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Abstract

Atrial fibrillation (AF) is characterized by complex and
irregular propagation patterns, and AF onset locations
and drivers responsible for its perpetuation are main tar-
gets for ablation procedures. Several Deep Learning-
based methods have proposed to detect AF, but the estima-
tion of the atrial area where the drivers are found is a topic
where further research is needed. In this work, we propose
to estimate the zone where AF drivers are found from body
surface potentials (BSPs) and Convolutional Neural Net-
works (CNN), modeling a supervised classification prob-
lem. Accuracy in the test set was 0.89 when using noisy
BSPs (SNR=20dB), while the Cohen’s Kappa was 0.85.
Therefore, the proposed method could help to identify tar-
get regions for ablation using a non-invasive procedure,
and avoiding the use of ECG Imaging (ECGI).

1. Introduction

Atrial fibrillation (AF) is the most common type of ar-
rhythmia found clinical practice. This condition affects
more than 33 million patients in the world [1]. AF in-
creases the risk of suffering embolism, cardiac failure,
stroke or, in the worst of cases, death [2]. One of the
clinical goals in AF patients is to restore sinus rhythm by
ablation, where targets are AF onset locations and drivers
responsible for AF perpetuation [3]. Several studies have
proposed different strategies to locate AF drivers by ap-
plying ECG Imaging (ECGI) [4-6], but this approach still
needs further improvement.

Machine Learning (ML) and Deep Learning (DL) tech-
niques can be nowadays a useful tool when assessing dif-
ferent AF scenarios. Several studies have proposed differ-
ent methodologies [7, 8] in terms of AF detection, but AF
area detection were out of the scope. However, recent stud-
ies have proposed to detect AF drivers in the pulmonary
veins (PVs) zones using decision trees and a 12-ECG lead
set [9] or estimate the AF driver location using neural net-
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works and 64 body surface potentials (BSPs) [10].

We propose to use Convolutional Neural Networks
(CNNs), which accounts for spatial characteristics, to pre-
dict the area where the AF drivers are found using BSP
signals. For this aim, we will address this problem as a su-
pervised model from annotated realistic computerized AF
models [10,11].

The remaining of the paper is organized as follows. In
Section 2 we introduce the computational models used for
this study, the experimental set-up, performance metrics
and Deep Learning architecture. Final results are summa-
rized in Section 3 and in Section 4 main conclusions are
presented.

2. Methods

2.1. Computerized Models

We used realistic computerized models of atria (N=2039
nodes) and torso (M=659 nodes) [6, 11, 12]. The geo-
metrical model considered consists on a simplified single
endocardium-epicardium layer for the atrial tissue. Atria
and torso models were used to simulate 13 different AF
propagation patterns in both left atria (LA) and right atria
(RA), with different degree of simulated fibrosis (up to
the 50% of the tissue), and driver positions: Posterior
Left Atrial Wall (PLAW), Left Inferior Pulmonary Vein
(LIPV), Left Superior Pulmonary Vein (LSPV), Right In-
ferior Pulmonary Vein (RIPV), Right Superior Pulmonary
Vein (RSPV), Right Atrial Appendage (RAA) and Right
Atria Free Wall (RAFW). Sampling rate of the signals was
fs = 500H z, while their duration ranged from 2 to 5 sec-
onds.

2.2. AF driver location as a classification
problem

We divided the atria into 7 different regions [10,13], and
manually labeled the localization of the AF driver within
the 7 regions for each time instant. If there is no driver
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Figure 1. Schematic overview of the CNN-based proposed architecture.

found, the assigned label will be 0. Therefore, we trans-
formed the AF driver location into a multi-classification
supervised problem with 8 different classes.

Simulated BSPs were obtained by computing the for-
ward problem of electrocardiography for each AF com-
puterized model [6]. The electrical signals were refer-
enced to the Wilson Central Terminal (WCT). To ob-
tain noisy signals, we corrupted clean BSPs with addi-
tive Gaussian noise (different SNR) and filtered them us-
ing a 4!"-order bandpass Butterworth filter (fc;=3 Hz and
fco=30Hz) [6, 11]. Finally, a set of 64 electrodes from the
whole torso geometry were selected to represent realistic
multi-electrode vest used in electrophysiological studies
(Figure 1).

To obtain final input data, we built a tensor that repre-
sents the layout of electrodes represented in Figure 1. For
this purpose, we created tridimensional matrices of shape
(6 x 4 x 3) from the BSP signals, one for each time in-
stant. The first and last channel contain BSPs of the torso
and back, respectively (24 electrodes each), and the sec-
ond channel contains BSPs from the sides (16 electrodes
distributed on the last 4 rows, while the rest are filled with
zeroes). Finally, we performed a bilinear interpolation to
create tensors with shape (150 x 152 x 3).

