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IDEALS OF MULTILINEAR MAPPINGS VIA ORLICZ
SPACES AND TRANSLATION INVARIANT OPERATORS

MIECZYS LAW MASTY LO AND ENRIQUE A. SÁNCHEZ PÉREZ

Abstract. We study some new summability properties of multilinear
operators. We introduce the concepts of ϕ-summing, ϕ semi-integral
and ϕ-dominated multilinear maps generated by Orlicz functions. We
prove a variant of Pietsch’s domination theorem for ϕ-summing opera-
tors, providing also a characterization of ϕ-dominated operators in terms
of factorizations. We analyze vector-valued inequalities associated to
these maps, which are applied to obtain general variants of multiple
summing operators. We also study translation invariant multilinear op-
erators acting in products of spaces of continuous functions, proving that
a factorization theorem can be obtained for them as a consequence of
a suitable representation of the corresponding normalized Haar measure.

Multilinear ideals, factorization theorems, Haar measure, translation
invariant operators, Orlicz spaces. [MSC 2010]47L20, 46B15

1. Introduction

Banach linear operator ideals play a key role in the theory of operators.
One of the most important classes of linear maps between Banach spaces is
that of p-absolutely summing operators. These operators are widely recog-
nized as one of the most important developments in modern Banach space
theory and found deep applications in many areas of modern analysis (see,
e.g., [10, 21, 22]). Motivated by various applications and generalizations of
the concept of absolutely p-summing related to Lp-spaces, different classes
were defined in a natural way in recent years. We refer to articles [7, 8]
and the references therein related to applications of the so-called (E,F )-
summing operators to eigenvalues, s-numbers and interpolation of opera-
tors. The study of a class of linear operators based on the Orlicz spaces was
initiated in [3] and continued later in [12, 13]. In [12] the study of this class
of operators was motivated by questions raised in the study of Burkholder–
Davis–Gundy inequalities for vector-valued martingales. In his remarkable
paper, Geiss [12] used this class of operators generated by Orlicz spaces Lϕq
with an exponential function ϕq, given by ϕq(t) = exp(tq)− 1 for all t ≥ 0
with q ∈ [1,∞), for proving the required inequalities. We point out that
the notion of absolutely ϕ-summing was motivated by the consideration of
majorizing measures for Gaussian processes.
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The ideal structure of multilinear operators acting between Banach spaces
has been investigated intensively in recent years. The natural interest is
motivated by various applications and generalizations of the rich theory of
linear operator ideals. We refer to the article [18], a survey of some classes
of multilinear mappings between Banach spaces that generalize the class of
absolutely summing linear operators to the multilinear setting. We note
that in this article descriptions are provided of the classes of multilinear
mappings that are multiple summing, dominated, semi-integral, strongly
summing, absolutely summing and strongly multiple summing; the main
results concerning these classes of multilinear mappings are presented and
also some proofs are included.

We initiate the study of a new class of multilinear operators, whose defini-
tion is based on summability properties and integral dominations provided
by Orlicz space norms. This is primarily motivated by the natural question
that appears in the theory of multilinear operators concerning the existence
of multilinear variants of the main results that are known for linear opera-
tors in Banach spaces. The main part of these results in the linear setting
are related to summability properties and integral dominations, usually in-
volving Lp-type norms. In this paper we will consider the more general
Orlicz variant of these notions. The main aim is to study such classes of
multilinear operators, for which we are able to prove abstract variants of
factorization theorems.

The first progress in the translation of linear-type results to multilinear-
type ones was in a work by Alencar and Matos [1], where several classes of
multilinear mappings among Banach spaces were investigated. Motivated
by that work, the p semi-integral multilinear operators were introduced
in [18] for 1 ≤ p < ∞. Following [18], a multilinear operator T : X1 ×
· · · × Xn → Y is said to be p semi-integral (T ∈ Lsi,p(X1, . . . , Xn;Y )) if
there exist a constant C > 0 and a regular probability Borel measure on
the σ-algebra B(BX∗1

× · · · × BX∗n) of BX∗1
× · · · × BX∗n endowed with the

product of the weak∗ topologies σ(X∗j , Xj) for 1 ≤ j ≤ n, such that for all
(x1, . . . , xn) ∈ X1 × · · · ×Xn,

‖T
(
x1, . . . , xn)‖Y ≤ C

(∫
BX∗1

×···×BX∗n

|〈x1, x
∗
1〉 · · · 〈xn, x∗n〉|p dµ

)1/p

.

The infimum of the C defines a norm ‖·‖si,p for the space Lsi,p(X1, . . . , Xn;Y )
of p semi-integral operators.

The natural counterpart to this definition in terms of summability is given
by the p-summing multilinear operators. Following [1], an n-linear operator
T : X1 × · · · ×Xn → Y is said to be p-summing if there exists C > 0 such
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that( m∑
j=1

‖T (x1
j , . . . , x

n
j )‖pY

)1/p

≤ C sup
(x∗j )nj=1∈BX∗1×···×BX∗n

( m∑
j=1

|〈x1
j , x
∗
1〉 · · · 〈xnj , x∗n〉|p

)1/p

for every choice of m ∈ N and (x1
j , . . . , x

n
j ) ∈ X1×· · ·×Xn, where 1 ≤ j ≤ m.

These classes of multilinear operators define ideals like the ones that will
be introduced in the present paper. Recall that a Banach ideal of multilinear
mappings I is a class of continuous multilinear operators between Banach
spaces such that for every n ∈ N and Banach spaces X1, . . . , Xn, Y , the
associated component, that is denoted by

I(X1, . . . , Xn;Y ) := L(X1, . . . , Xn;Y ) ∩ I ,

satisfies the following:

(i) I(X1, . . . , Xn;Y ) is a linear subspace of L(X1, . . . , Xn;Y ) containing
the n-linear mappings of finite type, and

(ii) if A ∈ I(X1, . . . , Xn;Y ), uj ∈ L(Gj;Xj) for each 1 ≤ j ≤ n and
v ∈ L(Y ;H), then v ◦ A ◦ (u1, . . . , un) belongs to I(G1, . . . , Gn;H)
and

‖v ◦ A ◦ (u1, . . . , un)‖I ≤ ‖v‖ ‖A‖I ‖u1‖ · · · ‖un‖ ,

where ‖ · ‖I is given by a rule for defining the ideal norm.

In the present paper we investigate some classes of multilinear mappings
generated by Orlicz spaces. We define the class of ϕ-summing multilinear
operators that are defined by Orlicz sequence spaces. The core of this con-
cept lies in a variant of Pietsch’s domination theorem proved in Section 3.
This result motivates us to introduce the notion of ϕ semi-integral multi-
linear operators, which involve Orlicz spaces Lϕ(µ) generated by regular
probability Borel measure measures on BX∗1

× · · · ×BX∗n endowed with the
product of the weak∗ topologies. We prove that for a wide class of Orlicz
functions, the ϕ-summing and ϕ semi-integral multilinear operators coin-
cide. In Section 3 we present also general vector-valued inequalities for
semi-integral ϕ-summing operators.

In Section 4, we introduce the ϕ-dominated multilinear operators, a sub-
class of the ϕ semi-integral mappings. We characterize this family in terms
of factorizations, under the restriction on the Orlicz function ϕ to be sub-
multiplicative. We analyze the relationship of this class with the general
class of ϕ semi-integral operators. General examples of ϕ-dominated mul-
tilinear operators are also presented in this section.

In Section 5, we study translation invariant ϕ semi-integral operators on
the products of a particular type of subspaces of C(K)-spaces, and inves-
tigate the Pietsch’s measures that appear in the Domination Theorem. As
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a by-product of our result, we deduce in particular that for a translation in-
variant ϕ-summing multilinear operator defined on the product X1×· · ·×Xn

of closed invariant subspaces Xj of C(Gj)-spaces on compact topological
groups Gj for each 1 ≤ j ≤ n, the Pietsch’s measure is the normalized
Haar measure on G1×· · ·×Gn. This, together with the previous results on
ϕ-summing and ϕ semi-integral operators, will be used for showing that, in
this case, a complete factorization scheme can be obtained. We obtain in
this way our main application: under some mild conditions on the Orlicz
function ϕ, ϕ-summability, integral domination and factorization through
products of Orlicz spaces are equivalent properties for translation invariant
multilinear operators. In the last part of this Section, we prove some vector-
valued inequalities for a universal class of function-lattice semi-integral op-
erators. We show that these operators are multiple summing operators in
a more general sense, underlying the fact that the results that are obtained
for ϕ semi-integral mappings are actually true in a broader setting. Fi-
nally, let us point out that multiple summing operators generated by scales
of `p-sequence spaces is an active current area of research that has found
several interesting applications (see, e.g., [4, 9, 20]). Our study generalizes
some domination properties of multilinear operators associated to `p-spaces
to the case of Orlicz sequence spaces.

