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ABSTRACT

Objective: The lack of representative coronavirus disease 2019 (COVID-19) data is a bottleneck for reliable and

generalizable machine learning. Data sharing is insufficient without data quality, in which source variability

plays an important role. We showcase and discuss potential biases from data source variability for COVID-19

machine learning.

Materials and Methods: We used the publicly available nCov2019 dataset, including patient-level data from sev-

eral countries. We aimed to the discovery and classification of severity subgroups using symptoms and comor-

bidities.

Results: Cases from the 2 countries with the highest prevalence were divided into separate subgroups with dis-

tinct severity manifestations. This variability can reduce the representativeness of training data with respect the

model target populations and increase model complexity at risk of overfitting.

Conclusions: Data source variability is a potential contributor to bias in distributed research networks. We call

for systematic assessment and reporting of data source variability and data quality in COVID-19 data sharing, as

key information for reliable and generalizable machine learning.

Key words: COVID-19, data quality, machine learning, biases, data sharing, distributed research networks, multi-site data, vari-

ability, heterogeneity, dataset shift

INTRODUCTION

The reliability of data for developing robust predictive models and

clinical decision support systems to help fight coronavirus disease

2019 (COVID-19) is crucial. It is urgent that we rapidly identify

clinical decision that can be informed by learning from large data-

sets. An editorial in The BMJ has recently drawn attention to the po-

tential biases and misuses of COVID-19 predictive models if a

certain level of quality is not guaranteed during their development.1

The editorial is linked to the work by Wynants et al,2 who found

uniformly poor quality in COVID-19 predictive models, discourag-

ing their clinical use. They concluded that there is an urgent need for

large patient-level COVID-19 datasets to improve the quality of pre-

dictive models.

However, data quality (DQ) has at least as great an impact on

predictive models as sample size does. Conventional DQ issues in-

clude missing, inconsistent, or replicated data; however, we call at-
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tention to an issue that is particularly harmful to machine learning

(ML) and predictive modeling in multisite distributed research net-

works (DRNs): the variability of data among data sources.

We showcase the potential limitations that multisource variabil-

ity may have for COVID-19 ML research on large international

DRNs. We present our findings in the nCov2019 dataset, recently

published in Scientific Data.3

MATERIALS AND METHODS

The nCov2019 dataset comprises a collection of individual-level

COVID-19 epidemiological data publicly available in several coun-

tries. In addition to geographic data, it includes, where available,

symptoms, outcomes, comorbidities, and key dates. By May 11,

2020, the dataset reported more than 500 000 cases. We included

those cases in which at least 1 symptom and an outcome were avail-

able.

Our initial aim to help in the fight against COVID-19 was to de-

velop a model to classify patients into severity subgroups given their

symptoms, comorbidities, age, and sex. We included those cases in

which at least 1 symptom and an outcome were available, reducing

the sample to 1568 cases. We next homogenized and filtered the

outcome values into “recovered” and “deceased,” leading to 214

cases—many outcomes were Twitter posts. Finally, we removed

duplicates and homogenized values in comorbidities and symptoms,

mapping the latter to International Classification of Diseases–Tenth

Revision, leading to a final sample of 170 cases.

To find factors that could help split the population into sub-

groups relevant to clinical prognosis, we applied a multiple corre-

spondence analysis 3-dimensional embedding4,5 of symptoms and

comorbidities and a hierarchical clustering. The proper number of

clusters for both age-independent and age group analyses were se-

lected by supervised inspection of group consistency. The code is

available for replication (https://github.com/carsaesi/covid19sdtool).

RESULTS AND DISCUSSION

Findings
Figure 1 describes the results for the age-independent analysis. The

resulting subgroups appeared, in general, to be clinically meaning-

ful. What surprised us, however, was that we found remarkable var-

iability between the 2 most prevalent data country sources: China

and the Philippines. Their separability was so severe that China and

the Philippines were split into distinct subgroups, and consistently

for different age groups.

