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Abstract 

Although standard 12-lead ECG is the primary 

technique in cardiac diagnostic, detecting different 

cardiac diseases using single or reduced number of leads 

is still challenging. The purpose of our team, itaca-UPV, 

is to provide a method able to classify ECG records using 

minimal lead information in the context of the 2021 

PhysioNet/Computing in Cardiology Challenge, also using 

only a single-lead. 

We resampled and filtered the ECG signals, and 

extracted 109 features mostly based on Hearth Rhythm 

Variability (HRV). Then, we used selected features to train 

one feed-forward neural network (FFNN) with one hidden 

layer for each class using a One-vs-Rest approach, thus 

allowing each ECG to be classified as belonging to none 

or more than one class. Finally, we performed a 3-fold 

cross validation to assess the model performance. 

Our classifiers received scores of 0.34, 0.34, 0.27, 0.30, 

and 0.34 (ranked 26th, 21th, 29th, 25th, and 22th out of 39 

teams) for the 12, 6, 4, 3 and 2-lead versions of the hidden 

test set with the Challenge evaluation metric. 

Our minimal-lead approach may be beneficial for novel 

portable or wearable ECG devices used as screening tools, 

as it can also detect multiple and concurrent cardiac 

conditions. Accuracy in detection can be improved adding 

more disease-specific features. 

 

1. Introduction 

The clinical importance of cardiac arrhythmias is 

increasing along with their incidence and prevalence 

mostly associated with population aging [1]. Besides this, 

nowadays wearable devices are gaining great interest as 

monitoring devices in both research and clinical settings 

[2]. Although standard 12-lead ECG is the primary 

technique in cardiac diagnostic, detecting different cardiac 

diseases using single or reduced number of leads is still 

challenging [3]. 

The aim of this study is to is to provide and evaluate 

methods able to classify ECG records using minimal lead 

information in the context of the 2021 

PhysioNet/Computing in Cardiology Challenge [4, 5], 

using also only a single-lead. 

 

2. Materials 

As database for this study we used the 88,253 12-lead 

ECG registers provided by the competition as training set 

containing also the age and gender of the patient for each 

record. Deeper explanation of the database can be found in 

[4, 5]. 

 

3. Methods 

This section describes the signal feature extraction and 

selection processes, plus the models validation 

methodology used during this work. All these stages were 

performed using MATLAB (R2020b, The MathWorks). In 

addition to the official leads sets of the challenge, we report 

this methodology results using the single lead ‘I’. 

 

3.1. Signal preprocessing 

First, all ECG signals were resampled to 500Hz if 

necessary. Next, a 50Hz notch filter plus a band-pass filter 

between 0.5Hz and 40Hz were applied. Finally, we 

removed the first and last second of each signal in order to 

leave out the filtering stabilization stage. Lastly we 

removed artifacts using a 0.5 second sliding window in 

order to calculate aberrant maximum and minimum values, 

where sections surrounded by outliers were set to zero. 

 

3.2. Feature Extraction 

We automatically extracted 109 signal features mostly 
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derived from ventricular activity from each ECG lead, 

most of them previously used in [6]. To carry out this task, 

initially, we extracted the RR sequence using a QRS 

detector based on the first derivative of the ECG. Then we 

filtered the outliers from the RR sequence, and obtained the 

first and second derivatives of that sequence (RRd1, 

RRd2). Also, we created a T-wave detector in order to 

obtain the QT interval and other related features.  

Finally, we got both the QRS and T wave patterns for 

each lead using a ±100ms window over all the QRS and T 

wave detections. 

Furthermore, we got the Welch’s power spectral density 

estimation for each lead in order to obtain some frequency-

based features. 

Using the above information, the extracted signal 

features for each lead can be grouped as follows: 

Group 1. Basic statistics over the R and T waves voltages 

(mean, standard deviation). 4 features. 

Group 2. Basic statistics over the QT interval in 

milliseconds (mean, standard deviation). 2 features. 

Group 3. Features based on the QRS and T patterns: 

Percentage of amplitude of T wave respect the R wave, 

sign of the R and T waves (positive or negatives), 

percentage of waves discards and RMSE during the R and 

T pattern definition, and maximum values for first and 

second derivatives of both patterns. 11 features. 

Group 4. Spectral features: Dominant frequency (fdom) 

using the Welch spectral density estimation method, 

percentage of the area in fdom±0.5Hz in the periodogram 

normalized in the range [0, 1] and the sum of the 

normalized periodogram in steps of 2Hz in the range [0, 

30] Hz. 17 features. 

Group 5. Basic statistics over the RR, RRd1 and RRd2 

sequences (mean, standard deviation, kurtosis, skewness). 