2. Notation and background

Throughout the paper we use standard notation from Banach space the-
ory and operator theory. Given a Banach space X, X∗ will be the dual
space of X, BX its closed unit ball and SX its unit sphere. If (Ω,Σ, µ) is
a σ-finite measure space and X is a Banach space, L0(µ,X) denotes the
space of (equivalence classes of) strongly µ-measurable X-valued functions.
As usual L0(µ) := L0(µ,R) is equipped with the topology of convergence in
measure on µ-finite sets. A linear subspace X of L0(µ) is called an (order)
ideal whenever it follows from f ∈ X, g ∈ L0(µ) and |g| ≤ |f |, that g ∈ X.
An order ideal X ⊂ L0(µ) provided with a monotone norm ‖ · ‖ is called
a normed function lattice in L0(µ). If the normed (function) lattice X is
norm complete and there exists u ∈ X such that u > 0 on Ω, then X is
called a Banach function lattice in L0(µ). A Banach lattice X is said to
have the Fatou property if its unit ball BX is closed in L0(µ).

Let E be a (Banach) ideal on a measure space (Ω,Σ, µ) and let X be
a Banach space. The Köthe–Bochner space E(X) is defined to consist
of all strongly measurable functions x : Ω → X with ‖x(·)‖X ∈ E, and
is equipped with the norm ‖x‖E(X) := ‖ ‖x(·)‖X‖E. The Köthe–Bochner
spaces are connected with the mixed norm spaces which will be used in our
paper. Let (Ω1,Σ1, ν) and (Ω2,Σ2, µ) be measure spaces and let E and F be
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Banach lattices in L0(ν) and L0(µ), respectively. Assume (for measurability
reasons) that either the measure ν is discrete or the norm ‖ · ‖F is semi-
continuous, i.e., if 0 ≤ fn ↑ f ν-a.e., with f ∈ F , then ‖fn‖F → ‖f‖F .

In what follows, for every f ∈ L0(Ω1 × Ω2, ν × µ) and (s, t) ∈ Ω1 × Ω2,
we define fs ∈ L0(µ) and f t ∈ L0(ν) by fs(·) = f(s, ·) and f t(·) = f(·, t).
The mixed Banach lattice E[F ] in L0(ν × µ) is defined to be the space of
all f ∈ L0(ν × µ) such that fs ∈ F with s 7→ ‖fs‖F ∈ E equipped with the
norm

‖f‖E[F ] := ‖‖fs‖F‖E .
Similarly, we define [E]F to be the Banach lattice of all f ∈ L0(ν × µ)
equipped with the norm

‖f‖[E]F := ‖‖f t‖E‖F .
We will use Orlicz spaces. Let (Ω,A, µ) be a measure space and let

ϕ : R+ → R+ be an Orlicz function (that is, a convex increasing and con-
tinuous positive function with ϕ(0) = 0). The Orlicz space Lϕ(µ) (Lϕ for
short) on a measure space (Ω,A, µ) is defined to be the space of f ∈ L0(µ)
such that

∫
Ω
ϕ(λ|f |) dµ < ∞ for some λ > 0 and is equipped with the

Luxemburg norm given by

‖x‖Lϕ := inf

{
ε > 0;

∫
Ω

ϕ
( |f |
ε

)
dµ ≤ 1

}
.

If Ω is a finite or countable set and A = 2Ω, we will often write `ϕ(µ) instead
of Lϕ(µ). Let Lϕ be an Orlicz space on (Ω,A, µ). In what follows we will
need two simple observations:

• For every 0 6= f ∈ Lϕ,
∫

Ω
ϕ(|f |/‖f‖Lϕ) dµ ≤ 1 ;

• If g ∈ Lϕ(µ) satisfies
∫

Ω
ϕ
(
|g|/λ

)
dµ ≥ 1, then λ ≤ ‖g‖Lϕ .

Let X1, . . . , Xn and Y be Banach spaces. We equip the product X1 ×
· · · × Xn with the norm ‖(x1, . . . , xn)‖ = max1≤j≤n ‖xj‖Xj . We denote by
L(X1, . . . , Xn;Y ) the Banach space of multilinear and continuous operators
defined on X1 × · · · ×Xn with values in Y equipped with the norm

‖T‖ := sup
{
‖T (x1, . . . , xn)‖Y ; (x1, . . . , xn) ∈ BX1 × · · · ×BXn

}
.

In the case Y is the scalar field (R or C), we denote the space of multilinear
forms by L(X1, . . . , Xn).

As usual C(K) stands for the Banach space of real-valued continuous
functions on a compact Hausdorff space K and is endowed with the supre-
mum norm. In what follows, we will consider also topological groups that
are assumed to be T1-spaces and so Hausdorff spaces, as is well-known. For
the operation on a topological group we use multiplicative notation. We
recall that the Haar measure on a compact topological group G is a regular
Borel measure µ on the Borel sets which is left and right invariant, that is,
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µ(gB) = µ(B) and µ(Bg) = µ(B) for every Borel set B and every g ∈ G. It
is well-known that there is only one normalized Haar measure on a compact
topological group G (see, e.g., [25]). The uniqueness of the normalized Haar
measure on a compact topological group will be used in this paper.

3. ϕ-summing and ϕ semi-integral multilinear operators

Let ϕ be an Orlicz function. Throughout the paper, for a fixed m ∈ N and
a positive sequence {νj}mj=1 ∈ S`m1 , we denote by `mϕ (ν) the m-dimensional

Orlicz sequence space over the probability measure space
(
[m], 2[m], µ

)
,

where [m] := {1, . . . ,m} and µ({j}) = νj for each j ∈ [m], endowed with
the norm given by

‖ξ‖`mϕ (ν) := inf

{
λ > 0;

m∑
j=1

ϕ(|ξj|/λ)νj ≤ 1

}
, ξ = {ξj}mj=1 .

Let X1, . . . , Xn, Y be Banach spaces. We introduce the following definition:
an n-linear operator T : X1×· · ·×Xn → Y is said to be ϕ-summing if there
exists a constant C > 0 such that∥∥{‖T (x1

j , . . . , x
n
j )‖Y

}m
j=1

∥∥
`mϕ (ν)

≤ C sup
(x∗j )nj=1∈BX∗1×···×BX∗n

∥∥{〈x1
j , x
∗
1〉 · · · 〈xnj , x∗n〉

}m
j=1

∥∥
`mϕ (ν)

for every m-dimensional Orlicz space `mϕ (ν) and for all xij ∈ Xi, 1 ≤ i ≤ n
and 1 ≤ j ≤ m. We denote by Lϕ(X1, . . . , Xn;Y ) the space of all ϕ-
summing n-linear operators from X1×· · ·×Xn into Y . It is a Banach space
endowed with the norm πϕ(T ), that is defined to be the least constant C
satisfying the above requirements. It can be easily checked that (Lϕ, πϕ) is
an ideal of multilinear operators.

If Sj are nonempty sets and fj : Si → R are functions for each 1 ≤ j ≤ n,
then � denotes the pointwise product map defined by

� (f1, . . . , fn)(s1, . . . , sn) := f1(s1) · · · fn(sn), (s1, . . . , sn) ∈ S1×· · ·×Sn .
As usual, for a Banach space X, we denote by κX the canonical embedding
κX : X → C(BX∗), where BX∗ is equipped with the weak∗ topology. Using
the pointwise product �, we define the multiplication operator ~ : X1 ×
· · · ×Xn → C(BX∗1

× · · · ×BX∗n) by

~ (x1, . . . , xn) := �
(
κX1(x1), . . . , κXn(xn)

)
,

(
x1, . . . , xn

)
∈ X1×· · ·×Xn .

Next we prove a variant of the domination theorem for the specific case
of ϕ-summing multilinear operators.

Theorem 3.1. Let ϕ be a normalized Orlicz function (i.e., ϕ(1) = 1) and let
T : X1×· · ·×Xn → Y be a ϕ-summing multilinear operator with πϕ(T ) ≤M .
If, for each 1 ≤ j ≤ n, Jj : Xj → C(Kj) is an isometric embedding of
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a Banach space Xj into C(Kj), then there exists a regular Borel probability
measure µ on the product K1 × · · · × Kn such that, for all (x1, . . . , xn) ∈
X1 × · · · ×Xn,

‖T (x1, . . . , xn)‖Y ≤M‖ � (J1(x1), . . . , Jn(xn))‖Lϕ(µ) .

Proof. Let K1× · · · ×Kn be equipped with the product topology. Consider
the set

F1 :=
{
f ∈ C(K1 × · · · ×Kn); sup

(k1,...,kn)∈K1×···×Kn
f(k1, . . . , kn) < 1

}
.

