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A B S T R A C T   

Hollow fibre membrane contactors (HFMC) have emerged as a promising technology for nitrogen-recovery that 
can be implemented in wastewater treatment plants (WWTPs) to promote circular economy. In this process, a 
hydrophobic membrane allows the transference of free-ammonia across the hollow fibres. During its operation, 
the ammonium concentration decreases, and real-time measurements would be of great value for process 
monitoring, optimization and control. Ammonium probes exist, but they are expensive and present noticeably 
maintenance costs. In this work, results from eight N-recovery experiments performed at different pH values 
using real supernatant of a full-scale anaerobic digester were analysed in terms of the time-evolution profiles of 
pH and total ammonium nitrogen (TAN). The pH revealed to carry relevant information related to the TAN 
concentration, as it decreased in the feed solution due to free ammonia stripping. The pH is an inexpensive-to- 
measure process variable that can be routinely acquired in any WWTP. Therefore, a data-driven soft-sensor has 
been developed. It uses the pH, its derivative, and the pH increments after each reagent dosing as input signals, to 
estimate the TAN concentration via PLS. An extended PLS-model incorporating interaction terms, quadratic and 
cubic forms of the three input variables improved the TAN concentration estimation. The developed soft-sensor 
was able to accurately reproduce the evolution of TAN concentration (in the range 0–1000 mgNH4

+-N/L with R2 

> 0.97 and RMSE <40 mg/L) during the HFMC process operation, thus making it possible to monitor the process 
as well as enabling future development of different control and optimization strategies.   

1. Introduction 

The nitrogen present in wastewater has been traditionally considered 
a major pollutant, which can cause different impacts to the receiving 
aquatic ecosystem (such as toxicity, oxygen depletion and eutrophica
tion). However, currently, with the paradigm shift towards the circular 
economy in the wastewater sector, nitrogen has begun to be considered 
a valuable resource that it is worth recovering. This nutrient is essential 
for many agricultural crops and, for this reason, it is a key element in 
many commercial fertilizers. Despite nitrogen is the most abundant gas 
in the atmosphere, its conversion into ammonium through the Haber- 
Bosch process is very energy-demanding. Moreover, this process re
leases a significant amount of greenhouse gases and in terms of global 
warming potential the production of one year of ammonium can be 
considered equivalent to nearly 80,000,000 people [1]. 

In order to recover nutrients from wastewater, several technologies 

have been developed in the last decades. Among them, the struvite 
crystallization has been widely studied at different process-scales, and 
even implemented in many full-scale wastewater treatment plants 
(WWTPs) thus, turning them into water resource recovery facilities 
(WRRFs). However, in this process, the nitrogen recovery efficiency is 
limited due to the composition of the struvite (note its equimolar stoi
chiometry: MgNH4PO4⋅6H2O). Robles et al. [2] have reported recovery 
efficiencies ranging from 80 to 90% of the PO4

− 3 present in the reject 
water from anaerobic digestion but only from 20 to 30% of the NH4

+. 
Another technology with wide implementation at different process 

scales is air stripping. In this process, free ammonia is transferred from 
the waste stream (i.e., the aqueous phase) to a gas phase, which is later 
circulated through an air cleaner, where in the liquid phase (usually 
sulphuric acid) different processes (mass transfer and absorption) occur, 
resulting in the formation of a solution of ammonium sulphate 
([NH4]2SO4: AmS). AmS is an inorganic salt, rich in macronutrients 
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nitrogen and sulphur (N and S), which can act as substitute of traditional 
fertilizers chemically-based produced from fossil resources. The opera
tion of air stripping units leads to high energy and chemical re
quirements as a result of the scaling and fouling problems that 
frequently occur within the packing material of the towers that are used 
in this technology [3]. 

