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COMPUTING OPTIMAL DISTANCES TO PARETO SETS OF

MULTI-OBJECTIVE OPTIMIZATION PROBLEMS IN

ASYMMETRIC NORMED LATTICES

X. BLASCO, G. REYNOSO-MEZA, E.A. SÁNCHEZ-PÉREZ, AND J.V. SÁNCHEZ-PÉREZ

Abstract. Given a finite dimensional asymmetric normed lattice, we pro-
vide explicit formulae for the optimization of the associated (non-Hausdorff)
asymmetric “distance” among a subset and a point. Our analysis has its roots
and finds its applications in the current development of effective algorithms
for multi-objective optimization programs. We are interested in providing the
fundamental theoretical results for the associated convex analysis, fixing in
this way the framework for this new optimization tool. The fact that the
associated topology is not Hausdorff forces us to define a new setting and to
use a new point of view for this analysis. Existence and uniqueness theorems
for this optimization are shown. Our main result is the translation of the
original abstract optimal distance problem to a clear optimization scheme.
Actually, this justifies the algorithms and shows new aspects of the numerical
and computational methods that have been already used in visualization of
multi-objective optimization problems.

1. Introduction

Asymmetric norms have been recently introduced as a way of incorporating
new metric tools for helping the decision maker in the graphical analysis of Pareto
fronts associated to multi-objective optimization techniques (see [4]). Roughly
speaking, there are two different approximations to the general matter of solving
multi-objective optimization problems. In the first one, all the (real valued) ob-
jectives are simultaneously optimized, giving a Pareto front in which the decision
maker choose the best solution according to his preferences. The second option
is to provide an aggregation function combining all the objectives in such a way
that it contains the criterion of the decision maker; once this function is given,
the problem becomes a real valued optimization problem to which all the usual
mathematical machinery can be applied. The present paper must be understood
as a contribution to the second theoretical setting. Interested readers in the first
approximation are referred to [11] and [23] for more details; see also [21, 22] and
the references therein for recent developments using asymmetric distance notions.

To be more precise, the analysis of the set of solutions of a multi-objective op-
timization problem is usually based on the expertise of the decision maker, who
compare the elements of the Pareto set trying to get the best option for his par-
ticular purpose. A considerable effort has been made for giving the required tools
in recent years, mainly concerning the development of new visualization proce-
dures. For example, in [24] the reader can find an explanation of a visualization
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technique based on the so called level diagrams; in [25] a general presentation of
the existing methods is provided.

Although this way of understanding the analysis of Pareto fronts is fruitful for
solving applied problems, it is also necessary to give precise theoretical arguments
to show that these techniques provide safe optimization procedures. In order to
do this, it is useful to understand the decision-making rule as an optimization
of the (real) function defined as the composition of the original vector-valued
objective map and an aggregation function. The second one might represent all
the requirements that are taken into account by the decision maker. In the case
that we consider in this paper, the aggregation function is given by an asymmetric
norm, what concerns the metric properties of the Euclidean space. This fact forces
to study optimization in the non-standard context of the asymmetric normed
linear lattices and best approximation to convex sets in these spaces.

The asymmetric norm that we consider allows to unify in a single mathematical
object the notions of dominance —a partial order relation in the n-dimensional
space—, and (Euclidean) distance among points. Essentially, the (quasi) distance
among two points provided by an asymmetric norm measures “how far is one point
to dominate the other point”. This “distance” is not symmetric, since the distance
from one point x to another point y does not coincide with the distance from y
to x. That is, it is a genuine quasi distance. This non-standard metric idea may
be used for constructing a new aggregation function that would take into account
the notions of dominance and the Euclidean distance as well as the preferences
of the designer. The construction of such a specific aggregation function is not
the aim of the present paper. We assume that the particular asymmetric norm
has been already chosen by the decision maker, and the solution of the multi-
objective optimization problem is found by solving the mono-objective problem
defined by composing with this aggregation function.

An additional problem appears when we try to find the best approximation
from a point to a set with respect to an asymmetric norm. In contrast to what
happens when a standard Euclidean norm is considered and due to the fact that
the induced topology is not Hausdorff, there are a lot of points in the set that
attain the minimum distance to a given point even if the set is compact and con-
vex. It is needed to fix an adequate definition of optimal distance from a given
point to a subset with respect to an Euclidean asymmetric norm for assuring that
the problem admits a unique solution. This will be done by adapting some previ-
ous theoretical developments, centering our attention in finite dimensional vector
lattices with compatible Euclidean norms that are used for defining asymmetric
norms in the canonical way: as the norm of the positive parts of the vectors.

The ideas of the present paper are structured as follows. After the preliminary
Section 2, the main results of the article are presented in Sections 3 and 4.
Section 3 is devoted to explain the rules for computing q-nearest points and
optimal distance points in asymmetric normed lattices. It must be noticed that
the definition of these sets of points are not a direct generalization of the notions
that are used in the case of normed spaces. Essentially, as we said before, the
reason is that the topology defined by a lattice asymmetric norm is not Hausdorff.
This leads to the need of translating the question and the to a more abstract
setting, using topological techniques that are not usual in a classical optimization
framework. It must be said that most of the results that we use here have been
obtained previously in theoretical articles from an abstract topological point of
view. We will use the results —obtained mainly by Cobzaş— that can be found
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in [5, 6, 8, 10, 17] (for a systematic presentation see [7]). Together with some
classical results of convex analysis, these papers allow to translate some general
aspects of the convex optimization to this non-Hausdorff setting for providing
some clear computational rules, that are explained in Section 4. Therefore, the
main contributions of the present article are twofold:

(i) To establish the main existence and uniqueness theorems regarding opti-
mal distance points in the present setting. They are given in Section 3.2
(Theorem 3.11 and Corollary 3.12).