For every x = (x1, . . . , xn) ∈ X1 × · · · × Xn, we define the function fx ∈
C(K1 × · · · ×Kn) by

fx := ϕ(M |J1(x1)| · · · |Jn(xn)|) .
Let

F2 := conv
{
fx; x = (x1, . . . , xn) ∈ X1 × · · · ×Xn, ‖Tx‖Y = 1

}
.

Clearly, F1 and F2 are convex sets in C(K1 × · · · ×Kn). It is clear that F1

is an open set. We claim that F1 ∩ F2 = ∅. To see this, let f ∈ F2. We will
show that f /∈ F1. By the definition of F2 there exist ν1 > 0, . . . , νm > 0
and x̂j := (x1

j , . . . , x
n
j ) ∈ X1 × · · · ×Xn, with

∑m
j=1 νj = 1 and ‖T x̂j‖Y = 1

for each 1 ≤ j ≤ m, such that

f =
m∑
j=1

νjfx̂j .

Thus by πϕ(T ) ≤M , we have that for (ν1, . . . , νm),

‖{1}‖`mϕ (ν) =
∥∥{‖T (x1

j , . . . , x
n
j )‖Y

}m
j=1

∥∥
`mϕ (ν)

(∗)

≤M sup
(x∗1,...,x

∗
n)∈BX∗1×···×BX∗n

∥∥{〈x1
j , x
∗
1〉 · · · 〈xnj , x∗n〉

}m
j=1

∥∥
`mϕ (ν)

≤M sup
(µ1,...,µn)∈BC(K1)

∗×···×BC(Kn)∗

∥∥{〈J1(x1
j), µ1〉 · · · 〈Jn(xnj ), µn〉

}m
j=1

∥∥
`mϕ (ν)

= M sup
(k1,...,kn)∈K1×···×Kn

∥∥{J1(x1
j)(k1) · · · 〈Jn(xnj )(kn)

}m
j=1

∥∥
`mϕ (ν)

.

We observe that the last equality follows by the fact that

(µ1, . . . , µn) 7→
∥∥{〈J1(x1

j), µ1〉 · · · 〈Jn(xnj ), µn〉
}m
j=1

∥∥
`mϕ (ν)

is a σ(C(Kj)
∗, C(Kj))-continuous, convex function in each variable µj on

BC(Kj)∗ and so attains its supremum on the set of extreme points {δkj ; kj ∈
Kj} for each 1 ≤ j ≤ n.
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We claim now that f /∈ F1. In fact, otherwise we would have

sup
(k1,...,kn)∈K1×···×Kn

m∑
j=1

ϕ
(
M |J1(x1

j)(k1)| · · · |Jn(xnj )(kn)|
)
νj < 1 .

Hence, by the definition of the norm in `mϕ (ν), we would get that

sup
(k1,...,kn)∈K1×···×Kn

∥∥{J1(x1
j)(k1) · · · 〈Jn(xnj )(kn)

}m
j=1

∥∥
`mϕ (ν)

< 1/M .

Clearly, ϕ(1) = 1 yields ‖{1}mj=1‖`mϕ (ν) = 1. Combining this with the in-

equality (∗), we get a contradiction. This proves the claim.
Now we can apply both the Hahn–Banach and Riesz representation the-

orems to get the existence of a constant λ and a regular Borel measure µ
on K1 × · · · ×Kn such that∫

K1×···×Kn
f dµ ≤ λ for all f ∈ F1

and ∫
K1×···×Kn

f dµ ≥ λ for all f ∈ F2 .

Since F1 contains all negative functions, µ has to be a positive measure.
Thus, taking a normalization of µ, we get that λ ≥ 1. Hence, if x =
(x1, . . . , xn) ∈ X1 × · · · ×Xn with ‖T (x1, . . . , xn)‖Y = 1, then∫

K1×···×Kn
ϕ(M |J1(x1)| · · · |Jn(xn)|) dµ ≥ λ ≥ 1.

Thus, for all x = (x1, . . . , xn) ∈ X1 × · · · ×Xn with T (x1, . . . , xn) 6= 0, we
get ∫

K1×···×Kn
ϕ

(
M |J1(x1)| · · · |Jn(xn)|
‖T (x1, . . . , xn)‖Y

)
dµ ≥ 1 .

This yields the required estimate

‖T (x1, . . . , xn)‖Y ≤M‖J1(x1) · · · Jn(xn)‖Lϕ(µ)

and completes the proof. �

This theorem yields the following variant of the Pietsch’s domination
theorem.

Theorem 3.2. Let ϕ be a normalized Orlicz function. Suppose that T : X1×
· · · ×Xn → Y is a ϕ-summing multilinear operator with πϕ(T ) ≤ C. Then
there exists a regular Borel probability measure µ on BX∗1

×· · ·×BX∗n equipped
with the product of the weak∗ topologies so that for every (x1, . . . , xn) ∈
X1 × · · · ×Xn,

‖T (x1, . . . , xn)‖Y ≤ C‖~ (x1, . . . , xn)‖Lϕ(µ) .
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Proof. Since Jj := κXj is an isometric embedding of Xj into C(Kj), where
Kj := BX∗j

is equipped with the weak∗ topology for each 1 ≤ j ≤ n,
Theorem 3.1 applies. �

The following definition is motivated by Theorem 3.2: let X1, . . . , Xn

be Banach spaces and let M(BX∗1
× · · · × BX∗n) be the space of all Borel

probability measures on BX∗1
× · · · ×BX∗n , endowed with the product of the

weak∗ topologies. A multilinear operator T : X1 × · · · ×Xn → Y is said to
be F (µ) semi-integral whenever there exist a constant C > 0, a measure
µ ∈ M(BX∗1

× · · · × BX∗n) and a Banach lattice E in L0(BX∗1
× · · · × BX∗n)

such that, for every (x1, . . . , xn) ∈ X1 × · · · ×Xn, we have

‖T (x1, . . . , xn)‖Y ≤ C‖~ (x1, . . . , xn)‖F (µ) .

The infimum of the constant C for which the inequality holds is denoted by
πsi,F (T ). In what follows µ is called a Pietsch’s measure (or a representing
measure) for T .

In the case that T is F (µ) semi-integral, where F (µ) = Lϕ(µ) is an Orlicz
space, then T is called ϕ semi-integral for short, and we write πsi,ϕ instead
of πsi,Lϕ(T ). In this case we denote by Lsi,ϕ(X1, . . . , Xn;Y ) the space of all
ϕ semi-integral multilinear operators from X1 × · · · ×Xn into Y .

In order to motivate the developments that follow, let us write here an
immediate —but relevant— consequence of Theorem 3.2.

Corollary 3.3. Let ϕ be a normalized Orlicz function. If T : X1 × · · · ×
Xn → Y is a ϕ-summing multilinear operator, then T is ϕ semi-integral
with πsi,ϕ(T ) ≤ πϕ(T ).

We show some properties of ϕ-summing multilinear operators. We recall
that weakly sequentially continuous operators between Banach spaces are
those that carry weakly convergent sequences to norm convergent sequences.
Motivated by the importance of this class of operators in the linear setting
multilinear variants were investigated. We recall, following for instance
[2, 6] that an n-linear operator T : X1×· · ·×Xn → Y is said to be a weakly
sequentially continuous multilinear operator if xjk → xj weakly in Xj as k →
∞ for each 1 ≤ j ≤ n implies that ‖T (x1

k, . . . , x
n
k)−T (x1, . . . , xn)‖Y → 0 as

k → ∞. This class of multilinear operator is well known in literature with
also a different denomination: completely continuous multilinear operators
(see, for instance, [5, 14]).

Clearly, every multilinear operator T : X1 × · · · × Xn → Y is a weakly
sequentially continuous operator if Xj has the Schur property for each 1 ≤
j ≤ n (i.e., such that weakly compact sets in Xj are compact).

The following characterization of the weakly sequentially continuous mul-
tilinear operators, in terms of weak Cauchy sequences, follows from [2,
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Corollary 2.5]. We note that it is pointed out in this article that only trivial
modifications in Lemma 2.4 and in Proposition 2.2 are needed to prove this
Corollary. We also mention that the proof of Proposition 2.2 is presented
for polynomials between Banach spaces, and it is given by induction. For
the sake of completeness, we include a direct proof to the multilinear case,
without using induction.

Proposition 3.4. Suppose that T : X1 × · · · × Xn → Y is a weakly se-
quentially continuous multilinear operator. If for each j with 1 ≤ j ≤ n,
{xjk}k is a weakly Cauchy sequence in Xj, then {T (x1

k, . . . , x
n
k)}k is a norm

convergent sequence in Y .

