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a b s t r a c t 

Background: Assessment of drug cardiac safety is critical in the development of new compounds and 

is commonly addressed by evaluating the half-maximal blocking concentration of the potassium human 

ether-à-go-go related gene (hERG) channels. However, recent works have evidenced that the modelling of 

drug-binding dynamics to hERG can help to improve early cardiac safety assessment. Our goal is to de- 

velop a methodology to automatically generate Markovian models of the drug-hERG channel interactions. 

Methods: The training and the test sets consisted of 20800 and 5200 virtual drugs, respectively, dis- 

tributed into 104 groups with different affinities and kinetics to the conformational states of the chan- 

nel. In our system, drugs may bind to any state (individually or simultaneously), with different degrees 

of preference for a conformational state and the change of the conformational state of the drug bound 

channels may be restricted or allowed. To model such a wide range of possibilities, 12 Markovian chains 

are considered. Our approach uses the response of the drugs to our three previously developed voltage 

clamp protocols, which enhance the differences in the probabilities of occupying a certain conformational 

state of the channel (open, closed and inactivated). The computing tool is comprised of a classifier and 

a parameter optimizer and uses linear interpolation, support vector machines and a simplex method for 

function minimization. 

Results: We propose a novel methodology that automatically generates dynamic drug models using 

Markov model formulations and that elucidates the states where the drug binds and unbinds and the 

preferential binding state using data obtained from simple voltage clamp protocols that captures the 

preferential state-dependent binding properties, the relative affinities, trapping and non-trapping dynam- 

ics and the onset of I Kr block. Overall, the tool correctly predicted the class of 92.04% of the drugs and 

the model provided by the tool accurately fitted the response of the target compound, the mean accu- 

racy being 97.53%. Moreover, generation of the dynamic model of an I Kr blocker from its response to our 

voltage clamp protocols usually takes less than an hour on a common desktop computer. 

Conclusion: Our methodology could be very useful to model and simulate dynamic drug–hERG channel 

interactions. It would contribute to the improvement of the preclinical assessment of the proarrhythmic 

risk of drugs that inhibit I Kr and the efficacy of antiarrhythmic I Kr blockers. 

© 2022 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

The human ether-à-go-go related gene (hERG) is responsible for 

ne of the most important repolarizing currents in the heart, the 

apid component of the delayed rectifier current (I Kr ). This cur- 
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ent highly affects the action potential duration and its blockade 

s commonly associated with the appearance of a fatal arrythmia 

nown as Torsade de Pointes. Therefore, drugs inhibiting this cur- 

ent are potentially hazardous [1] . For this reason, the evaluation 

f the in vitro block potency, quantified by the IC 50 (drug concen- 

ration at which the current is half blocked), is the most common 

est to assess the cardiac safety of new compounds [2] . While this 

pproach has prevented potentially dangerous drugs from reach- 

ng the market, it may have stopped the development of safe com- 

ounds [3] . Current guidelines acknowledge the use of IC as a 
50 
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afety parameter. However, IC 50 has been reported to show high 

egrees of variability depending on the voltage clamp protocol, 

emperature or cell type used to measure it [4–10] . Some exper- 

mental studies showed variations higher than 10-fold when only 

hanging the voltage protocol [ 11 , 12 ]. 

Previous studies have shown that determining the compound 

ynamics is crucial to simulate drug effects more accurately 

12] and to improve the in silico assessment of proarrhythmia risk 

13] . In this study, we combine in silico simulations using electro- 

hysiological models with supervised machine learning techniques 

o elucidate the preferential state for drug binding and to elabo- 

ate dynamic drug models. The models obtained by our approach 

an be used to study the effects of I Kr blockers cardiac electrophys- 

ology for different purposes, such as cardiac safety and the study 

f the efficacy of antiarrhythmic drugs. They may have a relevant 

mpact now that new regulatory guidelines have included model- 

ng and simulation of drug-channel interactions as a source of evi- 

ence in the development of new compounds [14] . 

