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E N V I R O N M E N T A L  S T U D I E S

A unified vegetation index for quantifying 
the terrestrial biosphere
Gustau Camps-Valls1*, Manuel Campos-Taberner2, Álvaro Moreno-Martínez1,3, Sophia Walther4, 
Grégory Duveiller5, Alessandro Cescatti5, Miguel D. Mahecha6,7,8, Jordi Muñoz-Marí1,  
Francisco Javier García-Haro2, Luis Guanter9, Martin Jung4, John A. Gamon10,11, 
Markus Reichstein4, Steven W. Running3

Empirical vegetation indices derived from spectral reflectance data are widely used in remote sensing of the 
biosphere, as they represent robust proxies for canopy structure, leaf pigment content, and, subsequently, plant 
photosynthetic potential. Here, we generalize the broad family of commonly used vegetation indices by exploiting 
all higher-order relations between the spectral channels involved. This results in a higher sensitivity to vegetation 
biophysical and physiological parameters. The presented nonlinear generalization of the celebrated normalized 
difference vegetation index (NDVI) consistently improves accuracy in monitoring key parameters, such as leaf 
area index, gross primary productivity, and sun-induced chlorophyll fluorescence. Results suggest that the statis-
tical approach maximally exploits the spectral information and addresses long-standing problems in satellite Earth 
Observation of the terrestrial biosphere. The nonlinear NDVI will allow more accurate measures of terrestrial carbon 
source/sink dynamics and potentials for stabilizing atmospheric CO2 and mitigating global climate change.

INTRODUCTION
Quantifying vegetation cover, biochemistry, structure, and function-
ing from space is key to study and understand global change, bio-
diversity, and agriculture. In practice, remote sensing has relied vastly 
on the use (and abuse) of vegetation indices (VIs) derived from 
spectral reflectance owing to their generally decent performance. 
VIs are parametric transformations of a few spectral bands designed 
to maximizing their sensitivity to particular biophysical phenomena 
(e.g., greenness, water content, or photosynthetic activity) while 
minimizing their sensitivity to factors such as soil properties, solar 
illumination, atmospheric conditions, and sensor viewing geometry. 
A plethora of narrow-band indices has been proposed in the litera-
ture (1). Indices are designed for specific applications and conditions, 
and their parameters are fixed empirically.

The most widely used VI in Earth observation is undoubtedly the 
normalized difference vegetation index (NDVI) (2, 3). This index 
exploits the fact that green healthy vegetation shows contrasting be-
havior in how it reflects red and near-infrared (NIR) radiation. The 
more chlorophyll there is in a canopy, the more visible light (in-
cluding the red) can potentially be absorbed to drive photosynthesis, 
and thus the higher the absorbed energy that can potentially be con-
sumed in carbon fixation. On the other hand, as more living plant 
biomass is present, the vegetation will scatter and reflect more NIR 
radiation, which is unusable for photosynthesis. By calculating the 
difference between bands measuring red and NIR reflectances, NDVI 

accentuates the particular signature of green vegetation while atten-
uating undesired influences from nonvegetative elements. NDVI, 
and other similar indices, have proven effective in assessing chloro-
phyll content (4, 5), being a good proxy of vegetation density 
parameters, like the leaf area index (LAI) and the fractional vegeta-
tion cover (FVC) (6–8), as well as the fraction of absorbed photo-
synthetically active radiation (fAPAR). The success of NDVI relies 
on its ease of use and its availability over long observational records 
expanding more than three decades, notably thanks to the Advanced 
Very High Resolution Radiometer (AVHRR), Landsat optical sensors 
(Multi Spectral Scanner, Thematic Mapper, Enhanced Thematic 
Mapper, Operational Land Imager), and the Moderate Resolution 
Imaging Spectroradiometer (MODIS).