Proof. Suppose that T is a weakly sequentially continuous operator, and
let {xk}k = {(x1

k, . . . , x
n
k)} be a sequence in X1 × · · · ×Xn such that {xjk}k

is a weakly Cauchy sequence in Xj for each 1 ≤ j ≤ n. Now assume for
the sake of contradiction that {Txk} is not a norm Cauchy sequence of Y .
Then, we can find some ε > 0 and a subsequence {zk} of {xk} such that,

‖Tz2k − Tz2k−1‖Y > ε for all k ∈ N .
We will use the following obvious algebraic identity:

Tz2k − Tz2k−1 = T
(
z1

2k, . . . , z
n
2k

)
− T

(
z1

2k−1, . . . , z
n
2k−1

)
= T

(
z1

2k − z1
2k−1, z

2
2k, . . . , z

n
2k

)
+ T

(
z1

2k−1, z
2
2k − z2

2k−1, z
3
2k, . . . , z

n
2k

)
+ · · ·+ T

(
z1

2k−1, . . . , z
n−1
2k−1, z

n
2k − zn2k−1

)
.

Since T is weakly sequentially continuous and zj2k− z
j
2k−1 → 0 weakly in Xj

for each 1 ≤ j ≤ n, it follows that each term on the right side of the equality
is norm convergent to 0 in Y , which contradicts the above inequality. Thus,
{Txk} is a norm Cauchy sequence, and so norm convergent in Y . This
finishes the proof. �

Similarly as in the linear case compact mappings form an important class
in the multilinear setting. A multilinear operator is said to be compact if it
carries each product of bounded sets to a relatively compact set. This class
of operators forms a multi-ideal that is closed in the operator topology. The
properties of compact bilinear operators are studied in [23].

Combining Proposition 3.4 with Rosenthal’s theorem [24], which states
that a Banach space X does not contain an isomorphic copy of `1 if and only
if any norm bounded sequence in X contains a weak Cauchy subsequence,
yields immediately the following well known fact. The polynomial version
of this result is proved in [2, Proposition 2.12].

Corollary 3.5. Suppose that each Banach space X1, . . . , Xn does not con-
tain isomorphic copy of `1. Then every weakly sequentially continuous mul-
tilinear operator T : X1 × · · · ×Xn → Y is compact.
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We note that the assumption on isomorphic copies of `1 in Corollary 3.5
is essential in general. To see this observe that, it follows by the Schur
property of `1 that the bilinear operator T : `1 × `2 → `2 given, for all
x = {xk} ∈ `1, y = {yk} ∈ `2 by the formula:

T (x, y) := {xkyk}
is a weakly sequentially continuous bilinear operator. Since T (ek, ek) = ek
for each k ∈ N where ek is the standard unit vector basis in c0, T is not
compact.

We conclude our discussion about weakly sequentially continuous multi-
linear operators with the following application:

Theorem 3.6. The following statements are true for ϕ-summing multilin-
ear operator T : X1 × · · · ×Xn → Y .

(i) T is a weakly sequentially continuous operator ;
(ii) If each Banach space X1, . . . , Xn does not contain isomorphic copy

of `1, then T is compact.

Proof. (i). Let xjk → xj weakly in Xj as k → ∞ for each 1 ≤ j ≤ n. By
algebraic identity, we have

T
(
x1
k, . . . , x

n
k

)
− T

(
x1, . . . , xn

)
= T

(
x1
k − x1, x2

k, . . . , x
n
k

)
+ T

(
x1, x2

k − x2, x3
k, . . . , x

n
k

)
+ T

(
x1, . . . , xn−1, xnk − xn

)
.

From Theorem 3.2, it follows that T is ϕ semi-integral operator. Combining
this with Lebesgue’s Dominated Convergence Theorem reveals that each
term on the right side of the above equality is norm convergent to 0 in
Y . In consequence, we deduce that T (x1

k, . . . , x
n
k) → T (x1, . . . , xn) in Y as

required. Combining (i) with Lemma 3.5 yields the statement (ii). This
completes the proof. �

Now let us give a fundamental example of a ϕ semi-integral multilinear
operators. As in the case of the classical integral operators, the canonical
embedding from products of C(K)-spaces into the corresponding Orlicz
space is ϕ semi-integral.

Lemma 3.7. Let ϕ be an Orlicz function and let K1, . . . , Kn be compact
Hausdorff spaces. Then for every Borel probability measure on K1×· · ·×Kn

the multilinear operator

� : C(K1)× · · · × C(Kn)→ Lϕ(K1 × · · · ×Kn, µ)

is ϕ semi-integral with πsi,ϕ(�) ≤ 1.

Proof. Fix fj ∈ C(Kj) for each 1 ≤ j ≤ n such that λ := ‖�(f1, . . . , fn)‖Lϕ(µ) >
0. Since �(f1, . . . , fn) is a continuous function on K1 × · · · ×Kn, it follows
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that ∫
K1×···×Kn

ϕ(| � (f1, . . . , fn)|/λ) dµ = 1.

Let BC(K1)∗ × · · · × BC(Kn)∗ be equipped with the product of the weak∗

topologies. Consider the mapping δ : K1×· · ·×Kn → BC(K1)∗×· · ·×BC(Kn)∗

given by

δ(s) := (δs1 , . . . , δsn), s = (s1, . . . , sn) ∈ K1 × · · · ×Kn .

Clearly, δ is continuous and one-to-one (and so δ is a homeomorphism onto
δ(K1× · · · ×Kn)). Thus, δ is a Borel mapping. Let ν := (δ)µ be the image
measure of µ (via δ) on Borel sets of BC(K1)∗×· · ·×BC(Kn)∗ . Then we have

1 =

∫
K1×···×Kn

ϕ(| � (f1, . . . , fn)|/λ) dµ

=

∫
K1×···×Kn

ϕ
(
| �
(
κC(K1)(f1), . . . , κC(Kn)(fn)

)
(δ(s))|/λ

)
dµ

≤
∫
BC(K1)

∗×···×BC(Kn)∗

ϕ(|〈f1, ·〉 · · · 〈fn, ·〉|/λ) dν ,

whence

‖ � (f1, . . . , fn)‖Lϕ(µ) ≤ ‖〈f1, ·〉 · · · 〈fn, ·〉‖Lϕ(ν) .

This shows that � is ϕ semi-integral with πsi,ϕ(�) ≤ 1. �

Further, we will prove vector-valued inequalities for ϕ semi-integral mul-
tilinear operators generated by Orlicz functions satisfying some minor con-
ditions. As a by-product, we deduce that these operators are ϕ-summing.
In the proof we will use the following characterization of the embeddings
between mixed Orlicz spaces and Orlicz spaces defined on a product of mea-
sure spaces: Let (X1,Σ1, ν) and (X2,Σ2, µ) be σ-finite measure spaces. Then
the inclusion map

id: Lϕ(ν × µ) ↪→ Lϕ(ν)[Lϕ(µ)]

is bounded with norm ‖id‖ ≤ C if and only if ϕ is C-supermultiplicative
(i.e., ϕ(Cuv) ≥ ϕ(u)ϕ(v) for all u, v > 0 and some C > 0). If additionally
µ and ν are finite measures, then the above statement holds if and only ϕ
is C-supermultiplicative at ∞ (i.e., there exists a > 0 such that ϕ(Cuv) ≥
ϕ(u)ϕ(v) for all u, v ≥ a).

Let us say that the above result was proven for the case of non-atomic finite
measures in [26]. A minor modification of the proof gives the result for the
general case.

We need the following lemma.
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Lemma 3.8. Let (X1,Σ1, ν) and (X2,Σ2, µ) be σ-finite measure spaces with
µ finite. Suppose that ϕ is a C-supermultiplicative Orlicz function. Then
the inclusion map

id : [Lϕ(ν)]L∞(µ) ↪→ Lϕ(ν)[Lϕ(µ)]

is bounded with ‖id‖ ≤ C max{1, µ(X2)}. Moreover, if µ and ν are finite
measures, then the above statement holds whenever ϕ is C-supermultiplicative
at ∞.

Proof. For any f ∈ [Lϕ(ν)]L∞(µ) with norm 1, we have ‖f t‖Lϕ(ν) ≤ 1 for
µ-almost all t ∈ X2. Hence, for µ-almost all t ∈ X2,∫

X1

ϕ(|f t(s)|) dν(s) ≤
∫
X1

ϕ

(
|f t(s)|
‖f t‖Lϕ(ν)

)
dν(s) ≤ 1 .

Combining with Fubini’s Theorem, it follows that∫
X1×X2

ϕ(|f |) d(ν×µ) =

∫
X2

(∫
X1

ϕ(|f(s, t)|) dν(s)

)
dµ(t) ≤ max{1, µ(X2)} .