(ii) To adapt and translate the known abstract results into practical tools
for applying them in multi-objective optimization problems. This can be
found in Section 3.1 and Section 4.

2. Preliminaries

Consider a Pareto set A of solutions of a multi-objective problem that belongs
to a finite dimensional linear lattice —typically, Rn endowed with an order ≤ and
a compatible lattice norm—. We must point our that we use the term “lattice”
in the present paper as an ordered vector space whose norm is compatible with
the order (see for example [3, 19]). The ordering in the lattice represents the
criterion for establishing a hierarchy among the elements of the solution set, in
the sense that, if x, y ∈ A and x ≤ y, then x dominates y. In terms of the
optimization process, this means that the point x is preferred to y as an optimal
final solution of the problem by the decision maker. A priori, all the elements of
A provide a valid solution to the original problem. However, the decision maker
needs to choose one of them based on geometric arguments associated to the
structure of the problem, and using information that is not explicitly included
in the requirements of the optimization problem. These arguments are often of
the following type: (a) If two elements x and y of A are considered, x is a better
solution than y if x dominates y in the natural ordering of the space. (b) If x
and y are not ordered —that is, neither x ≤ y nor y ≤ x—, then x is better than
y if it is closer to a fixed selected point that is considered the optimum limit for
the process (utopia) —normally, the origin of the coordinate system—.

As we said in the Introduction, a new way of finding an equilibrium among
these two criteria for choosing the best solution has been recently introduced. It
is based on a topological structure that considers the ordering in the linear lattice
as a preference criterion for defining the —in general not Hausdorff— topology
by what is called an asymmetric distance (see [4]). Let us explain briefly the
mathematical structure that is used. The asymmetric lattice norm induced by a
finite dimensional normed lattice (Rn,≤, ‖ · ‖) is a function given by

q(x) := ‖x ∨ 0‖, x ∈ Rn;

here “∨” denotes the maximum of “x” and 0 in the vector lattice order (see for
example the first pages in [19]). It defines a quasi-distance d by means of the
formula

d(x, y) = q(y − x) = ‖(y − x) ∨ 0‖, x, y ∈ Rn;

it is clear that d(x, y) does not coincide with d(y, x) in general, so the quasi-
distance is certainly not a distance. It is also easy to see that, for n ≥ 2, the
induced topology cannot be Hausdorff; in fact, it only satisfies the First Axiom
of separability (T1, see [9, 14]).
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The main idea that these tools allow to model is the following: d(x, y) measures
the “minimal normed distance that y must be translated in order to dominate
x”. For example, in the natural coordinatewise ordering of Rn endowed with the
standard Euclidean norm, the point y = (1, 0) must be translated to (0, 0) to
dominate x = (0, 1), and the minimal distance is then equal to 1.

In this sense, we have that d(x, y) = 0 if y ≤ x, that is, if y is already dom-
inating x and it does not need to be moved. This rule is the key for providing
effective geometric tools of visualization for helping the decision maker to choose
a concrete result of all the ones appearing in the Pareto set A.

However, answers to the two main theoretical problems appearing in a op-
timization procedure —existence and uniqueness of optimal solution— has not
explicitly provided yet. As we said in the Introduction, to give concrete answers
to these problems and to fix the requirements for the lattice asymmetric norms
for satisfying the results are the aims of this paper.

In order to do this, we will use some fundamental results of the recently de-
veloped theory of asymmetric normed linear spaces. We will center our attention
in the finite dimensional case with Euclidean asymmetric norms, in order to as-
sure the uniform convexity and the smoothness that are classically required for
proving the uniqueness of the optimal points of shortest distance among convex
subsets. We will see that these requirements are also adequate in the asymmetric
case, allowing to prove the expected results of existence and uniqueness. Some
recent developments on the geometry of finite dimensional asymmetric normed
spaces can be found in [18]; the setting established there completes the informa-
tion required for constructing optimization tools, as in the classical case.

Let us introduce now the necessary definitions and fundamental results that
will be needed in the paper.

2.1. Asymmetric normed spaces. Let X be a linear space. An asymmetric
norm q on X is function q : X → [0,∞) satisfying that for x, y ∈ X,

(1) q(tx) = tq(x) for t ≥ 0,

(2) q(x+ y) ≤ q(x) + q(y) and

(3) q(x) = 0 = q(−x) if and only if x = 0.

Such an asymmetric norm defines a translation invariant topology when the
quasi-distance d(x, y) = q(y − x), x, y ∈ X, is considered, that is given by the
countable basis of neighborhoods defined by the balls Bn(x) = {y ∈ X : d(x, y) =
q(y − x) ≤ 1/n}. The resulting topological quasi-metric structure is called an
asymmetric normed linear space. The induced topology has in general weak
separation properties (it is not in general Hausdorff), and the expression q̂s(x) :=
max{q(x), q(−x)}, x ∈ X, gives always a norm on X. As the reader will notice
later on, we will define the associated norm qs in a different way in order to
obtain an equivalent norm preserving the smoothness properties of the original
Euclidean norm. This structure is nowadays well-known; the reader can find
all the information that is needed for this paper in the monograph [7] and the
references therein. A linear operator T : X → Y among asymmetric normed
linear spaces (X, q) and (Y, p) is continuous if and only if there is a constant
k > 0 such that p(T (x)) ≤ k q(x) for all x ∈ X (see for example Proposition
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2.1.2 in [7]). The dual space Xb
q of an asymmetric normed space is the space

of all functionals ϕ : X → R that are q-bounded as ϕ(x) ≤ k q(x) for a certain
constant k. The “norm” ‖ϕ|q of ϕ is the infimum of all constants k satisfying

this inequality. It must be pointed out that Xb
q is not in general a linear space

but a cone: this is why we use the symbol ‖ϕ|q, since it is not strictly speaking
a norm. Such a function is sometimes called a cone-norm.

