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Abstract: With recent advancement in wireless communication and networks, we are at the doorstep of the Tactile Internet. Tactile 
Internet aims to enable the skills delivery and thereafter democratize the specialized skills for many emerging applications (e.g., 
remote medical, industrial machinery, remote robotics, autonomous driving). In this article, we start with the motivation of applying 
intelligent edge computing for computation offloading in Tactile Internet. Afterward, we outline the main research challenges to 
leverage edge intelligence at the master, network, and controlled domain of the Tactile Internet. The key research challenges in 
Tactile Internet lie in its stringent requirements such as ultra-low latency, ultra-high reliability, and almost zero service outage. We 
also discuss major entities in intelligent edge computing and their role in the Tactile Internet. Finally, several potential research 
challenges in edge intelligence for Tactile Internet are highlighted.  

 

I. INTRODUCTION 
The seamless and ubiquitous connectivity among the wireless devices and the hardware advancement in haptic devices 
are taking a step forward to the real-time steering and control of the remote physical or virtual objects. While the 5G 
technologies have started to be rolling out around the world, the Tactile Internet [1], coined by Fettweis in 2014, is 
taking to another paradigm shift towards real-time steering and control of the remote physical or virtual objects. By 
enabling the immersive bi-directional human-machine (and/or human-physical) or human-virtual world interaction, 
Tactile Internet is envisioned to democratize the specialized skills (often termed as Internet of Skill [2]) in numerous 
fields ranging from healthcare, remote robotics, remote training, education, to autonomous vehicle. Several working 
groups, such as IEEE P1918.1 Tactile Internet working group [3], have already started to standardize architectural 
aspects with the key elements, the interfaces, the functional capabilities of the Tactile Internet. 

 

II. HOW IS THE TACTILE INTERNET DIFFERENT FROM TRADITIONAL CONTENT-CENTRIC INTERNET? 

A Tactile Internet generally consists of three main domains: master domain, network domain, and controlled domain. 
An individual human (or machine) or a group of machines can act as controller in the master domain. In case of human 
as the controller, a haptic device, often called as human-to-system interface, converts the human input to the haptic 
signal and also provides the haptic feedback from the controlled domain to the human. The control signals are 
transmitted over the network domain to the controlled domain. As illustrated in Figure 1, the network domain generally 
consists of routers, switches, base station, network controller, and even edge/cloud servers. The tele-operated robots, 
actuators in the controlled domain perform the actions based on the received command/control signals from the master 
domain. Ultimately, the sensors in the controlled domain gather the state dynamics and provide feedback to the 
controller in the master domain. 
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A. A Broader Concept than uRLLC 
A global control loop is established in Tactile Internet with a bilateral communication of the haptic signal, which is one 
of the fundamental differences with the traditional content-centric Internet. Although in some applications, such as 
remote cyber-physical systems, an exchange of real-time control/steering and sensing/actuation is carried out, this 
bilateral communication is constantly present in Tactile Internet. There is a growing misconception that the ultra-reliable 
and low-latency communication (uRLLC) [4] and Tactile Internet are similar [5]. Indeed, the uRLLC can be considered 
as the underlying communication infrastructure which plays an important role in Tactile Internet, Tactile Internet is 
broader than uRLLC. Note that uRLLC mostly focuses on the lower layers in the protocol stack, where the performance 
metric in terms of bit error rate are used to evaluate the reliability of uRLLC. However, Tactile Internet is more 
interested to evaluate the delay and reliability from upper layer (e.g., application layer) perspective. For example, the 
reliability can be evaluated by the accuracy of control task, i.e., quality of tasks (QoT) [15]. Basically, QoT is directly 
related to the delivery of the specialized skill that is envisioned in Internet of Skill [2]. Moreover, quality-of-experience 
(QoE) in Tactile Internet measures the difference between the experience with physical interaction and the remote 
operation. QoE largely depends on the latency and reliability in the underlying uRLLC. This performance metric arises 
mainly due to the human-in-the-loop concept in Tactile Internet. Note that uRLLC alone does not guarantee to fulfill 
QoE and QoT in Tactile Internet. 

