
 

Document downloaded from: 

 

This paper must be cited as:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The final publication is available at 

 

 

Copyright 

 

Additional Information 

 

http://hdl.handle.net/10251/191443

Goswami, S.; Li, DS.; Rego, BV.; Latorre, M.; Humphrey, JD.; Karniadakis, GE. (2022).
Neural operator learning of heterogeneous mechanobiological insults contributing to aortic
aneurysms. Journal of The Royal Society Interface. 19(193):1-16.
https://doi.org/10.1098/rsif.2022.0410

https://doi.org/10.1098/rsif.2022.0410

The Royal Society



Neural operator learning of heterogeneous mechanobiological
insults contributing to aortic aneurysms

Somdatta Goswamia,1, David S. Lib,1, Bruno V. Regob, Marcos Latorrec,
Jay D. Humphreyb,∗, George Em Karniadakisa,d,∗

aDivision of Applied Mathematics, Brown University, Providence, RI, USA
bDepartment of Biomedical Engineering, Yale University, New Haven, CT, USA

cCenter for Research and Innovation in Bioengineering, Valencia Polytechnic University, Valencia, Spain
dSchool of Engineering, Brown University, Providence, RI, USA

Abstract

Thoracic aortic aneurysm (TAA) is a localized dilatation of the aorta resulting from
compromised wall composition, structure, and function, which can lead to life-threatening
dissection or rupture. Several genetic mutations and predisposing factors that contribute to
TAA have been studied in mouse models to characterize specific changes in aortic
microstructure and material properties that result from a wide range of mechanobiological
insults. By contrast, assessments of TAA progression in vivo are largely limited to
measurements of aneurysm size and growth rate. It has been shown, however, that aortic
geometry alone is not sufficient to predict the patient-specific progression of TAA but
computational modeling of the evolving biomechanics of the aorta could predict future
geometry and properties from initiating insults. In this work, we present an integrated
framework to train a deep operator network (DeepONet)-based surrogate model to identify
contributing factors for TAA by using synthetic finite element-based datasets of aortic
growth and remodeling (G&R) resulting from prescribed mechanobiological insults. For
training data, we investigate multiple types of TAA risk factors and spatial distributions
within a computationally efficient constrained mixture model to generate axial–azimuthal
maps of aortic dilatation and distensibility. The trained network is then capable of
predicting the initial distribution and extent of the insult from a given set of dilatation and
distensibility information, which in turn can be used to determine subsequent aortic
geometry and mechanical properties. Two DeepONet frameworks are proposed, one trained
on sparse information and one on full-field grayscale images, to gain insight into a preferred
neural operator-based approach. Performance of the surrogate models is evaluated through
multiple simulations carried out on insult distributions varying from fusiform (analytically
defined) to complex (randomly generated). We show that this integrated continuous
learning modeling approach can predict the patient-specific mechanobiological insult profile
associated with any given dilatation and distensibility map with a high accuracy,
particularly when based on full-field images. Our findings demonstrate the feasibility of
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applying DeepONet to support transfer learning of patient-specific inputs (e.g., age,
hypertension, diabetes, Marfan syndrome) to predict TAA progression with clinical images
of the aorta.
Keywords: Operator-based neural network, deep learning, growth and remodeling,
thoracic aortic aneurysm
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1. Introduction

Thoracic aortic aneurysms (TAAs) are localized dilatations of the aorta that associate with
a higher risk of life-threatening aortic dissection or rupture; they can initiate from a variety
of biomechanical and genetic factors, often developing over several years [1–6]. Treatment of
TAAs may involve surgical replacement with a synthetic graft or repair via the placement of
an endovascular stent [7, 8]. Determination of the optimal approach and time of intervention
depends on myriad factors, including the size, growth rate and location of the aneurysm, as
well as the individual’s genetic history [9]; ultimately, to facilitate systematic improvement
of the patient’s prognosis and therapeutic design, there is a pressing need to understand the
complex roles these aspects play in the development of aneurysms [10].

Assessment of aortic health in the clinic is largely limited to in vivo anatomical
information and hemodynamic measurements, with few biomarkers available. On the other
hand, murine models of aortic aneurysm have provided valuable insight into the structural
and biomechanical properties of the normal and diseased thoracic aorta via in vitro
experimentation of excised tissue specimens [11, 12] that complement in vivo studies.
Several genetic mutations leading to compromised aortic structure and function have been
identified as critical predisposing factors driving TAA formation, including those affecting
extracellular matrix integrity, smooth muscle contractile dysfunction, and aberrant
intracellular signaling [2, 13–15]. Although much has been learned from these studies,
multiple contributors are often present in combination in vivo, rendering it challenging to
identify relationships among different mechanisms. Nevertheless, it is clear that
characterization of the biomechanics of the aorta is necessary to gain a deeper knowledge of
aortic disease progression. Toward this end, computational models of aneurysm growth and
remodeling can facilitate mechanistic understanding by isolating the influence of individual
biomechanical defects on subsequent aneurysm progression [16–19]. A theoretical model
with an ability to generate robust predictions of aneurysm progression from limited
anatomical information can both generate synthetic datasets for analysis and lay the
foundation for enriched diagnosis of aortic function beyond clinically available
measurements.

Current advancements in modeling now provide the opportunity to leverage machine
learning, which has emerged as an effective surrogate model for high-fidelity solvers, in
order to overcome previous computational hurdles that would otherwise make such
modeling intractable for clinically relevant time frames. Such surrogate models have
demonstrated the potential for automated measurement of aortic geometry, patient risk
stratification, and the prediction of aneurysm growth and rupture [6, 20–24]. Additionally,
physics-informed neural networks (PINNs) [25–28] have been a promising advancement in
the domain of scientific machine learning. However, to simulate multiple initial/boundary
problems having different applied loading, one often needs to retrain a PINN. Hence,
developing models that can learn the operator-level mapping between functions (that is,
forecasting the physical system under a variety of initial/boundary circumstances) is
critical [29, 30]. In this case, neural operators can learn nonlinear mappings between
function spaces, providing a novel simulation paradigm for real-time prediction of
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complicated dynamics. A deep operator-based neural network (DeepONet) proposed in [31]
is now popular for learning solutions from labelled input-output datasets consisting of
varied initial/boundary conditions and different forcing functions. The idea of DeepONet is
motivated by the Universal Approximation Theorem for Operators, which defines a new
and relatively underexplored realm for deep neural network (DNN)-based approaches that
map infinite-dimensional functional spaces rather than finite-dimensional vector spaces
(functional regression). The computational model consists of two classes of DNNs; one
encodes the input function at fixed sensor points (branch net) while the other accounts for
the location of the output function (trunk net).

Here, we present an integrated computational platform for predicting contributing
factors to TAA by melding a constrained mixture model of TAA enlargement with
DeepONet. Specifically, we use a previously established computationally efficient
implementation of our mechanobiologically equilibrated constrained mixture model to
describe the long-term evolution of TAAs. We propose two surrogate models to
approximate aneurysmal initiating factors: the first framework admits sparse information
to be encoded in the branch network, while the second instead encodes full-field grayscale
images taking into account patient-specific characteristics [32]. The accuracy of each
approach is evaluated for multiple types of simulated aneurysms arising from multiple
contributors investigated in past studies, and several variations of the neural network
design are explored to compare the relative performance of different architectures. Our
findings demonstrate feasibility of this technique for future analysis of clinical images of the
aorta. The key highlights are:

• A novel framework to predict TAA pathology melds a constrained mixture model for
arterial growth and remodeling with a DeepONet-based surrogate model.

• 3D finite element simulations of TAA progression arise from randomly distributed losses
of elastic fiber integrity and dysfunctional mechanosensing.

• The generalizable DeepONet can predict the solution with sufficient accuracy, even
when provided limited information.

• Performance is improved by employing convolutional neural networks rather than fully
connected feed-forward neural networks with sparse information.

• The preferred network architecture takes as input grayscale images of dilatation and
distensibility to predict the insult profile.

• This approach can be extended to patient-specific medical images to provide patient-
specific solutions.
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2. Methods

To generate synthetic data for training the surrogate model, we employ a previously
established constrained mixture model within a finite element platform [33]. Finite element
simulations incorporating the initial geometry of the aorta, bulk mechanical properties of
the vessel wall, and in vivo loading conditions (axial pre-stretch and intraluminal blood
pressure), along with a prescribed mechanobiological insult to initiate TAA, allow
predictions of local dilatation and distensibility fields (subsection 2.2). These are converted
into axial–azimuthal maps and randomly categorized into testing and training sets, which
enable training of the DeepONet (subsection 2.4) to predict the initial insult profile from a
given dataset. Finally, prediction of the spatial distribution and severity of the insult
profile is used for the projection of future TAA growth. The modeling pipeline is
summarized in Figure 1.

Figure 1: Pipeline for training the DeepONet to predict mechanobiological insults for forecasting long-term
aneurysm growth. First, 3D finite element simulations of TAA evolution incorporating vessel geometry,
mechanical properties, in vivo loading conditions, and mechanobiological insult profiles are used to generate
synthetic training and testing data for the DeepONet surrogate model, which is comprised of a deep neural
network with associated trainable parameters and evaluation points. Subsequently, the DeepONet is trained
using labeled maps of local dilatation and distensibility corresponding to the prescribed insults, as either
axial–azimuthal maps or converted grayscale images. Finally, the insult profile (distribution and severity) is
predicted from a given set of dilatation and distensibility information, which can be related to estimation of
TAA progression.