2.2. Euclidean asymmetric normed lattices. We will consider normed linear
lattice structures as starting point. Recall that a Banach lattice is an ordered
linear space (X,≤) —sometimes called a Riesz space—, with a norm ‖ · ‖ that is
compatible with the order: that is, if x, y ∈ X and |x| ≤ |y|, then ‖x‖ ≤ ‖y‖. If
an order ≤ is given, then the lattice operations x∨y (maximum), x∧y (minimum)
and |x| (absolute value) are always defined (see for example [19, pp.1,2], [3, Ch.1]
or [20, Ch.2]). On the other hand, for defining an order in the finite dimensional
space Rn in such a way that it gives a Banach lattice structure, it is enough to
consider a convex cone C non containing a subspace and with non empty interior.
Then, for x, y ∈ Rn, we have that x ≤ y if and only if y − x ∈ C. In this paper,
we will consider orders given by cones generated by a basis B = {b1, ..., bn} of Rn,
that is, cones like

C =
{ n∑

i=1

λibi : λi ≥ 0, i = 1, ..., n
}
. (1)

We will consider asymmetric norms defined as q(x) = ‖x ∨ 0‖, where ‖ · ‖ is a
lattice norm as defined above. The notation x∨0 will be often used in the paper:
if x = (x1, ..., xn) ∈ Rn, this means

x ∨ 0 = (x1, ..., xn) ∨ 0 = (max{x1, 0}, ...,max{xn, 0}).

Note that we have required that if |x| ≤ |y|, then ‖x‖ ≤ ‖y‖, —where |x| and |y|
are the modulus of the elements x and y defined by the ordering—. We will say
in this case that the associated structure (Rn, q,≤) —where q is defined using
‖ · ‖—, is an asymmetric normed linear lattice. If moreover the norm ‖ · ‖ is
an Euclidean norm in Rn —that is, a norm defined by a scalar product “·” by
‖x‖ =

√
x · x—, we will say that the space (Rn, q,≤) is an Euclidean asymmetric

normed linear lattice. This will be the class of spaces that we will consider in this
paper. Note that in this case an Euclidean norm can be given by considering the
formula

qs(x) :=
√
q(x)2 + q(−x)2, x ∈ Rn.

The study of asymmetric normed linear lattices started in the nineties as the
first attempt for understanding linear structures endowed with non-symmetric
topologies. In the seminal papers [2, 12], this is one of the natural asymmetric
norms that were considered. Several papers can be found on this specific current
topic (see [1, 10, 13] and the references therein); as far as we know, the last one
is [9], where a systematic study of this family of asymmetric norms is developed.

We will use the following class of compatible asymmetric norms over finite
dimensional lattices (Rn,≤). Let B := {bi : i = 1, ..., n} be a basis of Rn; so, if C
is the convex cone generated by B, then x ≤ y if and only if y − x ∈ C. Let us
write (xi1, ..., x

i
n) for the coordinates of bi with respect to the canonical basis of

Rn, 0 ≤ i ≤ n. Consider the matrix M defined by the coordinates of the vectors
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b1, ..., bn as columns, that is,

M =

x
1
1 · · · xn1
...

. . .
...

x1
n · · · xnn

 .
Note that this matrix defines a scalar product ·B in Rn with the property that
the elements of B constitute an orthonormal basis of the space. Therefore, easy
linear algebra arguments allow to obtain the following fact.

Lemma 2.1. The Euclidean asymmetric lattice norm associated to the basis B
is given by

q(x) =
√

max{α1, 0}2 + ...+ max{αn, 0}2

=

√√√√√√((x1, ..., xn)(M−1)T ∨ 0
)
· (M−1)

x1
...
xn


for (x1, ..., xn) being the coordinates of x ∈ Rn with respect to the canonical

basis and (α1, ..., αn) the coordinates of x with respect to the basis B. Moreover,
q is compatible with the order defined by the cone (1) generated by the basis B of
Rn.

Proof. Take x = (x1, ..., xn) ∈ Rn. Then we have that

q(x) =
√

max{α1, 0}2 + ...+ max{αn, 0}2

=
√

max{α1, 0}α1 + ...+ max{αn, 0}αn =
√

(α1, ..., αn) ∨ 0) · (α1, ..., αn)T .

Replacing (α1, ..., αn) by (x1, ..., xn)(M−1)T as well as (α1, ..., αn)T by

M−1(x1, ..., xn)T ,

we get the result. � �

As we said before, we will center our attention in this class of Euclidean asym-
metric norms. Let us remark again that the symbol ≤ does not denote always
the canonical order in Rn but the order compatible with the asymmetric norm
q, for which the positive cone is defined by the basis B as in (1). Note that the
equality

{z ∈ Rn : q(z) = 0} = {z : z ≤ 0}, (2)

holds, where ≤ is the order generated by this cone. This set is relevant for the
characterization of the topological properties of an asymmetric normed space (see
Eq.(2.4.3) in [7, §.2.4.2], or [17]).