This shows that f ∈ Lϕ(ν×µ) with norm less than or equal to max{1, µ(X2)}.
To finish, it is enough to apply the result mentioned above. �

We are ready to prove a vector-valued estimate for ϕ semi-integral mul-
tilinear operators which seems to be of independent interest.

Theorem 3.9. Let T : X1 × · · · × Xn → Y be a ϕ semi-integral mul-
tilinear operator with πsi,ϕ(T ) ≤ M, where ϕ is a C-supermultiplicative
Orlicz function, and let (Ωj,Σj, νj) be σ-finite measure spaces for each
1 ≤ j ≤ n. Suppose that Lϕ(ν) is an Orlicz space in L0(Ω1 × · · · × Ωn, ν)
with ν = ν1 × · · · × νn. Then the following vector-valued estimate holds for
A = CM :∥∥‖T (f1(·), . . . , fn(·))‖Y

∥∥
Lϕ(ν)

≤ A sup
(x∗1,...,x

∗
n)∈BX∗1×···×BX∗n

‖〈f1(·), x∗1〉 · · · 〈fn(·), x∗n〉‖Lϕ(ν)

for all (f1, . . . , fn) ∈ L0(ν1, X1)×· · ·×L0(νn, Xn) such that the value of the
expression on the right hand side of the inequality is finite. If the measures
νj are finite for each 1 ≤ j ≤ n, then the above statement is true if ϕ is
supermultiplicative at ∞.

Proof. We assume that ϕ is C-supermultiplicative for a given C > 0; that
is, there is C > 0 such that ϕ(Cuv) ≥ ϕ(u)ϕ(v) for all u, v > 0. Our
hypothesis implies that there exists a probability Borel measure µ on BX∗1

×
· · · ×BX∗n equipped with the product of the weak∗ topologies such that for
every (x1, . . . , xn) ∈ X1 × · · · ×Xn,

‖T (x1, . . . , xn)‖Y ≤M‖〈x1, ·〉 · · · 〈xn·〉‖Lϕ(µ) .
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An application of Lemma 3.8 gives the required estimate. Indeed,∥∥‖T (f1(·), . . . , fn(·))‖Y
∥∥
Lϕ(ν)

≤M
∥∥〈f1(·), ·〉 · · · 〈fn(·), ·〉

∥∥
Lϕ(ν)[Lϕ(µ)]

≤M
∥∥〈f1(·), ·〉 · · · 〈fn(·), ·〉

∥∥
[Lϕ(ν)]L∞(µ)

= CM sup
(x∗1,...,x

∗
n)∈BX∗1×···×BX∗n

∥∥〈f1(·), x∗1〉 · · · 〈fn(·), x∗n〉
∥∥
Lϕ(ν)

.

These computations together, adapted by means of a standard argument,
give the proof also for the case of finite measures. �

The following result is an immediate consequence of Theorems 3.1 and
3.9.

Corollary 3.10. Let ϕ be a C-supermultiplicative Orlicz function at ∞ for
some C > 0. Then a multilinear operator T : X1 × · · · × Xn → Y is ϕ
summing if and only if T is ϕ semi-integral.

Combining Theorems 3.1, 3.2 and 3.9, we obtain the following variant of
Pietsch’s characterization of ϕ-summing multilinear operators.

Theorem 3.11. Let ϕ be a normalized Orlicz function which is 1-supermultiplicative
at ∞. The following statements are equivalent for a multilinear operator
T : X1 × · · · ×Xn → Y .

(i) T is ϕ-summing with πϕ(T ) ≤ C;
(ii) T is ϕ semi-integral with πsi,ϕ(T ) ≤ C;

(iii) For every (equivalently, for some) isometric embeddings Jj : Xj →
C(Kj) for each 1 ≤ j ≤ n there exist a Borel probability measure
µ on the product K1 × · · · ×Kn of compact Hausdorff spaces and a
constant C > 0 such that, for all (x1, . . . , xn) ∈ X1 × · · · ×Xn ,

‖T (x1, . . . , xn)‖Y ≤ C‖ � (J1(x1), . . . , Jn(xn))‖Lϕ(µ) .

We conclude this section with a result related to strongly ϕ-summing
multilinear operators. The next definition is motivated by Dimant’s paper
[11], where the concept of strongly p-summing multilinear operator was
introduced.

Let X1, . . . , Xn, Y be Banach spaces. Following the definition that was
given in [11] for the case of `p-spaces, we say that an n-linear operator
T : X1 × · · · × Xn → Y is strongly ϕ-summing if there exists a constant
C > 0 such that∥∥{‖T (x1

j , . . . , x
n
j )‖Y

}m
j=1

∥∥
`mϕ (µ)

≤ C sup
φ∈BL(X1,...,Xn)

∥∥{‖φ(x1
j , . . . , x

n
j )‖
}m
j=1

∥∥
`mϕ (µ)

for every m-dimensional Orlicz space `mϕ (µ) with a probability measure µ on

[m] and all xij ∈ Xi for each 1 ≤ i ≤ n and 1 ≤ j ≤ m. The least constant
satisfying the above requirements is denoted by πS,ϕ(T ).
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A multilinear operator T : X1×· · ·×Xn → Y is said to be strongly ϕ semi-
integral if there exists a constant C > 0 such that for every (x1, . . . , xn) ∈
X1×· · ·×Xn, there is a Borel probability measure µ on BL(X1,...,Xn) endowed
with the weak∗ topology such that

‖T (x1, . . . , xn)‖Y ≤ C‖φ(x1, . . . , xn)‖Lϕ(µ) .

We can state the following Domination Theorem for strongly ϕ-summing
multilinear operators. The proof is similar to the proofs of Theorems 3.1
and 3.9, and so we skip it.

Theorem 3.12. Let ϕ be a normalized Orlicz function. Suppose that T : X1×
· · · × Xn → Y is a strongly ϕ-summing multilinear operator. Then T
is strongly ϕ semi-integral, that is, there exists a regular Borel probabil-
ity measure µ on BL(X1,...,Xn) equipped with the weak∗ topology so that for
every (x1, . . . , xn) ∈ X1 × · · · ×Xn,

‖T (x1, . . . , xn)‖Y ≤ CπS,ϕ(T )‖φ(x1, . . . , xn)‖Lϕ(µ) .

Moreover, the converse also holds if ϕ is supermultiplicative at ∞.

4. ϕ-dominated multilinear operators

In this section we introduce a new class of operators that are directly
related to the ones presented in the previous section, in order to analyze
suitable factorization schemes for these classes. For a given Orlicz func-
tion ϕ, a multilinear operator T : X1 × · · · × Xn → Y is said to be ϕ-
dominated if there is a constant C and Borel probability measures µj on
BX∗j

endowed with the weak∗ topology for each 1 ≤ j ≤ n such that for all
x1 ∈ X1, . . . , xn ∈ Xn, we have

‖T (x1, . . . , xn)‖Y ≤ C‖〈x1, ·〉‖Lϕ(µ1) · · · ‖〈xn, ·〉‖Lϕ(µn) .

We write Ldϕ(X1, . . . , Xn, Y ) for the space of all ϕ-dominated multilinear

operators from X1 × · · · × Xn into Y , and we denote by πdϕ(T ) the least
constant C satisfying the above requirements. We note that in the case
when ϕ(t) = tp for all t ≥ 0 with 1 ≤ p < ∞, we recover the existing
notions: p-dominated linear operators (see [10, p. 188]) and p-dominated
multilinear mappings (see [17, 18]).

Similarly to what happens in the case of p-dominated operators, ϕ-dominated
multilinear maps admit factorization.

Theorem 4.1. Let T : X1 × · · · ×Xn → Y be a multilinear map. Then the
following statements are equivalent.

(i) T is ϕ-dominated ;
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(ii) T admits a factorization :

X1 × · · · ×Xn

i1×···×in
��

T // Y

S1 × · · · × Sn

T̂

55

where T̂ is a multilinear operator, S1, . . . , Sn are the subspaces of
C(BX∗j

) for each 1 ≤ j ≤ n defined by the functions {〈xj, ·〉; xj ∈
Xj} with the Orlicz norms ‖ · ‖Lϕ(µj) and ij are the maps Xj 3 xj 7→
〈xj, ·〉;

(iii) T admits a factorization:

X1 × · · · ×Xn

u1×···×un
��

T // Y

E1 × · · · × En

T̂

55

where E1, . . . , En are Banach spaces and u1, . . . , un are ϕ semi-
integral linear operators.

Proof. Let us prove (i) ⇒ (ii). Suppose that T is ϕ-dominated. Then, for
each 1 ≤ j ≤ n there exists a Borel probability measure µj on BX∗j

endowed

with the weak∗ topology, such that for all (x1, . . . , xn) ∈ X1 × · · ·Xn,

‖T (x1, . . . , xn)‖Y ≤ C‖〈x1, ·〉‖Lϕ(µ1) · · · ‖〈xn, ·〉‖Lϕ(µn) .