 

 

Figure 1: The main domains in Tactile Internet. 

 

B. Functional capabilities: 
Latency: The carrier-grade end-to-end latency (i.e., close to 2ms) is generally required in motion control for the 
industrial applications [6], however, mostly realized through wired connection. Note that the Tactile Internet imposes 
an ultra-low end-to-end delay between master and controlled domains with an order of 1 ms (see Figure 2). Again, due 
to the mission-critical nature of the Tactile Internet the hard deadline is required in Tactile Internet. Latency and 
reliability go hand in hand. Non-mission-critical applications (e.g., remote gaming) do not have high reliability 
requirement as mission critical ones, therefore, it is possible to relax slightly the hard deadline. That is to say, for 
stability and transparency reason, the haptic signal and the control signal require hard-deadline-aware packet 
transmission. The delayed packet often becomes useless for the current time frame for the feedback control system.   

Reliability: In content-centric traditional Internet, a few packet loss is acceptable in some particular service provisioning 
(e.g., the acceptable packet loss ≤ 0.5% - 5% in video data transmission). However, the envisioned reliability in Tactile 
Internet is 10^-5. To explain, one out of 10^5 data packets is tolerated to be delivered beyond its predefined delay 
deadline, otherwise the Quality-of-Service (QoS) will be violated in the Tactile Internet. Basically, this degradation of 
reliability directly impacts the QoE and QoT in Tactile Internet. 
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Tactile service availability: Tactile service provider must ensure that there would be no interruption or out of service 
coverage (literature suggest that tactile service must ensure at most one millisecond outage in a day [3]) over the entire 
period of service provisioning. It is true that it becomes very hard to satisfy always-on tactile service coupled with ultra-
high reliability and ultra-low end-to-end latency [3] [7]. To this end, tactile support engines are envisioned to guarantee 
tactile service availability using model-mediated teleoperation method.  

Bandwidth: To construct the model of the remote environment to calculate the estimated haptic feedback for the 
controller in the master domain, apart from the haptic and kinesthetic data, high definition audio and video are also 
equally important. Thus, bandwidth allocation in Tactile Internet should consider the heterogenous packet loss rate, 
data rate, latency, sampling frequency requirements of these kinds of QoS requirements in Tactile Internet applications. 
For example, 3D camera may require 137 Mbps-1.6 Gbps with a latency of around 150 ms, whereas a typical haptic 
feedback such as vibration demands less than 5 ms latency with 400 Kbps [4].  

Scalability:  As traffic pattern of multiplexed multimodal signal (i.e., haptic, audio, and visual) is very different from 
that of IoT applications, the overbooking factor for Tactile Internet applications is expected to be lower. In addition, to 
fulfill the stringent QoS requirements of Tactile Internet, it might be necessary to reserve dedicated computation and 
communication resources during TI services. Therefore, scalability is not a trivial issue.   

To support both mission-critical and non-mission-critical nature of the Tactile Internet applications, Tactile Internet 
working group came forward to categorize the applications into ultra-grade and normal-grade QoS requirements [3]. A 
more detail can be found in the recent release of the Tactile Internet reference architecture. Basically, the scalability 
(i.e., the number of connected haptic/tactile devices) is slightly relaxed with more emphasis on the latency, reliability, 
and availability in carrier-grade compared to the normal-grade. When the number of connected haptic/tactile devices 
are increased, the other requirements (such as latency, reliability, and availability of tactile service) must be slashed in 
the functional capability, termed as normal-grade applications of the Tactile Internet. 