2.1. Constrained mixture model for arterial growth and remodeling
Over the past several years, we have developed a constrained mixture formulation to describe
growth and remodeling (G&R) of the aortic wall, which has been used to model the changing
composition, structure, and mechanics in both animal and clinical studies [34–37]. We have
recently implemented a computationally efficient 3D finite element framework for modeling
the initiation and long-term growth of TAA within a thick-walled cylindrical vessel segment
[33]. In the following, we summarize the pertinent details of the modeling framework; further
details can be found in the original papers [37, 38].
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2.1.1. Modeling framework
We model the arterial wall as a mixture of three primary load-bearing constituents: elastin-
dominated matrix e, collagen fiber-dominated matrix c, and smooth muscle cells m, that can
undergo changes in mass (grow) and microstructure (remodel) in response to biomechanical
stimuli. These constituents α = e, c,m are governed by mass density production rates mα(τ)

at the time of deposition τ , removal (decay) functions qα(s, τ), with s denoting the current
time, and stored energy density functions Ŵα(s, τ) that depend on the constituent-specific
deformations relative to their evolving natural configurations n(τ) and thus describe the
mechanical behaviors.

Because the extracellular environment is mechanoregulated by cells within the vessel wall,
production and removal rates can be modulated by perturbations from the homeostatic state
(i.e., a quasi-equilibrium where production balances removal, denoted by the subscript o).
Production per unit volume at time τ is expressed using a potentially evolving nominal rate
mα
N(τ) > 0 that is modulated by deviations in intramural stress σ (induced by pressure

and axial force) and wall shear stress τw (induced by blood flow) from homeostatic values,
namely,

mα(τ) = mα
N(τ)

(
1 +Kα

σ∆σ(τ)−Kα
τw∆τw(τ)

)
= mα

N(τ)Υα(τ), (1)

where Kα
i are gain-type parameters controlling the sensitivity to stress deviations ∆σ and

∆τw from set points σo and τwo, summarized in the stimulus function Υα. Equation 1 is
formulated to replicate experimental observations that increased wall stress and increased
flow tend to heighten and reduce extracellular matrix production, respectively [16, 37]. In
this study, we define ∆σ = (σ − σo)/σo and ∆τw = (τw − τwo)/τwo, where σ is one-third
the trace of the in-plane wall stress. Additionally, we assume that the intraluminal pressure
within the aorta remains constant (no pulsatility) when computing the G&R and that the
flow through the aorta remains constant and laminar.

Constituent removal between times τ and s is modeled by

qα(s, τ) = exp

(
−
∫ s

τ

kαN

(
1 + ω

(
∆σ(t)

)2)
dt

)
, (2)

where kαN is the basal removal rate, and ω > 0 is a gain-type parameter for intramural stress
deviations. Note that, while increases in intramural stress can drive increased production,
as stated above, they can also stimulate the removal of constituents through activation of
matrix-degrading enzymes, as reflected in Equation 2. With the above definitions, we then
express the mass density per unit reference volume of each constituent ραR by

ραR(s) =

∫ s

−∞
mα
R(τ) qα(τ) dτ, (3)
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where mα
R = Jmα is the referential (subscript R) mass density production rate, with

J =
∑
ραR/ρ representing the volume ratio between the reference and current in vivo

configurations of the tissue constituents.
We employ a hyperelasticity framework to describe the transient biomechanical

properties of the vessel wall, which is modeled as a mixture of nonlinear, nearly
incompressible, anisotropic materials. This allows the intramural stress-driven changes in
production and removal to be defined in terms of stored energy density relations Ŵα(s, τ),
which are functions of the multiaxial deformations of each constituent. The Cauchy stress
at the tissue (mixture) level σ includes passive contributions from each constituent, given
by

σ(s) = −p(s)I +
2

J(s)
F(s)

∂WR(s)

∂C(s)
FT(s), (4)

where p is a Lagrange multiplier that enforces the transient isochoric motions, I is the
identity tensor, F is the deformation gradient tensor for the tissue from reference to current
configurations, C = FTF is the right Cauchy-Green tensor, J = det F, and WR =

∑
Wα
R

is the total stored energy of the mixture. The constitutive relations are defined separately
for e, c, and m and are weighted by their respective volume fractions φα (Wα

R = φαŴα).
Further details are described in subsection A.1. Note that, because many TAAs associate
with diminished or absent smooth muscle contractility, we assume that the stress depends
only on passive properties.

2.1.2. Mechanobiologically equilibrated constrained mixture model
In cases of TAA, where the characteristic timescale of G&R is frequently shorter than that
of the biomechanical stimulus (e.g., elastic fiber degradation with gradual hypertension),
G&R can be assumed to reach a quasi-static mechanobiological equilibrium at time s � 0,
thus allowing a time-independent approach at which production balances removal ∀s and
computation of the heredity integrals is not required. In particular, the stimulus function in
Equation 1 reduces to

Υα
h(∆σh,∆τwh) = 1, (5)

with h denoting the evolved homeostatic state. Accordingly, rule-of-mixtures expressions
can be used to be used for stored energy (WRh =

∑
φαRhŴ

α, where φαRh are the evolved
constituent mass fractions). Similarly, for the Cauchy stresses (Equation 4),

σh = −phI +

e,c,m∑
α

φαhσ̂
α
h , (6)

where σ̂αh are the constituent-specific Cauchy stresses, and ph is the equilibrated Lagrange
multiplier for the quasi-static G&R evolution (see subsection A.2 for more details).
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2.2. Modeling TAA growth from prescribed mechanobiological insults
Although TAAs typically exhibit an irregular diameter, eccentricity, and thickness, it
remains instructive to consider smoothly varying insult profiles prescribed on an initially
straight cylindrical vessel, with in vivo geometry and mechanical properties derived from
our previous studies (uniform wall thickness ho = 40 µm and luminal radius ro = 647 µm;
see subsection A.2). Here, aneurysms are initiated by prescribing an insult that emulates
defects such as a localized breakage in elastic fibers or disruption at cellular integrin
binding sites. We adopt a cylindrical coordinate system in the initial homeostatic state
{ro, θo, zo}, and two approaches for insult profile definitions are considered: analytical and
randomly generated.

2.2.1. Analytically defined insult profiles
Insult profiles ϑ varying in the zo–θo (axial–azimuthal) plane are defined analytically with
the expression [33]

ϑ(zo, θo) = ϑend +

(
ϑapex − ϑend

)
exp

(
−
∣∣∣∣zo − zapexzod

∣∣∣∣νz) exp

(
−
∣∣∣∣θo − θapexθod

∣∣∣∣νθ) , (7)

where zo ∈ [0, lo], lo is the initial axial length (15 mm), θo ∈ [0, 2π], zod and θod are the axial
and circumferential characteristic widths of the insult region, respectively, νz and νθ govern
the softness of the boundaries in the axial and circumferential directions, respectively, and
ϑend and ϑapex are values of the insult at the ends of the cylinder (zo = 0, lo) and the apex
(zo = zapex, θo = θapex) of the profile, respectively. The profile is normalized to the interval
[0, 1], with 1 indicating the maximum insult degree that varies depending on the insult type
and severity. Example insult profiles and their corresponding remodeled vessels are shown
in Figure 2, and parameter ranges are listed in Table 1.

2.2.2. Randomly generated insult profiles
In contrast to the definition above, we also model aneurysms initiated from insult profiles
randomly distributed along the vessel wall to validate the DeepONet model against more
natural (i.e., irregular) insults. These profiles are initially generated as “latent” (i.e.,
unobserved) Gaussian random fields (GRFs), then nonlinearly transformed and censored on
[0, 1] to match physically meaningful metrics prescribed by the user. On an unbounded
space, the latent insult profiles are thus sampled according to

ϑ∗(zo, θo) ∼ G
(
µ(zo, θo), κ(zo, θo, z

′
o, θ
′
o)
)
. (8)

The mean µ(zo, θo) and covariance κ(zo, θo, z
′
o, θ
′
o) between two points (zo, θo) and (z′o, θ

′
o)

can be parameterized to control the overall propensity of insult (ϕ), the length scale of the
insult(s) in the circumferential (Lθ) and axial (Lz) directions, and the softness of the
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Figure 2: Examples of analytically defined insults and their influence on TAA geometry. Dilatation
(remodeled inner radius normalized by initial inner radius) maps are shown for variations in the (a) axial
location zapex ∈ [6, 9] mm and (b) circumferential location θapex ∈ [0◦, 360◦] of the aneurysm apex, as well
as the aneurysm (c) axial characteristic width zod ∈ [2, 4] mm and (d) circumferential characteristic width
θod ∈ [20◦, 360◦]. (e) For each combination of apex location and characteristic width, insults (e.g., loss of
elastic fiber integrity) of increasing severity are modeled.
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boundaries between normal and insult regions (ε). To enforce periodicity in the
circumferential direction, we define the covariance function as

κ(zo, θo, z
′
o, θ
′
o) = ς2 exp

(
−1

2

[(
Dθ (θo, θ

′
o)

Lθ

)2

+

(
Dz (zo, z

′
o)

Lz

)2
])

with Dθ (θo, θ
′
o) = 2ro sin

(
1

2
|θo − θ′o|

)
and Dz (zo, z

′
o) = |zo − z′o| ,

(9)

where ς2 is the overall variance of the GRF. To satisfy the prescribed insult propensity ϕ
and boundary softness ε, the mean and variance of the GRF are defined as

µ =
1

2
− 1

ε
√
π

erf−1 (1− 2ϕ) exp
(
−
[
erf−1 (1− 2ϕ)

]2)
and ς2 =

1

2πε2
exp

(
−2
[
erf−1 (1− 2ϕ)