Membrane-based technologies have also been successfully used for 
nutrient recovery. Among them, the hollow fibre membrane contactor 
(HFMC) has emerged as one of the most promising membrane technol
ogies that is being explored for the recovery of nitrogen (N). In this 
process, hydrophobic membranes are used to enable the transference of 
gaseous species (such as free ammonia) across the hollow fibres. Free 
ammonia is transferred from a N-rich feed solution (usually circulating 
by the lumen) to an acid solution (usually sulphuric acid pumped inside 
the hollow fibres). The difference between free ammonia concentrations 
at both sides of the membranes is the driving force of the stripping 
process. The pH in the N-rich solution should be high enough to assure 
that free ammonia predominates (see Fig. 1). The higher the pH, the 
higher the percentage of ammonium nitrogen present as free ammonia 
and therefore the higher the N-recovery rate. Temperature also affects 
the chemical equilibrium between ammonium and free ammonia. Fig. 1 
shows the percentage of ammonium nitrogen which is in the form of free 
ammonia at different pH and temperatures. 

When free ammonia passes across the membrane it is transformed 
into ammonium consuming protons from the acid solution. When the 
acid solution is exhausted, the pH suddenly increases and should be 
replaced. During the recovery process, the pH of the feed solution de
creases due to free ammonia stripping. The pH drop will be more or less 
pronounced depending on the ammonium/alkalinity ratio of the feed 
solution (i.e. the N-rich solution). The alkalinity is due to the presence of 
ions (mainly carbonates and bicarbonates) that incorporate acid protons 
(recall that the pH is the concentration of these acid protons) into their 
molecules so that they are not available as a free acid that can lower the 
pH. Therefore, the higher alkalinity (i.e., lower ammonium/alkalinity 
ratio) the lower the pH variations. When the pH drops below 8.5 the 
recovery process rate is greatly reduced. Therefore, pH should be 
maintained over this value by adding chemical reagents, usually NaOH. 
Alkalinity of the feed solution also affects the economics of the HFMC 
process since it determines the amount of NaOH that is needed to raise 
the pH to assure a high percentage of ammonium nitrogen present as 
free ammonia thus enabling high N-recovery rates. 

Due to the addition of NaOH required to keep high the percentage of 
nitrogen as free ammonia in the feed solution, HFMCs are only applied 
for nitrogen-rich streams such as the ones mentioned below. Diluted 

streams should be pre-treated by means of zeolites, exchange ion col
umns or electrodialysis prior to be fed to the HFMC. However, the 
economics of the process not only depends on the nitrogen content of 
feed solution but also on its alkalinity. Since alkalinity of the feed so
lution dampen the pH variations, the higher the alkalinity the higher 
operational costs of the process. In the case of the anaerobic digestion 
supernatant an economic and environmental study estimating costs and 
benefits of the HFMC technology implementation in full-scale WWTPs is 
presented in Noriega-Hevia et al. [4]. 

The main advantages of HFMC technology are: it is selective to free 
ammonia recovery; its energy consumption is lower than other tech
nologies such as air stripping and it is appropriate for recovery of 
ammonium nitrogen to really low concentration [5]. High nitrogen re
covery efficiencies (between 80% and 99%) have been obtained 
applying this technology to different streams such as chicken manure 
[6], reject water from anaerobic digestion [7,8], pig manure [9] or urine 
[10]. Although these studies were carried out at laboratory or pilot 
scale, recently, this technology has been implemented at the full-scale 
Munster WWTP [11] with recovery efficiencies close to those obtained 
at laboratory or pilot scale. 

The acid solution (usually sulphuric acid) that circulates inside the 
membrane fibres reacts with free ammonia to form AmS, which is a 
marketable fertilizer. It should be highlighted that recovering nitrogen 
from the reject water in WWTPs produces several benefits such as the 
economic value of the produced AmS, the reduction in the energy con
sumption related to aeration system and the lower NOx and N2O emis
sions as consequence of the lower N-load entering the biological 
treatment. Aeration is the most energy demanding process in a WWTP, 
and the nitrification process contributes to this consumption requiring 
over 5 kWh/kg-N. 