 

 

Figure 2: The envisioned end-to-end latency in Tactile Internet 

 

III. COMPUTATION OFFLOADING IN TACTILE INTERNET: MOTIVATION 
Fundamental limitation and uncertainty of communication technologies. Consider a fully optical fiber link between 
the master domain and the controlled domain. Now, even ignoring the delays in data collection and data processing, the 
maximum distance between master domain and controlled domain can reach only 150 Km within 1ms round-trip time. 
Thus, we must leverage disruptive technologies and/or framework to fulfil the technical requirements (such as, carrier-
grade latency, reliability, and availability with ultra-low latency tele-operation) of Tactile Internet.  
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A. Huge computation to stabilize global control loop, to construct model of the remote environment at the master 
domain model, and to command interpretation in controlled domain 

Similar to the principles of the tele-operation technique, it is quite evident that the controlled domain does not have 
prior knowledge on control signal received from the master domain. At the same time, the master domain also needs to 
be familiar with the behavior of the remotely controlled environment. Basically, the master domain constructs a model 
of the remote environment based on the haptic and tactile feedback received from the controlled domain. Therefore, to 
establish a stabilized global control-loop, a huge computation is required due to higher level of data abstraction and 
large number of force-feedback interactions. Moreover, multiple devices including haptic/tactile and network devices 
forming an edge network can collect multi-sensory data from to build the prediction control model and refine/update 
the model afterward. 

B. Resource and power constraint tactile/haptic devices in master and controlled domains 
Where to process the computation-intensive tasks, how fast the edge servers near to the master domain constructs the 
model of the remote environment in a precise manner, and how quickly the master domain provides the action based 
on the updates from the controlled domain are the challenging issues due to following reasons: a) always remote cloud 
connectivity results significant amount of transmission delay and b) computing devices in the master domain have 
limited computing and storage resources. Note the above limitations also exist for the tactile/haptic devices in the 
controlled domain to interpret the command signal from the master domain.  

IV. STATE-OF-THE-ART OFFLOADING IN FOG-EDGE COMPUTING 
The CPU processing frequency, on-device battery capacity, communication, and storage resources at the network edge 
are constantly increasing. This motivates to utilize computing, storage, and communication resources of the edge 
devices to complete the independent tasks by offloading to the suitable edge devices. Recently, a non-linear task 
offloading strategy has been proposed in [8] considering CPU cycle of the real-time tasks while pooling and sharing 
the computational resources among the wireless devices. The global knowledge of the computational resources shared 
by the all participating devices would likely give the best performance for the offloading. However, these resources are 
often distributed over the network, where a decentralized algorithm is highly desirable that achieves the performance 
close to the policy based on the global knowledge on the network state. To this end, a game theoretic approach was also 
considered in [9] to find the optimal task offloading policy to minimize the computation time based on the variational 
inequality theory. The game model relies on the average system performance with low signaling overhead. The metric 
that reflects the collaboration among the devices was also studied in [9]. Recently, a deadline-aware fog node 
collaboration was studied in [10] to meet the diverse deadline requirement of the offloaded tasks. These works laid a 
strong foundation on the study in dynamic nature of the fog-edge environment to form the network and to balance the 
workload among the participatory devices, however, the relation with the Tactile Internet that has a stringent 
requirement is totally missing.  Nevertheless, the online fog-edge formation and resource allocation among the network 
devices would definitely play an important role in the realization of the Tactile Internet.  

 

A. Moving towards Intelligent Edge computing: A relook 
We are witnessing the emergence of the Artificial Intelligence (AI), particularly, machine learning techniques to 
optimize resource allocation and improved service provisioning in wireless communications. Recently, Q-learning, 
reinforcement learning, and deep reinforcement learning (DRL) are being investigated in the edge computing systems 
[11]. Unlike other machine learning category, reinforcement learning is being investigated as a potential candidate due 
to its intrinsic nature of learning from its own previous action-states, thus it becomes less data hungry as in deep learning 
that requires a high-dimensional raw data for training. The main challenge in applying reinforcement learning (RL) in 
edge computing is that how to train the agent that gives the optimal policy for a given state from the environment.  