]2)
,

(10)

where erf−1(·) denotes the inverse of the error function. Note that we choose µ to be constant
herein with respect to zo and θo. The insult propensity ϕ corresponds to the fraction of ϑ∗

values greater than 0.5, while ε corresponds to the slope of the cumulative distribution
function (CDF) of ϑ∗ at ϑ∗ = 0.5 (see subsection B.1 for the derivation of Equation 10). In
practice, to ensure stability of the finite element simulations that follow, we constrain ϑ∗ at
the vessel boundaries to be low (e.g., two standard deviations below the mean), such that
the censored insult profile values are zero at the boundaries. Note that ϑ∗ is discretized
on the finite element mesh of the vessel; thus, the nodal values ϑ∗i jointly follow (and can
thus be sampled from) a multivariate Gaussian distribution with mean vector µ = µ1 and
covariance matrix Σ, where Σij = Σji = κ(zo,i, θo,i, zo,j, θo,j). Partitioning the mesh into the
set of interior nodes a and the set of boundary nodes b, it is straightforward to condition the
distribution of ϑ∗a on the enforced value of ϑ∗b using

µ′a = µa + ΣabΣ
−1
bb (ϑ∗b1− µb) = µ+ ΣabΣ

−1
bb (ϑ∗b − µ) 1

Σ′aa = Σaa −ΣabΣ
−1
bb Σba

µ′b = ϑ∗b1

Σ′ab = 0, Σ′ba = 0, Σ′bb = 0

(11)

instead for sampling purposes. After ϑ∗i is sampled from N (µ′,Σ′), we perform a
CDF/inverse-CDF transformation, so that the overall distribution of ϑ∗ values in each
random instance of ϑ∗i matches the desired N (µ, ς2) (see Appendix B for more details).
Specifically,

(ϑ∗i )
′ = Φ−1

(
F (ϑ∗i ) ;µ, ς2

)
, (12)
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where F is the CDF of the generated random field values (approximated via kernel density
estimation) and Φ−1 is the inverse CDF (i.e., quantile function) of the normal distribution
with mean µ and variance ς2. Finally, the insult field values are censored using
ϑi = min

(
max

(
(ϑ∗i )

′ , 0
)
, 1
)
. The randomly generated insult profiles (i.e., loss of elastic

fiber integrity or loss of mechanosensing) correspond in turn to random patterns of
dilatation along the vessel (Figure 3), which are afterward used as input data for the
DeepONet model to perform an inverse prediction of the insult profile. In subsection B.2,
we present a sensitivity analysis to demonstrate how ϕ, ε, Lθ, and Lz jointly control the
size, shape, and appearance of randomly generated insults with high precision.

Figure 3: 3D and axial views of representative dilatation maps of TAAs initiated with prescribed insult
profiles from mapped Gaussian random fields. Circumferential length scale Lθ = 1.5 mm and axial length
scale Lz = 2.0 mm with perturbation boundary softness ε = 0.6. In all cases, ϕ = 15% of the total area is
perturbed, and the maximum insult applied is 60% loss in elastic fiber integrity.

2.2.3. Insult contributors
Two types of contributors to TAAs are considered: loss of elastic fiber integrity (analogous
to a loss of functional elastin) and dysfunctional mechanosensing (representing an impaired
ability of cells to sense changes in intramural stress). Insult values ranging from mild to
severe are simulated for each of these functions (Table 1).

Elastic fiber integrity. Functional elastin plays a crucial role in the elastic energy storage
capability of the aorta (i.e., compliance and resilience), and genetic disorders such as Marfan
syndrome associate with loss of elastic fiber integrity from fragmentation or degradation.
This is modeled with a user-defined reduction in the baseline value of the material parameter
ce, chosen to achieve a loss in mechanical properties consistent with previous biaxial testing
of aortas from Fbn1mgR/mgR mouse models for Marfan syndrome [2, 11, 13].

Dysfunctional mechanosensing. Mechanical homeostasis of the aorta is regulated by
intramural cells that sense the local microenvironment, primarily through integrin binding
sites. When these cells cannot accurately detect deviations in stress from their homeostatic
levels, whether through disruptions in extracellular matrix or impaired actomyosin activity,
they tend to drive maladaptations within the aorta. This is represented with the parameter
δ ∈ [0, 1], with 0 indicating perfect mechanosensing, and the modified expression for
deviations in intramural stress ∆σ = ((1− δ)σ − σo)/σo [14, 33].
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2.3. Finite element modeling
2.3.1. Normotensive conditions
We employ a 3D finite element model with 1 × 20 × 20 mesh of 27-node quadratic
hexahedral elements in the radial, circumferential (azimuthal), and axial directions.
Displacement of the ends of the vessel is fixed in the axial direction, then the vessel is
pressurized at normotensive conditions via a traction boundary condition on the inner
surface and axially (pre-)stretched uniformly according to previous experimental data. The
open-source software FEBio (febio.org) running a custom constrained mixture model
plugin enables both G&R computations and isochoric hyperelasticity computations in
which G&R is arrested [38]. Simulations are performed in the following stages:

1. Initialization: uniform pressurization and pre-stretch of the cylindrical vessel without
insult to achieve the initial homeostatic state.

2. G&R: computation of growth and remodeling in response to the gradually applied
insult, at fixed pressure.

3. Hyperelasticity: post-G&R computation of vessel deformation at normotensive
diastolic and systolic pressures [39].

For analytically defined TAA cases, all combinations of insult profiles with variations in
axial and circumferential location and extent were simulated for five levels of insult severity
and for both insult types, yielding a total of 550 simulations at normotensive conditions. For
randomly generated TAAs, 10 unique profiles sharing the same shape parameters are used
to yield 100 cases.

2.3.2. Superimposed hypertension
Uncontrolled hypertension (elevated blood pressure) is a critical determining factor in TAA
growth [4, 39]. Thus, each insult type in subsubsection 2.2.3 is also simulated with
superimposed hypertension, modeled by a gradual increase in the intraluminal pressure,
concurrent with the prescribed insult. As a modification to the previously described
simulation pipeline, hypertension cases are simulated as follows:

1. Initialization: uniform pressurization and pre-stretch of the cylindrical vessel without
insult to achieve the initial homeostatic state.

2. G&R: computation of growth and remodeling in response to the gradually applied
insult, concurrent with gradual increases in pressure by 33%.

3. Hyperelasticity: post-G&R computation of vessel deformation at hypertensive diastolic
and systolic pressures [39].

Cases of hypertension highlight how even a mild insult degree with modest dilatation
under normotensive conditions can be exacerbated by increased pressure, yielding a
maximum dilatation comparable to that produced by a severe insult under normotensive
conditions (Table 1). 550 additional simulations with hypertensive conditions are simulated
for analytically defined profiles. Hypertensive conditions were not considered for randomly
generated insults.

12
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Table 1: G&R and mechanobiological insult profile parameters for normotensive and hypertensive simulations
with analytically defined insults (Equation 7). To avoid boundary effects, zapex = 7.5 mm only for zod = 4.0

mm. For randomly generated profiles, loss of elastic fiber integrity is varied from 6% – 60%, and dysfunctional
mechanosensing ranges from 2.5% – 25% at normotensive conditions.

Parameter Variable Value
Axial characteristic width (mm) zod 2.0, 3.0, 4.0
Circumferential characteristic width (deg) θod 20, 100, 180, 260, 360

Axial placement (mm) zapex 6.0, 7.5, 9.0
Circumferential placement (deg) θapex 0, 90, 180, 270

Normotensive Hypertensive (33%)
Loss of elastic fiber integrity 5.95% – 59.5% 4.75% – 47.5%
Dysfunctional mechanosensing 1.84% – 18.4% 1.08% – 10.8%
G&R pressure (mmHg) [33] 105 105→ 140

Diastolic pressure (mmHg) [39] 99 129
Systolic pressure (mmHg) [39] 121 172

2.3.3. Post-processing training and testing data
In the Initialization stage, the straight cylindrical vessel with inner radius ro is uniformly
pressurized and pre-stretched according to normotensive in vivo conditions in one load step
while maintaining the same geometry (Figure 4a). In the G&R stage, an insult (analytically
defined or randomly generated) is gradually applied over 10 subsequent load steps to compute
the evolved post-G&R geometry (Figure 4b) with spatially varying inner radius rh. The
G&R evolution is then arrested, and in the Hyperelasticity stage two additional load steps
are simulated in which the luminal pressure is adjusted to diastolic and systolic values [39]
to evaluate the local distension at diastole ΛD = rdia/ro and systole ΛS = rsys/ro, where rdia
and rsys are the inner radius at diastolic and systolic pressure, respectively (Figure 4c,d).

We train the DeepONet surrogate model using two quantities of interest from the finite
element-based synthetic data: dilatation (i.e., aneurysmal enlargement) and distensibility
(i.e., cyclic strains). For dilatation, we utilize a map of ΛD for each mesh node along the
inner surface of the geometry. For distensibility, in contrast to the diameter- and pressure-
based “distensibility” defined in previous literature [39], we consider the actual distensibility
D = (ΛS − ΛD)/ΛD for all nodes on the inner surface. These dilatation and distensibility
maps are provided to the neural network in the form of z–θ maps (Figure 4e) as well as
nondimensionalized grayscale images (Figure 4f). Approximately 10% of the total number
of datasets are used to validate the trained model, and the remaining are used for training.