2.3. Convolutional Neural Network (CNN)
architecture

CNNs are a type of DL algorithm used mainly in im-
age recognition and image classification. CNNs are able
to exploit spatial correlations to extract relevant features,
increasing classification performance [14].

The proposed CNN-based architecture is shown in Fig-
ure 1. Input data are tensors of shape (150 x 152 x 3).
We used three convolutional layers with 32, 64 and 64
filters with (3 x 3) size. ReLU activation function was

used. Max-pooling is applied after each convolutional
layer ((2,2) window size). Finally, we added two dense
layers of size (128, 64) units (ReLU activation function),
while the output layer is a Softmax layer composed by 8
units to perform the classification.

2.4. Performance metrics

We used two metrics to assess the performance of the
CNN model. The first one is the accuracy (Acc), which is
the fraction of well-classified drivers (true positives, TP)
over the total of drivers (Total):

TP
" Total
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The second metric used is the Cohen’s Kappa (x), which
is a robust statistic used for measure the degree of agree-
ment between two classifiers (in this case, the ground truth
and CNN model) [15]. It is computed as:

o — Do — Pe
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where p, is the relative agreement among raters, and p,
the hypothetical probability of chance agreement. A Co-
hen’s Kappa score of 0 means the agreement that can be
expected from random chance, while a score of 1 reflects
perfect agreement between the raters. Finally, scores less

than 0 means that there is less agreement than chance.

2.5. Experimental set-up

We addressed the classification problem considering
each time instant as an independent sample. Therefore,
the data set is composed of input data tensors of shape
(150 x 152 x 3), obtained from 64 BSP electrodes, x;,
and their corresponding label y; which can have values
0,1,...,7.
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To train the model, we split the data set in training (80%)
and test (20%) sets, using hold-out validation during the
training process (20%). Several atria regions are over rep-
resented in the data set (imbalanced data). To address this
issue, we weighted the classes accordingly to the probabil-
ity of occurrence.

3. Results

We trained a CNN model using BSPs with SNR=20dB.
The aim of this experiment is to simulate a realistic sce-
nario.

In this case, we were able to locate the 98% and 89%
of drivers in the training and test sets, respectively. In the
same scenario, Cohen’s Kappa metric was 0.97 and 0.85.
Figure 2 shows the confusion matrix obtained in this sce-
nario. There, the problem with imbalanced data is showed,
since the accuracy obtained on septum area (label 7) is
0.53.
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Figure 2.  Confusion matrix obtained for the test set
(SNR=20dB).

Test signals with different SNR were used to evaluate
the noise robustness of the model. Scores are showed in
Figure 3. Performance degraded severely when the SNR
drops below 10dB, with an accuracy of 0.74 and a Co-
hen’s Kappa of 0.66. However, performance increases
from SNR values higher than 10dB, obtaining scores over
0.84 (accuracy) and 0.8 (Cohen’s Kappa).

Finally, Figure 4 shows the probability of finding a
driver in the different atrial regions for an example of AF
model, considering time instants that belong to the test set.
In this case, the model is able to correctly classify the area
where the driver is found. Moreover, the area with the
highest probability has 4.3 times more chances of contain-
ing a driver (0.57) than the one with the second highest
probability found (0.13).
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Figure 3. Performance metrics obtained with signals with
different SNR (CNN trained with SNR=20dB).
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Figure 4. CNN model predicted probability for an exam-
ple of AF model.

4. Discussion and conclusions

The proposed CNN-based method could help to identify
the area where AF drivers are found using BSPs and avoid-
ing the use of ECGI. This novel method has been demon-
strated to be robust to noise, since its performance does not
degrades significantly when using noisy BSPs.

However, this methodology has some drawbacks to be
addressed. Our data set is composed by only 13 AF com-
puterized models that represent different propagation pat-
terns, but the distribution of drivers across the 7 defined
atrial regions is not balanced. Therefore, the results on
those less represented regions are going to be worse. This
proposed division into 7 regions was used because it rep-
resents a clinical-based classification of the areas where
the AF drivers are more commonly found and has been al-
ready clinically used to guide AF ablation strategies [13].
Nonetheless, our methodology can be easily extrapolated
to other atrial geometry divisions based on a higher num-
ber of smaller regions, being able to get a higher resolution
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in the driver classification.

Another important problem the ideal scenario we con-
sidered. Here, we trained the models with samples that be-
longs to the 13 AF models available. In a real situation, the
CNN model will have to compute a prediction with a set
of signals that was not used in the training process. There-
fore, other types of training scenarios have to be tested (for
example, splitting the data set by independent models in-
stead of assuming time independence).

Regarding future research topics, the most important
one is to apply this methodology with real patient data,
where driver tagging can be difficult. In this scenario,
Data Augmentation could be an useful tool to improve the
generalization capability of the model. Finally, other DL
architectures could be tested, like Recurrent Neural Net-
works (RNN), which are able to extract temporal charac-
teristics of BSPs that are omitted when using CNNss.
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