Before we are going to discuss the suitability and motivation to apply edge intelligence at the Tactile Internet, we present 
how we can leverage delay-aware RL at the edge computing scenario. Consider an edge computing system with three 



types of end-users (e.g., (30,10,5) users, respectively), which tolerate delays of (4,6,10) ms, respectively, and an edge 
server. The end-users generate task computation requests with probabilities r1, r2, and r3, respectively. To explain, the 
task request probability is defined as the probability of an end-user generates a computation task in a slot, e.g., r1 = 0.5, 
indicates that, in every simulated slot, a type-1 mobile user generates a computation task with probability of 0.5. The 
requests can either be processed locally in the mobile device, or computation offloaded to the edge server. We define 
delay-guarantee-ratio as the ratio of the number of tasks completed within their delay deadlines to the number of total 
arrived tasks. As shown in Figure 3(a), the efficiency of the delay-aware RL scheme is demonstrated by provisioning 
the highest delay-guarantee-ratio under various task request probabilities by comparing with the delay-aware max-
weight and greedy schemes. Moreover, Figure 3(b) illustrates that the delay-guarantee-ratio under various computation 
capabilities of local computing nodes with respective to the edge server in delay-aware RL scheme outperforms delay-
aware maxweight and greedy schemes. 

 

      

Figure 3: Performance of the delay-guarantee-ratio (a) under various task request probabilities and (b) under various 
computation capabilities. 

 

V. EDGE INTELLIGENCE IN TACTILE INTERNET: MOTIVATION AND OBJECTIVES 
In the following, we discuss the motivation for leveraging the edge intelligence, particularly in the Tactile Internet. 

A. Intelligent edge computing can predict the control command or haptic feedback. Based on the above discussion, we 
can conclude that apart from other research challenges (such as, hardware for haptic devices), the transmission delay 
will impose the fundamental challenges for the realization of the Tactile Internet. One of the possible solutions is the 
artificial intelligence-enabled tactile support engines (as shown in Figure 4) that can reside at the master/controlled 
domain, or at the network domain near to master/controlled domain. With the help of tactile support engines at the 
network edge, intelligent edge server is able to construct the full or a part of the remote environment and send the haptic 
feedback to the controller in the master domain. As a result, the controller can achieve stable and transparent operation. 
At the same time, the tactile support engine can be leveraged to enhance the local model that predicts the control 
command from the master domain. This predicted control signal can be transferred to the teleoperator in the controlled 
domain in case the control signal is delayed or lost. Moreover, the tactile support engines can be used for network 
resources (computing, communications, and caching) allocation. Therefore, the tactile support engine has a huge 
potential for the realization of Tactile Internet. 

B. Intelligent edge computing can satisfy the distinct QoS requirements of the Tactile Internet. The QoS requirement 
in Tactile Internet is more stringent than that for the IoT. Subsequently, based on the reliability, latency, and number of 
connected tactile/haptic devices, the two types of the QoS requirements (although these two types have overlapping 
requirements), normal- and carrier-grade can be achieved by intelligently allocating and execute the tasks in tactile 
edges. Basically, leveraging the distributed, closer to data sources, and intelligence nature, the intelligent edge 
computing can enhance the co-operations among the multiple tactile edges at both ends of the Tactile Internet  
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Figure 4: Edge intelligence in Tactile support engines 

 

C. Edge analytics can be used to predict the channel state in the network domain. Communication resource allocation 
is also an integral part in the network domain. It is always a challenge to accurately predict the time-variant channel 
state. Edge intelligence can leverage the powerful computation resource and the massive historical channel states to 
enhance channel state estimation, thereby optimizing the radio resource allocation and improving wireless 
communication reliability. 

