This paper has been published in $Journal\ of\ Group\ Theory,\ 12(6):961–963\ (2009).$ Copyright 2009 by Walter de Gruyter. The final publication is available at www.degruyter.com. http://dx.doi.org/10.1515/JGT.2009.026 http://www.degruyter.com/view/j/jgth.2009.12.issue-6/jgt.2009.026/jgt.2009.026.xml ## Corrigendum to "A Note on Finite \mathcal{PST} -Groups"* [J. Group Theory 10 (2007), 205–210] A. Ballester-Bolinches[†] R. Esteban-Romero[‡] M. Ragland[§] 23rd January 2013 Theorem A states that the finite groups in which all subnormal subgroups are S-permutable (\mathcal{PST} -groups) are exactly those groups in which subnormal subgroups of defect 2 are S-permutable (\mathcal{T}^* -groups). The proof of this result uses a characterization of finite \mathcal{PST} -groups in [4], namely the \mathcal{PST} -version of Theorem 3.1 (see Postscript). However, the hypothesis of this result was incorrectly stated: the inequality $1 \leq r < k$ should read $0 \leq r < k$. Unfortunately, with the weaker hypothesis the result becomes false, as the following example shows: **Example 1.** Let A be a group such that $Z(A) = \Phi(A) \cong C_3$ and $A/\Phi(A) \cong A_6$, the alternating group on 6 letters (such a group exists because the Schur multiplier of A_6 is isomorphic to C_6). Let $G = A \times \Sigma_3$. We see that G satisfies the condition of the PST-version of Theorem 3.1 in [4, Postscript], but G is not a \mathcal{PST} -group. Consider D = A. Then D is a perfect normal subgroup of G. Moreover: - 1. $G/D \cong \Sigma_3$ is a soluble \mathcal{PST} -group. - 2. $D/Z(D) = U_1/Z(D) \cong A_6$ is simple and $U_1 = D$ is normal in G. ^{*}This research has been supported by the grants MTM2004-08219-C02-02 and MTM2007-68010-C03-02 from MEC (Spanish Government) and FEDER (European Union) and GV/2007/243 from Generalitat (València) [†]Departament d'Àlgebra, Universitat de València, Dr. Moliner, 50, E-46100 Burjassot, València, Spain, email: Adolfo.Ballester@uv.es [‡]Institut Universitari de Matemàtica Pura i Aplicada, Universitat Politècnica de València, Camí de Vera, s/n, E-46022 València, Spain, email: resteban@mat.upv.es [§]Department of Mathematics, School of Sciences, 213 Goodwyn Hall, Auburn University Montgomery, P.O. Box 244023, Montgomery, AL 36124-4023, USA, email: mragland@mail.aum.edu 3. If $\{i_1, i_2, \ldots, i_r\} \subseteq \{1\}$, where $1 \leq r < 1$, then $G/U'_{i_1}U'_{i_2}\cdots U'_{i_r}$ satisfies \mathbf{N}_p for all $p \in \pi(\mathbf{Z}(D))$. This condition is trivially satisfied because there does not exist such a subset. Consequently, G satisfies the conditions of the \mathcal{PST} -version of Theorem 3.1 in [4, Postscript], but G is not a \mathcal{PST} -group. Careful examination the proof of Robinson's theorem shows that it uses not only that the quotients of G by the products $U'_{i_1} \cdots U'_{i_r}$ satisfy the condition \mathbf{N}_p , where $D/\mathbf{Z}(D) = U_1/\mathbf{Z}(D) \times \cdots \times U_n/\mathbf{Z}(D)$, but also G must satisfy the property \mathbf{N}_p , this being the case r=0. With this change in the hypothesis, Theorem 3.1 (and Theorem 4.1) in [4] are correctly proved. In view of this situation, in order to complete the proof of our Theorem A we need only show that, with the hypothesis of that result, the group G satisfies the condition \mathbf{N}_p for each $p \in \pi(\mathbf{Z}(D))$, where D is the soluble residual of G.this statement. First we prove a lemma. **Lemma 1.