HFMCs are usually operated in batch mode. The nitrogen rich solu
tion is pumped from a storage tank, circulates by the lumen of the 
membrane module and is recycled to the storage tank. When TAN 
concentration of the feed solution decreases below the desired level, the 
process should be stopped, and the storage tank is emptied and filled 
again with nitrogen rich solution. Thus, for monitoring, optimization 
and process control purposes, it would be of great importance to know 
the TAN concentration in real-time in the storage tank. 

Ammonium concentration is usually measured in WWTPs and 
WRRFs by colorimeter procedures, kits based on the Nessler or salicylate 
methods or ion-selective electrodes. Colorimeter procedures and kits are 
usually used for its determination in grab samples but there are not 
useful to provide continuous values of ammonium concentration. 
Although the ion-selective electrodes for ammonium measurements can 
provide on-line continuous data, they present several drawbacks. These 
electrodes are strongly affected by potassium and sodium ions, the range 
of ammonium to be spanned in HFMCs is extremely wide and cannot be 
covered with the same electrode and the price and their maintenance 
costs are high [12]. Therefore, for HFMC process monitoring, optimi
zation and control, it would be extremely useful to be able to estimate 
the TAN concentration in the feed tank during the experimentation 
indirectly. The pH is an inexpensive easy-to-measure process variable 
that can be routinely acquired, which is extremely relevant for the 
HFMC process operation since it decreases as nitrogen is being 
recovered. 

A soft-sensor is a computer software that maps the values from the 
input variables (usually secondary variables, i.e. process variables like 
conductivity, pH, temperature, redox, etc., that are relatively cheap and 
easy-to-measure) to predict the output variable/s (usually primary 
variables, like nutrients and organic matter in the wastewater context). 
Note that primary variables (mainly nutrient and organic concentration) 
are traditionally measured in the laboratory, thus are characterized by 
time-delayed responses (for example, it takes 5 days to know the value of 
the BOD5 concentration of a wastewater sample, in the case of the COD 
concentration the required analytical procedure in laboratory makes 
that its value takes about 2 and a half hours to be known, …). The Fig. 1. Effect of pH and temperature on the free ammonia percentage.  

D. Aguado et al.                                                                                                                                                                                                                                 



Journal of Water Process Engineering 47 (2022) 102735

3

sensors and analysers developed to on-line measure primary variables 
are often associated with high capital and maintenance costs, and their 
availability is often limited to large WWTPs because their high capital 
and maintenance costs, while they are infrequently encountered in small 
and medium WWTPs. 

In the last decade, the development of data-driven soft-sensors have 
become more frequent in WWTPs, although they are still far from their 
use and application in the process industry where the deployment of 
soft-sensors is fairly common. Most soft-sensors in the wastewater 
treatment sector have been developed for the prediction of primary 
variables like NH4

+, NO3
− , PO4

3− , BOD, COD, SVI, SS [13–15] even 
recently to predict struvite purity [16]. 

The harsh conditions in WWTPs and WRRFs make reliable field 
measurements challenging, thus, proper instrumentation maintenance is 
of paramount importance for process monitoring and control of these 
facilities. Note that the quality of the measurements of the input sensors 
determines the reliability of any soft-sensor as well as its accuracy. 

According to Ching et al. [13] since 2000s the main methodology 
that has been used by researches for soft-sensor development is based on 
the application of artificial neural networks (ANNs). However, as these 
authors state, in recent years, new approaches based on the use of ma
chine learning algorithms have appeared exhibiting high performance 
and the projection statistical methods that are well suited for handling 
multicollinearity and noise (typical challenges in WWTP datasets) being 
both relevant options to be used for soft-sensor developtment. 