D. Intelligent edge computing increments/enhances the learning capability. An important factor is that Tactile Internet 
services need input not only from one device but from multiple devices. Thus, the collaboration at the network edge 
can significantly reduce the amount of data to be send to the global controller. Besides, due to the massive amount of 
data collected by the heterogeneous end-devices including wearable devices and tactile/haptic device, residing at the 
tactile edge or in tactile support engines can train the neural network model by downloading the parameters from the 
global controller. After the training, the locally trained parameters can be sent back to the global controller, resulting 
an improvement in the learning capability.  

 

VI. MAIN RESEARCH CHALLENGES TO APPLY INTELLIGENCE IN EDGE-FOG COMPUTING FOR TACTILE INTERNET 
To build the intelligence at the Tactile edge, we outline the following research challenges to meet the ultra-high 
reliability (note that QoE and QoT are also performance metric in Tactile Internet) and latency at the millisecond scale 
in the Tactile Internet.  

A. Feature Extraction from High Dynamic Environment 

To meet the requirements of ultra-low latency and ultra-high reliability, a joint task offloading and resource allocation 
strategy needs to quickly response to the task computation request. However, the uncertainty of the communication 
network and the limited computation capability (compared to the cloud server) in the edge servers significantly affect 
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the offloading decision-making for the response. At the same time, remote physical environment at the controlled 
domain is often high dynamic (although spatial and time correlated). As a result, it is not always preferable to use 
theoretical model and offline solver. Therefore, extracting the features from the high dynamic remote physical 
environment, computing and communication environment is desirable in an intelligent offloading and resource 
allocation decision-making algorithm. The extracted features, called as state, and then learning the state-action values 
by model training, an intelligent algorithm can quickly respond to the task computation requests in Tactile Internet. 
Deep convolutional network is a promising way to extract features and get state-action values in intelligent edge 
environment. However, what environment parameters should be input to the convolutional network and how is the 
architecture of the learning model, should be further studied.  

 

B. Minimizing the response time 

One of the major objectives for processing real-time data is to reduce the response time of the applications. Over the 
past decade, most of the IoT data are offloaded to the remote resource-rich cloud servers which is not suitable for time-
critical applications due to long transmission latency. The emerging fog/edge environment can overcome the bottleneck 
by processing the data nearer the end-devices. Thus, an intelligent fog/edge environment needs to be designed for 
making an optimal data offloading to the suitable edge servers close to data sources minimizing the response time 
thereby meeting multiple constraints in Tactile Internet.    

 

C. Data for model training 

Most of the intelligent models including traditional machine learning (supervised and unsupervised learning), 
reinforcement learning, etc. require either a huge amount of historical data ‘or frequent interaction with the environment 
for training. Such types of models are suitable for analyzing the data at resource-rich cloud servers; however, due to the 
limited computation capability and storage, it may not be suitable to train such models at the fog/edge level. Nowadays, 
Federated Learning (FL) [12] [13], and distributed deep reinforcement learning are introduced to train the overall 
network using multiple distributed edge servers. Thus, one of the most important research challenges is to train the 
model at resource-constrained edge server with a limited set of real-time data.         

 

D. Placement of the learning agent 

Placement of an agent in a suitable edge server for taking an optimal offloading and scheduling decision is another 
important research challenge in edge-fog computing. In general, an agent takes an optimal decision based on multiple 
QoS parameters including resource usage, latency, bandwidth, network congestion, energy consumption, etc. while 
meeting multiple constraints. This requires an edge server which has enough computing resource capacity for training 
or analysis the objectives and stores some important result for further evaluation. Moreover, an agent needs to acquire 
and analyze the real-time data efficiently and feeds them for further training, which requires an optimal edge server. As 
a result, placing an agent to a suitable edge server for data analyzing and model training is another important research 
aspect in the fog/edge environment.     