However, NDVI has two major limitations. First, the relationship 
between NDVI and green biomass is nonlinear and saturates. Some 
indices such as the enhanced vegetation index (EVI) (9) have tried 
to compensate for this using information from other bands, but the 
saturation problem remains. Other approaches have tried to improve 
NDVI heuristically to obtain a good proxy of both fAPAR and light-
use efficiency, and hence suggested it for gross primary productivity 
(GPP) estimation (10). Actually, some authors have proposed NDVI2 
(11) and other arbitrary exponentiations (12) to cope with the non-
linear issue. The second issue is that VIs, by construction, react to 
the presence of green leaves, but not to photosynthesis per se. GPP 
can thus decline without any leaf abscission (i.e., a reduction of LAI) 
or reduction in chlorophyll. A relatively new way to estimate GPP 
variability from satellite measurements to retrieve sun-induced 
chlorophyll fluorescence (SIF) (13). However, the relationship be-
tween canopy GPP and SIF retrieved from space is still not fully 
understood (14), and more importantly, this technique is still only 
available with an overly coarse spatial resolution and a very shallow 
temporal archive (15, 16).

Using radiative transfer models, Sellers et al. (17–19) noted early 
on that NIR reflectance is a better proxy for fAPAR than NDVI. The 
problem is then to disentangle the fraction of the NIR that is reflected 
from the vegetation from the remaining fraction of NIR reflected 
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from nonvegetated elements within a mixed pixel. To address this 
issue, Badgley et al. (20) proposed considering NDVI as a proxy for 
vegetation coverage instead of a proxy for fAPAR, and thus multiply 
NDVI times NIR to calculate a new index, NIRv, which shows high 
correlations with SIF and GPP at specific temporal scales. Despite 
its wide reception in the community, NIRv also raises some intrigu-
ing questions. For example, given that fAPAR is estimated by both 
of its components (NIR and NDVI), how does this affect the inter-
pretation of the index? Also, as NIRv linearly scales with the NIR 
reflectance, how does it deal with saturation? Last, NIRv still uses the 
same bands as NDVI, but it is not clear how the adopted approxi-
mations and assumptions affect NIRv or whether it exploits all avail-
able information in these spectral bands.

This paper introduces a methodology to generalize the broad 
family of VIs based on differences and ratios of spectral bands. 
Unlike previous approaches to improve indices based on principled 
(10, 20, 21) or heuristic parametric transformations (11, 12, 22, 23), 
here we adopt a machine learning standpoint using the theory of 
kernel methods, which has been widely used to derive nonlinear 
algorithms from linear ones, while still resorting to linear algebra 
operations (24, 25). Kernel methods map the involved spectral bands 
using a nonlinear feature map to a higher dimensional space where 
the index is defined. The calculation can be expressed in terms of 
the spectral channels by the definition of a kernel (similarity) func-
tion, so one does not need to define the feature map explicitly. The 
main property of kernel methods is that of linearizing the problem, 
which is what most of the indices seek either heuristically or based 
on first principles. Also, by using a particular kernel function, we 
have guarantees that all higher-order relations between the spectral 
channels are accounted for, not just the first-order ones. For example, 
when using differences between NIR and the red bands, the kernel 
function summarizes all monomials of the differences too, i.e., 
{NIR-red, (NIR-red)2, (NIR-red)3, …} in a single scalar. Although kernel 
methods can, in principle, be applied to any VI (see section S1.5 and 
table S1), the framework is illustrated here to generalize NDVI, largely 
because of the long history and wide utility of this index, most notably 
to perform global and long-term studies. We specifically define the 
NDVI in Hilbert spaces and adopt the radial basis function (RBF) 
reproducing kernel, ​​k(NIR, red ) = exp​(​​ − ​(NIR − red)​​ 

2
​ / (2 ​σ​​ 

2
​)​)​​​​, where 

the  parameter controls the notion of distance between the NIR and 
red bands. The presented kernel NDVI (kNDVI) reduces to compute