Specifically, subgroups 2, 3, 5, and 6 belong to data from the

Philippines, generally elderly patients with a severe disease presenta-

tion and comorbidities—except subgroup 3, middle-aged patients.

Subgroup 4 mostly represent data from China, with elderly patients

with a mild disease presentation. Subgroup 1 combines data from

China with cases from other countries, with a mild disease presenta-

tion and no comorbidities. Remarkably, only subgroup 1 showed a

recovery rate significantly distinct from zero (68.52%; a¼0.05),

probably related to its younger sample. In the other subgroups, we

found no significant difference in survival days after admission, al-

though the survival outcome was mostly missing in the Philippines

groups. Full results can be explored online in our COVID-19 Sub-

group Discovery and Exploration Tool (http://covid19sdetool.upv.

es/?tab¼ncov2019).

To investigate the reason for this variability, we checked the

“source” variable in the nCov2019 dataset. The source of the Philip-

pines data was a “COVID-19 tracker” from the Department of

Health of the Republic of the Philippines.6 The sources of China

data were diverse, but most of them came from patient reports dated

January 2020 from the National Health Commission of the People’s

Republic of China7 and from a Weixin post by DXY.cn.8 However,

this information proved insufficient to identify a cause for the dis-

tinct patterns.

On the one hand, if we were to deliver a severity predictive

model based on the current training sample, the population of the

Figure 1. COVID-19 (coronavirus disease 2019) patient subgroups in the nCov2019 dataset, in which the 2 most prevalent countries, China and the Philippines, di-

vided into separate subgroups with distinct severity manifestations. (A) Scatterplot of subgroups embedded by multiple correspondence analysis on 3 dimen-

sions from symptoms and comorbidities. (B) The same scatterplot but labeled by the country of the case. Subgroups 2, 3, 5, and 6 belong to data from the

Philippines. Subgroups 4 and 1 mostly represent data from China. Subgroup 1 comprised young patients with mild disease (acute nasopharyngitis) and no

comorbidities. Subgroup 2 comprised elderly patients with severe pulmonary disease (pneumonia, acute respiratory distress syndrome) and comorbidities (hy-

pertension, diabetes mellitus, chronic kidney disease). Subgroup 3 comprised middle-aged patients with severe pulmonary disease (pneumonia, acute respira-

tory distress syndrome) and no comorbidities—similar to subgroup 2, with no remarkable comorbidities. Subgroup 4 comprised elderly patients with mild

disease (acute nasopharyngitis) and no comorbidities. The negative outcome within this subgroup might be explained by either poor in-hospital evolution or

unreported comorbidities, in which the lack of complete patient data might lie at the root of potential bias. Subgroup 5 comprised elderly patients with severe sys-

temic disease (septic shock, acute kidney injury) and comorbidities. Subgroup 6 comprised elderly patients with severe pulmonary disease (pneumonia) and

heart failure due to acute coronary syndrome (most likely diagnosed on admission). For further details, see http://covid19sdetool.upv.es/?tab¼ncov2019.
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Philippines would be assigned only to the high-severity subgroups 2,

3, 5, and 6. On the other hand, Chinese patients would by classified

by default in the milder severity subgroups 1 and 4. To evaluate

how these sharp differences between data sources could bias a pre-

dictive model, the initial question is whether the training data repre-

sent the target populations in which the model is to be used.

ML in the presence of data source variability
Multisource variability can potentially limit the optimization of ML

model parameters and their generalization. Multiple modes can co-

exist in the parameters likelihood associated to each data source (eg,

the optimum weights of a neural network or the coefficients of a lo-

gistic regression can be different for each data source). In addition,

the resulting models may poorly generalize to new data due to vari-

ability between training data and new data during model use, in

form of dataset shifts.9,10

In the presence of multisource variability, we could argue for

building local predictive models for each data source or, otherwise,

building a global model including all the data sources. A local model

might better fit its target population according to the training set,

but it might have a knowledge gap in the sense of general modeling

of the problem. A global model could fill that gap with a wider vari-

able casuistic, ie, covering more combinations of variable values

and, particularly, in their outcome-conditional probabilities. How-

ever, this approach might have 2 main drawbacks. First, it might

lead to a more complex model, eg, requiring more parameters or in-

cluding a mixed effect for the source to capture all the outcome-

conditional probabilities of each source, with the risk of overfitting

and loss of generalization. Second, it might lead to a more generaliz-

able model, eg, with a smaller number of parameters, but with the

risk of underfitting and losing country-specific performance.