** Let N be a normal p-subgroup of a group G, p a prime. Then the p'-elements of G induce power automorphisms in N if and only if all chief factors of G below N are cyclic and G-isomorphic. Proof. Assume that all p'-elements of G induce power automorphisms in N. If a p'-element g of G does not centralize N, then N is abelian by [2, Hilfssatz 5]. In this event g induces a universal power automorphism in N by [3, 13.4.3]. It follows that p'-elements of G induce in N automorphisms that belong to the centre of $\operatorname{Aut}(N)$. Consequently the p-elements of $G/C_G(N)$ form a normal subgroup and hence centralize each chief factor of G below N. It follows that all chief factors of G below N are cyclic and G-isomorphic. Assume now that all chief factors of G below N are cyclic and G-isomorphic. Let q be a prime different from p and let Q be a Sylow q-subgroup of G. Then X = NQ is a subgroup of G. Since G-chief factors of N have order p, all p-chief factors of X are cyclic and X-isomorphic. Therefore X satisfies \mathcal{U}_p^* , that is, all chief factors of X of order divisible by p are cyclic and isomorphic when regarded as X-modules. Since every subgroup H of N is subnormal and p'-perfect, it follows that H permutes with Q by [1]. Hence Q normalizes H and consequently all p'-elements of G induce power automorphisms in N. Proof of Theorem A completed. It suffices to show that if G is a \mathcal{T}^* -group, then it is a \mathcal{PST} -group. Suppose that G is a counterexample of minimum order; then G is an \mathcal{SC} -group and all its proper quotients are \mathcal{PST} -groups. To complete the proof in the insoluble case, it is enough to show that G satisfies \mathbf{N}_p for each $p \in \pi(\mathbf{Z}(G))$. Since every quotient of G by every non-trivial soluble normal subgroup of G is a \mathcal{PST} -group, it is enough to show that for every prime $p \in \pi(Z(D))$ the p'-elements of G induce power automorphisms in $O_p(G)$. The result is clear if $|O_p(G)| \leq p$. Assume $|O_p(G)| > p$. Let N be a minimal normal subgroup of G contained in $O_p(G)$. Then all p'elements of G/N induce power automorphisms in $O_p(G/N) = O_p(G)/N$. Lemma 1 implies that all chief factors of G/N below $O_p(G)/N$ are cyclic and G-isomorphic. Consider now a minimal normal subgroup A/N of G/Ncontained in $O_n(G)/N$. Since G is an \mathcal{SC} -group, it follows that A is an abelian normal subgroup of G of order p^2 . If H is a subgroup of A, then H is a subnormal subgroup of G of defect at most 2. Since G is a \mathcal{T}^* -group, H is S-permutable in G. It follows that every subgroup of A is normalized by all Sylow q-subgroups of G with $q \neq p$. In particular, the p'-elements of G act as power automorphisms on A. By Lemma 1, all chief factors of G below A are cyclic and G-isomorphic. Consequently all chief factors of G below $O_p(G)$ are cyclic and G-isomorphic and so the p'-elements of G induce power automorphisms on $O_p(G)$ by Lemma 1. Hence we can assume that the group is soluble and then the proof is exactly the same to the one appearing in our paper. ## References - [1] M. J. Alejandre, A. Ballester-Bolinches, and M. C. Pedraza-Aguilera. Finite soluble groups with permutable subnormal subgroups. *J. Algebra*, 240(2):705–722, 2001. - [2] B. Huppert. Zur Sylowstruktur auflösbarer Gruppen. Arch. Math., 12:161–169, 1961. - [3] D. J. S. Robinson. A course in the theory of groups. Springer-Verlag, New-York, 1982. - [4] D. J. S. Robinson. The structure of finite groups in which permutability is a transitive relation. *J. Aust. Math. Soc.*, 70(2):143–159, 2001.