	​​ kNDVI  =  tanh ​(​​ ​​(​​ ​ NIR − red ─ 2  ​​)​​​​ 
2
​​)​​​​	

where  is a length-scale parameter to be specified in each particular 
application and represents the sensitivity of the index to sparsely/
densely vegetated regions. A reasonable choice is taking the average 
value  = 0.5(NIR + red) (see sections S1 and S2 for mathematical 
and ecophysiological justifications), which leads to a simplified op-
erational index version expressed as ​kNDVI  =  tanh (​NDVI​​ 2​)​. The 
selection of the kernel function and prescription of its parameter 
allows the kNDVI to perform an automatic and pixel-wise adaptive 
stretching and guarantees that all moments of the relations between 
the NIR and red channels are taken into account. This also allows 
kNDVI to cope with saturation effects, complex phenological cycles, 
and seasonal variations, to deal with the mixed-pixel problem (20), 
and to propagate lower uncertainty than other indices (section S2.5). 
It can be shown that kNDVI actually generalizes NDVI and NIRv 

theoretically (see sections S1 and S2 and Properties S2.1 and S2.2), 
which ensures an improved performance. Last, the presented meth-
odology, and the kNDVI in particular, are easy to implement and 
use in practice (section S10), which is of paramount relevance in 
operational studies.

RESULTS AND DISCUSSION
We show that kNDVI exhibits consistently stronger correlations than 
NDVI and NIRv in key independent products [GPP at flux tower 
estimates and SIF from Global Ozone Monitoring Experiment–2 
(GOME-2)]. In general, the proposed index performs better than 
NDVI and NIRv in all applications, biomes, and climatic zones. The 
kNDVI is more resistant to saturation, bias, and complex phenological 
cycles and shows enhanced robustness to noise and stability across 
spatial and temporal scales (sections S6.2 and S6.3). Additional re-
sults for approximating MODIS LAI (section S4), correlation with 
other related parameters (like fAPAR and FVC) acquired in situ 
(section S7), crop yield estimation (section S8), and kNDVI’s use for 
image change detection (section S9) further confirm the validity of 
the approach. All these properties and performance are achieved 
without adopting any specific assumption, just exploiting all higher 
order statistical relations between the involved reflectances.

Accurate proxy to GPP
We evaluated and compared the performance of kNDVI with NDVI 
and NIRv as a GPP proxy using flux tower GPP estimates from the 
FLUXNET database (section S5). The proposed kNDVI provides 
correlations with GPP similar to or better than the other indices 
over all considered biomes and across all the 169 flux tower sites 
(Table 1). The weakest relationships are observed for evergreen 
broad-leaved forests, which can be expected because of the stronger 
saturation effect in such ecosystem (similarly clear when using the 
index for LAI estimation, see section S4). The kNDVI excels in each 
biome individually, confirming its adaptive nature, and globally 

Table 1. Temporal correlation coefficient between the VIs and the 
parameters GPP and SIF per biome. Only vegetation biomes are 
considered and classes in IGBP were grouped as indicated in parentheses: 
C1 = NF=Needle-leaf Forest (1 + 3), C2 = EBF = Evergreen Broadleaf Forest 
(2), C3 = DBF=Decidious Broadleaf Forest (4), C4 = MF = Mixed forest (5), 
C5 = SH=Shrublands (6 + 7), C6 = SAV=Savannas (8 + 9), 
C7 = GRA = Herbaceous (10), C8 = CRO=Cultivated (12). Best results per 
biome indicated in bold and darker green indicates higher correlation.
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shows a clear gain (Fig. 1). Although photosynthesis is driven by the 
amount of vegetation photosynthetic mass within a pixel, solar irradia-
tion and environmental constraints also play a critical role. The latter 
is not accounted for by the spectral information provided by NIR and 
red bands. This explains why all indices present lower correlation with 
GPP and SIF than with LAI for all biomes (Table 1, cf. section S4). 
The correlation is, however, higher for the kNDVI in almost all cases. 
Alternative measures of nonlinear association between GPP and the 
indices, such as Spearman’s correlation (26), mutual information (27), 
and distance correlation (28), yielded similar results and conclusions 
(see sections S5 and S6), thus confirming the good capabilities of 
kNDVI to implicitly linearize the problem.