A subgroup analysis like the one we showed for the nCov2019

dataset could be the first step toward making a decision on building

a local or a global model. In our case, the difference was evident vi-

sually. Additionally, we could measure the dependency between the

cluster groups and the source variable. Besides, source variability

metrics such as the global probabilistic deviation and source proba-

bilistic outlyingness11 could help by quantifying the separability be-

tween the statistical distributions of the data sources. Therefore,

while a reduced separability between sources suggests a global

model, a large separability could motivate both approaches. What

can ultimately define the best strategy are the results of a model eval-

uation through an independent test set and cost function that reli-

ably represent how it will perform in its end use. However, this

might not be straightforward: the immediate question is if we should

use a global test set or local test sets.

In the nCov2019 dataset, we may decide building local models

for the Philippines and China, and test them with their local data.

However, if a prospective patient in the Philippines presents those

patterns of a Chinese one in the current data, or the other way

around, the separate local predictive models would be out-of-sample

forecasting, providing unreliable answers.

In contrast, we may decide building a global model including all

the countries, increasing the sample size and hoping a better fit to a

wider prospective variable representation. However, it is difficult to

know at the training stage whether learning this extra casuistry will

have a benefit or otherwise hinder the model generalization to spe-

cific sources. Testing a global model with hold out country specific

tests from current data might provide a poorer performance in com-

parison to a local model. In addition, this might result on different

best models for each source.

Against this uncertainty, a timely and proper design of the model

evaluation is critical, as well as is planning a continuous monitoring

of model performance and updates once in routine use. Last, but not

least, in ML modeling sometimes we should consider if it is fairer to

stop until more data are available for reliable testing and retraining.

The problem of data variability and heterogeneity in

distributed research networks
Multisource variability is closely related to the concepts of statistical

frailty or heterogeneity, with recognized potential biases in statisti-

cal modeling and interpretation. As noted by Aalen et al,12

“Heterogeneity often manifests itself as clustering of cases in fami-

lies more than would be expected by chance.” Cannot be closer to

what we described, which is in fact confirmed by the relationship be-

tween countries and subgroups.

In addition, a multisource variability problem, as described in

our case, is a potential source of socioeconomic or race/ethnicity dis-

parities in predictive modeling. Gianfrancesco et al13 notably

remarked that “algorithms may not offer benefit to people whose

data are missing from the data set. [. . .] When an algorithm cannot

observe and identify certain individuals, a machine learning model

cannot assign an outcome to them. [. . .] As a result, if models trained

at one institution are applied to data at another institution, inaccu-

rate analyses and outputs may result.” Similarly, Galvin et al14 ques-

tioned about possible source variability biases in the public health

decisions taken by the United States and the United Kingdom to let

COVID-19 run its course without intervention, as well as in the sug-

gestions to flatten the curve of cases to spread the hospital resources

demand, solely based on cases reported from China and Italy. Re-

cently, the COVID-19 4CE (Consortium for Clinical Characteriza-

tion of COVID-19 by EHR) DRN found significant variation

between countries and between their hospitals regarding laboratory

results.15

Wynants et al2 and Sperrin et al1 argued that their reported find-

ings on poor quality predictive models could easily generalize to

other domains than COVID-19. Unfortunately, our experience

shows that the potential biases of multisource variability for ML can

also be generalized, especially in large cross-border DRNs. In a pre-

vious work, we found that predictive models for brain tumor diag-

nosis and grading trained on multisite European data showed an

average 10% increase in error rates when validated on new Euro-

pean datasets, even using the same acquisition protocols, possibly

due to uncontrolled variability factors.16 These factors can generally

be attributed to different data formats or coding, dissimilar popula-

tions, differences in clinical practice, or observer variabil-

ity.11,13,17,18 It follows that even when standardized data formats or

protocols are used, variability may persist in the statistical distribu-

tions of data.