Since the pH of the feed solution decreases during the N-recovery 
process in HFMCs due to the stripping of the free ammonia and increases 
when sodium hydroxide (NaOH) is added to boost the amount of ni
trogen present as free ammonia, it is hypothesized that the TAN con
centration in the nitrogen rich stream could be estimated by means of pH 
measurements. Thus, the aim of this work is to develop a soft-sensor to 
forecast the time-evolution of TAN concentration in the nitrogen-rich 
solutions fed to hollow fibre membrane contactors for nitrogen recov
ery using data from inexpensive and easy-to-measure sensors (pH 
measurements). 

2. Materials and methods 

2.1. Experimental set-up 

Fig. 2 shows a scheme of the lab-scale set-up for N-recovery via 
HFMC that was used in this work. As it can be seen in this figure, the set- 
up consisted in two tanks, the acid tank with a volume of 1.2⋅10− 3 m3 

which contained sulphuric acid as acid solution and the feed tank 
(volume of 2.1⋅10− 3 m3) where the pre-treated N-rich solution (filtered 
and pH adjusted) was stored, a device to keep controlled the pH in the 
feed tank (711 Liquino and 700 Dosino of Metrohm®) throughout each 
experiment dosing sodium hydroxide (NaOH 1 mol/L), two HFMCs 
model X50 2.5 × 8 LiquiCel ® Extraflow by 3 M manufacturer, made of 

polypropylene with 1.4 m2 of membrane surface in series (and the 
following characteristics: 10,200 fibres, 0.16 m length, 40 μm thickness, 
45% of packing density and 220 μm of internal diameter), and two 
peristaltic pumps to boost the fluids from the tanks. To minimize the loss 
of free ammonia via stripping, both tanks were closed (but not sealed). 

Temperature and pH were continuously measured (one value 
recorded every 20 s) in each tank with electronic sensors (Two SP10T, 
Consort®). The signals from the sensors were collected by a multi- 
parametric analyser (Consort C832) which sent the data to a personal 
computer (PC) for visualization and data storage. A control software was 
developed and deployed to control the pH. During the progress of each 
experiment whenever the pH dropped below the established set point, 2 
mL of NaOH 1 mol/L were dosed by the Liquino&Dosino device. This 
device whenever received the order from the computer to dose NaOH, 
perform the action until the pH was above the set point. Since the ex
periments were carried out in the laboratory and their duration did not 
exceed 1 h, temperature variations along the experiments were 
negligible. 

The nitrogen rich feed solution (supernatant of a full-scale anaerobic 
digester) was boosted through the shell side of the contactors to mini
mize the risk of fouling due to the larger flow cross-section available 
relative to the inside flow cross-section which is much smaller inside the 
membrane fibre [5]. The acid solution, (H2SO4, 0.1 mol/L) was boosted 
in counter-current through the lumen side. Each fluid was recycled to its 
respective tank (see Fig. 2). A flowrate ratio of 1:3 between the H2SO4 
solution and the N-rich solution was maintained according to the rec
ommendations of the membrane manufacturers to avoid membrane 
deformation and maintain its morphology. 

2.2. Analytical methods 

To chemically characterize the supernatant of the full-scale anaer
obic digester several parameters were determined in the laboratory. 
Following the Standard Methods [17] Total Solids [method TS (2540B)], 
Total COD [method CODT (5220B)], Ammonium [method NH4

+-N 
(4500 NH3-D)], Phosphate [method PO4

3—P(4500P-E)]. Both nutrients 
phosphate and ammonium were analysed using a photometer 
SMARTCHEN® 450 from AMS-Alliance. The concentration of volatile 
fatty acids and alkalinity were determined by titration using the meth
odology developed by Moosbrugger et al. [18]. 