Example 2.2. Suppose that the decision maker considers that the direction of
the OX axis is more relevant for the optimization than the OY axis, at a rate of
2 to 1. This can be modeled by defining the new basis B0 as B0 = {(2, 0), (0, 1)},
and so

M0 =

[
2 0
0 1

]
, M−1

0 =

[
1/2 0
0 1

]
.
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The Euclidean asymmetric norm associated to B0 is then

q0(v) =

√(
(x1, x2)(M−1)T ∨ 0

)
(M−1)

[
x1

x2

]
=

√
1

4
max{x1, 0}2 + max{x2, 0}2,

for v = (x1, x2) ∈ R2. The unit ball of this asymmetric norm is defined by the
points below the curve in Figure 2.2.

Figure 1. Unit sphere of the asymmetric normed space (R2, q0).

3. q-nearest points and optimal distance points in asymmetric
normed lattices: the optimization setting

We will use the explained theoretical geometric structure for defining the fol-
lowing optimization framework.

◦ Consider a set of solutions A ⊆ Rn of a multi-objective optimization
problem, that is, the associated Pareto set.

◦ Consider a point x0 not belonging to A and fixed by the analyst, repre-
senting an optimal solution to the problem from the point of view of the
geometrical properties of the lattice and taking into account the original
problem, in case it were a solution of the problem. Typically, x0 is not
so. We can consider without loss of generality that x0 = 0; otherwise, it is
always possible to translate x0 to the origin of the space. The translation
invariant nature of the topology associated to an asymmetric norm allows
to do it (see [7]).

◦ A point x ∈ A is considered a better solution than y ∈ A whenever
x dominates y. In case x and y are not comparable —that is, x � y
and y � x—, then we have to understand the values of the distances
d(x, y) = q(y−x) and d(y, x) = q(y−x) as follows: d(x, y) = q(y−x) is the
“distance that y must be translated in order to dominate x”. Therefore
x is a better solution than y if d(x, y) ≤ d(y, x).

In the model, the order in the underlying Banach lattice is fundamental, since
it contains the information about the dominance relation. The decision maker
must choose the relevant directions in which dominance makes sense due to the
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properties of the optimization problem. After the definition of the set of rele-
vant directions —n linearly independent vectors b1, ..., bn— they can be used for
defining a basis as B in Section 2 —. The order is given by the cone C defined
as in (1).

3.1. q-nearest points in asymmetric normed lattices. Consider a subset A
of an asymmetric normed lattice (Rn,≤, q). The weakest notion of best approxi-
mation from A to a certain point x in the space is given by the so called q-nearest
points of A to x. Let us introduce some notation. We mainly follow [7] and the
references therein.

Recall that, broadly speaking, the point x from which we want to compute
the distance to A typically dominates a big part of A in the optimization sense,
what means that x ≤ y for a lot of elements y of A. This implies that d(y, x) = 0
for these points, what makes unnecessary to compute the optimal distance in
this “direction of the space” and justifies to focus our analysis on the symmetric
distance d(x, y) as we explain in what follows.

Let A ⊂ Rn and x /∈ A. Define the non-negative real number

dq(x,A) := inf{q(y − x) : y ∈ A},
and the set

PA(x) := {y ∈ Rn : q(y − x) = dq(x,A)}.
Definition 3.1. If PA(x) 6= ∅ for every x ∈ Rn, then it is said that A is q-
proximinal. In this case, each y ∈ PA(x) is said to be a q-nearest point to x in
A.

The notion of q-nearest point in a given set to a point is central in this paper.
Although the set PA(x) is not in general defined just by a single point, sometimes
this situation appears in a natural way. Let us show this in the next example.

Example 3.2. Consider again the asymmetric norm q0 defined in Example .
Suppose that the convex set A is the Pareto front of a 2-objective optimiza-
tion problem given by the segment defined by the line x1 + x2 = 9/4 and x1 ∈
[−1/5, 5/2]. Then a direct calculation shows that PA(0) is nonempty and con-
tains only the point (9/5, 9/20) (see Figure 3.2). This is the q-nearest point in
the Pareto front A to the point 0 this case. Note that the nearest point with respect
to the canonical Euclidean norm is (9/8, 9/8).

Figure 2. Unit sphere of the asymmetric norm q0 together with
the Pareto front.
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The characterization of this kind of points can be done for asymmetric norms
in terms of the actions of the functionals of the dual space as in the case of
normed spaces; the rest of this section is devoted to do that. This is rather
surprising, since as we said in Section 2.1 the dual space defined as the set of
bounded/continuous linear functionals ϕ : (X, q)→ R —in the sense that satisfy
an inequality as ϕ(x) ≤ k q(x), x ∈ X, for a certain constant k > 0—, is
not in general a linear space. However, its structure and the main separation
properties that it provides by acting on sets of X are nowadays well-known (see
[2, 5, 6, 8, 15, 16]). At least for the case of a convex set A the following results can
be stated. They give descriptions of the q-nearest points in terms of the elements
of the dual space in a Hahn-Banach fashion.

Theorem 2.5.2 in [7]. For a non-empty convex subset A of an asymmetric
linear space (X, q) and an element x ∈ X, we have that

dq(x,A) = sup
‖ϕ|q≤1

inf
y∈A

ϕ(y − x).

Moreover, if dq(x,A) > 0, then there exist ϕ0 ∈ Xb
q , ‖ϕ0|q = 1, such that

dq(x,A) = inf{ϕ0(y − x) : y ∈ A}, that means that the supremum in the for-
mula above is attained.