. Material and methods 

.1. Drug Models 

I Kr was simulated using the human ventricular Markov chain 

odel proposed by Fink et al. [15] . It has five states: three closed

tates, namely, C 3 , C 2 , C 1 , an open state, called O, and an inacti-

ated state, labeled I. Five new states were included to simulate 

rug-channel interaction and they were named C 3d , C 2d , C 1d , O d 

nd I d . All channel configurations are shown in Fig. 1 . 

Ion channel-drug interaction depends on a series of properties 

uch as preferential binding to certain states and distinct affinities 

o these states. In order to create the set of virtual compounds for 

his study, we first gathered information available in the literature 

btained from experiments with well characterized I Kr blockers. 

ost compounds, such as dofetilide or verapamil bind to the open 

r inactivated state [13,16–18] , but there are also some compounds 

ike ketoconazole and BeKm-1 that preferentially block the channel 

n the closed state [19–21] . Moxifloxacin has shown a rapid open 

tate block and possibly a component of closed state block [22] . 

n addition, there are drugs that have a tendency to be trapped 

ithin the closed state, like dofetilide [23] , nifekalant [23] , bepridil 

 23 , 24 ], domperidone [24] , E-4031 [24] and terfenadine [ 18 , 24 ].

ther drugs, like amiodarone, droperidol, haloperidol [24] do not 

xhibit that tendency. Some experiments suggest that cisapride has 

 tendency to be trapped in the closed state [25] , although there 

s evidence of the opposite as well [ 18 , 24 ]. Taking the abovemen-

ioned aspects into account, we chose to simulate not only open 

nd inactivated state blocking, but also closed state blocking and 

rapping and non-trapping dynamics, as suggested by the experi- 

ental studies already mentioned. Moreover, the study performed 

y Perrin and coworkers [26] stated that cisapride, dofetilide, ter- 

enadine, and astemizole and dl-sotalol bind to the open and in- 

ctive state and obtained a ratio between state affinities ranging 

rom 4 to 70-fold. They did not find state dependent preference 

or the open or inactivated state in erythromycin, perhexiline, and 

uinidine. In our study, we chose to extend the ratio between pref- 

rential and non-preferential state affinities from 3 to 100-fold and 

e also considered compounds without state preference. 

Taking into account the abovementioned aspects, we simulated 

 series of drugs with a wide variety of affinities and kinetics. We 

onsidered drugs which bind exclusively to the open ( Fig. 1 -A, B), 

nactivated state ( Fig. 1 -C, D) or closed ( Fig. 1 -E, F), drugs inter-

cting simultaneously with both the open and inactivated states 

 Fig. 1 -G, H) or the closed and open states ( Fig. 1 -I, J), and finally,

rugs which bind simultaneously to all states ( Fig. 1 -K, L). More- 

ver, we considered both possibilities, restricting or allowing drug 
2 
ound channels to change their conformational state unless un- 

inding occurs ( Fig. 1 -A, C, E, G, I, K and Fig. 1 - B, D, F, H, J, L),

nd we labeled those compounds stuck and unstuck, respectively. 

icroscopic reversibility was imposed by equaling the product of 

he transition rates going clockwise to the anticlockwise product 

n closed loops. Drug kinetics were thoroughly studied by using 

 wide range of values for the diffusion (k) and dissociation (r) 

ates for all the configurations. Diffusion rates were the same for 

ll the states and varied from 10 to 1 μM 

−1 s −1 and dissociation 

ates ranged from 10 −3 to 10 −1 s −1 for the preferential binding 

tate. As the maximum ratio between the preferential and non- 

referential dissociation rates is 100, the total range for the disso- 

iation rates is from 10 −3 to 10 s −1 . The range of kinetics was ad-

usted from our previous paper [12] to avoid the simulation of too 

ast and too slow onsets of I Kr block. Drugs were labeled according 

o their preferential binding state and a total of 13 classes were 

imulated. Open, Inactivated and Closed are compounds interact- 

ng only in the open, inactivated and closed states, respectively. 

penI, InactiveO and OI are drugs binding to both the open and 

nactive states with preference for the open state, inactivated state 

nd with the same preference for both states, respectively. OpenC, 

losedO, and CO represent drugs that bind to the closed and open 

tates simultaneously but with higher affinity to the open state, 

losed state, or with equal affinity for both states respectively. Fi- 

ally, OpenCI, InactiveCO, ClosedOI and COI are compounds bind- 

ng simultaneously to the three states with higher affinity to the 

pen, inactivated or closed states and with the same affinity to all 

f them, respectively. 