We studied the robustness of the indices across sites. Figure 2 
shows the density and boxplots of the slopes (scaled between 0 and 
1) for all 169 flux tower sites. The NIRv index shows a mean closer 
to 0.5, but the spread is higher than for the kNDVI. Both NDVI and 
NIRv show very wide whiskers (and hence pathological behaviors 
and high sensitivity to outliers), while kNDVI shows higher robust-
ness and stability across sites. A simple analysis over all the towers 
shows that kNDVI outperformed in 84 of the towers (50%), NIRv in 
59 (35%), and NDVI in 26 (15%). The kNDVI gains are more 

noticeable in deciduous and evergreen forests, which confirms the 
good adaptation to varying photosynthetic phenology of different 
biomes, primarily forests. This is confirmed when looking at the 
seasonal patterns of stand photosynthesis for some illustrative sites 
in Fig. 3, expressed as monthly GPP. For example, the CA-TP4 
(Ontario–Turkey Point 1939 Plantation White Pine site) is a region 
dominated by densely covered woody vegetation and displays green 
foliage all year round. Unlike NDVI that shows relatively too much 
and too little sensitivity, respectively, to seasonally changing GPP, 
the kNDVI follows much better the temporal shape and captures 
the higher and lower GPP values too. This might be due to the subtle 
pigment shifts that are largely invisible to NDVI, but may be more 
detectable by kNDVI, as it was recently shown with NIRv (29). For 
grasslands, like the CH-Oe1 (Oensingen, Switzerland), neither NDVI 
nor NIRv can disentangle the phenological cycle of the vegetation 
from the background noise, while the kNDVI returns acceptable 
results with larger dynamic range. Here, the tree and shrub cover is 
less than 10% and a permanent mixture of water and herbaceous or 
woody vegetation is observed, inducing a strong mixed-pixel problem 
aggravated by complex topography. The IT-Ro1 (Roccarespampani-1 
near Viterbo site) is a deciduous broad-leaved forest consisting of 
broadleaf tree communities with a clear annual cycle of long leaf-on 
and leaf-off periods, which are followed faithfully by the kNDVI 
index. NIRv and kNDVI reveal very similar characteristics. An in-
teresting case is that of closed shrublands. The mixed shrub foliage 
in the Kennedy Space Center site CSH US-KS2, which can be either 
evergreen or deciduous, is efficiently handled by kNDVI (R = 0.72) 
over NIRv (R = 0.68) and NDVI (R = 0.57). Here, unlike NIRv, 
the proposed kNDVI does not over- and underestimate GPP.  
Overall, we observed that the kNDVI closely tracked the seasonal 
dynamics of photosynthesis, presenting a better agreement with 
GPP. This is achieved by adaptively stretching the dynamic range 
to better capture time-series extremes (e.g., sparsely and densely 
vegetated, as well as cold and dry regions). The proposed kNDVI 
seems to largely correct for “background effects” (important in sparse 
vegetation or snow) and saturation and may be more sensitive to 
subtle greenness shifts (e.g., evergreens) based on pigments rather 
than structure per se.

Closer monitoring of photosynthetic activity of ecosystems
Recent studies have linked SIF and VIs, such as NDVI and NIRv (20), 
as a pragmatic alternative to more sophisticated machine learning 
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Fig. 1. Correlation between the indices and parameters. Histogram of the correlation coefficient between the VIs and the parameters: for GPP (left) correlation com‑
puted over 169 FLUXNET sites, and for SIF (right) averaged over all 506 global images.
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Fig. 2. Goodness of fit between the indices and GPP. Distribution of slopes of 
site-level linear regressions (normalized between 0 and 1) between the indices and 
biweekly GPP from 169 FLUXNET sites.
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approaches (30). We here evaluate the kNDVI computed from the 
MODIS reflectance bands to approximate globally gridded GOME-2 
SIF at 16-day temporal resolution. Despite the fact that GOME-2 
can measure both SIF and the NIR and red bands simultaneously, 
we intentionally estimated all indices independently from coincident 

MODIS data (see processing details in section S6). We computed the 
correlation between time series. The kNDVI outperforms the other 
indices in general (Fig. 1) and in all biomes individually (Table 1), 
especially in DBF, GRA, and CRO: 5 to 11% gain in correlation over 
NIRv and 20 to 35% over NDVI.