From this result, it can be deduced the following characterization of q-nearest
points in terms of functionals of the dual space.

Theorem 2.5.3 in [7]. Let A be a non-empty set of the asymmetric normed
space (X, q), y ∈ A and x ∈ X. If there is a functional ϕ ∈ Xb

q such that ‖ϕ|q = 1,
ϕ(y − x) = q(y − x) and ϕ(y) = inf ϕ(A), then y is a q-nearest point to x in A.
Conversely, if A is convex, dq(x,A) > 0 and y is a q-nearest point to x in A, then

there is a functional ϕ ∈ Xb
q satisfying the conditions in the previous paragraph.

For using these arguments for constructing an optimization tool, is better to
give a version in terms of separating functionals of the unit sphere of dual space
Xb

q . The following result gives the adequate version, in which the geometric
separation in clearly established.

Theorem 2.5.5 in [7]. Let A be a non-empty set of the asymmetric normed
space (X, q), y0 ∈ A and x ∈ X. If for every y ∈ A there is a functional ϕ = ϕy

in the unit ball of Xb
q such that ϕ(y0 − x) = q(y0 − x) and ϕ(y0 − y) ≤ 0, then y0

is a q-nearest point to x in A.
Conversely, if A is convex and y0 ∈ A is such that q(y0 − x) = dq(x,A) > 0,

then for every y ∈ A there is a functional ϕy (in fact an extreme point of the unit

ball of Xb
q) satisfying the conditions above.

Let us come back now to our setting. Recall that we are considering finite
dimensional real lattices (Rn,≤) for which the asymmetric norm is given by the
formula q(x) = ‖x ∨ 0‖, x ∈ Rn, where ‖ · ‖ is a lattice norm compatible with
the order ≤ (see the definition of q at the beginning of Section 2). The abstract
elements in the previous results can be now fixed in a much more concrete way.
We will see as a starting point that, essentially, only positive functionals are
continuous. Note that in this context “continuity” means continuity from the
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space (Rn, q) to the asymmetric normed space (R,max{r, 0}); indeed, p(r) :=
max{r, 0}, r ∈ R is clearly an asymmetric norm in R.

First of all, let us establish the optimal way of representing duality on asym-
metric normed lattices as the ones we are concerned in this paper. As we said in
Section 2, the order in the space (Rn, q,≤) is defined by the positive cone given
by the preference directions fixed at the beginning, and that define a basis B of
Rn. The natural way of representing the elements of the dual space is as the
vectors ϕ := (a1, · · · , an) ∈ Rn whose actions on the elements x = (x1, · · · , xn)
of (Rn, q,≤) are bounded, that is

ϕ(x) = 〈ϕ, x〉 ≤ kq(x)

for a certain k > 0 independent of x. Next lemma provides specific information
for our case.

Lemma 3.3. Consider an asymmetric normed lattice (Rn, q,≤) for an asymmet-
ric norm q belonging to our class. Then a linear functional ϕ : Rn → R that is
represented in the canonical basis as ϕ = (a1, ..., an) belongs to (Rn)bq if and only
if

(a1, ..., an)(M−1)T ≥ 0.

Taking into account that (β1, ..., βn) = (a1, ..., an)(M−1)T , where (β1, ..., βn) are
the coordinates of ϕ in the dual basis of B, this condition can be written also as
(β1, ..., βn) ≥ 0.

Proof. Let us show first the “only if” part of the proof. Due to the structure
of the space and taking into account that the scalar product in the underlying
Euclidean space is given by

x · y = (x1, · · · , xn)(M−1)T · (M−1)

y1
...
yn

 , x, y ∈ Rn,

the duality among a vector x with coordinates (x1, · · · , xn) —in the canonical
basis— and a functional ϕ = (a1, · · · , an) must also be written as

ϕ(x) = (x1, · · · , xn)(M−1)T · (M−1)

a1
...
an

 , x ∈ Rn, ϕ ∈ (Rn)bq.

Therefore, using Lemma 2.1, the condition ϕ(x) ≤ k q(x) can be written as

ϕ(x) = (x1, · · · , xn)(M−1)T · (M−1)

a1
...
an



≤ k

√√√√√√((x1, · · · , xn)(M−1)T ∨ 0
)
· (M−1)

x1
...
xn

.
Using the coordinates (α1, · · · , αn) of the vector x in the basis B as explained in
Section 2, we obtain

(α1, · · · , αn) ·

β1
...
βn

 ≤ k
√√√√ n∑

i=1

max{αi, 0}2 (3)
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where

β1
...
βn

 = (M−1)

a1
...
an

 are the coordinates of ϕ in the dual basis B∗, which

coincides with B. Since (3) must hold for every (α1, ..., αn) ∈ Rn, we have that
the boundedness/continuity requirement is given by the inequalityβ1

...
βn

 = (M−1)

a1
...
an

 ≥ 0,

and so the result is proved.
For the converse, just consider the continuity inequality given by equation

(3): since (β1, ..., βn) ≥ 0, using Cauchy-Schwarz inequality we obtain for all
(α1, ..., αn) ∈ Rn

(α1, · · · , αn) ·

β1
...
βn

 ≤ n∑
i=1

max{αi, 0}βi ≤

√√√√ n∑
i=1

max{αi, 0}2 ·

√√√√ n∑
i=1

β2
i

what gives the result. � �

This allows to write the following concrete representation of the dual space
(Rn)bq. Note that, using the representation of the vector x in the new basis B

x ∼ (α1, · · · , αn) = (x1, · · · , xn)(M−1)T

and the usual duality in the sequence space `2 with this representation, we obtain
the following result.

