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Abstract 

Google Trends (GT) allows users to obtain reports on the evolution of the 

popularity of searches made through the Google Search engine. Its main 

output is the Search Volume Index (SVI), a relative measure of the popularity 

of a term, which is computed using a sample of the searches. Due to the 

sampling error, the reports are not completely consistent, as the same query 

produces different time series that can widely change from day to day. This 

paper simulates the process of generating the SVI time series in the same way 

as GT does. By doing this, it has been shown that the sampling error could be 

an important issue if the popularity of the term under study is relatively low. 

Averaging multiple extractions from GT can only partially alleviate this.  
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1. Introduction 

Google Trends (GT) is a freely available tool developed by Google that allows users to obtain 

reports of the evolution of the popularity of searchers made through the Google Search 

engine. In the last decade, GT has become popular in the scientific literature because its 

reports can be used to measure the population’s interest on any topic. Moreover, this data can 

be easily accessed and is constantly updated. 

The main output of GT reports are time series data representing the Search Volume Index 

(SVI), a relative measure of the popularity of a term. To compute the SVI, Google does not 

consider the whole set of searches they received in a given time period, but a sample with 

unknown characteristics. Due to the sampling error, the reports are not completely consistent, 

as the same query can produce different time series which change from day to day (Choi and 

Varian, 2012).The importance of these inconsistencies is often minimized (Choi and Varian, 

2012; Dilmaghani, 2019) although Cebrián and Domenech (2022) report that variations in 

GT data may be significant enough to hinder the interpretability and reproducibility of the 

models estimated with them. 

To understand the inconsistencies of GT data, this paper proposes a simulation model of the 

GT data generating process. This model is then used to analyze how a typical time series with 

seasonality is distorted due to the sampling process and how the averaging of extractions can 

mitigate the error, but only partially. 

2. Related Work 

The inconsistencies of GT time series have long been described, although most researchers 

do not consider them relevant enough to affect their results (Choi and Varian, 2012; Preis et 

al., 2013). Other research works identify these inconsistencies as an important source of error 

and average multiple GT requests of the same time series on different days, or using some 

tricks to force a new sample. This way, the time series are smoothed, thus reducing the 

sampling error. 

However, the number of extractions which are averaged widely vary across the literature. On 

the one hand, D’Amuri and Marcucci (2017) take 24 different extractions for the search term 

“jobs” and report cross-correlations of at least 0.99 between extractions. On the other hand, 

Cebrián and Domenech (2022) extract queries related to Austrian cities on 6 different 

occasions and find correlations between 0.79 and 0.94, while Carrière-Swallow and Labbé 

(2013) use the average standard deviation to measure the sampling error and report values 

above 15% for the term “Chevrolet” after 50 extractions.  

To the best of our knowledge, there is no method for determining how many extractions 

should be averaged to alleviate the sampling error, or which factors may affect it. To 
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understand the intricacies of how the SVIs are produced and the effects of averaging multiple 

extractions of the same GT time series, this paper proposes a simulation model to generate 

the SVIs (and its sampling error) in the same way as Google Trends does. 

3. Google Trends sampling 

The process to compute SVIs is illustrated in Figure 1. It starts with the whole set of searches 

that Google has received from 2004. From this set (Total Searches), GT draws a random 

sample that is replaced over time. This introduces an unknown sampling error because the 

parameters of this sampling, such as the coverage or how often the sample is replaced, are 

not disclosed by Google. When a user requests the GT report for a given term and time period, 

the sample is filtered to keep only those rows matching the request so that frequencies by 

time period can be computed (Raw Popularity). Finally, the time series are normalized by 

setting the SVI in the period with highest frequency to 100 and scaling the frequencies in 

other periods proportionally (and rounding them to integers). 

The sampling error introduced in GT reports is also illustrated in Figure 1. In the example 

provided, the term a is reported with an SVI of (0, 100, 33), but if it were computed with the 

Total Searches set, the result should have been (67, 100, 67). 