2.3. Feed solution 

Real supernatant from the anaerobic digester of a full-scale WWTP 
from Valencia (Spain), with an average concentration of 800 mg NH4

+- 
N/L, was used as N-rich solution in this research. This supernatant was 
pre-treated prior to being feed to the HFMCs. A three-stages pre-treat
ment was performed which included pH adjustment, followed by 
settling and finally filtration. Initially, NaOH (1 mol/L) was dosed to 

ACID TANKFEED TANK

HFMC

Anaerobic
Digestor 

Supernantant
1L H2SO4
0.1 mol/LPC

NaOH 
precision
dosing

unit Shell 
side

Lumen 
side

pH pH

Fig. 2. Scheme of the laboratory-scale set-up for nitrogen recovery via HFMC.  
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increase the pH up to the desired value (between 9 and 11). At this high 
pH value, precipitates formed like calcium carbonate and calcium 
phosphate which could clog the membranes. In order to minimize the 
possible clogging of the membranes, the digester supernatant was 
settled for 8 min and the supernatant from the settling was filtered 
through a 0.45 μm filter pore size prior to being feed to the HFMC. The 
characterization of the real supernatant as obtained from the full-scale 
anaerobic digester (i.e., prior to the pre-treatment applied in this 
research work), and after the pre-treatment (feed solution) is shown in 
Table 1. 

2.4. Experiments 

Eight experiments were performed in laboratory at 25 ◦C, at a feed 
flow rate of 2.5 × 10− 5 m3/s varying the pH between 9 and 11. 

2.5. Statistical analysis 

The main objective of this work is to develop a data-driven soft- 
sensor solution based on PLS to extract primary information on the 
ammonium concentration evolution in the HFMC, which would be 
especially useful for process monitoring, optimization and control of this 
process. 

The PLS will extract relevant information from the pH data which is 
an easy-to-measure process variable that can be routinely acquired and 
it is available in almost every WWTP. 

PLS is a multivariate statistical technique that connects two data 
matrices: X (which contain the predictors) and Y (which contain the 
responses or variables to be predicted), capturing simultaneously the 
correlation structure among all the variables. Latent variables are 
extracted through linear combination of the original variables, trying to 
capture the underlying phenomenon that drives the process that is being 
studied. PLS aims at finding latent variables that explain as much vari
ance in X as possible, but focusing on that part of the variance in X that 
allows better forecasting of the variables in matrix Y. 

Fitting and prediction with the PLS technique were performed using 
the software SIMCA-P 10.0 (Umetrics, Sweden). 

3. Results and discussion 

3.1. Feature engineering 

Temperature and pH were the only two variables continuously 
recorded (one value each 20 s) in both tanks of the experimental set-up: 
the tank that contained the feed solution and the tank that contained the 
acid solution. Since the experimental set-up was in the laboratory, and 
the experiments were short, the temperature along the different 

experiments relatively constant (at 25 ◦C) with minimal variation, thus, 
no other information than that to check that the process was operated at 
the pre-set temperature, could be obtained. However, the pH value in 
the tank that stored the feed solution varied significantly during each 
experiment. Fig. 3 shows the time-evolution of the pH as well as the TAN 
concentration in a previous experiment carried out without pH control. 
As can be seen in this figure, the pH drops from 9 to 8.1 along the 
duration of the experiment (30 min) while the TAN concentration 
decreased from 350 to 223 mg NH4

+-N/l. Nitrogen recovery rate 
significantly decreased during the experiment due to the pH decrease. 
Almost 50% of the nitrogen recovered was achieved in the first 5 min 
(pH > 8.8) and 90% of the nitrogen recovered was achieved in the first 
half of the experiment (pH > 8.5). When the pH dropped below 8.5 the 
nitrogen recovery rate was almost negligible. As commented in the 
introduction section, the higher the pH in the feed solution tank, the 
higher the rate of nitrogen recovery due to the higher the percentage of 
ammonium nitrogen is in the form of free ammonia. Thus, a pH control 
system was implemented to keep the pH in the N-rich solution tank (i.e., 
feed tank) close to the desired level. 

