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Abstract

In this study, we investigated the most relevant biomark-
ers for noninvasive classification and mechanism loca-
tion in atrial tachycardia (AT), flutter (AFL) and fibril-
lation (AF). Biomarkers were calculated using noninva-
sive body surface (BSPM) dominant frequency and phase
maps. We used 19 simulations of 567 to 64-lead BSPMs,
from which were extracted 32 biomarkers. Biomarker
ranking was performed with ANOVA, Kendall and Lasso
techniques. The best four biomarkers were identified and
used to classify the arrhythmias in all combinations, and
the best two used for noninvasive driver localization. Ar-
rhythmia classification accuracy was 94.74%. The feature
combination which best distinguish AF from non-AF were
mean filament displacement and mean OI, while those that
best distinguish AFL from AT were mean and SD of SP
distribution. There was good agreement across ranking
techniques. Mechanism location accuracy was 78.95%,
with the most important biomarkers being percentage SPs
within each torso division, and SD of filament histogram
cluster area. This study highlights that organization re-
lated features well identifies AF and spatial SP distribution
discriminate AT from AFL and also it’s localization.

1. Introduction

The three most common cardiac arrhythmias in clinical
practice are atrial tachycardia (AT), flutter (AFL) and fib-
rillation (AF) [1]. There are different mechanisms respon-
sible for triggering and maintaining these arrhythmias: for
AT, a set of localized cells fire radially in a regular high
frequency rhythm, ectopic focus [1]; AFL also has a reg-
ular high frequency rhythm, but here the wavefront depo-
larization propagates as a macroreentry, usually around the
valves or fibrosis [2]; in contrast to the previous supraven-
tricular arrhythmias, AF is characterized by uncoordinated
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high frequency atrial activations, with consequent deteri-
oration of mechanical function, and the presence of func-
tional rotors [3]. This arrhythmia is the most common car-
diac arrhythmia found in clinical practice, affecting around
2% of the adult worldwide population [3]. Since the effi-
ciency in the atrial systolic and diastolic functions are com-
promised, cardiac output decreases, leading to occurrences
of thromboembolic phenomena, heart failure and sudden
arrhythmic death [4].

Currently, radiofrequency catheter ablation is used to
treat these three arrhythmias, which has been shown to
be safe and effective. But for some groups of patients,
especially those with persistent AF, outcomes are non-
satisfactory, and procedures might need to be repeated [5].
In this intervention, a catheter, containing one or more
electrodes, is introduced into the atria. Contact is made
with the endocardium, resulting in radiofrequency cauter-
ization to the predefined areas, which has the aim of pre-
venting the mechanisms through elimination of their elec-
trical activity [6]. This method depends on accurate lo-
cation of the driving mechanism, which is routinely per-
formed with invasive electrical mapping of the atrium [7],
which increases the duration of the surgical procedure. We
hypothesize that classification and location of cardiac arry-
thmias might be obtained non-invasively, calculated from
high density body surface dominant frequency (DF) and
phase maps. If so, these could be useful auxiliary tools for
clinicians planning therapeutic strategies prior to invasive
procedures.

2. Methodology

A computational model of the atrium composed by
284578 nodes was used to simulate the electrical behavior
of the left (LA) and right atria (RA) in the three arrhyth-
mias. A total of 19 simulations were used, each of which
shows an arrythmia originating in one of the three distinct
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mechanisms: AT (4 simulations), driven by an ectopic fo-
cus; AFL (4 simulations), driven by a macro-reentrant cir-
cuit; AF (11 simulations), driven by functional rotors [8].
The ectopic foci in AT models were generated by apply-
ing pulse trains with a constant frequency on nodes inside
the regions of interest [9], while AFL and AF signals were
generated by introducing atrial remodeling in the regions
of interest. The remodeling was simulated by shortening
the duration of the action potential duration and decreasing
diffusion in cardiac tissue, which induces rotational activ-
ity [8,10]. The system of differential equations in the atrial
cell model was solved using Runge-Kutta integration. AFL
simulations induced macro-reentry around anatomic struc-
tures (tricuspid valve, inferior vena cava and pulmonary
veins), while AF was driven by functional rotors in the spe-
cific locations.

