory banks into bank groups.
Hypervisor is allocated one bank group, which reduces inter-
ference to the VMs; all VMs of the same guest OS is allocated
another one bank group, which can reduce interference to the
applications running on VMs and restrict the share space to
reduce comparisons; each applications of one VM is allocated
one bank group, which can reduce interference among appli-
cations from different VMs. Moreover, each bank group has
different bank number. The bank number of bank groups for
applications running on VM is mostly 16 banks, because all
thread of the application running on one VM is mostly sharing
address space and 16 banks is enough at most times, moreover,
the total banks of the memory is limited. Similarly, the bank
number of bank groups for hypervisor is mostly 16 banks too.
The other banks are for VMs. Algorithm 1 shows the pseudo
code of our VMMP.

In the server, there will be too many VMs to have enough
memory banks for allocating. Above partition is used for
parallel running VMs, VMs scheduled in turn can share one
memory group.

C. Page Behavior-based Memory Deduplication (BMD)
Since the KSM simply maintains two global comparison

trees for all memory pages of a hosting server. To detect
page sharing opportunities, each candidate page needs to be
compared with a large number of uncorrelated pages in the
global trees repeatedly, which will induce massive futile com-
parisons [7]. The key innovation to reduce futile comparison
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Algorithm 1 our VMMP algorithm
Definition:
N: the total cores in the server
M: the total memory banks in the server
AVG: AVG=M/(N+2)
RM: RM=(M-32)/N
VMMP:
If AVG <16

Allocate 16 banks for hypervisor;
Allocate 16 banks for VMs;
Each two applications of one VMs share RM banks;

Else
Allocate 16 banks for each applications of one VMs;
Allocate 16 banks for hypervisor;
Allocate remainder banks for VMs;

is to reduce the comparison memory domain and break the
comparison trees into multiple small trees simultaneously. The
most possibility to have same content is the different VMs. In
the VMMP, we allocate one memory bank group for all VMs.
Therefore, we only need to compare page content within the
memory domain for all VMs called comparison domain to
reduce futile comparison.

Moreover, pages within the comparison domain are grouped
into multiple classifications, with dedicated local comparison
tree in each page classification. A candidate page which is be-
longed to the comparison domain, needs only to be compared
with pages in its local comparison tree of its classification,
which contains less page nodes. But the pages in its local
tree are having much higher probability to have same content
with the candidate page, thus it can reduce futile comparisons
meanwhile detect page sharing opportunities efficiently.

In order to partition pages into different classifications to
reduce comparisons, the page classification approach needs to
consider below problems: 1) pages with high probability to
have the same content should be partitioned into the same
classification, which can detect page sharing in the local
tree. 2) pages with low probability to be shared should be
partitioned into different classification, which prevents futile
comparisons occurring in the local tree. 3) the overhead of the
page classification needs to be low.

The lower half of the figure 6 has shown our BMD, which
contains a memory access behavior collector and a page
classification manager. The memory access behavior collector
captures the access behavior of all pages within comparison
domain. And the page classification manager groups pages
within comparison domain into different classifications based
on page access behavior, pages with similar access behavior
are grouped into the same classification. The page classifi-
cation are performed in each scan round, which means that
the access behavior of pages captured during the last scan
round are used to guide page classification in this scan round.
And the memory access collector continues to capture access
behavior of pages during this scan round, which will be used
in the next scan round.

Page access behavior collector. In this paper, in order to
reduce the overhead of collecting page access behavior, we

capture page access behavior within comparison domain based
on the page table. The page table is mainly used to transfer the
virtual address into physical address, and at the same time, it
will show the access behavior of the physical page. Every entry
in the page table shows the information of the corresponding
physical page, containing the read, modify and so on of the
physical page.

Page classification. In this work, we use the read and
modify information in the entry of page table. We partition
all pages within comparison domain into 4 classifications: the
first classification is not read and not modified; the second
classification is read but not modified; the third classification
is not read but modified; the last classification is read and also
modified. In this way, we neither modifying the hardware nor
collecting additional information. It is easy to realize and the
overhead is low.

