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Abstract. Regions at high elevations may require specific mapping solutions other than the 10 

conventional ellipsoid-to-grid projections which produce high discrepancies between ground and 11 

projected distances. These particular solutions are known as low-distortion projections (LDPs). 12 

They can be realized by making use of an Elevated Ellipsoid (EE) or a Constant-height Surface 13 

(ChS) above the ellipsoid as the reference surface, or by means of a scaled projection. No 14 

conformal projections have been derived so far for the ChS-to-plane transformation. This article 15 

aims to solve this situation by deriving the formulation of Direct and Transverse Mercator-type 16 

projections for ChS-to-plane conformal mapping. 17 

 18 

Author keywords: Map projections; conformality; distortion; Low-distortion projections (LDPs); 19 

constant-height surface. 20 

 21 

Introduction 22 

The design of map projections and the choice of corresponding parameters (e.g. true scale 23 

parallels) are usually made to produce minimum distortions in the reference ellipsoid to plane 24 

transformation for an area of interest. A preliminary computation has to be done before 25 
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projection in order to reduce or project the measurements, which are taken close to the earth 26 

surface, onto the reference ellipsoid. This reduction process can take the form of a simple and 27 

handy ground-to-ellipsoid scale factor. It is normally assumed that the earth surface and the 28 

reference ellipsoid are relatively close to each other so that the requirement of low distortions in 29 

the ellipsoid-to-plane transformation entails low distortions for the complete ground-to-plane 30 

transformation. These distortions can be known and taken into account by the user in each 31 

particular case, but the question is whether a particular projection which is optimal in terms of 32 

ellipsoid-to-plane transformation can be considered optimal for the complete ground-to-plane 33 

transformation or, on the contrary, be significantly improved for this latter purpose. This seems 34 

to be the case of highly elevated regions, for which specific solutions, known as low-distortion 35 

projections (LDPs) have been derived in the past (Billings 2013a, 2013b, Armstrong et al. 2017, 36 

Dennis 2018, 2019). 37 

 38 

The distance between two points reduced to the ellipsoid, which will be subsequently projected 39 

onto the plane, is a clearly defined magnitude that is measured along the geodesic line passing 40 

through both endpoints. Conversely, at a certain height, above or below the ellipsoid, the notion 41 

of horizontal distance becomes ambiguous: horizontal distance may mean the distance 42 

projected onto the local geodetic horizon of the first point, or the horizon of the second point, or 43 

be defined for a sort of average height, or with an alternative definition. This type of ambiguity 44 

can cause some confusion when using LDPs. To overcome this, an elevated ellipsoid (EE) of 45 

semi-axes 46 

𝑎′ = 𝑎 + ℎ0           (1) 47 

𝑏′ = 𝑏 + ℎ0           (2) 48 

can be used, where a and b are the semi-axes of the original reference ellipsoid and ℎ0 is the 49 

desired elevation (Rollins and Meyer 2019). Alternatively, a scale factor can be applied to 50 

semiaxis a while retaining the same eccentricity for the ellipsoid. This approach was already 51 
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used in the three Michigan zones of the State Plane Coordinate System of 1927 (Coast & 52 

Geodetic Survey 1979; Burkholder 1980; Lusch 2005, Dennis 2018). These ideas have been 53 

presented in other many different occasions (e.g. Burkholder 1993, Armstrong et al. 2017, 54 

Rollins and Meyer 2019). However, some may find it difficult to use them: as an example, the 55 

original implementation of the Wisconsin Coordinate Reference System (Wisconsin State 56 

Cartographer’s Office 2015) used an enlarged and elevated ellipsoid but was later replaced by 57 

the approach of changing the projection scale only. This example may indicate that the strategy 58 

of scaling the projection with no change in the reference ellipsoid is preferred at present since it 59 

does not entail any increase of complexity, as with the EE and the Constant-height Surface 60 

(ChS), while having a similar performance. 61 

 62 

By contrast, Rollins and Meyer (2019) sustain that a ChS is a suitable elevated reference 63 

surface for constructing LDPs in places at high elevations, while taking into account that the 64 

LDP design should also consider the total linear distortion and not only height. Field distances 65 

can be reduced to a ChS by using an adaptation of the widely used scale factor formula 66 

(1+h/R)-1 (Stem 1990) as (1+(h−h0)/R)-1 with h the mean ellipsoidal height of the endpoints, ℎ0 67 

the ellipsoidal height of the ChS and R the mean of the radii of curvature in both points for the 68 

particular direction. Being more specific, we will use R as the average of the Euler's radius of 69 

curvature in both endpoints for the corresponding geodetic azimuths, although the result does 70 

not depend strongly on the definition chosen for R.  71 

 72 

A ChS is not an ellipsoid. No mapping from the reference ellipsoid to the grid, whether that 73 

mapping is conformal or not, can be conformal if used to map from a ChS to the grid but only 74 

nearly conformal, as shown in Rollins and Meyer (2019), since the curvatures on the ChS 75 

cannot equal those on the ellipsoid in general. Indeed, this is true not only for ChSs but for all 76 

models other than the reference ellipsoid, including EEs, gravitational equipotential surfaces, 77 
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planes, etc., since the curvatures of these surfaces differ from those of the reference ellipsoid. 78 