2.1. Preprocessing and lead layouts

Body surface potential maps were obtained by solving
the forward problem with the boundary element method,
through a uniform torso, of 771 data points and sampled at
500 Hz [2, 8]. From this, a reduced number of points were
selected to represent different lead layouts. The number
of leads varied from 567, the highest resolution (HR), to
a lowest resolution (LR) of 64 lead, in a total of 5 dif-
ferent acquisition layouts, allowing an impact analysis of
reducing the number of leads, and consequently the reduc-
tion of the spatial resolution. White Gaussian noise was
also added to the BSPM signals with a signal-to-noise ra-
tio (SNR) of 10 [2]. The coordinates of the BSPM nodes
in the models went through a cylindrical projection, which
were interpolated into a 30 by 65 grid using cubic splines

[2].
2.2. DF maps

DFs were calculated using a previously validated
method, based on the continuous wavelet transforms [11].
DF maps were used to calculate 6 biomarkers: (i) DF mean
(DF-M); (ii) median (DF-Mdn); (iii) mode (DF-Mo), (iv)
highest DF (HDF); (v) inter-quartile range (IQR) and; (vi)
mean DF and HDF ratio (DF-M/HDF). From HDF regions
(HDFr), where |DF — HDF| < 1Hz. Seven features
were calculated from HDFrs: (i) number of HDFr (DF-
Nr); (ii) average size (DF-Ms); and (iii) standard devia-
tion (SD, DF-SDs); (iv) the percentage of the total area
of the potential map occupied by HDFr (DF-Ar); and (v)
mean (DF-MOI); (vi) SD (DF-SDOI); and (vii) IQR (DF-
IQROI) of the organization index (OI) [12]. To avoid DFs
related to harmonic activity or noise, which could impair
the atrial HDF estimations and related biomarkers, the DF
values above the 90th percentile were ignored.

2.3. Phase maps

In order to acquire the phase maps, a narrow 4th order
Butterworth band-pass filter was applied to the BSPM sig-
nals in a range of 2 Hz around the HDF value, followed
by the application of the Hilbert transform [13]. The phase
angle was obtained by calculating the arc-tangent of the
division of the Hilbert transformed signal by the original
signal [2]. Signals were downsampled to 128 Hz to reduce
processing time.

2.3.1. Rotor Detection

Rotational activity was detected by locating phase sin-
gularity points (SP), which were defined as points around
which all phases converge [2, 14]. A Canny edge detector
[15] was used to find discontinuities in the phase maps cor-
responding to shifts from +7 to —7r, with the endpoints of
the edges considered as possible SP. The analysis of these
points was based on the phase of neighboring points, along
rings with five different radii from 2 to 10 cm, and its phase
values were obtained by interpolation, based on the 8 clos-
est pixels values [8,10]. Criteria were developed to classify
a point as an SP; the phase progression on at least two rings
should satisfy the following: (i) the phase should progress
in a minimum range of 7; (ii) the progression should be
ordered in at least 60% of its length; and (iii) there should
be no phase discontinuities larger than 7 [8].

2.4. Spatiotemporal Analysis of Rotors

The SPs spatiotemporal distribution was analyzed based
on filament maps and the heatmaps (HM), calculated
through a 2D histogram of the filaments’ SPs over time
[11]. Then eight filament features were determined: (i)
mean (Ph-Md); and (ii) SD of filament duration (Ph-SDd);
(iii) mean (Ph-Mf); and (iv) SD of frequency of the ro-
tation around SPs in the filaments (Ph-SDf); (v) average
direction of rotation (+1 for clockwise and -1 for counter-
clockwise, Ph-MDR); (vi) filament rate over time (Ph-
FIR); (vii) mean (Ph-MFD); and (viii) SD filament spatial
displacement (Ph-SDFD), defined as the average displace-
ment in each sample, given by the Euclidean distance in
subsequent frames.