2.4. DeepONet
In this section, we describe the architecture of the surrogate model developed within the
framework of DeepONet to predict mechanobiological insult profiles. The conventional
unstacked DeepONet architecture consists of two deep neural networks (DNNs): one
encodes the input function at fixed sensor points (branch net) while the other accounts for
the locations of the output function (trunk net). The branch network input is customizable
in a generalized setting and can take the shape of the physical domain, the initial or
boundary conditions, constant or variable coefficients, source terms, and so on, as long as
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Figure 4: Schematic for the generation of synthetic training data for TAAs arising from localized
mechanobiological insults. (a) The initial vessel geometry with inner radius ro and prescribed insult is
evolved over multiple load steps to compute (b) the final post-G&R geometry, in which the homeostatic
inner radius rh can be calculated with respect to the updated centerline. The luminal pressure is then
adjusted to (c) diastolic and (d) systolic conditions to evaluate the local distension at diastole ΛD and
systole ΛS , respectively. (e) The distensibility is then computed with the relation D = (ΛS − ΛD)/ΛD.
Together, these steps yield the dilatation ΛD and distensibility D maps (shown in the flattened z–θ plane).
(f) Finally, the maps are converted into nondimensionalized grayscale intensity maps and contrast enhanced.
For illustrative purposes, this procedure is shown for an analytically defined insult (Equation 7) under
normotensive conditions only.
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the input function is discretized at sensor locations nsen. For a regularly spaced
discretization of the input function, a convolutional neural network (CNN) can be used as
the branch net, while for a sparse representation, one may also consider a feed-forward
neural network (FNN), or even a recurrent neural network (RNN) for sequential data. A
standard practice is to use an FNN in the trunk network to take into account the low
dimensions of the evaluation points. The mathematical foundation of DeepONet is
provided in Appendix C, and the interested reader is referred to [31] for additional details.

The cases considered in this work consist of mechanobiologically equilibrated TAAs
developed from an initially cylindrical vessel caused by loss of elastic fiber integrity or
compromised mechanosensing. We generate cases under normotensive and hypertensive
conditions and consider dilatation and distensibility maps to train the DeepONet. We
consider two different network architectures for the branch network, FNN and CNN, with
the aim to identify a preferred network architecture. With an FNN in the branch network,
we show that even with sparse dilatation and distensibility information, the DeepONet
predicts the insult profile with high accuracy. Subsequently, we use a CNN to approximate
the input function with grayscale images of the dilatation and distensibility. Both
approaches are judged based on two empirical observations:

• the ability of the models to generalize unseen test cases, and

• the ability of these models to generalize noisy input functions.

2.4.1. FNN-based architectures
The DeepONet in this work considers multiple branch networks to account for the
dilatation map at diastole (ΛS) and the distensibility map (D), as well as whether the
loading condition is normotensive or hypertensive. The five branch networks Ui for
i = 1, 2, . . . , 5 are formulated as FNNs with the following description:

• U1: value of ΛD at nsen.

• U2: location of the maximum value in ΛD.

• U3: value of D at nsen.

• U4: location of the minimum value in D = (ΛS − ΛD)/ΛD.

• U5: binary network to account for hypertension: normotensive: 0, hypertensive: 1.

We perform two experiments to decide the optimal number of sensors for U1 and U3, detailed
below.

Experiment 1: nsen = 5× 5 single-spaced sensor locations.
In this experiment, a 5 × 5 lattice of points is employed for U1 and U3, centered at the
location of maximum dilatation U2 and the location of minimum distensibility U4. The
locations of the sensors are selected such that the input data is constrained within a fairly
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localized neighborhood around the local extremum, dictated by the spacing of the nodes
in the finite element mesh (in other words, the sensor locations correspond to a uniform
5 × 5 grid of adjacent single-spaced nodes). The arrangement of sensor points is shown in
Figure 5a.

Experiment 2: nsen = 9 double-spaced sensor locations.
In this experiment, only 9 sensor locations are employed for for U1 and U3; however, locations
are distributed with double the spacing in the axial and azimuthal directions compared to
the single-spaced 5 × 5 locations, encompassing a neighborhood roughly 4 times the size of
that in Experiment 1. As above, the sensors for U2 and U4 are centered at the locations of
maximum dilatation and minimum distensibility, respectively (Figure 5b).

Figure 5: Depictions of the sensor locations for subsubsection 2.4.1 within a representative TAA case (10.1%
loss of mechanosensing, zod = 2 mm, θod = 20◦, zapex = 6 mm, θapex = 270◦). (a) nsen = 5× 5 single-spaced
sensor locations on ΛD and D for Experiment 1. (b) Double-spaced sensor locations nsen = 9 for Experiment
2. The scalar distances r1 and r2 are computed from the origin to the maximum dilatation location and the
minimum distensibility location, respectively.

The trunk network (FNN) considers the locations of evaluation in a cylindrical coordinate
system (i.e., y = {y1,y2, . . . ,yp} = {(θ̂1, ẑ1), (θ̂2, ẑ2), . . . , (θ̂p, ẑp)}). Encapsulating previous
knowledge into the architecture of DeepONet often improves the generalization of the output.
Here, we replace the θ̂ component of the trunk net with appropriate basis functions in
Cartesian coordinates. Thus, the trunk net input is modified as yi = (cos θ̂i, sin θ̂i, ẑi). A
schematic representation of the framework is shown in Figure 6.
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Figure 6: Schematic representation of the DeepONet for subsubsection 2.4.1. The branch network takes
as input the dilatation ΛD and distensibility D at the sensor locations nsen (branch net: U1 and U3,
respectively) and the locations of maximum dilatation and minimum distensibility (branch net: U2 and
U4, respectively). Additionally, blood pressure information is fed to the network using a branch net: U5

as normotensive (input = 0) or hypertensive (input = 1). Each branch net returns features embedding
[bi1, b

i
2, . . . , b

i
q]

T ∈ Rq, i = 1, 2, . . . , 5 as output, and the dot product of these outputs is computed to obtain
[b1, b2, . . . , bq]

T. The trunk net takes the continuous coordinates y = (cos θ̂, sin θ̂, ẑ) as inputs and outputs
a features embedding [t1, t2, . . . , tq]

T ∈ Rq. The features embeddings of the branch and trunk networks are
merged via an element-wise dot product to output the solution operator Gθ with learnable parameters θ.
Minimization of the loss function L determines best-fit parameters θ∗ that enable estimation of the insult
profile.

2.4.2. CNN-based architecture
In this section, we discuss the DeepONet architecture considering grayscale images, converted
from the ΛD and D maps and contrast enhanced, as input functions for the branch network.
This approach considers 3 branch networks with the following descriptions:

• U1: grayscale image for ΛD using a CNN.

• U2: grayscale image for D using a CNN.

• U3: binary network to account for hypertension using an FNN.
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Note that, in contrast to the sparse sensor point arrays, we use full-field images for U1 and
U2, which have a resolution of 21× 20 pixels. A schematic representation of the DeepONet
implemented with this framework is shown in Figure 7.

Figure 7: Schematic representation of the DeepONet for subsubsection 2.4.2. Each branch net is a CNN
that takes as inputs the grayscale images of dilatation ΛD and distensibility D (branch nets: U1 and U2,
respectively). Blood pressure information is fed to the FNN using a branch net: U3 as normotensive (input
= 0) or hypertensive case (input = 1). The outputs of the branch and trunk networks are merged into the
solution operator Gθ, and minimization of the loss function L enables estimation of the insult profile.
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3. Results

3.1. Dilatation and distensibility in TAA
Locally applied insults in elastic fiber integrity and mechanosensing both lead to the
development of dilatations, as well as aneurysms (defined as a 1.5-fold increase in
normalized diameter from baseline) in cases of severe insults of elastic fiber integrity. In
cases with less circumferential involvement of insult (θod < 180◦), the unaffected regions of
the vessel help to attenuate dilatation within the insult area. Additionally, each factor is
modeled in combination with superimposed hypertension (elevated blood pressure),
emphasizing how even a mild insult with modest dilatation in normotensive conditions can
be exacerbated by the presence of additional risk factors. In hypertensive cases, the
dilatation also increases significantly, including in regions where there is no insult applied.

Overall, increased dilatation associated with mechanobiological insults correlate well with
decreases in distensibility. However, there are distinct differences between distensibility
maps resulting from loss of elastic fiber integrity and those resulting from dysfunctional
mechanosensing. Whereas the location of maximum dilatation and minimum distensibility
colocalize in elastic fiber integrity loss, the maximum dilatation in mechanosensing loss
occurs on the opposite side of the vessel from the minimum distensibility, although the
distensibility also decreases at the location of maximum dilatation. These findings confirm
the need to evaluate both metrics for robust training of the DeepONet in all cases, especially
in experiments considering multiple types of insults.

3.2. Performance of the surrogate models
The effectiveness of the developed surrogate models is demonstrated through several
experiments, put forward in this section. To evaluate performance, we compute the L2

relative error of predictions, and we report its mean and standard deviation based on five
independent training trials. In all cases presented here, the DeepONet is trained using a
combination of Adam [40] and L-BFGS optimizers [41]. The implementation is carried out
using the TensorFlow framework [42]. Throughout all examples, we initialize the weights
and biases of the DeepONet using Xavier initialization. The experiments carried out in this
work are listed in Table 2.

Table 2: Descriptions of the datasets considered for the experiments carried out in this work. Insult profiles
are either analytically defined or randomly generated losses of elastic fiber integrity or mechanosensing, and
pressure conditions are either normo- or hypertensive, listed in parentheses.