We point out that the “inclusion” maps i1, . . . , in are not injective in general.
However, it is still possible to define a multilinear operator that closes the
commutative diagram.

For each 1 ≤ j ≤ n, we consider the subspace of Xj defined by

Nj := {xj ∈ Xj; ‖〈xj, ·〉‖Lϕ(µj) = 0} .

Now define the quotient spaces Xj/Nj endowed with the quotient norm
associated to the seminorm Xj 3 xj 7→ ‖〈xj, ·〉‖Lϕ(µj) for each 1 ≤ j ≤ n.
The domination with the product of the seminorms shows that in fact the
value T (x1, . . . , xn) does not depend on the equivalence class of each xj,
that is,

T (x1, . . . , xn) = T (x′1, . . . , x
′
n)

whenever x′j ∈ [xj] for each 1 ≤ j ≤ n. Therefore, we can define the

multilinear mapping T̂ : Lϕ(µ1)× · · · × Lϕ(µn)→ Y by

T̂ (〈x1, ·〉, . . . , 〈x1, ·〉) = T (x1, . . . , xn)
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for all (x1, . . . , xn) ∈ Lϕ(µ1)×· · ·×Lϕ(µn). Now observe that the continuity

of T̂ follows from the inequality shown above for T . Clearly, T = T̂ ◦ (i1 ×
· · · × in) and so T admits the required factorization.

(ii) ⇒ (iii). We only have to take into account that by Lemma 3.7, the
operators ij are ϕ semi-integral.

(iii)⇒ (i). Since u1, . . . , un are ϕ semi-integral, a direct calculation using
the factorization yields that T is ϕ-dominated. �

In what follows we will present general examples of ϕ-dominated oper-
ators. We need a minor definition. For any finite m-dimensional Banach
lattice E on [m] we define an associate lattice space E ′ equipped with the
dual norm

‖{ξj}‖E′ := sup

{∣∣∣ m∑
j=1

ξjηj

∣∣∣; ‖{ηj}‖E ≤ 1

}
.

Clearly, by reflexivity we have (E ′)′ = E with equality of norms.

Lemma 4.2. Let 1 ≤ p <∞ and let ϕ be an Orlicz function. Define φ by
φ(t) = ϕ(t1/p) for all t ≥ 0, and suppose that φ is also an Orlicz function.
Then every p-summing operator T : X → Y between Banach spaces is also
ϕ-summing with πϕ(T ) ≤ πp(T ), and so is ϕ semi-integral.

Proof. For a given C > πp(T ), by Pietsch’s domination theorem there exists
a Borel probability measure µ on BX∗ endowed with the weak∗ topology so
that

‖Tx‖Y ≤ C
(∫

BX∗

|〈x, x∗〉|p dµ
)1/p

, x ∈ X .
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Then, for every m-dimensional Orlicz space `mϕ (ν) with a probability mea-

sure ν on [m] and all xij ∈ Xi for each 1 ≤ i ≤ n, 1 ≤ j ≤ m, we have∥∥{‖Txj‖Y }∥∥`mϕ (µ)
≤ C

∥∥∥{(∫
BX∗

|〈xj, x∗〉|p dµ
)1/p}∥∥∥

`mϕ (ν)

= C
∥∥∥{∫

BX∗

|〈xj, x∗〉|p dµ
}∥∥∥1/p

`mφ (ν)

= C

(
sup

‖{ηj}‖`m
φ

(µ)′≤1

∣∣∣ m∑
j=1

ηj

∫
BX∗

|〈x, x∗〉|p dµ
∣∣∣)1/p

≤ C sup
x∗∈BX∗

(
sup

‖{ηj}‖`m
φ

(µ)′≤1

m∑
j=1

|ηj||〈xj, x∗〉|p
)1/p

= C sup
x∗∈BX∗

∥∥{|〈xj, x∗〉|p}∥∥1/p

`mφ (ν)

= C sup
x∗∈BX∗

∥∥{〈xj, x∗〉}∥∥`mϕ (ν)
.

Since C > πp(T ) is arbitrary, T is ϕ-summing with πϕ(T ) ≤ πp(T ). This,
together with Theorem 3.2, completes the proof. �

In order to provide some examples of the classes we have just introduced,
let us recall a well-known definition. Following Pisier [22], we say that a Ba-
nach space X is a GT space, or that X satisfies Grothendieck’s Theorem,
if there exists a constant K > 0 such that every operator u : X → `2 is
1-summing and satisfies π1(u) ≤ K‖u‖. We denote the least such constant
K by GT(X). By Grothendieck’s Theorem, L1 spaces are GT spaces. It is
well known that the quotient L1(T)/H1(T) and L1/R are GT spaces, where
H1(T) is the Hardy space and R is any reflexive subspace of an L1-space
(see [22]).

We note that it follows from Lemma 4.2 that every 1-summing operator
u : X → Y between Banach spaces is ϕ-summing for any Orlicz function ϕ,
with πϕ(u) ≤ π1(u). In particular, this implies that for any GT space X,
every operator u : X → `2 is ϕ-summing with πϕ(u) ≤ GT (X)‖u‖X→`2 .

The following corollary can yield some concrete examples of ϕ-dominated
multilinear operators. The proof follows from Theorem 4.1 combined with
Lemma 4.2.

Corollary 4.3. Let ϕ be an Orlicz function and let 1 ≤ p < ∞. Suppose
that the function φ given by φ(t) = ϕ(t1/p) for all t ≥ 0 is equivalent to an
Orlicz function. Assume that uj : Xj → Yj is a p-summing operator between
Banach spaces for each 1 ≤ j ≤ n. Then, for every multilinear operator
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S : Y1 × · · · × Yn → Z, T = S ◦ (u1, . . . , un) is a ϕ-dominated multilinear
operator.

Now we introduce a useful definition. Let K1, . . . , Kn be compact Haus-
dorff topological spaces, and let µ1, . . . , µn be a set of regular Borel measures
on them, respectively. Let µ be a regular Borel measure on the compact
space K1 × · · · ×Kn. We say that µ is Riesz representable via µ1, . . . , µn if
for every function f ∈ C(K1 × · · · ×Kn), we have that∫

K1×···×Kn
f dµ =

∫
Kn

(
· · ·
(∫

K1

f dµ1

)
· · ·
)
dµn .

We will need the following observation. For the sake of completeness we
include a proof.

Proposition 4.4. Let G1, . . . , Gn be compact topological groups. Then the
normalized Haar measure on G1×· · ·×Gn is Riesz representable via the nor-
malized Haar measures µ1, . . . , µn on each group G1, . . . , Gn, respectively.

Proof. Observe that the positive linear functional F on C(G1 × · · · × Gn)
given by an iterated integral:

F (f) :=

∫
Gn

(
· · ·
(∫

G1

f dµ1

)
· · ·
)
dµn, f ∈ C(G1 × · · · ×Gn)

has norm 1. Thus, it follows from the Riesz representation theorem that
there is a regular Borel probability measure µ on G1 × · · · ×Gn such that,
for all f ∈ C(G1 × · · · ×Gn), we have∫

G1×···×Gn
f dµ =

∫
Gn

(
· · ·
(∫

G1

f dµ1

)
· · ·
)
dµn .

Clearly, F is a translation invariant functional and so µ is the (unique)
normalized Haar measure on G1×· · ·×Gn having the required property. �

Proposition 4.5. Let T : X1×· · ·×Xn → Y be a ϕ semi-integral multilinear
operator, where ϕ is a submultiplicative Orlicz function. Fix C > 0 such that
ϕ(st) ≤ Cϕ(s)ϕ(t) for all s, t > 0. Suppose that the domination is given
by a Riesz representable measure. Then T is ϕ-dominated with πdϕ(T ) ≤
2Cπϕ(T ).

Proof. By hypothesis there exists a Borel probability measure µ ∈M(BX∗1
×

· · · ×BX∗n) such that for all (x1, . . . , xn) ∈ X1 × · · · ×Xn,

‖T (x1, . . . , xn)‖Y ≤ 2πϕ(T )‖〈x1, ·〉 · · · 〈xn, ·〉‖Lϕ(µ) .