4. Simulation and Results 

This section provides some simulations of the GT process described in Section 3 to check 

how the SVI time series change depending on the popularity of the search term and what the 

effect of averaging multiple extractions is. 

For illustrative reasons, it has been assumed that the total number of searches of the term y 

follows a function with linear trend and a seasonal component, modeled with a sinusoidal 

function with a period of 12 time units, as defined in Equation 1. 

 𝑌𝑡 = 𝛽1𝑡 + 𝛽2 sin (
2𝜋

12
𝑡)      (1) 

where Yt is the number of searches of the term y at time t, β1 is the parameter defining the 

strength of the linear trend, and β2 defines the strength of the seasonal component.  

For each time period t, the presence of the term y in the sample (yt) follows a binomial 

distribution with parameters n equals the sample size, and p equals the proportion of searches 

of term y among all the searches received by Google at that time period.  

Therefore, the expected number of occurrences in the sample of term y at time t is:  

 𝐸[𝑌𝑡] = 𝑛 ∗ 𝑝𝑡  (2) 
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Figure 1: Process GT follows to compute an SVI time series. It is illustrated with an example with 

three time periods (t1, t2 and t3) and two terms (a and b). Only the GT report for term a is 

requested. 

Notice that pt varies in time, being this variation the change in popularity of the term. 

Since n and pt are unknown (as they are not disclosed by Google), we have studied the SVIs 

of two terms with different popularity. Term H has an average frequency in the sample of 

200 times, while term L is less popular and has an average frequency in the sample of 20 

times through all the considered periods. Simulations are conducted considering GT requests 

for 60 periods. The random process of generating the SVI for each term has been repeated 

20 times, each one representing one extraction from GT. 

Figure 2 shows the simulation results of 1 (left), 10 (center), and 20 (right) SVI extractions. 

Light blue lines represent each individual extraction, while dark blue lines illustrate the 
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average of all the extractions in each plot. Plots in the top row refer to the most popular term 

(H), while plots in the lower row refer to the less popular term (L). Each plot includes the 

Pearson’s correlation coefficient (r) of the time series in dark blue with the actual popularity 

of the term (defined by Equation 1). 

Plots in the left part of Figure 2 evidence that a single extraction has significant noise. This 

noise, which is introduced by the sampling process, can be alleviated by averaging multiple 

extractions. After averaging 10 extractions, the curve for the term with high popularity (H) 

is smoother, as evidenced by the r = 0.997 value as well. However, the less popular term (L) 

requires more extractions to obtain a good approximation to the actual trend. Indeed, after 

averaging 20 extractions of the less popular term, the correlation coefficient r is still below 

the one of 10 extractions of the high popular term. 

These simulation results highlight the relationship between the sharpness of the SVI and the 

absolute popularity of the term and, therefore, the need for averaging more GT extractions 

when studying less popular terms. However, as one can observe in Figure 2, there is a side 

effect related to the construction of a time series as the average of a number of extractions: 

the range of the SVI is reduced. In the case of the less popular term (L), the SVI takes values 

from 18 to 100 in a single extraction (bottom-left plot). When the average of 20 extractions 

is considered, SVI ranges from 27.1 to 81.3 (bottom-right plot). This implies that the value 

of a single extraction (for instance, when using GT for nowcasting purposes) cannot be 

directly compared to the series obtained after averaging multiple extractions. 

5. Conclusions 

Although Google Trends has become a very popular data source among researchers, its 

sampling error has not been intensively studied. This paper has replicated the process of 

generating the SVI time series in the same way as GT does. By doing this, it has been shown 

that the sampling error could be an important issue if the popularity of the term under study 

is relatively low, as the quantity of noise it introduces in the series is noticeable. 

The technique of extracting GT data multiple times and using the average of the series has 

also been studied. Our results showed that it certainly alleviates some of the variability 

introduced in the random sampling, but the number of repetitions needed to smooth the curve 

heavily depends on the absolute popularity of the term. Moreover, this procedure changes the 

range and scale of the SVI time series, thus increasing the complexity of using GT data for 

nowcasting and forecasting, as additional transformations should be considered. 
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