As Rollins and Meyer (2019) say, there still could be a conformal direct mapping (ChS → 79 

plane), which has not been presented so far.  80 

 81 

The present paper overcomes this situation by presenting: 82 

• A Direct Mercator-type conformal projection (for use in very low-latitude areas) 83 

• A Transverse Mercator-type conformal projection (for general use except near the poles) 84 

 85 

 86 

Constant-height Surface to grid conformal projections 87 

A ChS is not an ellipsoid (neither the original ellipsoid to a scale different from 1 nor the 88 

elevated ellipsoid referred to before) but a different closed surface that is constructed by 89 

prolonging the normals at every point of the ellipsoid a distance h0. The radii of curvature of the 90 

normal sections in the nouth-south direction and east-west directions are, respectively (Rollins 91 

and Meyer, 2019) 92 

 ′ =  + ℎ0           (3) 93 

′ =  + ℎ0           (4) 94 

where  and  are the principal radii of curvature of the original reference ellipsoid, which are 95 

given, respectively, by 96 

  =
𝑎(1−𝑒2)

(1−𝑒2𝑠𝑖𝑛2𝜑)3/2          (5) 97 

 =
𝑎

√1−𝑒2𝑠𝑖𝑛2𝜑
           (6) 98 

with major semi-axis a, eccentricity e and geodetic latitude of the point . 99 

 100 
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We derive in the following subsections two conformal Mercator-type projections for ChS-to-101 

plane mapping by elaborating on the original ideas that led to the formulae of  102 

Direct and Transverse Mercator-type projections of the reference ellipsoid. 103 

 104 

Direct Mercator-type conformal projection for ChS to plane 105 

The Direct Mercator projection for the transformation (ellipsoid → plane) is obtained by 106 

 𝑥 = 𝑎           (7) 107 

𝑦 = 𝑎            (8) 108 

where a is the major semi-axis of the ellipsoid,  is the increment of geodetic longitude with 109 

respect to the origin of longitudes (i.e.  =  − 0 where  is the point longitude and 0 is the 110 

central meridian longitude) and  is the isometric latitude, also called Mercator parameter 111 

(Osborne, 2013, p.111 Eq. 6.1), which can be defined as 112 

 = ∫
𝜌

𝑐𝑜𝑠𝜑
𝑑𝜑

𝜑

0
          (9) 113 

For the case of the ellipsoid the integral results in 114 

 = 𝑙𝑛 |𝑡𝑎𝑛 (
𝜋

4
+

𝜑

2
) (

1−𝑒𝑠𝑖𝑛𝜑

1+𝑒𝑠𝑖𝑛𝜑
)

𝑒/2
|        (10) 115 

with e the eccentricity of the ellipsoid and  the geodetic latitude. 116 

Now we apply this idea to construct a conformal projection for the transformation (ChS → 117 

plane). Using primed symbols for the ChS and unprimed for the reference ellipsoid, we obtain, 118 

analogously to Eq. (9) 119 

′ = ∫
𝜌′

′𝑐𝑜𝑠𝜑
𝑑𝜑

𝜑

0
          (11) 120 

or considering Eqs. (3) and (4) 121 

′ = ∫
𝜌+ℎ0

(+ℎ0)𝑐𝑜𝑠𝜑
𝑑𝜑

𝜑

0
          (12) 122 

with the expressions for  and  given in Eqs. (5) and (6). 123 

It is convenient to introduce the following change of variable 124 
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𝑒2 =
𝑒2

1+
ℎ0
𝑎

           (13) 125 

which will simplify to e2 for the case of zero elevation. 126 

Although a solution in closed form can be found for the integral in Eq.(12), it is handier to use 127 

the following expression obtained after expanding ' in powers of e2 128 

′ = 𝑙𝑛 |
𝑐𝑜𝑠

𝜑

2
+𝑠𝑖𝑛

𝜑

2

𝑐𝑜𝑠
𝜑

2
−𝑠𝑖𝑛

𝜑

2

| − 𝑒2𝑠𝑖𝑛𝜑 − (
1

3
+

1

2

ℎ0

𝑎
) 𝑒2

2𝑠𝑖𝑛3𝜑 − (
1

5
+

21

40

ℎ0

𝑎
) 𝑒2

3𝑠𝑖𝑛5𝜑 −
1

7
𝑒2

4𝑠𝑖𝑛7𝜑 (14) 129 

where the terms amounting to less than 0.00001" for latitudes up to 80º and heights up to 130 