A total of 260 0 0 virtual drugs were generated for this study. 

ight sets of 2600 virtual drugs (stuck and unstuck variants of 13 

lasses with 200 drugs per class) were created for training pur- 

oses by using random values within the abovementioned ranges 

or the diffusion and the dissociation rates from the preferential 

tate. Diffusion rates (k) were shared for all sets, and we set the ra- 

io between the dissociation rates from the preferential states over 

hose from the non-preferential states to 100, 30, 10 and 3 and we 

abeled the drugs 100R, 30R, 10R and 3R, respectively. For example, 

n InactiveO 100R drug with a dissociation rate of 10 −1 s −1 for the 

nactive state has a dissociation rate of 10 s −1 for the open state. 

nother eight different sets of 650 compounds (stuck and unstuck 

ariants of 13 classes and 50 drugs per class) were created for test- 

ng purposes using another random seed. The drugs were created 

sing Matlab by selecting random values from a uniform distri- 

ution created with the abovementioned boundaries. Additionally, 

ofetilide was simulated using a model previously developed by 

omero et al. [27] . 

.2. Stimulation Protocols 

Our three previously developed [12] voltage clamp protocols, 

amed P40, P0 and P-80, which maximize the probability of the 

hannels to occupy each conformational state, were used ( Fig. 2 , 

eft column). The protocols consisted of a 5 s variable voltage con- 

itioning step followed by a 0.2 s test pulse at -60 mV repeated 

t 5.4 s intervals, from a holding potential of -80 mV. The condi- 

ioning step is applied at -80, 0 and 40 mV for P-80, P0 and P40,

espectively. In the case of P-80, a 0.5 ms prepulse at 20 mV was 

ncorporated and the 0.2 s test pulse was fixed at −50 mV. Tem- 

erature was set at 22 °C, intracellular potassium concentration was 

xed at 130 mM and the extracellular one at 4 mM. 

.3. Parameters 

Hill plots were created by measuring the tail current amplitude 

t the steady state ( Fig. 2 , second column) and plotting its normal-

zed value as a function of the decimal logarithm of the drug con- 
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Fig. 1. I kr Markov models showing drug-bound states (C 3d , C 2d , C 1d , O d and I d ) and drug-free states (C 3 , C 2 , C 1 , O and I). k c , k o and k i are the diffusion rates for the closed, 

open and inactivated states respectively. r c , r o , r i are the dissociation rates for the closed, open and inactivated states respectively. D is the drug concentration. 
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entration ( Fig. 2 , third column), as in previous studies [12] . The

umber of sweeps of the voltage clamp protocol depends on the 

pecific compound, as the block is measured at the steady state. A 

otal of 2.340.0 0 0 simulations were performed. The IC 50 values ob- 

ained with P-80, P0 and P40 were called IC 50,P-80 , IC 50,P0 , IC 50,P40 ,

espectively. The onset of I Kr block at the IC 50 concentration was 

lso analyzed for each protocol ( Fig. 2 , last column) by plotting the

ormalized tail I Kr amplitudes for each sweep of the voltage clamp 

rotocol as a function of time and obtaining the time constants 

ith P-80, P0 and P40, which were called τ P-80 , τ P0 , τ P40 , respec- 

ively. The biexponential behavior observed when the compound 

inds to the channel at 0 mV ( Fig. 2 , top panel, third column) is

onsistent with previously observed experimental results [28] . 

.4. Unicellular simulations 

Action potentials were simulated at 1 Hz using a version of the 

’Hara endocardial model [29] . The I Kr formulation was replaced 

y the Markov model of I from Fink et al. [15] , which was scaled
Kr 

3

o elicit the same peak I Kr value as the original O’Hara model at 1 

z, as in previous works [ 12 , 27 ]. 