Fig. 4 shows the pH evolution pattern observed along an experiment 
carried out with pH control, together with the TAN concentration at 
relevant time instants. As can be seen in this figure, the pH decreased 
linearly along the whole experiment but when the pH dropped until a 
value of 10, it was raised by NaOH dosing. It should be highlighted that 
with the same amount of NaOH dosed, the increment achieved in the pH 
of the feed solution was higher as the TAN concentration was lower. 
Another interesting fact that could be observed in the pH profile along 
the experiment, was that its derivative (i.e., its slope), in absolute value, 
between every two dosages was smoother/lower as the TAN concen
tration was lower. The pH slope depends on nitrogen recovery rate 
which in turns depends on free ammonia concentration in the feed 
solution. 

Therefore, taking into account the underlying scientific principles 
and the technical knowledge of the process, it became evident that in 
addition to the variable pH itself, other variables such as the pH deriv
ative and the pH increment after each NaOH dosing could carry relevant 
information for prediction of TAN concentration. Thus, they were 
included as inputs to develop the soft-sensor based on projection to 
latent structures model. The fully specified architecture of the proposed 
soft-sensor is shown in Fig. 5. 

Fig. 6 shows the time evolution of the pH and the TAN concentration 
along five experiments, throughout which the TAN concentration in the 
feed solution was reduced from more than 950 mg NH4

+-N/L to less than 
100 mg NH4

+-N/L. These data will be used to fit the PLS-based soft- 
sensor. 

To develop the ammonium soft-sensor 75% of the data (i.e. 6 ex
periments) were used for model fitting and the remaining 25% (i.e. 2 

Table 1 
Chemical characterization of the anaerobic digestion supernatant before (as 
obtained from the full-scale digester) and after the pre-treatment (feed solution).  

Parameter (units) Anaerobic digester supernatant 
(prior to the pre-treatment) 

After the pre-treatment 
(feed solution) 

NH4
+-N (mg/L) 820 ± 180 713 ± 168 

PO4
3− -P (mg/L) 30.5 ± 1.5 2.3 ± 0.8 

COD (mg/L) 1320 ± 15 620 ± 22 
TSS (mg/L) 5606 ± 50 <L.D. 
Ca2+ (mg/L) 60.8 ± 10 a 

Mg2+ (mg/L) 12.9 ± 3.5 a 

K+ (mg/L) 345.8 ± 15 a 

Fe2+ (mg/L) 50.6 ± 10 a 

pH 8.1 ± 0.1 9–11 
Alkalinity (mg 

CaCO3/L) 
2733.9 ± 31.1 a 

<L.D. means a concentration of the analyte that is lower than the Limit of 
Detection. 

a It was different depending on the pH achieved in the pre-treatment. 
Fig. 3. Time-evolution of the pH and the TAN concentration along an experi
ment performed without pH control. 
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experiments) for testing its performance. According to cross-validation 
only two components resulted statistically significant. The models 
were well balanced, exhibiting in fit performance as well as in the pre
diction of the TAN concentration performance values higher than 90%. 
Fig. 7 shows the measured TAN concentration versus the estimation by 
the PLS-model. As can be seen in this figure, although an overall 
reasonable fit is achieved, the TAN concentration is systematically 
underestimated for values higher than 600 mg NH4

+-N/L, while in the 
lower range (values lower than 300 mg NH4

+-N/L) the TAN concen
tration is systematically overestimated. 

The loading plot in Fig. 8a provides a graphical summary of the 
correlation between all the variables (X and Y). In this plot, highly 
correlated variables are plotted together, in the same quadrant when the 
correlation is positive and diagonally opposed quadrants when the 
correlation is negative. Thus, Fig. 8.a evidences that two variables, the 
slope of the pH (Slp) and the pH increment after each NaOH dosing 

(ΔpH) are highly correlated and that these variables are inversely 
correlated with the output variable, the TAN concentration (NH4

+). 
Variable importance in the projection (VIP) plot is also included in 

Fig. 8b to show the most important variables over the PLS model as a 
whole. The VIP parameter is a weighted summary of the loadings of all 
input variables across all the responses. Therefore, the higher the 
importance of given variable in a fitted PLS model, the higher its VIP 
value. It is interesting to point out that the extracted features from the 
pH resulted significantly more relevant than pH itself for the prediction 
of the ammonia concentration. 