Case # Description
Case 1 Analytically defined elastic fiber integrity (normotensive)
Case 2 Analytically defined mechanosensing (normotensive)
Case 3 Analytically defined elastic fiber integrity or mechanosensing (normotensive)
Case 4 Analytically defined mechanosensing (normotensive & hypertensive)
Case 5 Analytically defined elastic fiber integrity or mechanosensing (normotensive & hypertensive)
Case 6 Randomly generated elastic fiber integrity or mechanosensing (normotensive)
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The experiments establish the accuracy of the three surrogate models when trained with
data generated for analytically defined insult profiles (Cases 1–5) and for randomly generated
insult profiles (Case 6). In Figure 8, we present the performance of the three surrogate
models for representative analytically defined and randomly generated insults in elastic fiber
integrity (Cases 1 & 6). For each architecture, we compute an error between the true and
predicted insult profiles by normalizing the absolute error by the maximum insult value
throughout the z–θ plane. While each DeepONet architecture is able to predict the insult
profile within 5% error, the design with 5×5 sensors tends to exhibit the greatest prediction
errors, whereas the design based on grayscale images provides the most accurate prediction.
This discrepancy is most clearly observed in Figure 8b.

Figure 8: Performance of the surrogate models for the prediction of analytically defined and randomly
generated insult profiles. Axial–azimuthal views of representative true and predicted (a) analytically defined
and (b) randomly generated insult profiles are predicted using 5×5 sensors, 9 sensors, and full-field grayscale
maps. The insult prediction error, normalized by the maximum insult value over the axial–azimuthal domain,
is shown for each architecture.

In Table 3, we show the relative L2 error of the surrogate models, averaged over the z–θ
domain, for the testing dataset compromised of mechanosensing insults under normotensive
conditions (Case 2). Additionally, we show the total number of trainable (i.e., learnable)
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parameters for each surrogate model, which are the weights and biases of the networks
optimized using back-propagation during the training process. In general, the total number
of parameters learned during the training process for a CNN is less than that for an FNN.
CNNs are very effective in reducing the number of parameters without losing the quality of
models, as the learnable filters of the network encode the information to reduce the high-
dimensional input data (here, grayscale images) to a lower latent dimension. This is also
seen in our results, which show that the network with full-field grayscale images requires the
lowest number of parameters while simultaneously achieving the highest predictive accuracy.
Finally, we evaluate the performance of the surrogate model trained with grayscale images
on a noisy dataset that consists of the original testing dataset with 5% added uncorrelated
Gaussian noise. Overall, among the surrogate models considered in this Case, the CNN-
based design again demonstrates improved computational efficiency, prediction accuracy,
and robustness against noise.

Table 3: Relative L2 error and the number of trainable parameters of the three surrogate models for N = 545

training data and N∗ = 45 testing data consisting of compromised mechanosensing under normotensive
conditions. The noise is added in the inputs of the testing dataset.

Method # parameters
Relative L2 error

Testing data +5% noise

5× 5 sensors 234800 3.906± 0.004% 44.27± 0.008%

9 sensors 230784 2.712± 0.007% 32.52± 0.009%

Grayscale images 141180 2.340± 0.010% 8.2± 0.020%

In Table 4, we report the relative L2 errors of the three models, along with the robustness
of each model to 5% added uncorrelated Gaussian noise. Error plots for three representative
test cases are shown in Figure 9. Columns 1 and 2 show the 3D geometry and the unfolded
axial–azimuthal view of the aorta, respectively, colored by the insult profile (ground truth).
Columns 3–5 depict the prediction errors associated with using 5 × 5 sensors, 9 sensors, or
grayscale images to train the network, respectively. Error is normalized with respect to the
maximum insult value of each case. These findings further reinforce the improvements of
the CNN-based approach in a variety of testing scenarios varying by insult type, pressure
conditions, and insult profile generation method.
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Table 4: Relative L2 error of the three surrogate models for with N training data and N∗ testing data for
the cases listed in Table 2. The noise is added in the grayscale full-field image inputs of the testing dataset.

Case # N N∗
Relative L2 error

5× 5 sensors 9 sensors Grayscale images +5% noise

Case 1 545 45 4.79± 0.008% 4.29± 0.008% 3.458± 0.011% 7.80± 0.03%

Case 2 545 45 3.91± 0.004% 2.71± 0.007% 2.340± 0.010% 8.20± 0.020%

Case 3 500 90 7.10± 0.001% 6.75± 0.003% 5.948± 0.006% 10.69± 0.015%

Case 4 500 90 2.88± 0.005% 2.62± 0.001% 2.280± 0.005% 7.30± 0.01%

Case 5 720 180 3.65± 0.005% 2.65± 0.003% 2.540± 0.018% 7.18± 0.012%

Case 6 90 10 7.74± 0.011% 7.20± 0.020% 2.292± 0.002% 15.96± 0.029%

Figure 9: Error plots for three representative cases of testing samples from the indicated experiments.
Columns 1 and 2 show the 3D geometry and the unfolded axial–azimuthal view of the aorta, respectively,
colored by the insult profile (ground truth). Columns 3–5 depict the prediction error of Experiment 1 (using
5×5 sensors), Experiment 2 (using 9 sensors), and using grayscale images to train the network, respectively.
Error is normalized with respect to the maximum insult value of each case. The top row corresponds to
a case of analytically defined normotensive elastic fiber integrity insult (Case 1), the middle row shows an
analytically defined hypertensive mechanosensing insult (Case 4), and the bottom row represents a randomly
generated normotensive elastic fiber integrity insult (Case 6).
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4. Discussion

4.1. Insult profile prediction with sensor point- and image-based approaches
This study utilizes a constrained mixture model for arterial growth and remodeling
integrated with a DeepONet to predict factors contributing to TAA. The main challenge in
applying deep learning based frameworks to predict TAA enlargement is the availability of
limited information, both in terms of number of samples as well as information per sample.
Additionally, due to the high complexity of the mechanobiology in patient-specific
predictions of TAA (e.g., age, hypertension, diabetes, prescribed medications), making
accurate predictions with even high-fidelity physical models remains a challenge. To enable
accurate predictions, we have proposed and evaluated three frameworks of DeepONet that
are distinguished based on the information available for training the network. The results
shown in Table 4 indicate that the proposed frameworks indeed provide effective
predictions for both analytically defined and randomly generated insult profiles. Our
observations are summarized as follows:

1. It has been shown that aortic geometry alone is not sufficient to predict TAA
progression [21]. Many have thus sought to incorporate additional information such
as biomechanical properties and patient-level variables to improve predictive
capability. We find that accurate prediction of the insult profile can be achieved with
the inclusion of biomechanical properties along with dilatation and distensibility
fields generated from measurements of diastolic and systolic phases of the cardiac
cycle, similar to the approaches used by other groups [6, 23].

2. Predicting insult profiles with information at 5 × 5 sensor locations is sufficiently
accurate for cases with θod < 260◦ and relatively small zod. However, with a wider θod
and broader zod, limited information within a single-spaced neighborhood around
maximum dilatation and minimum distensibility is insufficient; hence, for such cases,
the relative error increases.

3. Overcoming the limitations of 5 × 5 sensor locations, the double-spaced arrangement
of 9 sensors more accurately estimates the insult profile within a wider neighborhood
compared to that of the 5 × 5 sensor array. This observation is in line with the
reduced prediction errors reported in Table 4 (fourth and fifth column), which depicts
this improvement in accuracy. This suggests that the range of variation within the
network inputs captured by the sensor point domain, rather than the absolute number
of sensors, is a greater determining factor in the predictive capability of the network.

4. FNNs have proven to work well with limited information and also be robust to noisy
testing inputs. However, in the case of extremely sparse information, the network fails
to generalize well for noisy inputs and reports a relative L2 error of 44.27±0.008% and
32.52±0.009% for 5×5 and 9 sensors, respectively, when tested with 5% Gaussian noise
added to the testing inputs of Case 2 (compromised mechanosensing) (last column in
Table 3).

5. The robustness of the different network architectures is evident in cases of randomly
generated insult profiles. As seen in the third and the fourth columns of Figure 10,
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networks trained on sparse sensor point information often fail to achieve accurate
predictions if there is more than one location of localized dilatation or if the dilatation
boundary is irregular. In these cases, we observe that the model with 9 double-spaced
sensor locations achieves better prediction accuracy than the 5×5 single-spaced sensor
locations.

6. The caveats of the FNN-based frameworks (subsubsection 2.4.1) motivate the
development of a CNN-based framework, which takes as inputs grayscale images of
dilatation and distensibility to more accurately predict the insult profile. The
predictive accuracy of the framework proposed in subsubsection 2.4.2 is clearly
depicted in Table 4 (sixth column) and Figure 9. Additionally, the model is more
noise-tolerant than the sparse sensor-based frameworks (last column of Table 4).

7. The computational cost of a network is directly related to the number of trainable
parameters. Neural networks employ back-propagation algorithms to tune the network
parameters, while trying to reflect the best-fit solution to the training data. Therefore,
an FNN trained on real-life images is often computationally expensive. The choice of
a CNN to train on grayscale images benefits the model not only in terms of predictive
accuracy but also computational efficiency, as this framework requires fewer learnable
parameters compared to the models employing FNNs (second column of Table 3).

8. All of the frameworks proposed are capable of handling patient-specific datasets
beyond dilatation and distensibility. In this work, we have demonstrated that an
additional FNN in the branch net is sufficient to handle information like
hypertension. This framework can be easily extended to handle further information,
such as preexisting genetic or pharmacological conditions, without any additional
cost of training the network.