IV. EXPERIMENTAL SETUP

We carried out our experiments with two 2.00GHz Intel
Xeon E5504 processors with EPT enabled. Each E5504 pro-
cessor has 4 physical cores and we have disabled the Hyper-
Thread. There are 3-level caches in each processor, the L1
instruction and data caches are 32KB each and the L2 cache
is 256KB, both the L1 and L2 are private in each core. The
L3 cache is 16-way 4MB and shared by all four cores in each
processor. The cache block size is 64-Byte for all caches in
the hierarchy. The total capacity of physical memory is 8GB
with one dual-ranked of DDR3-800MHz. The host server runs
Ubuntu-12.04 with Linux kernel 3.6.0. We implement CMDP
based on KSM of Linux 3.6.10. We use QEMU [20] with
KVM [21] (qemu-kvm-1.2.0) to support guest VMs. Each
guest VM is configured with 1 virtual CPU, we boot 4 VMs
in parallel as our default configuration. We also boot 8VMs
in parallel for further evaluation. The guest VMs are running
64-bit Linux-10.10 with Linux kernel 2.6.32. We choose to
run the following workloads inside guest VMs:

Kernel Build: we compile the Linux kernel 3.6.10 in guest
VMs. We begin this benchmark after the VMs are fully booted
and static sharing opportunities are detected.

Apache Server: we run the ab [22] benchmark on Apache
httpd server. We test a local web site in guest VMs with 24
of concurrency requests.

MySQL Database: we run the SysBench [23] with MySQL
database in guest VMs. We test database with 1-thread and
the oltp-table-size is configured as 1500000.

V. EXPERIMENTAL RESULTS

We first evaluate the impact of our proposed CMDP on
system performance. Then analyze the effect of our CMMP
on interference reduction. Finally, evaluate the advantages
of our BMD in reducing both memory request and futile
comparisons.

A. System Performance of CMDP

We define system performance using system throughput,
which measures by weighted speedup, which is shown in the
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Fig. 7. the normalized performance improvement in different configurations

equation (1). The IPCi represents the IPC of VMi.

weighted speedup =
∑
i

IPCshared
i

IPCalone
i

(1)

Figure 7 demonstrates the normalized performance im-
provement in different configurations with our CMDP, from
booting one virtual machine to 8 virtual machines with 4G or
8G memory. The x-axis presents the different configurations,
mainly containing the parallel running VMs number and the
total physical memory size. The n-VMs-mG represents that n
VMs parallel running on the m G memory size server.

The results of the figure show the more VMs parallel
running on less configured memory size the better system
performance of our CMDP will realize. This is because the
more VMs parallel running on less configured memory size
makes both more interference and more memory requests,
which give better chances to bring our CMDP into play.

Figure 8 shows the row buffer hit rate in different configura-
tions of the default system, from booting one virtual machine
to 8 virtual machines with 4G or 8G memory. The results
of this figure have proven the more interference along with
booting more VMs in one server, from one to eight. The row
buffer hit rate decreases serious. This phenomenon is the same
in both configured 8G memory size and 4G memory size for
the server.

Figure 9 shows the proportion of the memory requests to the
configuration memory size in different configurations of the
default system, from booting one virtual machine to 8 virtual
machines with 4G or 8G memory. The higher proportion is,
the memory request contend is more serious, which means
the more urgent to use memory deduplication to share the
same content pages to reduce memory request. Briefly, the
higher proportion is, the better chances for our BMD to reduce
memory request. The results of this figure also have proven the
more interference along with booting more VMs in one server,
from one to eight. Moreover, the server with 4G memory size
demonstrates higher proportion than the configuration with 8G
memory size, which is the same with our original thinking.
In this experiment, each VM is configured with 1GB main
memory.

Fig. 8. the row buffer hit rate in different configurations of the default system

Fig. 9. the proportion of the memory requests to the configuration memory
size in different configurations of the default system

Fig. 10. the improved row buffer hit rate of our VMMP normalized to default
system in different configurations

B. Interference Reduction of VMMP

VMMP dynamically maps hypervisor, VMs and applica-
tions running on VMs onto different memory banks instead of
accessing all memory banks. Through isolating their memory
requests from others, the spatial locality can be reserved.

Figure 10 demonstrates the improved row buffer hit rate
of our VMMP normalized to default system in different
configurations. The results have shown the more interference,
the better improvement our VMMP will realize. The improved
row buffer hit rate of our VMMP is mainly from the reduction
interference from hypervisor to VMs, from VM to applications
running on it, and among applications of different VMs.

Reduce interference from hypervisor to VMs. In the
section 2.2, we have elaborated one of the interference is
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Fig. 11. the reduced row buffer missed proportion by hypervisor of our
VMMP normalized to default system

from hypervisor. In our VMMP, we allocate one memory bank
group for the hypervisor to isolate it from VMs, which can
reduce the interference from hypervisor to VMs.