Fig. 3. Monitoring GPP at tower level. Illustrative results over four flux towers covering evergreen needle-leaved forests (CA-TP4), grasslands (CH-Oe1), deciduous 
broadleaf forest (IT-Ro1), and closed shrublands (US-KS2).
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Fig. 4. Temporal correlation between indices and SIF globally. Top: Color composite of indices-to-SIF correlation, (R, G, B) = (NIRv, NDVI, kNDVI). Bluish means kNDVI 
outperforms the rest, which generally happens [in 91.32% of the pixels over NDVI (left) and 69.69% of the cases over NIRv (right)] and particularly in the extreme (low and 
high) vegetation covers or in cold and dry regions. Bottom: Differences of correlation-with-SIF between the proposed index kNDVI and NDVI (left) and NIRv (right), both 
globally and for extreme regions. Red colors indicate a higher correlation for kNDVI, and blue indicates a lower correlation for kNDVI (relative to the other indices).
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Fig. 5. Temporal analysis over selected study areas. Scatterplots of the different indices versus SIF (left), and the average time series over the study areas (right). Axes 
limits were optimized to improve visualization of all indices.
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To confirm the robustness to capture extreme SIF values, we 
studied the spatial maps of temporal correlation coefficients. 
kNDVI dominates in all regions (Fig. 4, top) and correlates better 
with SIF in 69.69% of the pixels compared to NIRv and in 91.32% 
of cases compared to NDVI (see Fig. 4, bottom). Results suggest 
that the kNDVI clearly outperforms the other indices in densely 
vegetated tropical (e.g., Amazonia and Indonesia) and arid regions 
(e.g., Australia and Mediterranean). As for the case of GPP, other mea-
sures of correlation yielded identical conclusions (table S7). Further 
analysis confirmed the dominant performance of kNDVI in all lati-
tudes, especially in higher and lower ones (table S10), as well as in 
all climatic zones, especially in the arid and cold regions (table S9).

The study areas in Fig. 4 showed the biggest differences between 
the kNDVI and NDVI and NIRv, and are further scrutinized in 
Fig. 5. The kNDVI provides improved fit scores in all cases, larger 
excursions in general, and more resistance to noise and saturation. 
The higher accuracy by kNDVI (e.g., in California, +19% in R over 
NIRv) comes mainly from the better behavior in the presence of 
sharp phenological cycles. In the Iberian peninsula, kNDVI and 
NIRv perform similarly in quantitative terms, but the proposed 
kNDVI appears less affected by high-frequency components and 
covers the whole dynamic range nicely. In Australia, the favorable 
numerical gain in R (+25%) and the much lower scatter highlight 
that kNDVI better approximates SIF and closely follows the cycles 
(especially in March-April-May periods). Despite the big challenges 
in the Amazon for SIF estimation with GOME-2, the kNDVI can be a 
more convenient choice compared to other indices, as it deals better 
with noise and background effects (e.g., soil, standing water, or 
snow). All in all, the proposed kNDVI seems better qualified to cope 
with noise, saturation, and complex phenologies.

Similar conclusions were obtained when we studied spatial correla-
tions through time: The proposed index achieves noticeable improve-
ments over NDVI and NIRv, especially between August and November, 
thus improving autumn phenology owing to its adaptive stretching 
(see fig. S10 in section S6). The kNDVI is more competitive at finer 
temporal resolutions (native biweekly) with a noticeable advantage over 
NDVI (+15%) and NIRv (+4%), but the gain over NIRv disappears at 
bimonthly scales, since the temporal aggregation induces a “more linear” 
problem. Likewise, a broader spatial aggregation (from 0.5 up to 2) 
yielded improved results of all indices, but kNDVI still outperformed 
the others independently of the spatial scale (section S6 and fig. S11).

We lastly studied the capabilities of kNDVI to deal with the 
mixed-pixel problem (Fig. 6). Both kNDVI and NIRv scale with the 
total NIR, NIRT, unlike NDVI that clearly saturates. The kNDVI 
strongly correlates with SIF over highly vegetated pixels, but the 
correlation decreases with lower vegetated fractions (Fig. 6). The 
difference between kNDVI and NDVI stands out, and kNDVI is 
slightly higher correlated with SIF than NIRv, thus suggesting that the 
index can reliably isolate the proportion of reflectance attributable to 
vegetation as well. These properties emerge directly from the NIR-red 
relations since no assumption is made in designing the index. Account-
ing for all NIR-red relations allows us to optimally disentangle the 
mixed-pixel problem efficiently, especially in the densely vegetated 
areas (e.g., LAI and GPP phenology of crops in section S4 and Fig. 3).