.5. Classifier and parameter optimizer 

The classification algorithm used Support Vector Machines 

SVM) and linear interpolation, which were generated from the pa- 

ameters calculated from the training compounds using automatic 

atlab functions. SVM were generated with IC 50 data and linear 

nterpolation was applied to the IC 50 s and time constants datasets. 

VM were used to separate certain groups of compounds (as ex- 

lained in the Results Section and illustrated in Fig. 4 ) and linear 

nterpolation was used to obtain the distance from the point de- 

ned by the parameters of the target compound to the lines corre- 

ponding to each of the virtual drug groups. 

The optimization algorithm used a Matlab function implement- 

ng the iterative Nelder-Mead simplex algorithm [30] with bound- 

ry conditions in line with the diffusion and dissociation rates 

sed to generate the training compounds, as in our previous 

tudy [27] . 
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Fig. 2. Effects of the three voltage clamp protocols: P0 (top), P40 (middle) and P-80 (bottom) for a ClosedOI compound. Representation of the voltage protocols and the 

relatives state occupancies for each of them as an inset of a pie chart (first column), steady state of the time course of the current with each voltage protocol under exposure 

to the respective IC 50 concentration during a sweep and arrows indicate the measure point (second column), Hill plots of a virtual drug obtained with the three protocols 

(third column) and onset of I Kr block (normalized tail current amplitudes for each sweep of the voltage clamp protocol are plotted as a function of time at the corresponding 

IC 50 concentration, last column). 
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. Results 

In order to automatically generate the mathematical dynamic 

odel of a drug-channel interaction, we developed a methodol- 

gy that first classifies the new compound into the thirteen classes 

see the methods section) and then, fits the corresponding binding 

nd unbinding rates. Moreover, we used this methodology to au- 

omatically generate a dynamic model of dofetilide, a well-know 

nd high-affinity I Kr blocker. As the six variables (IC 50,P-80 , IC 50,P0 , 

C 50,P40 and τ P-80 , τ P0 , τ P40 .) that are the inputs needed for our 

ystem are not available in the literature, we simulated them us- 

ng a previously developed model that was fitted to reproduce ex- 

erimental data obtained with other voltage clamp protocols [27] . 

ig. 3 shows the simulated Hill plots using the three protocols and 

he onset of I Kr block at the respective IC 50 values (solid lines). 

he results obtained with the new model automatically generated 

y our novel approach are also superimposed (dashed lines) and 

hey are very similar. The errors obtained by our optimized model 

ere 3.8%, 3.5% and 13% for the current inhibition at the IC 50 for 

he P0, P40 and P-80 protocols respectively and 0.23% and 3.7% for 

he diffusion and dissociation rates, respectively. A very good con- 

ordance between the target (inputs to the system) and the results 

imulated with the model generated automatically by our pipeline 

s observed. 

. Drug class assignment 

Our previously developed voltage clamp protocols were applied 

o the 260 0 0 training virtual drugs and the Hill-plots were sim- 

lated. Fig. 2 illustrate the results obtained with a ClosedOI drug. 