Lemma 3.4. The dual space is the normed cone ((Rn)bq, q
∗) represented (in the

canonical basis) by the vectors

(Rn)bq =
{
ϕ = (a1, ..., an) ∼ (β1, · · · , βn) ∈ Rn : (β1, · · · , βn)

= (a1, ..., an)(M−1)T ≥ 0
}
,

and with a cone-norm given by

q∗(ϕ) := ‖ϕ|q =
( n∑

i=1

β2
i

) 1
2
.

Proof. This is just a consequence of the following equalities. Take

q∗(ϕ) := ‖ϕ|q = sup

ϕ(x) = (β1, · · · , βn) ·M−1

x1
...
xn


 , (4)

where the supremum is computed over all vectors x satisfying

q(x) =

√√√√√√((x1, ...xn)(M−1)T ∨ 0
)
·M−1

x1
...
xn

 ≤ 1.
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Then, in view of (4) and taking into account that all βi are non-negative the
duality in the Euclidean space gives

sup

ϕ(x) = (β1, · · · , βn) ·

α1
...
αn

 : q(x) =

√√√√ n∑
i=1

max{αi, 0}2 ≤ 1


=
( n∑

i=1

|βi|2
) 1

2
=
( n∑

i=1

β2
i

) 1
2
. �

�

These results allow to write the characterization of q-nearest points in terms
of functionals as follows. Note that we can assume that the selected point x to
which we want to find the q-nearest distance point can be identified with the
origin 0.

Corollary 3.5. For a non-empty convex subset A of an asymmetric linear space
(Rn, q) of our class, we have that

dq(0, A) = sup

inf
{

(β1, · · · , βn) ·M−1

y1
...
yn

 : y ∈ A
}

:
n∑

i=1

β2
i ≤ 1, βi ≥ 0

 ,

where (y1, ..., yn) are the coordinates in the canonical basis of any y ∈ A.
Moreover, if dq(0, A) > 0, then there exists ϕ0 = (β1, · · · , βn) with

β1 ≥ 0, · · · , βn ≥ 0,

n∑
i=1

β2
i = 1,

such that

dq(0, A) = inf
{

(β1, · · · , βn) ·M−1

y1
...
yn

 : y ∈ A
}
.

Proof. Just use Theorem 2.5.2 in [7], Lemma 3.3 and Lemma 3.4. � �

Let us give now the specific Hahn-Banach separation theorem for our family
of finite dimensional asymmetric normed lattices.

Corollary 3.6. Let A be a non-empty set of an asymmetric normed space (Rn, q)
of our class and y ∈ A. If there is (β1, ..., βn) such that β1 ≥ 0, · · · , βn ≥ 0,∑n

i=1 β
2
i = 1 and

q(y) = (β1, · · · , βn)M−1

y1
...
yn

 ≤ (β1, · · · , βn)M−1

z1
...
zn


for all (z1, ..., zn) ∈ A, then y is a q-nearest point to 0 in A.

Conversely, if A is convex, dq(0, A) > 0 and y is a q-nearest point to 0 in A,
then there is a vector (β1, · · · , βn) satisfying the conditions above.

Proof. Use Theorem 2.5.3 in [7], Lemma 3.3 and Lemma 3.4. � �
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Due to the fact that the norm from which the asymmetric norm q is constructed
comes from a scalar product, we can give a more concrete version of the result
above, that in fact provides the best tool for computing the q-nearest points.
Note that the convexity of A is not necessary for (ii) ⇒ (i).

Corollary 3.7. Let A be a non-empty convex set of an asymmetric normed
space (Rn, q) of our class such that dq(0, A) > 0. The following statements are
equivalent for a point y = (y1, · · · , yn) ∈ A.

(i) y is a q-nearest point to 0 in A.

(ii) For every z = (z1, · · · , zn) ∈ A we have that

(
(y1, · · · , yn)(M−1)T ∨ 0

)
·M−1

y1 − z1
...

yn − zn

 ≤ 0.

Proof. For (ii) ⇒ (i) we can use Corollary 3.6 (or Theorem 2.5.5 in [7]), Lemma
3.3 and Lemma 3.4, taking into account that an element (β1, ..., βn) that gives

by duality the asymmetric norm q(y) is (β1, ..., βn) =

(
(y1,··· ,yn)(M−1)T∨0

)
q(y) , since

(
(y1, · · · , yn)(M−1)T ∨ 0

)
·M−1

y1
...
yn

 = q(y)2.

Note that this equation gives also that the asymmetric norm of (β1, ..., βn) is
equal to one, as can be seen by dividing the equation by q(y)2 and applying
Lemma 3.4.

For (i)⇒ (ii) just consider the converse in Corollary 3.6. Notice that due
to the strict convexity of the Euclidean norm, the only (norm one) functional

that provides the norm of the vector ŷ+ := M−1

y1
...
yn

 ∨ 0 is ŷ+

‖ŷ+‖ . Indeed,

q(y)2 = ‖ŷ+‖2 = ŷ+ · ŷ+. � �

3.2. Optimal distance points in asymmetric normed lattices. Even for
the Euclidean generated asymmetric norms of our family the notion of q-nearest
point is too weak for having uniqueness results for optimization problems, since
for very natural (convex) examples it can be easily proved that the set of q-nearest
points from 0 to a set A is far to be a singleton. This motivated the introduction
in the abstract theory of the notion of optimal distance points. Let A ⊂ Rn and
x /∈ A. Let us write PA for the set of q-nearest points to A, that is

PA := PA(0) =
{
y ∈ Rn : q(y) = dq(0, A) = inf

{
q(z) : z ∈ A

}}
.