The study of natural and agricultural systems should greatly 
benefit from the kNDVI proposed here because of its solid theoret-
ical foundation combined with its ease of calculation and applica-
tion. The high correlation with GPP and SIF across all biomes, 
especially in grasslands, croplands, and mixed forests as well as in 
arid regions, suggests that the index can efficiently cope with both 
the saturation and the mixed-pixel problems encountered with tra-
ditional indices. The proposed kNDVI explains a large fraction of 
the variance of GPP at flux tower level, showed good robustness 
capabilities to noise and saturation, and enhanced stability across 
space. The kNDVI also highly correlates with SIF derived from an 
independent sensor, paving the way toward improving our quanti-
fication and understanding of photosynthesis at the global scale. Its 
application and usefulness goes beyond vegetation monitoring and 
embraces change and extreme detection, phenological and greening 
studies, upscaling parameters, and all applications where VIs in 
general and NDVI in particular have previously demonstrated their 
utility. Our results demonstrate that an agnostic statistical approach 
is sufficient to explain most of the observed signal.

The kernel methods framework allowed us to generalize all VIs, 
but we focused on the NDVI case only. Kernel methods, in general, 
and the kNDVI, in particular, implement the original operation 
(e.g., NDVI) in a high-dimensional feature space where spectral 
bands are mapped to. The solution of kNDVI is thus a nonlinear 
version of NDVI. The framework allows us to accomplish the ever-
sought linearization operation implicitly. This means that no ad hoc 
parametric transformations are needed, just the kernel operation. 
This also implies that virtually no gain should be obtained over other 
indices when the relation between the bands and the parameter of 
interest is linear, such as for instance when an appropriate PAR 
normalization is applied (see sections S5.2 and S6.4) or whenever 
one averages over larger spatial or temporal scales (see section S6.3). 
Our results, however, suggested that the kNDVI instantiation im-
proved results in all problems, even when the domain was previously 
linearized. This makes the index a very powerful and practical default 
choice. We anticipate a wide use and development of the proposed 
index in particular, and of the family of nonlinear VIs in general, 
to derive informative indicators for operational Earth monitoring 
and the quantification of the terrestrial biosphere vital signs.

MATERIALS AND METHODS
Datasets and processing
GPP and FLUXNET data
The GPP data were obtained from FLUXNET, which is a collection 
of sites from multiple regional networks (31). This network provides 
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Fig. 6. Correlation with vegetated fraction. Correlation coefficient between the 
indices and SIF increases with vegetated fraction (computed from NDVI percentiles). 
We include the total NIR, NIRT, as a reference. The lower bounds of the NDVI quar‑
tiles are as follows: 0, 0.25, 0.50, and 0.75.
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a compilation of in situ observations to measure the exchanges of 
carbon dioxide, water vapor, and energy between the biosphere and 
atmosphere (32). To calculate the GPP, the carbon dioxide flux, i.e., 
net ecosystem exchange, is measured by means of the eddy covariance 
method. This flux is further partitioned into ecosystem respiration and 
GPP [gC m−2 day−1] using the daytime (33) or nighttime (34) partition-
ing methods. For our analyses, we used GPP estimates from the freely 
available Tier 1 dataset that were obtained with the daytime parti-
tioning method. Of all available sites (212), we selected a subset of 
169 sites corresponding to natural vegetation having less than 50% 
of missing remotely sensed data due to cloud contamination. In ad-
dition, we only considered sites where we had more than 4 months 
of available flux data.
SIF data from GOME-2
We generated GOME-2 0.5 fluorescence at 740 nm and reflectance 
at 670 and 780 nm from level 2 data obtained from measurements 
of the GOME-2 sensor flying onboard MetOp-A. The retrieval al-
gorithm of SIF [mW/m2/sr/nm] proposed in (35) uses the filling-in 
of Fraunhofer lines caused by the plants’ chlorophyll fluorescence. 
Data were gridded to 16 day and 0.5° resolutions from the individ-
ual soundings and cover 11 years (2007–2017). No spatial smoothing 
or temporal averaging was performed before computing or averag-
ing results. High sun zenith angle (SZA) observations (SZA > 70°) 
were removed from the analysis as well as cloudy scenes with a 
cloud fraction over 50% and observations taken between 2 p.m. and 
8 a.m. local time. The illumination corrected SIF/cos(SZA) was 
considered, cf. section S6.
MODIS BRDF-corrected reflectances
MODIS reflectance data were derived from the MCD43A4.006 
bidirectional reflectance distribution function (BRDF)-Adjusted Re-
flectance 16-Day L3 Global 500m product (36). They are disseminated 
from the Land Processes Distributed Active Archive Center (LP DAAC) 
also available at Google Earth Engine (GEE). The MCD43A2 MODIS 
product, which contains ancillary quality information for the corre-
sponding MCD43A4 product, was also used for avoiding low-quality 
BRDF estimates. We computed the indices and conducted the analysis 
at 16-day temporal and 500-m spatial scales over the 11 years of  
SIF data.