 

E. Sample collection for network parameters 

In the real world, it is quite difficult to collect the samples of the network parameters including available bandwidth, 
network congestion, traffic rate, etc. due to the communication uncertainty between the edge devices. In addition, due 
to the limited computation power and battery endurance, application scheduling varies from device to device which 



makes it difficult to receive the synchronized network data at each epoch. As a result, an intelligent edge-fog computing 
paradigm needs to be addressed for controlling the network parameters and train the network for efficient data 
transmission with minimum traffic congestion.         

 

VII. INTELLIGENT EDGE COMPUTING IN TACTILE INTERNET: AN INTUITIVE IDEA 
Although the earlier work in intelligent edge computing laid a strong foundation on the application or usage of machine 
learning in edge computing system, when we aim to apply these techniques in the Tactile Internet, several issues arise. 
It is worthwhile to note that the assumption underlying model often differs from the real-time environment, resulting 
sub-optimal solutions. To satisfy the latency and reliability in terms of QoE and QoT, and tactile service availability, 
the Tactile Internet desires running the intelligent algorithms quickly and accurately in the network edge, however, the 
limited resource in the network edge (compared to the resource-rich cloud servers) limits the intelligent algorithms, 
such as deep learning. In addition, considering end-device’s privacy, the raw data must not leave its origin. How to 
obtain an accurate model by training limited amount of data is another issue that should be addressed. 

Applicability of Federated Learning in Edge Intelligence 
Recently, FL [12] [13], a type of distributed machine learning, is being studied for addressing several real-world 
situations. Unlike the tradition machine learning approach where the end-devices send massive collected data to remote 
cloud, to train the deep neural network, in FL the end-devices individually train the network using the local data and 
send the training gradient weights to the remote cloud instead of data. The remote cloud builds a global model by 
aggregate the training gradient weights from a large number of end-devices and then push the global model with better 
inference accuracy back to the end-devices. 

One interesting feature of the FL is that the data always stay at the device itself, never leaves from the device, resulting 
low data leakage (refers to the user privacy). Several categories of FL are classified how the data samples and the 
features are collected from the multiple distributed devices. For example, horizontal FL shares the same features but on 
different samples. On the contrary, vertical FL is more suitable to the scenario where the multiple devices contain same 
sample space; however, the features are different. Recently, federated transfer learning is being studied for the scenario 
when not only the two data sets differ in their sample space, but also the feature spaces are different. The main idea is 
the common feature is learned based on the common sample space, then the learned common representation is used to 
predict the sample points for the one-sided feature space. This type of FL has a huge potential to be applied in several 
applications [14], even in Tactile Internet where a massive amount of the collected data by the end-devices can be useful 
using this transfer learning technique.  

In fact, the transmission cost is reduced in FL where only the training gradient weights are transferred to the remote 
cloud compared to the case when the aggregated data collected from the devices are sent for learning process in 
conventional method. However, keeping the delay deadline in mind, the frequent updating the model parameters from 
the end-device to the global model that resides at the cloud become a bottleneck. To solve it, several approaches (e.g., 
reducing the number of parameters to be updated, compression using subsampling) already exist in the literature. 
Federated average learning has been discussed with reduced communication costs due to uploading the model 
parameters updates. This could be a possible direction to apply FL while minimizing the updating frequency and 
reducing the transmission delay for the Tactile Internet applications, particularly, mission-critical applications. A 
federated learning-based model in master domain is illustrated in Figure 5.  

 



 

Figure 5: Intelligent edge computing in master domain. 

 

VIII. FUTURE RESEARCH DIRECTIONS AND TAKEAWAY MESSAGES 
A. Distributed learning using Model Parallelism or Data Parallelism  

Most of the intelligent neural network models including deep learning, Q-learning, etc. are both computation and 
memory intensive. As a result, it is not feasible to complete the training or acquire the result of the larger and complex 
model by a single edge server. Therefore, the complex models are trained in distributed edge servers including model 
parallelism or data parallelism or their combinations. However, model training at distributed edge servers should further 
consider the data privacy, configuration of the edge devices, wireless communication environment, etc. Nowadays, the 
FL can copy the whole intelligent neural network model of different edge servers using the concept of data parallelism. 
As a result, training the whole network model by partitioning the model into multiple independent segments and 
assigning the segments on the resource-constrained distributed edge servers may be a more feasible and practical 
solution.  