For each 1 ≤ j ≤ n, we take xj ∈ Xj such that ‖〈xj, ·〉‖Lϕ(µj) ≤ 1. Then we
have ∫

BX∗
j

ϕ(|〈xj, ·〉|) dµj ≤ 1, 1 ≤ j ≤ n ,
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and so by the fact that ϕ is a submultiplicative function, it follows that∫
BX∗1

×···×BX∗n

ϕ(| � (〈x1, ·〉, . . . , 〈xn, ·〉)|) dµ

=

∫
BX∗n

· · ·
∫
BX∗1

ϕ(|〈x1, ·〉| · · · |〈xn, ·〉|) dµ1 . . . dµn

≤ C

n∏
j=1

∫
BX∗

j

ϕ(|〈xj, ·〉|) dµj ≤ C ,

where µ1, . . . , µn are the measures that represent µ.
Since C ≥ 1, it follows by convexity of ϕ that∫

BX∗1
×···×BX∗n

ϕ(| � (〈x1, ·〉, . . . , 〈xn, ·〉)|/C) dµ ≤ 1 ,

so

‖〈x1, ·〉 · · · 〈xn, ·〉‖Lϕ(µ) ≤ C .

Combining the inequalities above yields that for all xj ∈ Xj with ‖〈xj, ·〉‖Lϕ(µj) >
0, ∥∥∥T( x1

‖〈x1, ·〉‖Lϕ(µ1)

, . . . ,
xn

‖〈xn, ·〉‖Lϕ(µn)

)∥∥∥
Y
≤ 2Cπϕ(T ) .

This completes the proof. �

5. The Haar measure for ϕ semi-integral multilinear
operators

We start this section with the remark that in general little can be said
about the measures which appear in the domination theorem for ϕ-summing
multilinear operators (Theorem 3.1). The reason is that, as in the case of
the Pietsch’s measures that appear in Pietsch’s domination theorem for
p-absolutely summing operators, the measure comes into the proof from
abstract existence results: a combination of the Hahn–Banach theorem with
the Riesz representation theorem for the dual of C(K)-spaces.

The aim of this section is to study some classes of ϕ semi-integral oper-
ators on products of a special type of subspaces of C(K)-spaces, and the
Pietsch’s measures that appear in the Domination Theorem for these opera-
tors. As a by-product of some general results, we obtain that for translation
invariant ϕ semi-summing multilinear operators defined on a finite product
of C(G)-spaces on compact topological groups, the normalized Haar mea-
sure is a Pietsch’s measure.

We recall that a compact topological group G = (G, ·) is said to act as
a group of homeomorphisms of a compact topological space K if to every
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g ∈ G corresponds a homeomorphism ig : K → K such that

ig·h = ig ◦ ih, g ∈ G, h ∈ G ,

and also the mapping (g, k) 7→ ig(k) of (G,K) into K is continuous. For
a function f ∈ C(K) and g ∈ G, we define a map Ig : C(K) → C(K) by
Igf = f ◦ ig for all f ∈ C(K). A closed subspace X of C(K) is said to be
invariant if, for all g ∈ G, we have Ig(X) ⊂ X.

Before we state and prove the main result, we fix some notation to sim-
plify the presentation. Let G1, . . . , Gn be topological compact groups and
let K1, . . . , Kn be compact spaces. Suppose that Gj acts as a group of home-
omorphisms of Kj for each 1 ≤ j ≤ n. For all gj ∈ Gj and each 1 ≤ j ≤ n,
we denote by igj all corresponding homeomorphisms on the compact space
Kj and all the maps Ijgj : C(Kj)→ C(Kj).

Clearly, the compact group G := G1×· · ·×Gn acts as a group of homeo-
morphisms on the compact space K := K1 × · · · ×Kn. To see this, observe
that for every g = (g1, . . . , gn) ∈ G, the map i×g : K → K given by

i×g (k1, . . . , kn) := (ig1(k1), . . . , ign(kn)), (k1, . . . , kn) ∈ K1 × · · · ×Kn

is a homeomorphism. Observe that i×g·h = i×g ◦ i×h for all g ∈ G, h ∈ G and

also the mapping (g, k) 7→ i×g (k) of G×K into K is continuous.
In what follows, we assume that Fj ⊂ C(Kj) is a closed invariant subspace

with respect to Ijgj for all gj ∈ Gj and for each 1 ≤ j ≤ n. In this setting,
a multilinear operator T from F1×· · ·×Fn into a Banach space X is called
translation invariant if, for all (g1, . . . , gn) ∈ G1 × · · · × Gn and for all
(f1, . . . , fn) ∈ F1 × · · · × Fn, we have∥∥T (I1

g1
(f1), . . . , Ingn(fn))

∥∥
Y

= ‖T (f1, . . . , fn)‖X .

Using this notation and assuming these requirements on the subspaces Fi
we are ready to state the following theorem.

Theorem 5.1. Suppose that T : F1×· · ·×Fn → X is a translation invariant
ϕ-summing multilinear operator, where ϕ is a normalized Orlicz function.
Then there exists a regular Borel probability measure µ on K1 × · · · × Kn

such that, for all (f1, . . . , fn) ∈ F1 × · · · × Fn,

‖T (f1, . . . , fn)‖X ≤ πϕ(T ) ‖ � (f1, . . . , fn)‖Lϕ(µ) ,

and (i×g )µ = µ for all g ∈ G1 × · · · ×Gn, where (i×g )µ is the image measure
of µ via i×g .

Proof. Without loss of generality we may assume that πϕ(T ) = 1. By The-
orem 3.1, there exists a regular Borel probability measure ν on K := K1 ×
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· · ·×Kn such that for all (f1, . . . , fn) ∈ F1×· · ·×Fn with ‖T (f1, . . . , fn)‖X 6=
0, we have

1 ≤
∫
K

ϕ

(
|(f1 · · · fn)(k)|
‖T (f1, . . . , fn)‖X

)
dν .

Let G := G1×· · ·×Gn and let φ : G×K → K be the continuous map given
by

φ(g, k) := i×g (k), (g, k) ∈ G×K .

Since the operator T and the spaces F1, . . . , Fn are translation invariant, for
all g = (g1, . . . , gn) ∈ G and all (f1, . . . , fn) ∈ F1 × · · · × Fn, we have

1 ≤
∫
K

ϕ

(
|f1 ◦ ig1(k1) · · · fn ◦ ign(kn)|
‖T (f1 ◦ ig1 , . . . , fn ◦ ign)‖X

)
dν =

∫
K

ϕ

(
|(f1 · · · fn) ◦ φ(g, k)|
‖T (f1, . . . , fn)‖X

)
dν .

Clearly, the non-negative function G × K 3 (g, k) 7→ ϕ
(
|(f1··· fn)◦φ(g,k)|
‖T (f1,...,fn)‖X

)
is continuous. Thus, it follows from Fubini’s Theorem that G 3 g 7→∫
K
ϕ
(
|(f1···fn)◦φ(g,k)|
‖T (f1,...,fn)‖X

)
dν is Borel measurable and∫

G

(∫
K

ϕ

(
|(f1 · · · fn) ◦ φ(g, k)|
‖T (f1, . . . , fn)‖X

)
dν

)
dm =

∫
G×K

ϕ

(
|(f1 · · · fn) ◦ φ|
‖T (f1, . . . , fn)‖X

)
d(m× ν) ,

where m is the normalized Haar measure on G. Combining with the above
inequality yields

1 ≤
∫
G×K

ϕ

(
|(f1 · · · fn) ◦ φ|
‖T (f1, . . . , fn)‖X

)
d(m× ν) .

Now we use the image measure φ(m× ν) on Borel sets of K1 × · · · ×Kn to
get that

1 ≤
∫
K1×···×Kn

ϕ

(
| � (f1, . . . , fn)|
‖T (f1, . . . , fn)‖X

)
dφ(m× ν) ,

where φ(m × ν)(A) := (m × ν)(φ−1(A)) for all A in the product of Borel
σ-algebras in G and K. For these A, we have φ−1(A)g = (i×g )−1(A) for all
g ∈ G. Combining with the formula for the product measure m× ν, we get

φ(m× ν)(A) =

∫
G

ν
(
φ−1(A)g

)
dm(g) =

∫
G

(i×g )ν(A) dm(g) .

Since m is the normalized Haar measure on G and the homeomorphisms i×s
satisfy i×s ◦ i×t = i×st for all s, t ∈ G, it follows that the measure µ that is
defined for any Borel set A in K1 × · · · ×Kn by

µ(A) =

∫
G

(i×g )ν(A) dm(g) ,
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satisfies (i×s )µ = µ for all s ∈ G. To summarize, we conclude that

1 ≤
∫
K1×···×Kn

ϕ

(
| � (f1, . . . , fn)|
‖T (f1, . . . , fn)‖X

)
dµ .

This implies

‖T (f1, . . . , fn)‖Y ≤ ‖ � (f1, . . . , fn)‖Lϕ(µ)

and so the desired statement follows. �

As an application, we obtain the following multilinear version of Pietsch’s
domination theorem.