4000m have been disregarded. 131 

The Direct Mercator (conformal) projection for the transformation (ChS → plane) is then given 132 

by the formulation 133 

𝑥 = 𝑎           (15) 134 

𝑦 = 𝑎′           (16) 135 

with ' given in Eq. (14). If desired, a scale coefficient k0 could be applied at the equator. To do 136 

so Eqs. (15) and Eq. (16) need be multiplied by k0. Not including k0 in the formulas (i.e. k0 = 1) 137 

means the projection has unit linear scale factor at the Equator. 138 

An algorithm for the inverse computation of geodetic coordinates from grid coordinates can be 139 

found in the Appendix. 140 

 141 

This projection is conformal, therefore its linear distortion is the same in every direction from a 142 

point. We can do an easy check of conformality by computing the linear distortions in the 143 

meridian and the parallel for different values of the latitude  and height h0. The results depicted 144 

in Table 1 have been obtained by the corresponding expressions Eqs. (45) and (46) given in the 145 

Appendix (though the latter is the recommended expression due to its simplicity). We only find 146 

negligible discrepancies, i.e. close to the machine working precision for low latitudes and still 147 

negligible for mid or high latitudes. It must be noted, however, that this projection is only of 148 
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practical use within a very narrow bound near the equator (advisably below 2º of latitude at the 149 

most) due to the very large distortions introduced.  For general use, except very near the poles, 150 

a suitable projection is introduced in the following section. 151 

 152 

Table 1 here 153 

 154 

 155 

Transverse Mercator-type conformal projection for ChS to plane 156 

For constructing the Transverse Mercator projection we initially resort to the idea that is 157 

generally used for the derivation of the formulae for the ellipsoid-to-plane transformation (see 158 

e.g. Osborne, 2013) now applied to the ChS-to-plane transformation. Let f' be a complex 159 

function mapping the complex plane (', ) onto the complex plane (y,x) 160 

𝑦 + 𝑖𝑥 = 𝑓′(′ + 𝑖) = 161 

= 𝑓′(′) + 𝑖𝑓′(1)(′) −
2

2
𝑓′(2)(′) − 𝑖

3

6
𝑓′(3)(′) +

4

24
𝑓′(4)(′) + 𝑖

5

120
𝑓′(5)(′) −

6

720
𝑓′(6)(′) +162 

⋯            (17) 163 

where we have used the expansion around the central meridian, i.e. (′ + 𝑖0) or simply written 164 

', so that f'(n)(') denotes the nth derivative of f' evaluated at '. If function f' and its derivatives 165 

f'(n) exist and are nonzero then the resulting transformation will be conformal. 166 

Equating real and imaginary parts on both sides of Eq. (17) we obtain 167 

𝑥 = 𝑓′(1)(′) −
3

6
𝑓′(3)(′) +

5

120
𝑓′(5)(′) + ⋯      (18) 168 

𝑦 = 𝑓′(′) −
2

2
𝑓′(2)(′) +

4

24
𝑓′(4)(′) −

6

720
𝑓′(6)(′) + ⋯      (19) 169 

Now we apply the condition that the central meridian ( = 0, therefore 𝑥 = 0 𝑦 = 𝑓′(′)) be a 170 

line of scale coefficient k0 171 

𝑦 = 𝑓′(′) = 𝑘0 ∫ ′𝑑𝜑
𝜑

0
         (20) 172 
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This has the effect of univocally defining function f'. Substituting Eq. (3) into Eq. (20) yields 173 

𝑓′(′) = 𝑘0 ∫ ( + ℎ0)𝑑𝜑 =
𝜑

0
𝑘0 ∫ 𝑑𝜑

𝜑

0
+ 𝑘0ℎ0𝜑      (21) 174 

The first term in the right-hand side is k0 times the length of meridian arc from the equator to 175 

latitude  on the reference ellipsoid, which is called m() in Osborne (2013), so that 176 

𝑓′(′) = 𝑘0𝑚(𝜑) + 𝑘0ℎ0𝜑         (22) 177 

in contrast with 178 

𝑓() = 𝑘0𝑚(𝜑)          (23) 179 

which is the function f used in the Transverse Mercator for ellipsoid-to-plane transformation. 180 

Hence 181 

𝑓′(′) = 𝑓() + 𝑘0ℎ0𝜑         (24) 182 

Now we compute the corresponding derivatives of function f' given by Eq. (24). 183 

𝑓′(1)
(′) =

𝑑𝑓′(′)

𝑑′ =
𝑑𝑓′(′)

𝑑

𝑑

𝑑′ = (
𝑑𝑓()

𝑑
+ 𝑘0ℎ0

𝑑𝜑

𝑑
)

𝑑

𝑑′     (25) 184 

The first term inside the right-hand side parenthesis is the first derivative of the function f with 185 

respect to variable  which is used in the standard Transverse Mercator for ellipsoid-to-plane 186 

transformation, i.e. f(1)(), and 187 

𝑑𝜑

𝑑
=

𝑐𝑜𝑠𝜑

𝜌
           (26) 188 

as it can be derived from Eq. (9). It can be demonstrated that no significant error is committed if 189 

we take 
𝑑

𝑑′ as unity given that we will multiply these derivatives by increments of longitude 190 

much smaller than one ( ≪ 1 ≈ 57.2957795°). Therefore 191 

𝑓′(1)
(′) = 𝑓(1)() + 𝑘0ℎ0

𝑐𝑜𝑠𝜑

𝜌
        (27) 192 

For computing subsequent derivatives we can take  equal to  in the last term. Then 193 