4.2. Limitations
There are also restrictions to the frameworks proposed and experiments selected in this study,
which will be addressed in future work. The proposed framework is capable of predicting
the insult profile for a given set of dilatation and distensibility information (that is, for a
given time). This capability represents a scientifically important inverse problem, a class
of problems that are typically ill-posed and yet were tractable herein. Nevertheless, even
though the three surrogate models are capable of handling patient-specific information, they
are not yet capable of determining real-time TAA evolution, which is a significant unmet
need in the assessment of TAA for diagnosis, prognosis, and follow-up, and also in the
determination of rupture risk. The study has been carried out on synthetic data based on
finite element simulations, which are available in abundance. Future training of the model
on limited clinical information will be challenging in terms of the number of data points
available. In such situations, transfer learning may need to be integrated with domain
adaptation models to leverage the benefits of a model trained on synthetic data and used
for predictions on a different dataset. Finally, to address the challenge of accounting for
additional genetic and biomechanical factors, we plan to incorporate models with improved
hierarchical relationships (e.g., capsule networks) and quantification of uncertainties in the
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Figure 10: Error plots for two representative cases of loss of elastic fiber integrity under normotensive
conditions for randomly generated insult profiles (Case 6). Columns 1 and 2 show the 3D geometry and
unfolded view of the aorta with aneurysm (ground truth), respectively, and columns 3–5 depict the normalized
prediction error of Experiment 1 (using 5× 5 sensors), Experiment 2 (using 9 sensors), and using grayscale
images to train the network, respectively.

local tissue mechanical properties [43]. Multi-fidelity DeepONet approaches could also be
designed, utilizing an additional low-fidelity dataset to drastically reduce the necessary high-
fidelity dataset. To make use of the available historical data, we plan to use a Bayesian
framework to learn from functional priors (in silico) and make posterior estimations (in
vivo). Such an approach would reduce the use of high-fidelity data required for training,
potentially enabling improved prognosis of aneurysm growth and rupture risk in a clinically
relevant time frame.

4.3. Summary
We have developed a novel framework to predict TAA pathology by integrating a
constrained mixture model for arterial growth and remodeling with a deep neural network
surrogate model. 3D finite element simulations of TAA development arising from randomly
distributed losses of elastic fiber integrity and dysfunctional mechanosensing provided
synthetic training data for the surrogate model, capable of predicting insult profiles from
dilatation and distensibility information. Finally, we demonstrated improved performance
using convolutional neural networks in our DeepONet construction. This framework can
ultimately be applied to construct patient-specific profiles for aneurysm growth, which will
provide critical information to contextualize the predicted mechanobiological insult and
forecast the short-term evolution of TAA imaged at one time point in the clinic.
Characterization of this progression could play an integral role in determining future
patient risk and in designing improved therapeutic interventions.
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Appendix A Constrained mixture model

A.1 Constitutive properties
The biomechanical behaviors of the structurally significant constituents of the aortic wall
α = e, c,m (elastin-dominated matrix, collagen-dominated matrix, and smooth muscle cells,
respectively) at current time s are described by strain energy density functions Wα

R , with
subscript R denoting the reference configuration. The constitutive relations are weighted by
their respective volume fractions φα. We define F as the deformation gradient tensor for the
tissue from reference to current configurations and J = det F.

Elastin-dominated matrix. A neo-Hookean model is used to describe the isotropic elastin-
dominated mechanical response (α = e), defined as

W e
R(s) = φeR(s)Ŵ e(s) = φeR(s)

ce

2
(tr(FeT(s)F(s))− 3), (13)

where φeR(s) = Jφe(s) is the referential mass fraction, Fe = FGe, with the tensor Ge

representing the elastin deposition stretch when produced, and ce is the shear modulus,
which can be estimated by fitting biomechanical testing data. Because elastin does not turn
over continuously in maturity, its natural configuration is fixed and no convolution integral
is required.

Collagen-dominated matrix and passive smooth muscle. For collagen fibers (α = c)
and smooth muscle fibers (α = m), a four-fiber family model is employed in combination
with production and removal, giving the relation

W c,m
R (s) =

1

ρ

∫ s

−∞
mc,m
R (τ)qc,m(s, τ)Ŵ c,m(λc,mn(τ)(s))dτ, (14)

where ρ is the mass density of the tissue, φc,mR (s) = Jφc,m(s), λc,mn(τ)(s) are the fiber stretches
(relative to their evolving natural configurations n(τ)), and

Ŵ c,m(λc,mn(τ)(s)) =
cc,m1
4cc,m2

(
exp

[
cc,m2 (λc,mn(τ)(s)− 1)2

]
− 1
)
, (15)

where cc,mi are material parameters for each fiber family that can be estimated similarly
from biomechanical testing data. Collagen fibers are classified into circumferentially, axially,
and diagonally oriented (at angle α0) populations with associated fractions βθ, βz, and βd,
respectively.
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A.2 Mechanobiologically equilibrated constrained mixture model
In cases of TAA, G&R can be assumed to reach a quasi-static mechanobiological equilibrium
at time s � 0. Since production balances removal, mα

h = mα
Nh = kαNhρ

α
h , and Equation 14

reduces to

W c,m
Rh = φc,mRh Ŵ

c,m(Gc,m
h ), (16)

where Gc,m
h are the homeostatic deposition stretches of collagen and smooth muscle fibers.

Accordingly, rule-of-mixtures expressions can be used to be used for stored energy (WRh =∑
φαRhŴ

α, where φαRh are the evolved constituent mass fractions). Similarly, for the Cauchy
stresses (Equation 4),

σh = −phI +

e,c,m∑
α

φαhσ̂
α
h , (17)

where σ̂αh are the constituent-specific Cauchy stresses, and ph is the equilibrated Lagrange
multiplier for the quasi-static G&R evolution.

We assume the turnover rates of smooth muscle and collagen from the initial to
equilibrated states are the equivalent, letting the smooth muscle-to-collagen turnover ratio
η = (kmKm

i )/(kcKc
i ) = 1 (i = σ, τw), which yields ρmRh/ρmo = ρcRh/ρ

c
o. Additionally,

assuming that the cardiac output, and thus blood flow rate Q, remains constant and
laminar, we let τwh/τwo = Qa3o/(Qa

3
h) and Kα

τw/K
α
σ = 0. We compute the deviation in

intramural stress using σh = 1
3
tr(σh) and also allow collagen fibers to gradually reorient

during G&R. Material parameters for the model, shown in Table 5, are adapted from [33].

Table 5: Material parameters used in finite element simulations. Superscripts e,m, c denote elastin-
dominated, smooth muscle, and collagen-dominated matrix, respectively; super/subscripts r, θ, z, d denote
radial, circumferential, axial, and symmetric diagonal directions, respectively. Subscript o denotes the initial
homeostatic state; subscripts i = σ, τw denote intramural and wall shear stress related values, respectively.
For elastic fiber integrity insults, the baseline value of ce is reduced by a prescribed percentage; for
mechanosensing insults, δ is increased. The reader is referred to [33] for further details on these model
parameters.

Inner radius, thickness, length ro, ho, lo 0.647 mm, 0.040 mm, 15 mm
Elastin, smooth muscle, collagen mass fractions φeo, φ

m
o , φ

c
o 0.34, 0.33, 0.33

Collagen orientation fractions βθ, βz, βd 0.056, 0.067, 0.877
Diagonal collagen orientation α0o 29.9◦

Elastic material parameters ce, cm1 , c
m
2 , c

c
1, c

c
2 89.71 kPa, 261.4 kPa, 0.24, 234.9 kPa, 4.08

Deposition stretches Ge
θ, G

e
z, G

e
r, G

m, Gc 1.90, 1.62, 1/(Ge
θG

e
z), 1.20, 1.25

Smooth muscle-to-collagen turnover ratio η 1.0
Shear-to-intramural gain ratio Kτw/Kσ 0.00
Dysfunctional mechanosensing δ 0
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Appendix B Random insult fields

B.1 Derivation of mean and variance
Marginally, the values of a GRF with constant mean are themselves normally distributed
with the same mean and with variance equal to the overall variance of the GRF. Holding ϕ
and ε constant, we may thus solve for the corresponding mean µ and variance ς2 explicitly.
To enforce the overall insult propensity ϕ, defined as the fraction of ϑ∗ (and thus ϑ) values
greater than 0.5, we evaluate the Gaussian complementary CDF at 0.5 and solve for µ in
terms of ϕ and ς:

ϕ =
1

2
− 1

2
erf

(
0.5− µ
ς
√

2

)
=⇒ µ =

1

2
− ς
√

2 erf−1 (1− 2ϕ) .

(18)

To tune the softness of boundaries between normal and insult regions, we prescribe the slope
ε of the CDF of ϑ∗ (i.e., its probability density) at ϑ∗ = 0.5. Note that larger ε values
ultimately correspond to more ϑ∗ values lying between 0 and 1 (indicating partial insult),
and thus softer normal/insult boundaries (Figure 11). Evaluating the (Gaussian) probability
density at 0.5, substituting Equation 18 for µ, and solving for ς yields

ε =
1

ς
√

2π
exp

(
−1

2

(
0.5− µ

ς

)2
)

=⇒ ε =
1

ς
√

2π
exp

(
−
[
erf−1 (1− 2ϕ)

]2)
=⇒ ς =

1

ε
√

2π
exp

(
−
[
erf−1 (1− 2ϕ)

]2)
.

(19)

Substituting Equation 19 into Equation 18 and squaring Equation 19, we obtain final
expressions for the mean and variance,

µ =
1

2
− 1

ε
√
π

erf−1 (1− 2ϕ) exp
(
−
[
erf−1 (1− 2ϕ)

]2)
and ς2 =

1

2πε2
exp

(
−2
[
erf−1 (1− 2ϕ)

]2)
.