Recall that sometimes this set contains only one point. For instance, we shown
in Example 3.2 a particular situation in which this happens. However, this may
not be the case. Let us show with an easy example that in general this set is not
a singleton at all. This fact motivates the introduction of the main notion of this
section: optimal distance points for asymmetric Euclidean lattice norms.
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Example 3.8. Take the Euclidean canonical asymmetric lattice norm in R2, that
is given by

q2((y1, y2)) =
√

(max{y1, 0})2 + (max{y2, 0})2.

Consider that the Pareto front of an optimization problem is given by the (convex)
set A0 = {(y1, 5/4) : −1 ≤ y1 ≤ 1}. Then for every (y1, 5/4) in this set,

dq((0, 0), (y1, 5/4)) = q((y1, 5/4)) =
√

max{y1, 0}2 + (5/4)2.

The infimum of such function in A0 is 5/4, and it is attained for all the points
that satisfies that y1 ≤ 0. That is, the set of q-nearest points from 0 to A0 is

PA0 = {(y1, 5/4) : −1 ≤ y1 ≤ 0}.

Figure 3. Unit sphere of the asymmetric norm q2 together with
the Pareto front A0.

Before introducing the concept of optimal distance point, let us write some
geometric/topological properties of the sets of q-nearest points. The following
results can be found in [7] and in [17]; they are direct consequences of Lemma 2.3
and Proposition 2.6 in [17] for our setting. Recall that ≤ is the order compatible
with q given by the cone generated by the elements of B, which does not coincide
necessarily with the canonical order of Rn.

Remark 3.9. Let A be a non-empty set of a finite dimensional asymmetric
normed lattice (Rn, q,≤) of our class. Then

(i) If A is a convex subset, then PA is convex too.

(ii) If A is a closed subset of (Rn, qs), then PA is a closed subset of (Rn, qs).

(iii) If y ∈ PA, then {z ∈ A : z ≤ y} ⊂ PA.

(iv) If y ∈ Rn and {z ∈ A : z ≤ y} 6= ∅, then q(y) ≥ d(0, A).

We will introduce the concept of optimal distance point formally in what fol-
lows. This stronger notion allows to provide uniqueness results, and its analysis
completes the information given by the computation of the set of q-nearest points.
The following definition was originally given in [17] and can be found in Section
2.5.4 of [7] (make x = 0 in the definition appearing there).
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Definition 3.10. Let (Rn, q,≤) an Euclidean asymmetric normed lattice of our
class and write ‖ ·‖q for the associated Euclidean norm. Let A ⊆ Rn. A q-nearest
point y ∈ A satisfying

‖y‖q ≤ ‖z‖q
for every z ∈ PA, is called an optimal distance point.

This definition, the previous properties of the set P (A) and known results on
optimal points on normed spaces allow to write the following relevant existence
and uniqueness result as a direct consequence.

Theorem 3.11. Let A ⊆ Rn a convex set such that PA 6= ∅. Then

(i) There is at most one optimal distance point.

(ii) If A is qs-closed, then such a point exists.

Proof. Strict convexity of the norm qs, local compactness of finite dimensional
normed spaces or reflexivity of these spaces imply the following result from The-
orem 2.5 in [17] (alternatively, see Theorem 2.5.9 in [7]). �

�

If A ⊆ Rn, we write c(A) for co(A)
qs

, the closure of the convex hull with respect
to the Euclidean norm. By changing A by this set and using again Theorem 2.5
in [17], we can formulate the following

Corollary 3.12. Let A be a set of solutions of a multi-objective optimization
problem —that is, its Pareto set—. Then there exists a unique optimal distance
point from 0 to c(A).

Let us finish the section with an example. We intend to show that combining
the computation of optimal distance points among the q-nearest points provides
a good solution for the optimization problem explained in the Introduction. Note
that all the points of PA —the q-nearest points— are optimal if the only criterion
used is the optimization of q. However, this set is too big and is not giving in
general a reasonable answer to the problem, as can be easily shown.

Example 3.13. Consider the subset A0 of the canonical Banach lattice R2 given
in Example 3.8.

(i) The optimization of the non-symmetric distance provided by q —the set
of q-nearest points to 0— gives that

PA0 = {(y1, 5/4) : −1 ≤ y1 ≤ 0}.
We can try with other reasonable criterion; for example, take the point
(y0

1, y
0
2) of PA0 that dominates all the set PA0 (in the sense that (y0

1, y
0
2) ≤

(y1, y2) for (y1, y2) ∈ PA0). This is the point (−1, 5/4). However, the
optimal distance point from 0 to PA0 is (0, 5/4): among all the q-nearest
points, the one from which the Euclidean distance to 0 attains the mini-
mum.