he parameters were then computed for each virtual drug. Fig. 4 

hows an example of 3D scattered plots of the IC 50 values (IC 50,P-80 , 

C 50,P0 , IC 50,P40 ) for a subset of the simulated drugs containing the 

hirteen classes. This figure shows that the IC values of drugs 
50 

4 
f the same class obtained with the three protocols show a lin- 

ar tendency and hyperplanes could be used to distinguish three 

roups of drugs with closed (top), open (middle) or inactivated 

bottom) state preference, except for the drugs with the same 

ffinity to the binding states (OI, COI and CO). This prompted us 

o design a classifier using support vector machines (SVM) and 

inear interpolation in order to assign the class to the new com- 

ounds. SVM were applied only to the IC 50 while linear interpola- 

ion was used for both variables the top table of Fig. 5 shows the

onfusion matrix of the developed classifier. The labels on the right 

re the true classes of the drugs, and the bottom labels are the 

redicted classes. The main diagonal boxes represent the correctly 

lassified drugs (blue), and the remaining boxes correspond to mis- 

lassified drugs (orange). The number of drugs corresponding to 

ach box of the matrix is included. The two rightmost columns 

how the true positive and the negative rates in percentage and 

he two bottommost rows show the positive and the negative pre- 

ictive values in percentages. The classifier achieved true positive 

ates over 90% for more than half of the classes, only the OpenCI 

lass being below 80% with a value of 78.6%. Positive predictive 

alues were also over 90% for most classes, with only ClosedOI 

ompounds being below 80%. Overall, the classifier correctly sorted 

he compounds into the 13 classes in 92.05% of cases. However, 

he classifier was not able to sort the stuck versions of those com- 

ounds whose differences in the unbinding rates between the pref- 

rential and non-preferential binding states were close to two or- 

ers of magnitude. In these cases, the classifier predicted the pref- 

rential binding state, but it failed to guess whether it binds to 

ny other state. We ran voltage clamp and unicellular simulations 

o check if the effects of these different drugs were similar, pro- 

ided they have the same preferential state. We verified that their 

ransitory and the stationary effects depended on the value of the 

issociation rate for the preferential binding state and not on the 

umber of simultaneously blocked states. Fig. 6 shows some exam- 
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Fig. 3. Hill plots (top) and onset of I Kr block, normalized tail current amplitudes for each sweep of the voltage clamp, (bottom) at the respective IC 50 for the dofetilide model 

(InactiveO) for the P0 (left column), P40 (middle column) and P-80 (right column). 

Fig. 4. 3D representation of the IC 50 values of all the training stuck 100R virtual 

drugs and the decision surfaces separating the three groups of compounds with 

closed (top), open (middle) or inactivated (bottom) state preference. 
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les of the onset of I Kr block for stuck 100R open state-preference 

ompounds, comparing the behaviors of Open, OpenC, OpenI and 

penCI drugs with the same diffusion rate and the same dissocia- 

ion rate for the preferential binding state using the three voltage 

lamp protocols at their respective IC 50 concentrations. The four 

ossibilities exhibit similar onset of I Kr block with the three volt- 

ge clamp protocols. Moreover, the time courses of the steady state 
5

ction potential and of the I Kr during IC 50 drug exposure are alike 

insets). Therefore, the drugs whose differences in the unbinding 

ates between the preferential and non-preferential binding states 

ere close to two orders of magnitude could be mathematically 

odeled fairly accurately assuming any of the classes that have 

he same preferential state. Even though this phenomenon is char- 

cteristic of the stuck drugs with two orders of magnitude of dif- 

erence between the dissociation rates of the preferential and non- 

referential binding states, we evaluated the performance of the 

lassifier on predicting the state preference for drug binding. To do 

o, Open, OpenC, OpenI and OpenCI drugs were grouped into one 

ubclass called open preference. Inactive, InactiveO and InactiveOI 

ere grouped into another one called inactive preference. Closed, 

losedO and ClosedOI were grouped into another one called closed 

reference and lastly, the remaining drugs were grouped into an- 

ther one called no preference. The lower table of Fig. 5 shows the 

onfusion matrix for this classification where all groups have over 

0% accuracy. 

.1. Fitting of the diffusion and dissociation rates 

To elucidate the diffusion and dissociation rates of a given com- 

ound, an optimization tool based on the iterative Nelder-Mead 

implex algorithm [30] was used, as in previous works [31–33] . 

ates values of the drug models were optimized considering the 

lass assigned by the classifier and the parameters for each proto- 

ol. 

The core of the optimization tool evaluates a pair of diffusion 

nd dissociation rates by simulating the protocols at the corre- 

ponding IC 50 concentration of the target drug. The error obtained 

ith these rates is calculated as the addition of 6 components. 

hey are computed as the absolute values of the differences in the 

ime constants and the percentages of block produced by the sim- 
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Fig. 5. Confusion matrices of the classifier when considering all the 13 classes of drugs (top table) and when only considering the state preference for drug binding (bottom 

table). Correctly classified drugs are represented in blue. Numbers in each box indicate the number of drugs. Rightmost columns show the true positive rate in percentage 

and bottommost rows show the positive predictive value in percentage. 