(20)

B.2 Sensitivity analysis
The pipeline detailed in subsubsection 2.2.2 and subsection B.1 is capable of generating
random insult profiles that are greatly variable in appearance (Figure 12), while precisely
controlling desired physically meaningful metrics, including the overall fraction of the vessel
experiencing insult (ϕ), the softness of the boundaries between normal and insult regions
(ε), and the size of the insult region(s) in both the circumferential and axial directions (Lθ
and Lz, respectively). To demonstrate and quantify how ϕ, ε, Lθ, and Lz jointly control
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Figure 11: CDFs of insult field values before (ϑ∗) and after (ϑ) censoring, with insets illustrating the effect
of ε on the softness of the boundaries between normal and insult regions (ϕ = 50%, Lθ = 1.5 mm, and
Lz = 2 mm herein). Smaller values of ε correspond to sharper boundaries, while larger values correspond to
softer boundaries.

the size, shape, and appearance of randomly generated insults, we present here a sensitivity
analysis illustrating how each of these affect the resulting insult profile. Note that while
the insult propensity (Figure 13) and boundary softness (Figure 14) parameters alter the
insult profile globally while mostly preserving the relative location(s) and shape(s) of the
insults, the length scale parameters (Figures 15 and 16) affect the profile more locally. When
varied in tandem (Figure 15), Lθ and Lz tend to uniformly scale the size of insult regions,
conjoining them as needed to preserve the prescribed insult propensity. In contrast, when
the length scales are varied individually (Figure 16), the insult region size is only altered in
the direction of interest, thus tending to change the aspect ratio of the insult regions that
are generated. In the limit, as Lθ → ∞, the insult profile is constrained to be perfectly
symmetric about the axial direction, thus guaranteeing that only fusiform aneurysms are
produced. The distinction between varying the size and aspect ratio of the insult(s) is
highlighted by examining the corresponding GRF correlation function

%(zo, θo, z
′
o, θ
′
o) =

κ(zo, θo, z
′
o, θ
′
o)

ς2
= exp

(
−1

2

[(
Dθ (θo, θ

′
o)

Lθ

)2

+

(
Dz (zo, z

′
o)

Lz

)2
])

, (21)

which governs the pairwise correlation in ϑ∗ values between different points on the vessel
wall (Figures 15 and 16, bottom panels).
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Figure 12: Representative random samples generated using the pipeline described in subsubsection 2.2.2.
Herein, the following were held constant: ϕ = 35%, ε = 0.2, Lθ = Lz = 2 mm.

Figure 13: Sensitivity of representative random insult profiles with respect to the overall propensity of insult
ϕ, holding the following constant: ε = 0.2, Lθ = Lz = 2 mm.

Figure 14: Sensitivity of representative random insult profiles with respect to the boundary softness
parameter ε, holding the following constant: ϕ = 35%, Lθ = Lz = 2 mm.
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Figure 15: (top) Sensitivity of a representative random insult profile with respect to the insult size Lθ = Lz,
holding the following constant: ϕ = 35%, ε = 0.2. (bottom) Correlation function % evaluated at a central
point, showing how the bandwidth of spatial correlation between points increases with increasing insult
size. Note that as Lθ and Lz (and thus also spatial correlation) increase, the insult profile transitions from
producing several small insult regions to only a few larger insult regions, while still matching the prescribed
overall perturbed area fraction ϕ.

Figure 16: (top) Sensitivity of a representative random insult profile with respect to the circumferential insult
length scale Lθ, holding the following constant: ϕ = 35%, ε = 0.2, Lz = 2 mm. (bottom) Correlation function
% evaluated at a central point, showing how the bandwidth of spatial correlation between points increases
in the circumferential direction with increasing Lθ while remaining unchanged in the axial direction (since
Lz is held constant). In the limit, the generated insult profile is constrained to be perfectly axisymmetric,
varying only in the axial direction.
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Appendix C DeepONet model

To understand the underlying mathematical foundation of a DNN, we consider a network
with L hidden layers, where the 0-th layer denotes the input layer and the (L + 1)-th layer
is the output layer; the weighted input zli into a ith neuron on layer l is a function of weight
W l

ij and bias bl−1j and is represented as

zli = Rl−1

(
ml−1∑
j=1

(
W l

ij(z
l−1
j ) + blj

))
, (22)

where Rl−1 (·) denotes the activation function of layer l, and ml−1 is the number of neurons
in layer l − 1. Based on the foregoing concepts, the feed-forward algorithm for computing
the output Y L is expressed as follows:

Y L = RL(W L+1zL + bL)

zL = RL−1
(
W LzL−1 + bL

)
zL−1 = RL−2

(
W L−1zL−2 + bL−1

)
...

z1 = R0

(
W 1x+ b1

)
,

(23)

where x is the input of the neural network. Equation 23 can be encoded in compressed form
as Y = N(x;θ), where θ = (W , b) includes both the weights and biases of the neural network
N. Taking into account a DeepONet, the branch network takes as input the function to
denote the input realizations U = {u1,u2, . . . ,uN} for N samples, discretized at nsen sensor
locations such that ui = {ui(x1), ui(x2), . . . , ui(xnsen)} and i ∈ [1, N ]. The trunk net inputs
the location y = {y1,y2, · · · ,yp} = {(x̂1, ŷ1), (x̂2, ŷ2), . . . , (x̂p, ŷp)} to evaluate the solution
operator, where x̂i and ŷi denote the coordinates x and y of the point yi, respectively. Let
us consider that the branch neural network consists of lbr hidden layers, where the (lbr + 1)th

layer is the output layer consisting of q neurons. Considering an input function ui in the
branch network, the network returns a feature embedded in [b1, b2, . . . , bq]

T as output. The
output zlbr+1

br of the feed-forward branch neural network is expressed as

zlbr+1
br = [b1, b2, . . . , bq]

T

= Rbr

(
W lbrzlbr + blbr+1

)
,

(24)

where Rbr (·) denotes the nonlinear activation function for the branch net and
zlbr = fbr(ui(x1), ui(x2), . . . , ui(xnsen)), where fbr (·) denotes a branch net function.
Similarly, consider a trunk network with ltr hidden layers, where the (ltr + 1)-th layer is the
output layer consisting of q neurons. The trunk net outputs a feature embedding
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[t1, t2, . . . , tq]
T. The output of the trunk network can be represented as

zltr+1
tr = [t1, t2, . . . , tq]

T

= Rtr

(
W ltrzltr + bltr+1

)
,

(25)

where Rtr (·) denotes the non-linear activation function for the trunk net and zltr−1 =

ftr(y1,y2, . . . ,yp). The key point is that we uncover a new operator Gθ as a neural network
that can infer quantities of interest from unseen and noisy inputs. The two networks are
trained to learn the solution operator such that

Gθ : ui → Gθ(ui), ∀ i = {1, 2, 3, . . . , N}. (26)

For a single input function ui, the DeepONet prediction Gθ(u) evaluated at any coordinate
y can be expressed as

Gθ(ui)(y) =

q∑
k=1

(
Rbr(W

lbr
k z

lbr−1
k + blbrk ) · Rtr(W

ltr
k z

ltr−1
k + bltrk )

)
=

q∑
k=1

bk(ui(x1), ui(x2), . . . , ui(xm)) · tk(y).

(27)

DeepONet requires large annotated datasets of paired input-output observations, but it
provides a simple and intuitive model architecture that is fast to train, allowing a continuous
representation of the target output functions that is resolution-independent. Conventionally,
the trainable parameters of the DeepONet represented by θ in Equation 27 are obtained by
minimizing a loss function. Common loss functions used in the literature include the L1-
and L2-loss functions, defined as

L1 =
n∑
i=1

p∑
j=1

∣∣G(ui)(yj)−Gθ(ui)(yj)
∣∣

L2 =
n∑
i=1

p∑
j=1

(
G(ui(yj)−Gθ(ui)(yj)

)2
,

(28)

where Gθ(ui)(yj) is the predicted value obtained from the DeepONet, and G(ui)(yj) is the
target value.

33



References

[1] M. E. Lindsay, H. C. Dietz, The Genetic Basis of Aortic Aneurysm, Cold Spring Harbor
Perspectives in Medicine 4 (9) (2014) a015909.

[2] F. Ramirez, C. Caescu, E. Wondimu, J. Galatioto, Marfan syndrome; A connective
tissue disease at the crossroads of mechanotransduction, TGFβ signaling and cell
stemness, Matrix Biology 71-72 (2018) 82–89.

[3] T. F. Vinholo, A. J. Brownstein, B. A. Ziganshin, M. A. Zafar, H. Kuivaniemi, S. C.
Body, A. E. Bale, J. A. Elefteriades, Genes Associated with Thoracic Aortic Aneurysm
and Dissection: 2019 Update and Clinical Implications, Aorta (Stamford, Conn.) 7 (4)
(2019) 99–107.

[4] D. M. Milewicz, F. Ramirez, Therapies for Thoracic Aortic Aneurysms and Acute Aortic
Dissections, Arteriosclerosis, Thrombosis, and Vascular Biology 39 (2) (2019) 126–136.

[5] A. Pinard, G. T. Jones, D. M. Milewicz, Genetics of Thoracic and Abdominal Aortic
Diseases, Circulation Research 124 (4) (2019) 588–606.

[6] M. Lindquist Liljeqvist, M. Bogdanovic, A. Siika, T. C. Gasser, R. Hultgren, J. Roy,
Geometric and biomechanical modeling aided by machine learning improves the
prediction of growth and rupture of small abdominal aortic aneurysms, Scientific
Reports 11 (1) (2021) 18040.

[7] S. Zoli, C. D. Etz, F. Roder, C. S. Mueller, R. M. Brenner, C. A. Bodian, G. Di Luozzo,
R. B. Griepp, Long-term survival after open repair of chronic distal aortic dissection,
The Annals of Thoracic Surgery 89 (5) (2010) 1458–66.

[8] V. Ziza, L. Canaud, N. Molinari, P. Branchereau, C. Marty-Ané, P. Alric, Thoracic
endovascular aortic repair: A single center’s 15-year experience, The Journal of Thoracic
and Cardiovascular Surgery 151 (6) (2016) 1595–1603.