𝑓′(2)
(′) =

𝑑𝑓′(1)(′)

𝑑′ =
𝑑𝑓′(1)(′)

𝑑

𝑑

𝑑′ = (
𝑑𝑓(1)()

𝑑
+ 𝑘0ℎ0

𝑑(𝑐𝑜𝑠𝜑)

𝑑
) = 𝑓(2)() + 𝑘0ℎ0

𝑑(𝑐𝑜𝑠𝜑)

𝑑𝜑

𝑑𝜑

𝑑
=194 

= 𝑓(2)() − 𝑘0ℎ0𝑠𝑖𝑛𝜑
𝑐𝑜𝑠𝜑

𝜌
         (28) 195 
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where again we have taken 
𝑑

𝑑′ as unity, and we can take  equal to  in the last term, so that 196 

𝑓′(2)
(′) = 𝑓(2)() − 𝑘0ℎ0𝑠𝑖𝑛𝜑𝑐𝑜𝑠𝜑        (29) 197 

Similarly 198 

𝑓′(3)
(′) =

𝑑𝑓′(2)(′)

𝑑′ =
𝑑𝑓′(2)(′)

𝑑

𝑑

𝑑′ = (
𝑑𝑓(2)()

𝑑
− 𝑘0ℎ0

𝑑(𝑠𝑖𝑛𝜑𝑐𝑜𝑠𝜑)

𝑑
) = 𝑓(3)() − 𝑘0ℎ0

𝑑(𝑠𝑖𝑛𝜑𝑐𝑜𝑠𝜑)

𝑑𝜑

𝑑𝜑

𝑑
=199 

= 𝑓(3)() − 𝑘0ℎ0(𝑐𝑜𝑠2𝜑−𝑠𝑖𝑛2𝜑)
𝑐𝑜𝑠𝜑

𝜌
        (30) 200 

where again 
𝑑

𝑑′ has been taken as unity and we can take  equal to  in the last term. 201 

Therefore 202 

𝑓′(3)
(′) = 𝑓(3)() − 𝑘0ℎ0(𝑐𝑜𝑠2𝜑−𝑠𝑖𝑛2𝜑)𝑐𝑜𝑠𝜑       (31) 203 

Now, for computation of subsequent derivatives the influence of the last term can be neglected 204 

as well as 
𝑑

𝑑′ be taken as unity, so that 205 

𝑓′(4)
(′) = 𝑓(4)()          (32) 206 

𝑓′(5)
(′) = 𝑓(5)()          (33) 207 

𝑓′(6)
(′) = 𝑓(6)()          (34) 208 

Inserting the function Eq. (24) and its derivatives – Eqs. (27), (29), and (30) to (34) – into Eqs. 209 

(18) and (19) and recalling that 210 

𝑥𝑒 = 𝑓(1)() −
3

6
𝑓(3)() +

5

120
𝑓(5)() + ⋯      (35) 211 

𝑦𝑒 = 𝑓() −


2

2
𝑓(2)() +


4

24
𝑓(4)() −


6

720
𝑓(6)() + ⋯      (36) 212 

are the equations for the ellipsoid-to-plane Transverse Mercator projection, we can obtain the 213 

corresponding equations for the ChS-to-plane Transverse Mercator projection as 214 

𝑥 = 𝑥𝑒 + 𝑘0ℎ0
𝑐𝑜𝑠𝜑

𝜌
+

3

6
𝑘0ℎ0(𝑐𝑜𝑠2𝜑−𝑠𝑖𝑛2𝜑)𝑐𝑜𝑠𝜑     (37) 215 

𝑦 = 𝑦𝑒 + 𝑘0ℎ0𝜑 +
2

2
𝑘0ℎ0𝑠𝑖𝑛𝜑𝑐𝑜𝑠𝜑         (38) 216 
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Needless to say, the coordinates of the standard ellipsoid-to-plane Transverse Mercator 217 

projection (xe, ye) have to had been computed with the same design parameters (k0, false 218 

easting, false northing...) than the corresponding coordinates of the ChS-to-plane Transverse 219 

Mercator projection (x, y). Obviously, (x, y) are simplified to (xe, ye) for zero height h0.  220 

As it is demonstrated in the Appendix the scale factor of the ChS-to-plane Transverse Mercator 221 

projection is independent of height h0 and therefore equal to the scale factor of the standard 222 

ellipsoid-to-plane Transverse Mercator projection. 223 

𝑘 = 𝑘𝑒             (39) 224 

An algorithm for the inverse computation of geodetic coordinates from grid coordinates can also 225 

be found in the Appendix. 226 

 227 

Conclusions 228 

Direct and Transverse Mercator-type projections for ChS-to-plane conformal mapping have 229 

been derived. The formulation has been kept relatively simple and approximate enough to 230 

guarantee a degree of conformality of the order of 10-9 or better for the sensible range of 231 

application (latitudes from 0 to 80º, heights from 0 to 3000m, increments of longitudes up to 3º). 232 