(ii) In the example above, the optimal distance point coincides with the point
of A0 for which the minimal Euclidean distance from 0 to A0 is attained.
However this is not always the case, as can be seen in the next example.
Let us define now the (convex) subset

A1 := {(y1, y2) : y2 = y1 + 1, −2 ≤ y1 ≤ 0}



16 X. BLASCO, G. REYNOSO-MEZA, E.A. SÁNCHEZ-PÉREZ, AND J.V. SÁNCHEZ-PÉREZ

of the space considered above. We have that the Euclidean distance is

dqs(0, A1) = 1/
√

2,

and the mimimum is attained only at the point (−1/2, 1/2) ∈ A1. How-
ever, we have that PA1 = {(y1, y1 + 1) : −2 ≤ y1 ≤ −1} to which the
distance dq(0, A1) = 0 and that does not contain the point (−1/2, 1/2).
Clearly, the optimal distance point is in this case (−1, 0).

4. Conclusions: optimal distance points for the analysis of the
Pareto sets of multi-objective optimization problems

As we explained in the introductory section, the aim of this paper is to provide
suitable theoretical results concerning the existence and uniqueness of solution of
optimization problems using asymmetric norms for the foundation of this recently
developed technique (see [4]). The applied context in which our results work can
be explained as follows.

Given a Pareto set A ⊂ Rn of a multi-objective optimization problem, a deci-
sion maker has to choose the best point in A satisfying his requirements. Using
the information he has about the problem, he can clearly define the adequate dom-
ination relation among points in the space Rn. That is, he is able to establish
the directions that should be favored in the space for fixing the right domination
among points —preference directions—, and the relative intensity among them,
for finally choosing the best point in A. This point is identified in our development
with the optimal distance point of A in the corresponding asymmetric Euclidean
linear lattice. In the classical analysis of Pareto sets the canonical basis provides
these directions, but this can be adjusted in each case by the decision maker to
improve the result.

In what follows we explain an explicit algorithm for solving the problem.

(1) The decision maker chooses a basis of preference directions, that is used
for defining a new Euclidean quasi norm q as explained in previous sec-
tions. This q contains the information on the domination directions that
are preferred by the decision maker.

(2) The problem is then to compute the best approximation from the subset
A to an element x0 ∈ Rn \A in the asymmetric Euclidean normed lattice
(Rn,≤, q), where the asymmetric norm q is defined by the vectors that
provide the preference directions fixed by the decision maker.

(3) As a consequence of the asymmetric nature of the topology in (Rn,≤, q)
the best approximation must be understood in the following sense: to
find among the points y ∈ A that satisfy that q(y − x0) is minimum, the
ones that satisfy that the Euclidean distance qs(y− x0) = inf{qs(z− x0) :
z ∈ A} is also minimum. Following the notation introduced in [17], these
points are optimal points of shortest distance, or simply optimal distance
points. We may assume also that x0 = 0 by making a translation if
necessary.

(4) We want also to analyze under which assumptions on A we can assert
that there exists an optimal point of shortest distance, and in this case if
it is unique.

About this problem, we know by Theorem 3.11 and Corollary 3.12 that:
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1. If A is convex and PA 6= ∅, then there is at most one optimal distance
point, that always exists if A is also closed for the Euclidean topology.

2. There exists a unique optimal distance point from 0 to c(A), the closure
of the Euclidean topology of the convex hull of A.

Let us write explicitly the mathematical optimization problem using the results
of the previous section.

Let A ⊂ Rn be the Pareto set of a multi-objective optimization problem and
consider the asymmetric normed lattice (Rn,≤, q) of our class given by a basis
B of preference directions defined by the decision maker. We assume that A is
a non-empty convex set and dq(0, A) > 0; otherwise, the convex hull may be
considered in case the second requirement are satisfied for the new set. Note
that, in view of formula (2) explained at the beginning of the paper, dq(0, A) = 0
means that the optimum point 0 —the utopia in our setting— is attained.

We have to consider two processes:

(A) Compute the set NA all the points (y1, ..., yn) ∈ A that satisfy that for
z = (z1, · · · , zn) ∈ A we have that

(
(y1, · · · , yn)(M−1)T ∨ 0

)
·M−1

y1 − z1
...

yn − zn

 ≤ 0.

As a consequence of Corollary 3.7, this set is composed by the candidates

for being q-nearest points to 0.

(B) Compute the elements (y1, ..., yn) ∈ NA that satisfy that

dqs(0, NA) = inf{qs((z1, ..., zn)) : (z1, ..., zn) ∈ NA} = qs((y1, ..., yn)).

Notice that we are assuming that such elements (y1, ..., yn) exist.

Having this in mind, we can give a clear statement for the problem to be solved
with the aim of obtaining the optimal distance points of a Pareto set.

Given a Pareto set of a multi-objective optimization problem A 6= ∅, the ques-
tion to be solved by using the adequate computational methods for obtaining the
optimal distance points to 0 with respect to the asymmetric norm is:

Objective: To find the infimum of (y1, ..., yn)(M−1)T · (M−1)

y1
...
yn


among all points (y1, · · · , yn) that satisfy that

(
(y1, · · · , yn)(M−1)T ∨ 0

)
·M−1

y1 − z1
...

yn − zn

 ≤ 0

for all z = (z1, · · · , zn) ∈ A, where all the vectors are expressed in their canon-
ical coordinates, and M is the matrix of the basis B defined by the preference
directions chosen by the decision maker.
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metric normed spaces. Topology Appl. 155, 527-539 (2008)

[2] Alegre, C., Ferrer, J., Gregori, V.: On the Hahn-Banach theorem in certain linear quasi-
uniform structures. Acta Math. Hungar. 82, 315-320 (1999)

[3] Aliprantis, C.D., Burkinshaw. O: Locally solid Riesz spaces with applications to economics.
American Mathematical Soc., Providence (2003)
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Enrique A. Sánchez-Pérez (Corresponding author), Instituto Universitario de
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