[9] J. P. Pirruccello, M. D. Chaffin, E. L. Chou, S. J. Fleming, H. Lin, M. Nekoui,
S. Khurshid, S. F. Friedman, A. G. Bick, A. Arduini, et al., Deep learning enables
genetic analysis of the human thoracic aorta, Nature Genetics 54 (1) (2022) 40–51.

[10] D. M. Milewicz, S. K. Prakash, F. Ramirez, Therapeutics Targeting Drivers of Thoracic
Aortic Aneurysms and Acute Aortic Dissections: Insights from Predisposing Genes and
Mouse Models, Annual Review of Medicine 68 (1) (2017) 51–67.

[11] C. Bellini, A. Korneva, L. Zilberberg, F. Ramirez, D. B. Rifkin, J. D. Humphrey,
Differential Ascending and Descending Aortic Mechanics Parallel Aneurysmal
Propensity in a Mouse Model of Marfan Syndrome, Journal of Biomechanics 49 (12)
(2016) 2383–2389.

34



[12] C. Cavinato, M. Chen, D. Weiss, M. J. Ruiz-Rodríguez, M. A. Schwartz, J. D.
Humphrey, Progressive microstructural deterioration dictates evolving biomechanical
dysfunction in the marfan aorta, Frontiers in Cardiovascular Medicine 8 (2021).

[13] B. L. Lima, E. J. Santos, G. R. Fernandes, C. Merkel, M. R. Mello, J. P. Gomes,
M. Soukoyan, A. Kerkis, S. M. Massironi, J. A. Visintin, et al., A New Mouse Model
for Marfan Syndrome Presents Phenotypic Variability Associated with the Genetic
Background and Overall Levels of Fbn1 Expression, PloS one 5 (11) (2010) 1–9.

[14] J. D. Humphrey, M. A. Schwartz, G. Tellides, D. M. Milewicz, Role of
Mechanotransduction in Vascular Biology, Circulation Research 116 (8) (2015) 1448–61.

[15] A. C. Estrada, L. Irons, B. V. Rego, G. Li, G. Tellides, J. D. Humphrey, Roles of mTOR
in thoracic aortopathy understood by complex intracellular signaling interactions, PloS
Computational Biology 17 (12) (2021) e1009683.

[16] A. Valentin, J. D. Humphrey, Evaluation of fundamental hypotheses underlying
constrained mixture models of arterial growth and remodelling, Philosophical
Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences
367 (1902) (2009) 3585–3606.

[17] J. S. Wilson, S. Baek, J. D. Humphrey, Parametric study of effects of collagen turnover
on the natural history of abdominal aortic aneurysms, Proceedings of the Royal Society
A: Mathematical, Physical and Engineering Sciences 469 (2150) (2013) 20120556.

[18] L. Liang, M. Liu, C. Martin, J. A. Elefteriades, W. Sun, A machine learning approach
to investigate the relationship between shape features and numerically predicted risk
of ascending aortic aneurysm, Biomechanics and Modeling in Mechanobiology 16 (5)
(2017) 1519–1533.

[19] D. Weiss, M. Latorre, B. V. Rego, C. Cavinato, B. J. Tanski, A. G. Berman, C. J.
Goergen, J. D. Humphrey, Biomechanical consequences of compromised elastic fiber
integrity and matrix cross-linking on abdominal aortic aneurysmal enlargement, Acta
Biomaterialia 134 (2021) 422–434.

[20] M. Pradella, T. Weikert, J. I. Sperl, R. Kärgel, J. Cyriac, R. Achermann, A. W.
Sauter, J. Bremerich, B. Stieltjes, P. Brantner, G. Sommer, Fully automated guideline-
compliant diameter measurements of the thoracic aorta on ECG-gated CT angiography
using deep learning, Quantitative Imaging in Medicine and Surgery 11 (10) (2021) 4245–
4257.

[21] N. P. Ostberg, M. A. Zafar, S. K. Mukherjee, B. A. Ziganshin, J. A. Elefteriades,
A machine learning approach for predicting complications in descending and
thoracoabdominal aortic aneurysms, The Journal of Thoracic and Cardiovascular
Surgery (2022).

35



[22] X. He, S. Avril, J. Lu, Estimating aortic thoracic aneurysm rupture risk using tension–
strain data in physiological pressure range: an in vitro study, Biomechanics and
Modeling in Mechanobiology 20 (2) (2021) 683–699.

[23] M. Liu, L. Liang, Y. Ismail, H. Dong, X. Lou, G. Iannucci, E. P. Chen, B. G. Leshnower,
J. A. Elefteriades, W. Sun, Computation of a probabilistic and anisotropic failure metric
on the aortic wall using a machine learning-based surrogate model, Computers in Biology
and Medicine 137 (2021) 104794.

[24] M. Zhou, Z. Shi, X. Li, L. Cai, Y. Ding, Y. Si, H. Deng, W. Fu, Prediction of Distal
Aortic Enlargement after Proximal Repair of Aortic Dissection Using Machine Learning,
Annals of Vascular Surgery 75 (2021) 332–340.

[25] M. Raissi, P. Perdikaris, G. E. Karniadakis, Physics-informed neural networks: A deep
learning framework for solving forward and inverse problems involving nonlinear partial
differential equations, Journal of Computational Physics 378 (2019) 686–707.

[26] S. Goswami, C. Anitescu, T. Rabczuk, Adaptive fourth-order phase field analysis using
deep energy minimization, Theoretical and Applied Fracture Mechanics 107 (2020)
102527.

[27] S. Goswami, C. Anitescu, S. Chakraborty, T. Rabczuk, Transfer learning enhanced
physics informed neural network for phase-field modeling of fracture, Theoretical and
Applied Fracture Mechanics 106 (2020) 102447.

[28] A. D. Jagtap, E. Kharazmi, G. E. Karniadakis, Conservative physics-informed neural
networks on discrete domains for conservation laws: Applications to forward and inverse
problems, Computer Methods in Applied Mechanics and Engineering 365 (2020) 113028.

[29] S. Goswami, M. Yin, Y. Yu, G. E. Karniadakis, A physics-informed variational
DeepONet for predicting crack path in quasi-brittle materials, Computer Methods in
Applied Mechanics and Engineering 391 (2022) 114587.

[30] M. Yin, E. Ban, B. V. Rego, E. Zhang, C. Cavinato, J. D. Humphrey,
G. Em Karniadakis, Simulating progressive intramural damage leading to aortic
dissection using DeepONet: an operator–regression neural network, Journal of the Royal
Society Interface 19 (187) (2022) 20210670.

[31] L. Lu, P. Jin, G. Pang, Z. Zhang, G. E. Karniadakis, Learning nonlinear operators via
DeepONet based on the universal approximation theorem of operators, Nature Machine
Intelligence 3 (3) (2021) 218–229.

[32] C. M. Wojnarski, E. E. Roselli, J. J. Idrees, Y. Zhu, T. A. Carnes, A. M. Lowry, P. H.
Collier, B. Griffin, J. Ehrlinger, E. H. Blackstone, et al., Machine-learning phenotypic
classification of bicuspid aortopathy, The Journal of Thoracic and Cardiovascular
Surgery 155 (2) (2018) 461–469.

36



[33] M. Latorre, J. D. Humphrey, Numerical knockouts–In silico assessment of factors
predisposing to thoracic aortic aneurysms, PloS Computational Biology 16 (10) (2020)
1–25.

[34] J. D. Humphrey, K. R. Rajagopal, A constrained mixture model for growth and
remodeling of soft tissues, Mathematical Models and Methods in Applied Sciences
12 (03) (2002) 407–430.

[35] S. Baek, K. R. Rajagopal, J. D. Humphrey, A Theoretical Model of Enlarging
Intracranial Fusiform Aneurysms, Journal of Biomechanical Engineering 128 (1) (2006)
142–149.

[36] A. Valentin, L. Cardamone, S. Baek, J. Humphrey, Complementary vasoactivity and
matrix remodelling in arterial adaptations to altered flow and pressure, Journal of The
Royal Society Interface 6 (32) (2009) 293–306.

[37] M. Latorre, J. D. Humphrey, A Mechanobiologically Equilibrated Constrained Mixture
Model for Growth and Remodeling of Soft Tissues, Zeitschrift für angewandte
Mathematik und Mechanik 98 (2018) 2048–2071.

[38] M. Latorre, J. D. Humphrey, Fast, Rate-Independent, Finite Element Implementation
of a 3D Constrained Mixture Model of Soft Tissue Growth and Remodeling, Computer
Methods in Applied Mechanics and Engineering 368 (2020) 113156.

[39] M. R. Bersi, C. Bellini, J. Wu, K. R. Montaniel, D. G. Harrison, J. D. Humphrey,
Excessive Adventitial Remodeling Leads to Early Aortic Maladaptation in Angiotensin-
Induced Hypertension, Hypertension 67 (5) (2016) 890–896.

[40] D. P. Kingma, J. Ba, Adam: A Method for Stochastic Optimization, in: In Proceedings
of the 3rd International Conference on Learning Representations, 2015.

[41] D. C. Liu, J. Nocedal, On the limited memory BFGS method for large scale optimization,
Mathematical Programming 45 (1) (1989) 503–528.

[42] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado,
A. Davis, J. Dean, M. Devin, et al., TensorFlow: Large-scale machine learning on
heterogeneous systems, Software available from tensorflow. org 1 (2) (2015).

[43] B. V. Rego, D. Weiss, M. R. Bersi, J. D. Humphrey, Uncertainty quantification in
subject-specific estimation of local vessel mechanical properties, International Journal
for Numerical Methods in Biomedical Engineering 37 (12) (2021) e3535.

37