9 features. 

Group 6. Features based on RRd1: RMSSD, pNN25, 

pNN50, pNN75, where pNNxx [7] denotes the percentage 

of intervals between normal beats exceeding xx ms. 4 

features. 

Group 7. Poincaré plot-based features using RRd1: 

Maximum, minimum, mean, standard deviation, kurtosis 

and skewness of the distances among all the points plus the 

absolute difference between the maximum and minimum 

distance values. 7 features. 

Group 8. Lorenz plot-based features using RRd2: Angular 

variability, dispersion of the distance between points to 

origin, and differences between 2 and 3 consecutive beats. 

8 features. 

Group 9. Same statistics as in points 5 and 6, but using an 

8 seconds sliding window and a step size of 2 seconds. 

Once the matrix of values is obtained using each signal 

interval, we extracted the minimum, maximum, mean and 

standard deviation for each feature, appending all this 

values in a 44 features vector. 

Group 10. Other features: Shannon entropy of the RR 

sequence, Lempel-Ziv complexity of the RR time series 

after binarization using the median as threshold, and ratio 

between the number of different QRS patterns found and 

the total number of waves detected. 3 features.  

 

3.3. Feature dataset preprocessing 

First, for each feature, outliers exceeding 3 times the 

standard deviation above or below the median were 

replaced by these same limits. 

Next, if some sample contained a NaN value due to a 

feature extraction error or the impossibility of obtaining 

such value for a given sample, we replaced that value for 

the median value in the dataset for such feature. According 

to this rule, and taking into account 1310 features in the 

whole dataset using 12 leads (age, sex, and 109 features for 

each lead), finally the 0.61% of values were replaced for 

the corresponding median.  

Lastly, we performed a z-score using the training set to 

rescale the whole dataset. 

 

3.4. Scoring 

2021 PhysioNet/Computing in Cardiology Challenge 

scoring rules are described in [5], where only 26 classes 

are taken into account. Also, we report the G metric (𝐺 =
𝑠𝑞𝑟𝑡(𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 ∗ 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦)) in this work since it 

was used in order to select the binary classifiers with best 

performance during the training and validation stage. 

 

3.5. Feature Selection 

Previously to the training of each feed-forward neural 

network (FFNN) mentioned below, a feature selection was 

performed for each class using both supervised and 

unsupervised statistical filtering methods. 

Age and sex always were used in order to avoid an 

empty set of features. Next, we perform a two-sample ttest 

with an alpha value of 0.05 for each feature taking into 

account if the sample belongs or not to the specified class, 

and all the features that did not pass the significance test 

were removed. Finally, we get the correlation coefficient 

among the lasting features for each pair of features, and we 

removed the last feature of the pair where their correlation 

coefficient was greater or equal than 0.9. The remaining 

features were used as inputs for the corresponding binary 

classifier. 

 

3.6. One-vs-Rest Classification Approach 

In this work we used a One-vs-Rest classification 

approach (see Figure 1), where for each class in the 

training set, a classifier was trained and used in order to 

give a binary response indicating if an unseen sample 

belongs or not to the corresponding class. Thus, each 

classifier solves an independent problem in the whole 
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classification model, been possible to assign to none or 

more than one class a new sample. 

Each binary classifier uses its selected set of features as 

inputs that best fits its own classification problem. Next, 

each binary classifier corresponds to a FFNN made of 18 

or 32 hidden units, and a threshold for the output to give 

the binary response. All the FFNN where trained with the 

default objects and parameters in the Matlab R2020b Deep 

Learning Toolbox, using the trainscg (Scaled Conjugate 

Gradient) as training function, the useGPU flag switched 

on in order to use the available GPUs to speed up the 

training and the showResources flag switched off.  

Using as inputs the selected features for a given class, 

the 75% of training data was used to train the FFNN and 

the resting 25% to select the output threshold in the range 

[-1, 1] that achieves a higher G value, both with 18 and 32 

hidden units. Finally, among the two trained models, we 

choose the one that presented a higher G value to be used 

in the whole One-vs-Rest classification model. 

 

 
Figure 1. Summary diagram of the One-vs-Rest 

classification approach used during this work. 

 

3.7. Model validation 

Since the number of samples in the database is large 

enough and the training time could become unnecessarily 

high for a cross-validation with a large number of folds, we 

used a 3-fold cross validation with the 88,253 training 

samples. Furthermore, we selected the samples for each 

fold with no bias among all the distinct databases available. 

 

 

4. Results 

Best results in the hidden test set using the Challenge 

score have a value of 0.34 using 12, 6 and 2 leads 

indistinctly. Table 1 shows the whole results set and 

ranking using the Challenge score.  