Corollary 5.2. Let X be a Banach space, G1, . . . , Gn compact topological
groups and F1, . . . , Fn closed translation invariant subspaces of C(G1), . . . , C(Gn),
respectively. Suppose that T : F1 × · · · × Fn → X is a translation invariant
ϕ-summing multilinear operator generated by the normalized Orlicz function
ϕ. Then the normalized Haar measure µ on G1 × · · · × Gn is a Pietsch’s
measure for T , i.e., for every (f1, . . . , fn) ∈ F1 × · · · × Fn,

‖T (f1, . . . , fn)‖X ≤ πϕ(T ) ‖ � (f1, . . . , fn)‖Lϕ(µ) .

Proof. For each 1 ≤ j ≤ n and every gj ∈ Gj, we define the homeomorphism
igj on Gj, by igj(h) = gjh for all h ∈ Gj. Clearly, the map (gj, hj) 7→ igjhj is
continuous from Gj×Gj to Gj for each 1 ≤ j ≤ n. From the definition of the
topological group G1 × · · · ×Gn, for all g = (g1, . . . , gn), h = (h1, . . . , hn) ∈
G1 × · · · ×Gn), we have

gh := (g1h1, . . . , gnhn) = (ig1(h1), . . . , ign(hn)) = i×g (h) .

Observe that i×g·h = i×g ◦ i×h for all g ∈ G and h ∈ G. This shows that
a compact group G := G1 × · · · × Gn acts as a group of homeomorphisms
on G. By Theorem 5.1, there is a probability Borel measure µ on G, which
satisfies the required estimate, and such that

(i×g )µ = µ for all g ∈ G .

This equality ensures that µ is the normalized Haar measure. �

In the spirit of this section, we finish with the following factorization
result.

Theorem 5.3. Let G1, . . . , Gn be compact topological groups and let ϕ be
a submultiplicative Orlicz function. Consider a translation invariant ϕ-
summing multilinear operator

T : F1 × · · ·Fn → X ,
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where F1 ⊂ C(G1), . . . , Fn ⊂ C(Gn) are closed invariant subspaces. Then
T admits the following factorization:

F1 × · · · × Fn
i1×···×in

��

T // X,

(F1)Lϕ(µ1) × · · · × (Fn)Lϕ(µn)

T̂

44

where T̂ is multilinear, µ1, . . . , µn are the Haar measures on G1, . . . , Gn

and i1, . . . , in the inclusions into the spaces (F1)Lϕ(µ1), . . . , (Fn)Lϕ(µn) de-
fined by the functions in F1, . . . , Fn with the Orlicz norms ‖ · ‖Lϕ(µ1), . . . ,
‖ · ‖Lϕ(µn), respectively.

Proof. If T : F1 × · · · × Fn → X is ϕ-summing, we have by Theorem 3.1
and Proposition 4.5 that it is ϕ semi-integral. This implies that there is
a domination as

‖T (f1, . . . , fn)‖ ≤ K

∫
G1×···×Gn

ϕ(� (f1, . . . , fn)) dν

for a certain regular Borel probability measure ν. By Corollary 5.2, it
follows that the Haar measure µ is a Pietsch’s measure, and it is also Riesz
representable (see Proposition 4.4). Thus, we have a domination with the
same integral, however with µ instead of ν. Taking into account also that
ϕ is submultiplicative and µ is Riesz representable, we deduce that T is
ϕ-dominated for the Haar measures µ1, . . . , µn on G1, . . . , Gn, respectively,
that represent µ (Lemma 4.5). Finally, Theorem 4.1 yields the required
factorization. �

Motivated by the applications of the class of multiple summing operators
(see [4, 9, 20]), we will explain in this section that our arguments allow us
to prove that some abstract classes of semi-integral operators are multiple
summing in a more general setting. Before stating the results, we recall some
geometrical notions from the theory of Banach lattices. A Banach lattice
X is said to be p-convex, 1 ≤ p <∞, respectively q-concave, 1 ≤ q <∞, if
there are positive constants C(p) and C(q) such that∥∥∥( n∑

j=1

|xj|p
)1/p ∥∥∥

X
≤ C(p)

( n∑
j=1

‖xj‖pX
)1/p

,

respectively, ( n∑
j=1

‖xj‖qX
)1/q

≤ C(q)

∥∥∥( n∑
j=1

|xj|q
)1/q∥∥∥

X
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for every finite sequence (xj)
n
j=1 inX. The least such C(p) (respectively, C(q))

is denoted by M (p)(X) (respectively, M(q)(X)). It is well-known that a p-
convex Banach (q-concave) lattice can always be renormed with a lattice
norm in such a way that M (p)(X) = 1 (M(q)(X) = 1). We refer to [15,
Ch. 1.d] for more information about the classical geometric concepts of p-
convexity and q-concavity.

We will use a remarkable result due to Schep [27, Theorem 2.3], which
states the following: Let E and F be Banach lattices in L0(ν) and L0(µ),
respectively. Assume that E and F have the Fatou property and that there
exists 1 ≤ p ≤ ∞ such that E is p-convex and F is p-concave. Then the
following continuous inclusion holds:

[E]F ↪→ E[F ] ,

with norm less than or equal to C depending on M (p)(E) and M(p)(F ).

The proof of the following theorem is an immediate consequence of Schep’s
result, and so it is omitted.

Theorem 5.4. Let 1 < p <∞ and let T : X1 × · · · ×Xn → Y be an F (µ)
semi-integral multilinear operator for a p-concave Banach lattice F (µ) with
µ ∈ M(BX∗1

× · · · × BX∗n), and let (Ωj,Σj, νj) be a σ-finite measure space
for each 1 ≤ j ≤ n. Suppose that a Banach lattice E in L0(Ω1 × · · · ×
Ωn, ν1× · · · × νn) has the Fatou property and is p-convex. Then there exists
a constant C > 0 depending on M (p)(E) and M(p)(F ) such that the following
estimates holds,∥∥‖T (f1(·), . . . , fn(·))‖Y

∥∥
E
≤ C sup

(x∗1,...,x
∗
n)∈BX∗1×···×BX∗n

∥∥〈f1(·), x∗1〉 · · · 〈fn(·), x∗n〉
∥∥
E
,

for all (f1, . . . , fn) ∈ L0(ν1, X1)×· · ·×L0(νn, Xn) such that the value of the
expression in the right hand side of the inequality is finite.

As was mentioned, multiple p-summing multilinear mappings are inten-
sively investigated because of interesting applications. We provide a more
general definition, however, before we need to introduce some notation. Let
E be a Banach sequence lattice modelled on N and let X be a Banach space.
We denote by Ew(X) the Banach space of all sequences {xj}∞j=1 in X such
that

‖x‖Ew(X) := sup
x∗∈BX∗

‖{〈xj, x∗〉}‖E <∞ .

Let E1, . . . , En be Banach sequence lattices modelled on N and E a Banach
sequence lattice modelled on Nn. A multilinear operator T : X1×· · ·×Xn →
Y is said to be multiple (E;E1, . . . , En)-summing if there exists a constant
Cn > 0 such that∥∥{T (x1

j1
, . . . , xnjn)

}∞
j1,...,jn=1

∥∥
E
≤ Cn

∥∥{x1
j}
∥∥
Ew1 (X1)

· · ·
∥∥{xnj }∥∥Ewn (Xn)
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for every sequence {xij}∞j=1 in Ew
i (Xi) with 1 ≤ i ≤ n. The least constant

Cn satisfying the above estimates is a norm on the space of all multiple
summing operators from X1 × · · · ×Xn to Y and is denoted by πE;E1,...,En .
If 1 ≤ p1, . . . , pn ≤ q < ∞ and Ej = `pj for each 1 ≤ j ≤ n, then T
is called multiple (q; p1, . . . , pn)-summing. Let us mention that the notion
of multiple (q; p1, . . . , pn)-summing mapping was introduced in [16], under
the name of “strictly absolutely summing multilinear mappings”. We refer
to the survey paper [7] and the references therein related to applications
of (E;F )-summing operators in the study of eigenvalues, s-numbers and
interpolation of linear operators.

Using the techniques provided in the paper, we finish with the following
result, which is a consequence of Theorem 5.4.

Corollary 5.5. Let 1 < p <∞ and let T : X1 × · · · ×Xn → Y be an F (µ)
semi-integral multilinear operator for some p-concave Banach lattice F (µ)
with µ ∈M(BX∗1

× · · · ×BX∗n). Suppose that the Banach sequence lattice E
is modelled on Nn, has the Fatou property and is p-convex. If the Banach
sequence lattices E1, . . . , En are such that the multilinear multiplication op-
erator � : E1×· · ·×En → E is bounded, then T is (E;E1, . . . , En) multiple
summing with

πE;E1,...,En(T ) ≤ C‖ � ‖ ,
where C > 0 is a constant depending on M (p)(E) and M(p)(E).
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Basel, 1995), 299–308.

Faculty of Mathematics and Computer Science, Adam Mickiewicz Uni-
versity, Poznań, Poland
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