Figure 11 demonstrates the reduced row buffer missed
proportion by hypervisor of our VMMP normalized to default
system. The results show in all configurations the reduced
buffer misses proportion by hypervisor is more than 99%,
which means hypervisor hardly interferes VMs. Therefore, our
VMMP almost can prevent the interference from hypervisor
to VMs.

Reduce interference from VM to applications running on
it. Similarly with the reduction interference from hypervisor
to VMs, the interference from VM to applications running
on it is almost prevented. Our experimental results show in
all configurations of running different applications on VM the
reduced buffer misses proportion by VM is more than 98%,
which means VM hardly interferes applications running on
it. Therefore, our VMMP almost can prevent the interference
from VM to applications running on it.

Reduce interference among applications of different
VMs. In our VMMP, we allocate one memory bank group for
each applications running on one VM to prevent interference
among applications of different VMs. Figure 12 demonstrates
the reduced row buffer missed proportion among applications
running on different VMs of our VMMP normalized to default
system. In the figure, we can see the 8GB memory size
configuration is better than 4GB memory size configuration
in general. This is because the 8GB memory size has more
memory banks for partition than 4GB memory size. In the
8GB memory size configuration, the best effect is configured
4 VMs parallel running, which is because when more VMs
running parallel there is no enough banks for each applications
running on one VM, two need to share one memory bank
group. So, the effect is not as well as 4-VMs. Similar results
can get in 4GB memory configuration.

C. Both Memory Request and Futile Comparisons Reduction
of BMD

Figure 13 shows the page sharing opportunities of different
workloads with 4VMs. For Kernel Build workload in Figure

Fig. 12. the reduced row buffer missed proportion among applications
running on different VMs of our VMMP normalized to default system

13(a), we can see that the KSM can detect the most page
sharing opportunities. But since it maintains pages into large
global comparison trees, candidate pages needs to be compared
with a large number of uncorrelated page nodes, thus it takes
a little longer time to reach its maximum page-sharing state.
On the other hand, our BMD is about 93.8% of the KSM
running kernel build in detecting page sharing opportunities.
This is mainly because our BMD restricts the comparison
within the comparison domain, which is the memory bank
group for VMs. Other memory domain is not to compare.
And there is one other reason for detecting not all page sharing
opportunities: all pages are partitioned into different classifica-
tions according to the access behavior, and this partition may
reduce the opportunities. Some not read and not write pages
may have the identical content with the pages of being read
and not write. Similar results have shown in figure 13(b) and
13(c) for Appache and MySQL respectively. Our BMD detects
page sharing opportunities about 94.3% of the KSM running
Appache. And our BMD detects page sharing opportunities
about 91.2% of the KSM running MySQL.

Figure 14 shows the number of pages comparisons of
different workloads with 4 VMs. For Kernel Build workload
as shown in figure 14(a), we can see that the KSM with
large global comparison trees induces the most number of
page comparisons. While our BMD has the less number of
page comparisons, it is about 31.2% of the KSM, since our
BMD both restricts comparison within comparison domain
and local classification. For the restricting comparison domain,
BMD restricts comparison within 25% of the whole memory,
the comparison domain only occupies the 25% of the whole
memory. For the restricting local classification, BMD classifies
the single tree of the KSM into four trees based on the behavior
of both read and modify, so the comparison is reduced to
25% on average. Similarly, for Appache workload as shown
in figure 14(b), it is about 30.6% of the KSM. And for MySQL
workload as shown in figure 14(c), it is about 35.4% of the
KSM.

Figure 15 shows the percentage of futile rate reduction with
4 VMs, where the baseline is with the KSM approach. We can
see that our BMD can reduce futile rate 18.7% on average.
These futile comparisons are mainly both in the domain exceed
the comparison domain and local classification, so they can
hardly be detected the same content pages. Therefore, its well
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(a) Kernel build

(b) Apache

(c) MySQL

Fig. 13. the page sharing opportunities with 4 VMs

to abandon them.

D. Overhead Analysis

Software Support. There are two parts which requires sys-
tem software support, the first one is the VMMP, and the other
one is the BMD. In the VMMP, based on the three components
of each application, memory intensity, row buffer locality, and
bank level parallelism, allocate each application corresponding
memory banks. Therefore, VMMP needs to collect parameters
of these three components. Then, categorize applications into
different classifications, low memory intensity classification
or memory intensive classification. Finally, based on the
partitioned memory bank groups, allocate memory group for
each application classification.