From the HM, 11 biomarkers were obtained: (i) number
of regions (Ph-Nr); (ii)) mean (Ph-Mrs); and (iii) SD (Ph-
SDrs) of region sizes (HMr); the area of each region was
determined, A, as was the percentage of SPs in each re-
gion (pSP). From these, the following were obtained: (iv)
mean (Ph-MSPA); and (v) SD of the value (Ph-SDSPA),
for each region, of the ratio between pSP and A (pSPA);
(vi) number of detected SPs over time (Ph-SPS); (vii) per-
centage of SPs (DF-pSP) in each of 4 subdivisions of the
HM (only for mechanism localization) and; (viii) percent-
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age of HMr area (Ph-HMrA). Moreover, HM is generated
for each individual filament (HMi), and the following were
calculated: (ix) the mean region size (Ph-HMiS); (x) mean
SPs density (Ph-HMiD); (xi) mean area of the bounding
box around each region (Ph-HMiB).

2.5. Feature ranking and classification

After computing the 32 features described above, fea-
ture ranking was performed using 3 different methods,
then combined using the quadratic sum of the scores, nor-
malized by the greatest value among features. The ranking
was based only on the features obtained for HR layout and
was performed aimed to the best features for discriminate:
(i) AF from the others (AT and AFL); (ii) AT from AFL,
and; (iii) its mechanism localization (LA or RA).

The first ranking method was based on analysis of vari-
ance’s (ANOVA) f-score, which compares the ratio be-
tween the variance of the mean for each class and the vari-
ance of the entire dataset, meaning that higher values are
indicative of a good classifier. The second method was
based in Kendall’s 7 coefficient [16], which is a suitable
correlation coefficient for both quantitative and qualitative
variables. Finally, the third method was based on Lasso’s
(least absolute shrinkage and selection operator) regular-
ization for logistic regression [17]. All ranking processes
were performed with Scipy and Scikit-Learn libraries in
Python 3. After feature ranking, the best four features for
arrhythmia mechanism classification (MC) and two fea-
tures for mechanism localization (ML) were selected, ex-
cluding redundant features, according to their Pearson cor-
relation coefficient. This number of selected features was
chosen to avoid overfitting, considering our dataset’s size.
For ML, all features were obtained for four overlapping di-
visions on the maps, referring to the left, right, front and
back of the torso, resulting in eight features. The clas-
sifiers consisted in the logistic regression algorithm from
Scikit-Learn, and the division of training and testing set
was made using the leave-one-out method, a variation of
k-fold for just one example in the test-set. Different com-
binations of the features among the pre-selected were also
tested as inputs for the classifiers.

3. Results and Discussion

Figure 1 summarizes the ranking of the entire set of fea-
tures with each respective combined score, normalized. In
MC, DF-MOI, Ph-MFD, Ph-SDrs, and DF-M/HDF were
the best four features for AF versus AT and AFL classifica-
tion, in decreasing order, providing an accuracy of 94.74%
in the HR layout. Nevertheless, by verifying all combi-
nations among these features, an accuracy of 100% was
obtained using only DF-MOI and Ph-FD for the HR lay-
out, dropping to 94.74% for the LR layout, as shown in

Table 1. Also in MC, for AT vs AFL, Ph-MSPA, Ph-Mrs,
Ph-SDSPA and Ph-FIR, in this order, achieved the highest
combined scores, which provided a classification accuracy
of 87.50%. By verifying all combinations, it was found
that this value can be maintained using only Ph-MSPA and
Ph-SDSPA. For ML, the best feature was DF-pSP and Ph-
SDrs, with which an accuracy of 78.95% was obtained, and
also maintaining its value in the LR layout, although de-
creasing to 73.68% in two other layouts.

Table 1. Accuracy obtained for each layout.

Leads AF vs AT/AFL. AT vs AFL. LA vsRA

567 (HR) 100.00% 87.50% 78.95%

252 94.74% 75.00% 73.68%

131 100.00% 75.00% 78.95%

67 94.74% 75.00% 73.68%

64 (LR) 94.74% 87.50% 78.95%
4. Conclusions

This study shows that the three supraventricular car-
diac arrhythmias could be distinguished through a reduced
number of mechanism related biomarkers, in an in-silico
scenario, with high precision, even in layouts with reduced
number of leads. Furthermore, this work highlights that
metrics which describe “disorganization”, such Ol and FD,
tend to be among the best biomarkers. The noninvasive
mechanism location showed reasonable accuracy, due to
its complexity. In future analyses, these biomarkers should
be tested on data from more complex models and data ac-
quired from patients.
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