We recall that, in addition to among sources, data variability can

also exist over time, especially when sharing data over long periods.

Temporal variability might occur due to, eg, changes in clinical

practice or coding.17,19,20 Temporal dataset shifts set out similar

biases than source-related shifts for ML and model generalization:

shall we train a model with data from all the available timespan or

select recent data? Could a model in routine clinical use become ob-

solete? Given the rapidly evolving knowledge and practice changes

in COVID-19, using change detection methods or tools like the
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EHRtemporalVariability could be of great benefit to assess temporal

variability in COVID-19 DRNs.20,21

Preventing biases through DQ and variability

assessment and reporting
A routine assessment of the variability among data sources in ML

and statistical methodologies could potentially reduce biases or ex-

tra costs of unexpectedly discovering heterogeneous subgroups

among sources. Because other DQ dimensions can be equally impor-

tant sources of bias, a complete DQ assessment including source,

and also temporal variability, could be an efficient manner of pre-

venting those biases.

Wynants et al2 and Sperrin et al1 proposed extending predictive

modeling methodological and reporting guidelines, such as TRIPOD

(Transparent Reporting of a multivariable prediction model for Indi-

vidual Prognosis or Diagnosis),22 by “recommending when and how

it is appropriate to use historical data from similar populations.”

We also recently claimed for the reporting of DQ, as well as its ac-

tual and potential impacts, as a routine practice in reporting the

results of data science.23 DQ reports should be part of ML methodo-

logical and reporting guidelines, including TRIPOD or the CRISP-

DM (cross-industry standard process for data mining).24 As de-

scribed in this work, source variability should be part of these. In ad-

dition, a disclaimer about the capability of the model to generalize

to newly observed populations would be advised, which could even

assist in the development of randomized controlled trials for clinical

decision support systems.25

Finally, as an alternative approach to curating data for artificial

intelligence (AI), we propose establishing new generation AI with

built in consciousness about DQ and variability. Both in training

and against the observation of new cases, this AI should behave ro-

bustly to real world DQ issues (eg, against missing or inconsistent

patient information). It should generalize against data variability

(eg, to transfer models between locations or reduce their obsoles-

cence through continual learning). An AI in which automatic

explainability regarding these DQ and variability might play an im-

portant role, and all this could be operationalized on the trending

MLOps methodology.26

Limitations
The used sample size of 170 cases of the nCov2019 dataset can be a

limitation in this study. However, at this size, the difference between

the 2 most prevalent countries was evident. Through this specific

case study we intend to timely warn and prevent the potential com-

plications of data-source variability for ML, an ongoing problem

that can potentially occur in the large multisource COVID-19 data-

sets being currently collected worldwide.

CONCLUSION

The emergence of COVID-19 international data sharing initiatives

and DRNs have a huge potential benefit for COVID-19 re-

search.15,27,28 The ideal goal is to provide high-quality, homoge-

neous data, but this is not always straightforward. Using standard

formats is the first step toward consistent COVID-19 data represen-

tation in multisite settings.14 However, variability in the statistical

distributions among the different sources and over time can poten-

tially persist. As such, COVID-19 DRNs should consider routine

variability assessment and reporting, especially if the data are to be

used in predictive modeling, given the potential risks of bias.

In conclusion, there is an urgent need to share full population

data for COVID-19 research, but just as important is to report on its

DQ and, particularly in multisite settings, to report the variability

among sources. This will be the only way that the ML community

can help this crisis with reliable predicting modeling.
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