In order to improve the PLS model performance, model complexity 
was increased by incorporating as input variables the interaction terms 
as well as the quadratic and cubic forms of the three input variables 
shown in Fig. 5. As a result, the new PLS model had 12 input variables. 

Fig. 9 shows the measured TAN concentration versus the predicted 
concentration by the extended PLS-model. As can be seen in this figure, 
accurate predictions were possible in the entire range of values (from 
0 to 980 mg NH4

+-N/L) with this model. Therefore, this demonstrates 
that is possible to predict the TAN concentration evolution in a hollow 
fibre membrane contactor for nitrogen recovery, extracting primary 
information from the pH which is an easy-to-measure process variable. 
The predictions exhibit enough accuracy (RMSE = 37.67) to make de
cisions and actions on the process such as determining whether the 
desired nitrogen recovery level has been achieved. Thus, the proposed 
data-driven solution based on PLS unlocks a new dynamic approach in 
the HFMC process for process control and optimization. 

The loading plot shown in Fig. 10a provides a graphical summary of 
the correlation between all the variables of the PLS extended model. As 
can be seen in this Figure, the correlation structure among the main 
variables is the same as before. The cubic terms are in the opposite 
quadrant to the other expanded terms (interactions and quadratic 
forms). To know and visualize the importance of each input variable in 
the extended data-driven model, the variable over the projection is 
shown in Fig. 10b. Again, the extracted features from the pH resulted 
significantly more relevant than pH itself, thus, highlighting the 
importance of the feature engineering process to develop useful artificial 
intelligence solutions. 

It should be highlighted that the developed soft-sensor only uses the 
pH, the extracted features from the pH, and their interaction and 
exponential forms as input variables, thus, offering an inexpensive op
portunity to extract primary information on the TAN concentration. 

The soft-sensor works very well because during the nitrogen recovery 
process, the pH of the feed solution decreases due to free ammonia 
stripping, and increases when caustic soda is added to boost the amount 
of nitrogen present in the feed solution as free ammonia (to enhance the 
nitrogen recovery rate). The pH measurement carries information in its 
own value, in its slope and in the variations it shows when NaOH is 
added to raise its value. This close and causal relationship between both 
variables, allows to obtain these nice results. 

The estimation of the TAN concentration that can be carried out with 
the soft-sensor presented in this study could be very useful for imple
menting this technology at full-scale WWTPs. One of the main bottle
necks for HFMC process optimization is the development of a control 
system for determining the end of each N-recovery cycle. The acid so
lution should be replaced when the pH raises over neutrality and the 
feed solution should be replaced when nitrogen concentration reaches 
the desired value. Considering the drawbacks of on-line ammonium 
sensors commented in the introduction section, the soft-sensor based on 
pH measurements could provide valuable information for control system 
development. 

Since during the recovery process there are also variations in the 
concentration of the ions present in the feed solution, the conductivity, 
which is another inexpensive process variable, could also offer infor
mation related to the TAN concentration and, thus, if this process vari
able is available it could be then tested as input variable of a soft-sensor. 

Fig. 4. pH evolution along one experiment. The TAN concentration (mg NH4
+- 

N/L) at each relevant time instant and the value of the descending slope (i.e., 
derivative) of the pH is indicated. 

Fig. 5. Scheme of the fully specified architecture proposed for the NH4
+ soft- 

sensor for the HFMC. 

Fig. 6. TAN concentration and pH evolution along five different experiments. 
Each vertical black line indicates the beginning of a new experiment. 
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Fig. 7. Observed NH4
+-N concentration versus the predicted values by the PLS-model with 3 input variables: (a) model fitting (b) model test. The linear regression 

equation, the determination coefficient of the fitting and the RMSE are also shown to visualize and assess the data-driven model performance. 