 

B. Transfer Learning-aware Training at edge servers  

To train and deploy a complex intelligent model on edge servers is a challenging task due to the limited computing 
power and battery endurance. As a result, Transfer Learning (TL)-aware [12] training on the resource-constrained edge 
servers is useful in order to reduce the amount of training data and speed up the training process. By using TL, the edge 
servers use the cross-model transfer technique for training across different sensing modalities and acceleration of the 
overall training process. Moreover, the TL-aware training process helps to train the lightweight intelligent models (at 
edge servers) using the information of well-trained intelligent models (at cloud servers) to improve the accuracy of the 
network. Thus, TL-aware training is an important research aspect in edge computing with different types of perceptual 
data. 
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C. Advancement of FL at edge servers 

FL-aware training at the edge servers for improving the accuracy and speed up of the intelligent network model is 
another open research challenge. Existing FL-aware techniques can mostly process a hundred devices in parallel and 
train the data in a synchronizing order. However, the limited computation power and battery endurance of the edge 
servers and various scheduling strategies make it difficult to synchronize the data for training at the end of each iteration. 
Moreover, at a certain timestamp, maybe some of the edge servers are not available due to task overloading or some 
uncertainty in the network may cause infrequent task training. The above-mentioned bottlenecks can be optimized by 
introducing asynchronous-aware FL at the edge servers. As a result, adjusting FL at different edge devices and train the 
network environment still a research challenge. 

 

D. Reduction of data for computation at edge server 

The end-devices from the same area of a globe may request for the recognition results for similar objects which increases 
the redundancy at the edge servers. By caching the frequently requested and important results in the edge servers can 
reduce the processing overhead of the devices and reduce the processing delay and energy consumption. As a result, 
process and analyze the similar applications at edge servers without dabbling intelligent methodologies such as DRL, 
RL, etc. is another research aspect in this domain.  

 

E. Incentive and secure data offloading at edge servers 

The real-time end-devices prefer to offload the data to the nearby edge servers with an aim to reduce the processing 
delay and energy usage. However, an optimal offloading policy still faces several issues while offloading the data such 
as a) an incentive mechanism for simulating the real-time data at edge servers with an intelligent model and b) a proper 
security mechanism for avoiding the risk from anonymous edge servers.  

 

IX. CONCLUSION 
In this article, we have outlined the potential advantages of the intelligent offloading using fog-edge computing to meet 
the carrier-grade QoS requirement in Tactile Internet. In this context, we have discussed how edge intelligence can be 
leveraged to predict haptic feedback from the controlled domain to reconstruct kinematics and dynamics model and 
interpretation of the command signal from the master domain in advance. Moreover, the edge intelligence can be further 
utilized for computational offloading with the help of tactile support engines in Tactile Internet. Finally, the major 
challenges of the edge intelligence in the context of Tactile Internet applications are identified and we have highlighted 
the potential research directions in edge intelligence for Tactile Internet. We conclude the article on the note that 
intelligent edge offloading would be one of the frontiers in future development for Tactile Internet Technologies to 
meet the QoS and QoT in Tactile Internet. A worthwhile and promising pursuit would be to investigate the cross-
technology in applying edge intelligence in Tactile Internet.  
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Figure 1: The main domains in Tactile Internet. 
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Figure 2: The envisioned end-to-end latency in Tactile Internet 
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Figure 3: Performance of the delay-guarantee-ratio (a) under various task request probabilities and (b) under various 
computation capabilities. 
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Figure 4: Edge intelligence in Tactile support engines 
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Figure 5: Intelligent edge computing in master domain. 
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