While the Direct Mercator projection is of very limited use since its distortions become too large  233 

except for a very thin band (advisably below 2º) centered in the equator, the Transverse 234 

Mercator projection presented is of general use except very near the poles (less than 5º or 10º) 235 

and can be applied to highly elevated areas, such as the mountainous western regions of the 236 

United States, where conventional ellipsoid-to-plane projections may produce intolerable 237 

discrepancies between ground and grid distances. 238 

 239 
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Appendix. Additional derivations 248 

This section contains additional derivations for the two ChS-to-grid projections presented above. 249 

In particular, the derivations provide the corresponding scale factors, demonstrate the fulfillment 250 

of Cauchy-Riemann equations for conformality and present algorithms for the inverse 251 

computation, namely the determination of latitude and longitude in the ChS of ellipsoid height h0 252 

from grid coordinates x, y. 253 

Direct Mercator for ChS to plane 254 

Cauchy-Riemann equations are necessary and sufficient conditions for any projection to be 255 

conformal (Snyder 1987, p.27). They can be written as 256 

𝑥 = 𝑦

𝑥 = −𝑦
           (40) 257 

where x, y, x, y are the partial derivatives of the functions defining the map projection with 258 

respect to  and , being (x,y) and (,) two isometric coordinate systems. 259 

It is easy to demonstrate that the ChS-to-grid Direct Mercator projection, defined by Eqs. (15) 260 

and (16), where the isometric latitude is denoted by ’, fulfills these conditions, since they 261 

reduce to 262 

𝑎 = 𝑎
0 = 0

            (41) 263 
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Similarly to Baselga (2018, 2019) we can define a scale factor k in the infinitesimal 264 

neighborhood of a point as the ratio of the projected distance on the grid defined by Eqs. (15) 265 

and (16), dsg, to the original distance on the constant-height surface dsChS, which can be 266 

computed with the general expression  267 

𝑘 =
𝑑𝑠𝑔

𝑑𝑠𝐶ℎ𝑆
=

√(𝑥
2+𝑦

2)𝑑2+(𝑥
2+𝑦

2)𝑑2+2(𝑥𝑥+𝑦𝑦)𝑑𝑑

√(+ℎ0)2𝑑2+(+ℎ0)2𝑐𝑜𝑠2𝑑2
     (42) 268 

where x, y, x, y are the partial derivatives of the functions defining the map projection with 269 

respect to  and , and d and d are the geographic coordinate differences between two 270 

infinitesimally close points, i, i and j = i + d, j = i + d. 271 

Scale factors in the meridian and the parallel, km and kp, can be respectively obtained with d = 272 

0 and d = 0 as 273 

𝑘𝑚 =
√𝑥

2+𝑦
2

+ℎ0
           (43) 274 

𝑘𝑝 =
√𝑥

2+𝑦
2

(+ℎ0)𝑐𝑜𝑠
           (44) 275 

For the case of the ChS-to-grid Direct Mercator projection, defined by Eqs. (15) and (16), these 276 

scale factors result in 277 

𝑘𝑚 =
𝑎′

+ℎ0
           (45) 278 

𝑘𝑝 =
𝑎

(+ℎ0)𝑐𝑜𝑠
           (46) 279 

where ′ denotes the partial derivative of the isometric latitude ’, given by Eq. (14), with 280 

respect to the geodetic latitude . The second expression is much simpler to compute than the 281 

first one and we know they must provide the same result since in any conformal projection the 282 

scale factor is direction independent, k = km = kp (Snyder 1987, p.24); therefore, we will prefer 283 

the latter expression for computing the scale factor due to its simplicity. 284 

𝑘 =
𝑎

(+ℎ0)𝑐𝑜𝑠
           (47) 285 
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Just in case one might want to compute the first expression, for example for the purpose of 286 

verification, the partial derivative ′ is equal to A in the Eq. (54) below. 287 

Finally, while Eqs. (15) and (16) provide the direct formulation for the ChS-to-grid projection, the 288 

inverse computation, that is, the determination of geodetic coordinates (, ) from grid 289 

coordinates (x, y) can be obtained as follows. 290 

First, it is immediate to determine the increment of longitude with respect to the origin meridian 291 

(of longitude 0) from Eq. (15) as 292 

 =
𝑥

𝑎
            (48) 293 

and then the geodetic longitude as 294 

 = 0 +            (49) 295 

It is also immediate to obtain the isometric latitude ’ from Eq. (16) as 296 

′ =
𝑦

𝑎
            (50) 297 

Now, to obtain the geodetic latitude  from the isometric latitude ’ we will use the following 298 

fastly-convergent iterative procedure. First, the crude approximation 299 

′ ≈ (1 − 𝑒2)           (51) 300 

obtained by first-order series expansion of Eq. (14) around  = 0 permits to obtain a first 301 

approximate value for the latitude, denoted here by 0 302 


0

=
′

1−𝑒2
           (52) 303 

where one should recall the definition of e2 in Eq. (13). 304 

A first-order series expansion of Eq. (14) this time around  = 0 provides 305 

′ ≈ ′
0

+ 𝐴( − 
0)          (53) 306 

where ′
0
 is obtained by substituting  = 0 into Eq. (14) and  307 
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𝐴 =
𝑐𝑜𝑠(