Fig. 8. PLS model to predict ammonium concentration in the reactor: (a) weight plot of the two latent variables, and (b) variable importance in the fitted PLS model 
(VIP) with its error bar. The VIP parameter is a weighted summary of the loadings of all X-variables. 

Fig. 9. Observed NH4
+-N concentration versus the predicted values by the PLS-model with 3 input variables: (a) model fitting (b) model test. The linear regression 

equation, the determination coefficient of the fitting and the RMSE are also shown to visualize and assess the data-driven model performance. 
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4. Conclusions 

In this work a data-driven soft-sensor solution based on PLS has been 
proposed to extract primary information on the TAN concentration 
evolution in the HFMC from the pH time-evolution profile. The main 
conclusions that can be drawn from this study are:  

• The HFMC process allows high N-recovery efficiencies treating the 
supernatant of anaerobic digesters of municipal WWTPs.  

• The pH is an inexpensive and easy-to-measure process variable that 
carries relevant information on TAN concentration in the feed tank.  

• The developed PLS-based soft-sensor is able to predict with high 
accuracy the TAN concentration evolution in hollow fibre membrane 
contactors for nitrogen recovery.  

• This soft-sensor uses the pH and extracted features (its derivative and 
increments) as input variables offering an inexpensive opportunity to 
extract primary information on the TAN concentration.  

• The pH derivative and the pH increment after each reagent dosing 
were more relevant for TAN concentration prediction than the pH 
value itself.  

• Feature extraction based on technical knowledge of the process was 
key to make the development of a reliable data-driven PLS soft- 
sensor possible.  

• This study highlighted the potential of the developed data-driven 
soft-sensor solution based on PLS to unlock a new dynamic 
approach in optimization and control of the HFMC process as well as 
decision making in troubleshooting. 
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J. Ribes, M.V. Ruano, J. Serralta, J. Ferrer, A. Seco, New frontiers from removal to 
recycling of nitrogen and phosphorus from wastewater in the circular economy, 
Bioresour. Technol. 300 (2020), 122673, https://doi.org/10.1016/j. 
biortech.2019.122673. 

[3] C. Vaneeckhaute, V. Lebuf, E. Michels, E. Balia, P. Vanrolleghem, F.M. Tack, 
E. Meers, Nutrient recovery from digestate: systematic technology review and 
product classification, Waste Biomass Valoriz. 8 (2017) 21–40, https://doi.org/ 
10.1007/s12649-016-9642-x. 

[4] G. Noriega-Hevia, J. Serralta, A. Seco, J. Ferrer, Economic analysis of the scale-up 
and implantation of a hollow fibre membrane contactor plant for nitrogen recovery 
in a full-scale wastewater treatment plant, Separation and Purification Technology 
275 (2021) 119128, https://doi.org/10.1016/j.seppur.2021.119128. 

[5] M. Darestani, V. Haigh, S.J. Couperthwaite, G.J. Millar, L.D. Nghiem, Hollow fibre 
membrane contactors for ammonia recovery: current status and future 
developments, J. Environ. Chem. Eng. 5 (2) (2017) 1349–1359, https://doi.org/ 
10.1016/j.jece.2017.02.016. 
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[9] M.C. Garcia-González, M.B. Vanotti, Recovery of ammonia from swine manure 
using gas-permeable membranes: effect of waste strength and pH, Waste Manag. 38 
(2015) 455–461, https://doi.org/10.1016/j.wasman.2015.01.021. 

[10] J. Nagy, J. Kaljunen, A.J. Toth, Nitrogen recovery from wastewater and human 
urine with hydrophobic gas separation membrane: experiments and modelling, 
Chem. Pap. 73 (2019) 1903–1915, https://doi.org/10.1007/s11696-019-00740-x. 
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