Analysis
General rationale
In all our experiments, we used reflectance values from MODIS, yet 
radiances or digital counts could also be used. The flux tower GPP 
estimates in our experiments come from the site-level data in (31). 
The SIF product comes from GOME-2, so the product is fully inde-
pendent of MODIS reflectances. GPP and SIF correlations are com-
puted in the time domain, while for SIF, we additionally compute 
correlations in space and then average results over time (results 
shown in section S6).

In all cases, we compute correlations between indices (NDVI, 
NIRv, and kNDVI) and the considered product only in meaning-
ful vegetation classes: Needleleaf Forest, Evergreen Broadleaf 
Forest, Decidious Broadleaf Forest, Mixed forest, Shrublands, 
Savannas, Herbaceous, and Cultivated. These resulted from a meaning-
ful grouping of International Geosphere-Biosphere Programme 
(IGBP) classes (see section S3). Analysis of the SIF results also 
considered aggregated climatic zones (Tropical, Arid, Temperate, 
Cold, and Polar), monthly means, and latitude averages (see sec-
tion S6).

kNDVI calculation
The kNDVI index is defined as

	​ kNDVI  = ​  k(n, n ) −  k(n, r)  ─  k(n, n ) +  k(n, r) ​​	 (1)

where n, r ∈ ℝ refer to the reflectances in the NIR and red channels, 
respectively, and the kernel function k measures the similarity be-
tween these two bands. We used in all cases the RBF kernel, k(a, b) = 
exp (− (a − b)2/((22)), where the  parameter controls the notion 
of distance between the NIR and red bands. This kernel function 
induces an important simplification

	​​ kNDVI  ≔ ​  1 − k(n, r) ─ 1 + k(n, r) ​  =  tanh ​(​​ ​​(​​ ​ n − r ─ 2  ​​)​​​​ 
2
​​)​​​​	 (2)

Other kernel functions are possible, but the RBF kernel is the most 
widely used one because of its theoretical and practical advantages 
(see sections S1 and S2) (24, 25). We calculated the kNDVI fixing 
the length-scale parameter  equal to the mean distance between 
the NIR and red bands,  = 0.5(n + r), which is a standard heuristic 
in the kernel methods literature, makes the index adaptive to each 
pixel, and worked very well in practice. Note that this simplification 
further reduces the index to

	​ kNDVI  =  tanh (​NDVI​​ 2​)​	 (3)

Further optimization of  per biome was done, but results did 
not improve substantially (results not shown).
Reproducibility: Open-source software and data
All calculations, visualization, and analyses were performed using the 
MATLAB programming language. We stored and processed netCDF 
files and tabular data. The kNDVI can be easily coded and applied. 
We give implementations in five standard programming languages 
(MATLAB, R, Python, Julia, and IDL) and in the GEE in section S10.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/7/9/eabc7447/DC1
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