0
2

)
2

+𝑠𝑖𝑛(
0
2

)
2

(𝑐𝑜𝑠
0
2

−𝑠𝑖𝑛
0
2

)(𝑐𝑜𝑠
0
2

+𝑠𝑖𝑛
0
2

)
− 𝑒2𝑐𝑜𝑠

0
− 𝑒2

2 (1 +
3ℎ0

2𝑎
) 𝑐𝑜𝑠

0
𝑠𝑖𝑛2

0
− 𝑒2

3 (1 +
21ℎ0

8𝑎
) 𝑐𝑜𝑠

0
𝑠𝑖𝑛4

0
−308 

𝑒2
4𝑐𝑜𝑠

0
𝑠𝑖𝑛6

0
          (54) 309 

A new latitude value can therefore be obtained by 310 

 = 
0

+
′−′

0

𝐴
          (55) 311 

This new value is now taken as initial latitude 0 for the subsequent iteration so that it is 312 

introduced into Eq. (14) to obtain ′
0
 and used in Eq. (54) to obtain a new value for A. Both of 313 

them are introduced into Eq. (55) to obtain a refined latitude value. As said, this procedure 314 

converges fast, usually in just two iterations for low latitudes, as with the numerical example 315 

below, or a few more iterations for medium or high latitudes (where this projection is not 316 

recommended, recall the corresponding high distortions shown for these latitudes in Table 1). 317 

Some numerical values for an example of use of the ChS-to-grid Direct Mercator projection 318 

follow: given the GRS80 ellipsoid (a = 6378137, f = 1/298.257222101, 𝑒 = √2𝑓 − 𝑓2), geodetic 319 

coordinates  = 20º and  = 6º, origin of longitudes 0 = 3º, and ellipsoid height h0 = 2000m of 320 

the ChS, the direct computation is solved by Eq. (15) and Eq. (14) into Eq. (16) resulting in x = 321 

333958.472m and y = 2258428.227m. The scale factor, computed by means of Eq. (47), is 322 

1.06342769. The inverse computation, starting with these values for x and y, produce the initial 323 

geodetic coordinates  = 20º and  = 6º. 324 

 325 

Transverse Mercator for ChS to plane 326 

It is easy to demonstrate that the ChS-to-grid Transverse Mercator projection, defined by Eqs. 327 

(18) and (19), where the isometric latitude is denoted by ’, fulfills Cauchy-Riemann conditions, 328 

Eq. (40), since the partial derivative of x, given in Eq. (18), with respect to  329 

𝑥 = 𝑓′(1)(′) −
3

6
2𝑓′(3)(′) +

5

120
4𝑓′(5)(′) − ⋯     (56) 330 

and the partial derivative of y, given in Eq. (19), with respect to ’ 331 
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𝑦’ = 𝑓′(1)(′) −
2

2
𝑓′(3)(′) +

4

24
𝑓′(5)(′) − ⋯      (57) 332 

produce the same series. Analogously, the partial derivative of x with respect to ’ 333 

𝑥’ = 𝑓′(2)(′) −
3

6
𝑓′(4)(′) +

5

120
𝑓′(6)(′) − ⋯      (58) 334 

and the partial derivative of y with respect to  335 

𝑦 = −
2

2
𝑓′(2)(′) +

4

24
3𝑓′(4)(′) −

6

720
5𝑓′

(6)
(′) + ⋯    (59) 336 

are series equal except for a sign change, as required by the second condition of Cauchy-337 

Riemann, Eq. (40). 338 

 339 

Now, we obtain the scale factor of the ChS-to-grid Transverse Mercator projection. As in Eq. 340 

(42) the desired scale factor is defined as the ratio of the grid distance dsg to the distance on the 341 

constant-height surface dsChS. We can also compute other two differential distances: the 342 

distance on the surface of the ellipsoid dse and the grid distance obtained using the formulation 343 

of the standard Transverse Mercator projection dsg0. Dividing and multiplying by these two 344 

distances we can transform a little bit the equation for the scale factor 345 

𝑘 =
𝑑𝑠𝑔

𝑑𝑠𝐶ℎ𝑆
=

𝑑𝑠𝑔

𝑑𝑠𝑔0

𝑑𝑠𝑔0

𝑑𝑠𝑒

𝑑𝑠𝑒

𝑑𝑠𝐶ℎ𝑆
         (60) 346 

The transformation from the ellipsoid to the grid using the formulation of the standard 347 