Fig. 6. Onset of I Kr block. Normalized tail current amplitudes for each sweep of the voltage clamp protocol are plotted as a function of time under exposure to the IC 50 for 

drugs with high open state preference using P0 (left), P40 (middle) and P-80 (right). Insets illustrate the steady state action potentials at 1 Hz (top) and I kr at 1 Hz (bottom) 

at their respective IC 50 . The diffusion rate for the preferential binding state (Open) is 9.68 μM 

−1 s −1 and the dissociation rate is 0.0012 s −1 . 

6 
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Fig. 7. Comparison of the fitted and target onset of I Kr block. Time courses of the normalized tail current amplitudes for each sweep of the voltage clamp protocol under 

exposure to the IC 50 of CO and InactiveO drugs using P0 (left), P40 (middle) and P-80 (right) are plotted as a function of time. 

Fig. 8. Errors in the current inhibition at the IC 50 concentrations (left) and in the fitted transition rates (right). Black dots represent the mean error per class and the lines 

are the 95% confidence interval boundaries. 
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lated drug and the target for each protocol. Fig. 7 depicts the on- 

et of I Kr block obtained from the optimization of a CO and Inac- 

iveO compound. This figure shows that the optimized compounds 

losely resemble the target ones. 

The errors between the results obtained by the automatically 

enerated models and those produced by the original compounds 

ere computed in order to quantify the accuracy of the fitting pro- 

ess. Fig. 8 shows the calculated mean errors in the current inhi- 

ition at the IC 50 concentrations and in the fitted rates for the 13 

lasses along with the 95% confidence interval. The mean errors for 

ach class are below 5% and the 95% confidence intervals are be- 

ow 8% and 10%, respectively. The total mean values of the errors 

re 2.47% and 2.77%, respectively. For the specific case of dofetilide, 

he errors are 6.76% and 1.97%, respectively. Therefore, our system 

ould be very useful to simulate the dynamic drug–hERG channel 

nteractions. 

.2. Considerations about the experimental variability of the IC 50 

As experimental characterization of IC 50 is affected by the ex- 

erimental variability, we wanted to assess the performance of our 

lassifier in the presence of this variability. For this purpose, 16 

ompounds for each of the 13 classes were selected and 10 ran- 

om variations were generated for each compound, making a to- 

al of 2080 drugs. For this new set of drugs, the IC 50 values were

aken from normal distributions with the original IC values and 
50 

7 
 standard deviation of 20%. The confusion matrix for this new 

et of drugs is shown in Fig. 9 . The classifier achieved true pos- 

tive rates and positive predictive values over 80% and 75%, re- 

pectively, for more than half of the classes. The total accuracy 

n predicting the class was 78.13%, which is slightly smaller than 

he one obtained without accounting for the experimental variabil- 

ty (92.05%), but it is a high value considering that the drugs are 

orted into 13 classes. Therefore, our theoretical system shows a 

ood performance when introducing levels of experimental vari- 

bility encountered in real world experiments. 

. Discussion 

In this work, we design a pipeline based on computer simula- 

ions that automatically generates Markovian dynamic drug models 

sing data obtained from simple voltage clamp protocols, which 

ould allow the simulation of more accurate clinical trials. Our 

ystem automatically tailors the structure of the Markovian model 

nd fits the necessary parameters to capture the states where the 

rug binds and unbinds, the preferential state-dependent binding 

roperties, the relative affinities, trapping and non-trapping dy- 

amics and the onset of I Kr block. Moreover, the computational 

equirements are low and the generation of the model of the drug- 

ERG channel interaction from the voltage clamp data can be per- 

ormed quite quickly on a common desktop computer. For this pur- 

ose, we used three specific voltage clamp protocols, P0, P40 and 
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Fig. 9. Confusion matrix of the classifier when considering experimental variability on the IC 50 . Correctly classified drugs are represented in blue. Numbers in each box 

indicate the number of drugs. Rightmost columns show the true positive rate in percentage and bottommost rows show the positive predictive value in percentage. 
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-80, which maximize the time the channel occupies the open, 

nactivated and closes states, respectively. For each protocol-drug 

air we calculate the IC 50 value and the time constant of the onset 

f I Kr block, which are highly dependent on drug dynamics and ki- 

etics. We have developed a classifier based on machine learning 

echniques and optimization algorithms to create the drug models, 

hose accuracies are 92% and 97.38%, respectively. This pipeline 

as been theoretically tested with dofetilide and has obtained an 

ccuracy of 95.64%, which supports the potential utility for a clin- 

cal research of our pipeline. 