In the BMD, in order to reduce memory requirements, we
need to detect content of pages to determine whether pages can
be shared. But our BMD reduces futile comparison through
reducing the comparison memory domain and breaking the
comparison trees into multiple small trees simultaneously. So,

(a) Kernel build

(b) Apache

(c) MySQL

Fig. 14. the number of page comparisons of different workloads with 4VMs

Fig. 15. the percentage of futile rate reduction with 4 VMs, where the
baseline is with the KSM approach.

we add the page access behavior collector which is based on
reading the page table and page classification which partitions
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pages into 4 classifications behaving the same status.
Performance Overhead. In order to evaluate the perfor-

mance overhead after adopting our CMDP, we compare our
VMMP with the default method, and the experimental results
show the performance of our VMMP is negligible, below 1%;
also we compare our BMD with the default method without
KSM, although BMD decreases 8% on average, increase
the memory sharing by more than 30%. We compare the
performance overhead between BMD with KSM in section
5.C. All above results have shown our CMDP behave well.

VI. RELATED WORK

There are a number of related studies to both memory
partition and memory deduplication.

Memory partition. Memory partition contains cache parti-
tion, channel partition and bank partition.

Cache partition. Either hardware based cache partition [24]
or software page coloring based cache partition [25] are
employed to partition shared cache to concurrent running
threads, which can eliminate the interference between multi-
threads and hence reduce conflict at cache level. However,
other resources such as MC, memory bus, and DRAM are
also shared and confronted with contention and interference
[31].

Channel partition. Data of different threads are mapped into
different channels according to their memory access behavior
in [16, 32], which can eliminate the interference between
threads at channel level. However, channel partition cannot be
applied to system with cache line interleaving policy between
channels [16], which limit its applicable scope. Furthermore,
there are usually more threads than channels in a system, so
some threads have to be assigned to the same channel, which
still interference with each other. Besides, channel partition
actually partitions the bandwidth of memory system into
several portions. Since the total number of portions is limited
by channel amount, which is usually small, it is challenging to
seek a balance among channels so as to ensure no bandwidth
wasted.

Bank partition. In [26], frequently accessed data of differ-
ent rows are dynamically migrated into row buffer, which
can improve the row buffer usage and performance; power
consumption is also lowered by reducing the operations of
precharge and active [30]. In [27], the content in row-buffer
will be precharged after 4 times access, which target at the
reduction of row-buffer conflicts.

Memory deduplication. Waldspurger introduced content-
based page sharing in a commodity virtual machine monitor
[10]. It finds out identical pages and merges them based on
the contents of pages. It based on scanning, which can adjust
the scanning speed to reduce overhead. This scheme also uses
a hash table to reduce the number of memory comparisons.
When two pages have the same hash value, then it compares
both pages in byte granularity.

Kernel same page merging (KSM) is memory deduplication
technique used in Linux kernel [8]. This scheme uses a red-
block tree to reduce the number of memory comparisons. But
the comparisons are still too many.

To reduce scanning overhead, Sharma et al [28] proposed
only scanning dirtied pages. Once the clean pages are scanned,
no additional scanning is required. Chen et al [7, 33] exploits
page access characteristics to reduce the number of memory
comparisons during memory deduplication. Pages having simi-
lar access patterns have high probability to share. This scheme,
however, requires hardware modification. Our CMDP neither
modifying hardware nor adding additional information, it is
really light scheme.

VII. CONCLUSION
In this paper, we propose a coordinate memory deduplica-

tion and partition approach named CMDP to reduce memory
requirement and interference simultaneously for improving
performance in virtualization. CMDP contains two parts of the
CMDP. First, to reduce interferences among VMs, VMMP of
the CMDP dynamically maps hypervisor, VMs and applica-
tions running on VMs onto different memory banks instead of
accessing all memory banks. Through isolating their memory
requests from others, the spatial locality can be reserved. Sec-
ond, to reduce memory requests, BMD of the CMDP groups
pages into different classifications based on both belonged
banks and page accessed behavior. Pages belonged to memory
banks of VMs are more possibility with the same content,
moreover, pages with similar behavior, especially access be-
havior, are suggested to have higher possibility with same
content. So pages belonged to memory banks of VMs and
with similar behavior are grouped into the same classification.
Therefore, performing page comparisons is restricted into the
same classification, never exceeding to different classifications,
which will do many futile comparisons.
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