Table 2 shows the mean of different performance 

metrics in the classification of the 26 scored classes in the 

challenge on the public training set, where higher G value 

of 0.76 was achieved using 12 leads, followed by a G value 

of 0.74 using both 6 and 2 leads. 

Finally, Table 3 shows the results achieved for 

individual binary classifiers where G metric is greater than 

0.8 in some of the lead combinations during the validation 

of the first training fold, where 10 different cardiac 

conditions reach this classification performance threshold. 

 

 

#Leads Training Validation Test Ranking 

12 0.38±0.01 0.402 0.34 26/39 

6 0.36±0.01 0.402 0.34 21/39 

4 0.28±0.01 0.363 0.27 29/39 

3 0.31±0.01 0.380 0.30 25/39 

2 0.36±0.01 0.402 0.34 22/39 

1 0.34±0.01 - - - 

Table 1. Challenge scores for our final selected entry 

(team itaca-UPV) using 3-fold cross validation on the 

public training set, repeated scoring on the hidden 

validation set, and one time scoring on the hidden test set 

as well as the ranking on the hidden test set. 

 

 

#Leads AUROC Sens. Spec. G 

12 0.83 0.81 0.74 0.76 

6 0.81 0.79 0.72 0.74 

4 0.78 0.76 0.68 0.69 

3 0.79 0.78 0.67 0.69 

2 0.81 0.79 0.73 0.74 

1 0.79 0.78 0.70 0.71 

Table 2. Mean of other performance metrics among the 

classification of the 26 scored classes for our final selected 

entry using 3-fold cross validation on the public training 

set: Area Under the ROC Curve, Sensitivity, Specificity 

and G metric; mean of the standard deviation was ±0.007. 

 

5. Discussion 

Results obtained in this work showed low differences 

among the results obtained in the G values among the 

classifiers that uses 12 leads and the ones that only uses 

minimal leads information. Classification using only one 

or two leads outperformed the ones using three and four 

leads, possibly due to leads V2 and III added some bias in 
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their extracted features respect the ones in leads I and II. In 

this sense, further studies should get the classification 

performance for each single lead in order to know their 

individual performance. 

On the other hand, since the signals from leads I and II 

share many characteristics with those offered by wearables 

devices, the resulting classification models may eventually 

be suitable for clinical use in wearable or automated 

control systems. This approach would benefit from low 

computational costs consumption during classification. 

Nevertheless, poor results in the Challenge score metric 

could highlight that this approach should be used 

cautiously when detecting cardiac conditions with low 

performance in our results. Future optimization of these 

classifiers should improve by adding more disease-specific 

features and/or modifying the binary classification 

strategy. 

 

 

Class 
G  

(12-leads) 

G  

(6-leads) 

G 

(4-leads) 

G 

(3-leads) 

G 

(2-leads) 

G 

(1-leads) 

Sinus tachycardia 0.931 0.926 0.910 0.891 0.932 0.931 

Sinus bradycardia 0.910 0.903 0.865 0.912 0.920 0.923 

Left anterior fascicular block 0.893 0.896 0.897 0.853 0.908 0.674 

Atrial flutter 0.862 0.860 0.843 0.842 0.857 0.848 

Atrial fibrillation 0.865 0.873 0.862 0.848 0.844 0.859 

Sinus arrhythmia 0.847 0.828 0.809 0.819 0.840 0.843 

Pacing rhythm 0.865 0.857 0.793 0.830 0.836 0.812 

Left axis deviation 0.848 0.845 0.812 0.645 0.820 0.641 

Sinus rhythm 0.790 0.791 0.620 0.783 0.798 0.793 

Complete left bundle branch block 0.814 0.773 0.750 0.634 0.785 0.813 

Right bundle branch block 0.871 0.750 0.744 0.733 0.776 0.719 

Table 3. G metric values for single FFNN models that exceeds 0.8 in some lead combination, plus Sinus Rhythm results 

during the validation of the first public training fold. 

 

 

6. Conclusion 

We presented and evaluated a robust methodology for 

multiple cardiac disease detection through ECG registers 

that combines feature extraction and selection, and a One-

vs-Rest classification approach using FFNN as binary 

classifiers. Interestingly, the classification results using 

only one or two leads outperformed the ones using three 

and four leads, and almost matched the ones with twelve 

leads, showing lower computational costs and been more 

suitable for wearable monitoring devices. Improving the 

identification of some cardiac rhythms by incorporating 

more specific features for those cases where the 

performance was low, should be an interesting direction to 

explore in the future. 
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