Transverse Mercator projection has a scale factor which we have previously denoted as ke, this 348 

is precisely the second factor required in the equation above 349 

𝑑𝑠𝑔0

𝑑𝑠𝑒
= 𝑘𝑒           (61) 350 

The last factor in Eq. (60) is the ratio of the distance on the ellipsoid to the distance on the 351 

constant-height surface. Using the first fundamental forms of the ellipsoid and the constant-352 

height surface we can write 353 

𝑑𝑠𝑒

𝑑𝑠𝐶ℎ𝑆
=

√2𝑑𝜑2+2𝑐𝑜𝑠2𝜑𝑑2

√(+ℎ0)2𝑑𝜑2+(+ℎ0)2𝑐𝑜𝑠2𝜑𝑑
2
        (62) 354 
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Since the projection is conformal the distortion is independent of the direction (Snyder 1987, 355 

p.24). We can consider d = 0, for simplicity, to analyze the distortion along the meridian, 356 

therefore 357 

 
𝑑𝑠𝑒

𝑑𝑠𝐶ℎ𝑆
=



+ℎ0
           (63) 358 

Finally, the first factor required in the right-hand side of Eq. (60) is the ratio of the distance using 359 

coordinates in the ChS Transverse Mercator grid, (x, y) in Eqs. (37) and (38), to the distance 360 

using coordinates in the standard Transverse Mercator grid, (xe, ye). Using the corresponding 361 

first fundamental forms we can write 362 

𝑑𝑠𝑔

𝑑𝑠𝑔𝑜
=

√𝑑𝑥2+𝑑𝑦2

√𝑑𝑥𝑒
2+𝑑𝑦𝑒

2
          (64) 363 

where dx, dy denote differences in the ChS Transverse Mercator grid coordinates of two 364 

neighboring points in the same meridian (recall that we are considering d = 0) and analogously 365 

for dxe, dye for their corresponding coordinates in the standard Transverse Mercator grid. These 366 

coordinate differences are due to a difference in latitude d only, therefore 𝑑𝑦2 ≫ 𝑑𝑥2 and 367 

𝑑𝑦𝑒
2 ≫ 𝑑𝑥𝑒

2, and no significant error is committed if for this ratio we make the consideration that 368 

𝑑𝑥2 + 𝑑𝑦2  ≈  𝑑𝑦2 and 𝑑𝑥𝑒
2 + 𝑑𝑦𝑒

2  ≈  𝑑𝑦𝑒
2.  369 

Therefore, we have 370 

𝑑𝑠𝑔

𝑑𝑠𝑔𝑜
=

𝑑𝑦

𝑑𝑦𝑒
           (65) 371 

Considering Eq. (38) we can write 372 

𝑑𝑦 =
𝜕𝑦𝑒

𝜕𝜑
𝑑𝜑 +

𝜕

𝜕𝜑
(𝑘0ℎ0𝜑)𝑑𝜑 +

𝜕

𝜕𝜑
(

2

2
𝑘0ℎ0𝑠𝑖𝑛𝜑𝑐𝑜𝑠𝜑 ) 𝑑𝜑     (66) 373 

The last term can be safely neglected, being the increment of longitude with respect to the 374 

central meridian a value well below one ( ≪ 1 ≈ 57.2957795°). Therefore 375 

𝑑𝑦 =
𝜕𝑦𝑒

𝜕𝜑
𝑑𝜑 + 𝑘0ℎ0𝑑𝜑          (67) 376 

Considering that 377 
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𝑑𝑦𝑒 =
𝜕𝑦𝑒

𝜕𝜑
𝑑𝜑           (68) 378 

Eq. (65) reads 379 

𝑑𝑠𝑔

𝑑𝑠𝑔𝑜
=

𝜕𝑦𝑒
𝜕𝜑

+𝑘0ℎ0

𝜕𝑦𝑒
𝜕𝜑

           (69) 380 

To evaluate the derivative of coordinate y in the standard Transverse Mercator projection we 381 

recall that its leading term in y is the length along the meridian m() (Osborne 2013, p.122, Eq. 382 

7.29), that is 𝑦𝑒 ≈ 𝑚(𝜑) or, if a central scale factor k0 is used 383 

𝑦𝑒 ≈ 𝑘0𝑚(𝜑)           (70) 384 

For an infinitesimal change in latitude d the corresponding meridian length can be computed 385 

as  386 

𝑑𝑚(𝜑) = 𝑑           (71) 387 

With 
𝑑𝑚(𝜑)

𝑑
=  from Eq. (71) we can compute from Eq. (70)  388 

 
𝜕𝑦𝑒

𝜕𝜑
= 𝑘0

𝑑𝑚(𝜑)