.1. Development of the model 

Tools for fitting dynamic models for different I Kr blockers have 

reviously been developed using data from voltage clamp proto- 

ols by Li et al. [13] . These authors used a unique Markov model

hain and fitted certain parameters of the model. That approach 

as represented a step further in the assessment of proarrhyth- 

ic risk. However, some unexpected behaviors have been reported. 

ndeed, some of the proposed drug models fail to achieve total 

lock of the current even at high concentrations [34] , such as cis- 

pride, which does not reach even the 50% block at high concentra- 

ions when stimulated with some of our voltage clamp protocols. 

oreover, such implementation is computationally highly demand- 

ng. The group of Clancy [ 35 , 36 ] have also developed a computa-

ional pipeline to generate dynamic models of I Kr blockers, such 

s dofetilide, moxifloxacine and sotalol, with the aim of predict- 

ng cardiac cardiotoxicity. Their models are based on data from 

hysics-based computer models that account for channel confor- 

ational state and drug ionization state specific atomic-scale de- 

erminants of drug-hERG channel interaction as well as molecular 

ynamics simulations, instead of voltage clamp protocols. They use 
8

he Markov chain proposed by Fink and coworkers [15] , as in our 

ork, and consider drug binding and unbinding to the open and 

o the inactivated states allowing the change of the conformational 

tate in drug-bound channels, as in our unstuck versions of Open 

nd InactiveO drugs. Their models differentiate neutral, cationic, 

nd zwitterionic states of the drugs, unlike ours. Pearlstein and 

olleagues [37] used modeling and simulation to characterize the 

ffects of channel gating and binding kinetics on hERG occupancy 

nd on its inhibition on the human ventricular action potential. 

hey modeled hERG blockers dynamics allowing drug bound chan- 

els to change their conformational state and considering binding 

nd unbinding to the open and inactivated states, and unbinding to 

he close state, but not binding to the closed state, just trapping. 

hey found that the evolution of the occupancies during the action 

otential differed between trapping and non-trapping drugs. 

Our drug-channel interaction model is based on the Fink et al. 

008 [15] I Kr formulation. In our previous work [12] , we com- 

ared dug-channel interactions using Fink et al. 2008 [15] , Lee 

t al. 2019 [11] and Li et al. 2017 [13] markovian models. In that 

tudy, we simulated the Hill plots for each type of the proto- 

ypical drugs binding to two states with state-dependent affini- 

ies using the proposed protocols. We observed that the tenden- 

ies of the patterns of the Hill plots obtained with the three ap- 

roaches were very similar. Therefore, it suggests a low depen- 

ence of our pipeline with the I Kr model, although quantitative dif- 

erences could be found if the abovementioned hERG formulations 

ere used. 

In this study, we propose a novel approach based on voltage 

lamp protocols, where a wider range of possibilities is considered. 

or example, drugs may bind to any state (individually or simulta- 

eously) and the conformational states changes are restricted or 

llowed when the drug is bound. 12 Markovian chains are needed 
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n our approach (see Fig. 1 ) in order to account for these aspects.

n this work, we propose a new methodology for the development 

f models considering kinetics and dynamics drug-hERG channel 

nteraction using the outputs provided by our classifier and an op- 

imization tool. The results obtained by our system accurately re- 

emble the characteristics of the studied virtual drugs. The whole 

rocess usually takes less than an hour in an Intel Core® i7-4790 

.60 GHz CPU with 16 Gb of RAM memory. 