𝑑
= 𝑘0          (72) 389 

which, upon substitution in Eq. (69), yields 390 

𝑑𝑠𝑔

𝑑𝑠𝑔𝑜
=

𝑘0+𝑘0ℎ0

𝑘0
=

+ℎ0


          (73) 391 

Now, introducing Eqs. (73), (61) and (63) into (60) we obtain 392 

𝑘 =
𝑑𝑠𝑔

𝑑𝑠𝐶ℎ𝑆
=

+ℎ0


𝑘𝑒



+ℎ0
= 𝑘𝑒         (74) 393 

That is, the scale factor of the ChS-to-plane Transverse Mercator projection is equal to the scale 394 

factor of the standard ellipsoid-to-plane Transverse Mercator projection. This result can be 395 

confirmed by an alternative computation procedure completely independent from the 396 

demonstration above which relies only on the defining equations of the projection: using 397 

numerical determination of partial derivatives of Eqs. (37) and (38) (i.e. by computing 398 

coordinates for small increments of latitude and longitude) and subsequent calculation of the 399 

scale factors by Eqs. (43) and (44) we obtain negligible discrepancies of the order of 10-9 or 400 
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below, partly attributable to the truncation in the series in Eqs. (37) and (38), which confirm this 401 

result. 402 

 403 

Finally, while Eqs. (37) and (38) provide the direct formulation for the ChS-to-grid projection, the 404 

inverse computation, that is, the determination of geodetic coordinates (, ) from grid 405 

coordinates (x, y) can be obtained as follows. 406 

First, as a starting approximation we obtain initial latitude and longitude values (, ) by means 407 

of the inverse formulas for the standard Transverse Mercator projection of the reference 408 

ellipsoid using (x, y) as if they were indeed (xe, ye). 409 

From Eqs. (37) and (38) we can write 410 

𝑥𝑒 = 𝑥 − 𝑘0ℎ0
𝑐𝑜𝑠𝜑

𝜌
−

3

6
𝑘0ℎ0(𝑐𝑜𝑠2𝜑−𝑠𝑖𝑛2𝜑)𝑐𝑜𝑠𝜑     (75) 411 

𝑦𝑒 = 𝑦 − 𝑘0ℎ0𝜑 −
2

2
𝑘0ℎ0𝑠𝑖𝑛𝜑𝑐𝑜𝑠𝜑         (76) 412 

Now we start the following simple iterative procedure: introducing the approximate latitude and 413 

longitude values obtained before in these two equations along with the known coordinates (x, y), 414 

we obtain new values (xe, ye) from which we can obtain refined values for the latitude and the 415 

longitude by means of the inverse formulas for the standard Transverse Mercator projection. 416 

This procedure has a fast convergence, for instance, for the following numerical example in the 417 

second iteration the coordinate differences are already of the order of 10-9. 418 

Some numerical values for an example of use of the ChS-to-grid Transverse Mercator 419 

projection follow: given the GRS80 ellipsoid (a = 6378137, f = 1/298.257222101, 𝑒 = √2𝑓 − 𝑓2), 420 

geodetic coordinates  = 40º and  = 6º, origin of longitudes 0 = 3º, and ellipsoid height h0 = 421 

2000m of the ChS, central scale factor k0 = 0.9996 and false easting of 500000m, the direct 422 

computation is solved by Eq. (37) and Eq. (38) resulting in x = 756180.159m and y = 423 

4433466.111m. The scale factor, computed by means of Eq. (74), is 1.00040750. The inverse 424 
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computation, starting with these values for x and y, produce the initial geodetic coordinates  = 425 

40º and  = 6º. 426 

 427 
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Tables 478 

Table 1. Conformality test for Direct Mercator projection for ChS (of height h0) to plane: km and kp denote the linear 479 
distortion in the meridian and parallel directions, respectively. For comparison, the scale value of the Direct 480 

Mercator projection for the reference ellipsoid along the meridian kem and its difference with respect to its scale 481 
along the parallel kep are also given. 482 

Latitude (deg) h0 (m) km km - kp ke kem - kep 

0 0 1 0 1 0 
0 1000 0.99984324 -1.11E-16 1 0 

0 2000 0.99968653 0 1 0 

0 3000 0.99952986 0 1 0 

20 0 1.06376102 2.22E-15 1.06376102 2.22E-15 

20 1000 1.06359432 2.66E-15 1.06376102 2.22E-15 

20 2000 1.06342769 2.44E-15 1.06376102 2.22E-15 

20 3000 1.06326110 2.22E-15 1.06376102 2.22E-15 

40 0 1.30360069 3.02E-13 1.30360069 3.02E-13 

40 1000 1.30339662 3.01E-13 1.30360069 3.02E-13 

40 2000 1.30319261 3.01E-13 1.30360069 3.02E-13 

40 3000 1.30298867 3.01E-13 1.30360069 3.02E-13 

60 0 1.99497290 2.14E-12 1.99497290 2.14E-12 

60 1000 1.99466095 2.14E-12 1.99497290 2.14E-12 

60 2000 1.99434910 2.13E-12 1.99497290 2.14E-12 

60 3000 1.99403735 2.13E-12 1.99497290 2.14E-12 

80 0 5.74004558 2.07E-12 5.74004558 2.07E-12 

80 1000 5.73914869 2.07E-12 5.74004558 2.07E-12 

80 2000 5.73825208 2.07E-12 5.74004558 2.07E-12 

80 3000 5.73735575 2.07E-12 5.74004558 2.07E-12 
 483 