.2. Voltage clamp protocol dependency 

The IC 50 has been reported to have a high degree of variabil- 

ty depending on the voltage clamp protocol used to determine 

t [ 7-9 , 11 ]. Lee and colleagues published a very interesting work 

howing that state preference drug binding can be quantified us- 

ng protocol-dependent differences in IC 50 values [11] , which has 

een shown to play an important role in action potential prolon- 

ation [ 27 , 38 ]. Lee and coworkers used a simple Markov model

hat considered drug binding in the open and inactivated states 

hat did not allow drug-bound channels to change its conforma- 

ional state without drug unbinding, nor trapping, but that was 

ood enough to reveal highly relevant insights. In our work, we 

se a more complete Markov description of drug binding, which 

aptures the preferential state-dependent binding properties, the 

elative affinities, trapping and non-trapping dynamics and the on- 

et of I Kr block, that would further improve predictions based on 

oltage clamp data. It is also worth mentioning that, as the vari- 

ty of drug dynamics used in our study is very wide, characteriza- 

ion of drug-channel interaction was a challenge. Following the ev- 

dence that state preference drug binding can be quantified using 

rotocol-dependent differences in IC 50 values, we have used three 

reviously developed voltage clamp protocols [12] . These proto- 

ols were specifically designed to maximize the probability of the 

otassium hERG/I Kr channels to occupy the closed, open or inac- 

ivated states. Our results show that the IC 50 is dependent on the 

inetics and dynamics of the drug. For example, stuck drugs which 

referentially bind to the inactive state will have higher IC 50 values 

hen measured with protocol P-80 (which maximizes the closed 

tate channel occupancy) than with P0 or P40. This is shown in 

ig. 4 , where the inactive state preference group is distributed un- 

er the other two groups. Our approach takes into account these 

ifferences to accurately elucidate the binding states and the pref- 

rential one. 

.3. Prediction of the preferential blocking states 

Recent studies have shown the benefits of combining machine 

earning techniques and in silico simulations to extract features 

rom data sets [ 39 , 40 ]. Our work supports the fact that the vari-

bility in the IC 50 occurs in a predictable way when considering 

he binding states and the relative affinities [11] , as seen in the 

inear behaviors observed in Fig. 4 . Therefore, we decided to use 

upervised machine learning techniques to classify the drugs. 

In our study, we limited the number of voltage clamp protocols 

o three well designed ones, maximizing the potential differences. 

ur protocols are crucial for the good performance shown by the 

lassifier in both aspects, the accurate prediction of the compound 

ehavior and the time required, taking only a few seconds for the 

rocess to be completed. 

.4. Limitations 

Firstly, while we have considered a wide range of virtual com- 

ounds regarding blocked states and the speed of the blocking, the 

ack of experimental data to validate our system is the main lim- 

tation of our study. Secondly, the temperature was set at 22 °C 
9 
ecause the vast majority of voltage clamp experiments for car- 

iac safety assessment of pharmacological compounds at the early 

tages of drug development are performed at room temperature. 

ur methodology could be adapted to be used with data obtained 

t a physiological temperature as the Fink et al. model includes the 

ependence of the ionic current with the temperature, so it could 

e done in a following step. Lastly, it would also be interesting for 

 future work to assess whether drug binding states affect gating 

inetics. For example, knowing if an inactive affinity compound has 

lower inactivation. 

All in all, we believe that these limitations do not jeopardize 

he main conclusions and that our study proposes a promising tool 

o elucidate the states of binding and binding state-preference and 

he ratios of the unbinding rates of a given compound and to esti- 

ate the transition rates to generate an accurate dynamic model. 

. Conclusion 

In this work, we propose a new methodology that not only 

lassifies drugs depending on the affinities to the channel states 

ut also generates dynamic drug models automatically, accurately 

nd quickly, which covers an urgent need in the field and will 

ontribute to the deployment of in silico models in the pharma- 

eutical industry. These models reproduce the preferential state- 

ependent binding properties, the relative affinities, trapping and 

on-trapping dynamics and the onset of the I Kr block, which paves 

he way for the performance of in silico clinical trials reproducing 

ynamic drug-hERG channel interactions using data from simple 

oltage clamp protocols. 

Patenting of the proposed system and/or software is under con- 

ideration. 
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