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Abstract

WYPiWYG hyperelasticity is a data-driven, model-free computational procedure for
finite element analysis of soft materials. The spline-based procedure does not assume
the shape of the stored energy function and does not employ material parameters,
predicting accurately any smooth prescribed behavior from a complete set of experi-
mental tests. However, fuzzy experimental data may yield useless highly oscillatory,
unstable stored energy functions, and classical curvature smoothing gives frequently
unsatisfactory results. Aside, the possibility of having experimental data from dif-
ferent specimens for the same test was not considered in previous procedures. In
this work we present a novel technique based on spline regression and smoothing
penalization using stability conditions. In general, this procedure reduces noisy ex-
perimental data or data from multiple specimens for ulterior determination of the
stored energy. The procedure only needs the solution of a linear system of equations.
Instead of classical curvature-based smoothing, we employ a novel stability-based
smoothing, determining for each branch of the uniaxial stress-strain curve the most
restrictive stability condition during uniaxial and equibiaxial tests. The resulting
stored energy functions are smooth and stable. The procedure has little sensitivity
to the number of spline segments or to the choice of the penalization parameter,
which are computed automatically.
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1. Introduction

Elastic behavior implies the absence of dissipation during any loading path. The
existence of a stored elastic energy, which is the essence of hyperelasticity, guaran-
tees the conservative behavior under elastic deformations [1], [2], [3], [4]. However,
stored energy functions cannot be measured directly, so the common procedure is
to propose a model : an analytical expression of the stored energy as a function of a
strain measure. The material parameters, which modulate the analytical expression,
are computed such that the predictions obtained from the model, for some given ex-
periments, best-fit the available experimental data. Once determined, these material
parameters may be introduced in a finite element code to predict the behavior of
any structure made of that material under more general loading conditions; if the
specific model is available to the user in that finite element code. The limitations
of analytical expressions for stored energy functions are manifest by the number of
hyperelastic models available in the literature, which according to Volokh, “is ap-
proximately equal to the number of researchers which work (or worked) in the field”
[5]; some examples can be found in the reviews [6], [7], [8], [9], [10]. Then, the diffi-
culty in selecting the appropriate model and in obtaining the corresponding material
parameters is apparent and largely reported in the literature, see for example Ref.
[6]. Furthermore, obtaining constitutive tangent tensors is often a difficult task [6],
so numerical alternatives to avoid the tedious derivations are pursued [11], [12] even
though the computational cost is obviously increased [13].

Assuming homogeneous stress and strain distributions, the typical experimental
data are stress-strain pairs derived from loads and displacements. The stored energy
could be obtained by integration of the corresponding partial differential equations,
which constitutes the “logical chain from theory to observation” [14]. The difficulty
of performing such analytical integration, in general, was remarked by Einstein in
the sentence “God does not care about our mathematical difficulties; He integrates
empirically” [14, p.179]; nowadays, we can integrate numerically. In this line, much
attention is recently directed towards numerical data-driven, model-free constitutive
modelling. One of the main reasons for addressing the problem in a way less restricted
to specific assumed analytical functions is to be able to model a wider range of mate-
rials and to efficiently and accurately address patient-specific simulations [15], [16],
[17]. Different approaches are currently being pursued in data-driven, model-free
modelling. For example, in Ref. [18], artificial neural networks, frequently used in
data-mining [19], [20], are employed to determine the constitutive behavior directly
from experimental data. This procedure uses the non-affine kinematics approach of
a micro-sphere model, similar to that presented by Miehe et al [21], but does not rely
on an explicitly assumed stress-strain relation. Other approaches by Ibañez et al [22],
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[23] are more general and seek to completely avoid making assumptions regarding the
constitutive or the internal kinematic relations, and to also work directly with raw
experimental data. In [22], [23], an iterative procedure is developed to obtain the in-
tersection between the so-called constitutive manifold and the equilibrium manifold.
This intersection contains the locus of the points which satisfy the weak form of the
problem. These procedures have, to date, been developed at small strains. Other
recent approach using small strains is given by Kirchdoerfer and Ortiz [24], [25]. In
their procedure, they introduce local penalty functions to be minimized, consisting
of fictitious elastic and complementary energies in which the stiffness is of numerical
nature, not a material property. These functions represent an error distance of the
stress-strain solution to the available material data set. In general, a drawback of all
these procedures, when compared to analytical models, is that they are substantially
less efficient and physical insight is lost.

What-You-Prescribe-is-What-You-Get (WYPiWYG) constitutive modeling [26],
[27] is a phenomenological, purely numerical, data-driven approach to model hyper-
elasticity. Remarkably, the efficiency of these models under general loading is of the
same order as that of analytical models [27]. The first procedure of this kind was
developed by Sussman and Bathe for isotropic, incompressible materials [28]. The
Sussman-Bathe procedure uses the Kearsley-Zapas inversion formula [29] to numer-
ically obtain the stored energy function in the Valanis-Landel form [3], [30] without
specifying its shape through analytical expressions. The ideas have been extended
to compressible materials [27] and to anisotropic materials [31], [26], including also
damage evolution [32] and viscous effects [33]. The name WYPiWYG reflects the
fact that, in contrast to models based on predefined analytical functions, the proce-
dure is capable of exactly capturing smooth experimental (or prescribed) stress-strain
curves. For the isotropic case, it reproduces the results of analytical models to a high
precision under any loading condition during a finite element simulation [27]. In the
anisotropic case, they capture exactly as many smooth curves as independent modes
in the corresponding infinitesimal theory. In contrast to many models using ana-
lytical functions, WYPiWYG hyperelasticity not only recovers the full infinitesimal
theory in the limit [34] (a relevant aspect in soft materials analyzed, for example,
by Murphy in Ref. [35]) but, more importantly in practice, at all deformation levels
[36]. Some of the most recent advances in the WYPiWYG modeling philosophy can
be found in Ref. [37].

However, one of the practical limitations of the WYPiWYG procedures is to
obtain the stored energy function when fuzzy experimental information is available,
which is a very frequent case, specially in soft biological tissues. Experimental curves
are frequently not smooth, having relevant experimental noise. In this case, the
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desired “model” curve is not the one that interpolates the experimental data, but
some smoothed one. Furthermore, it is frequent that several experimental curves,
from different specimens, are available for the same material. Hence, the desired
“model” curve is somehow a curve that averages the complete set of experimental
data points and results in a stable behavior (if that stable behavior was observed
in experiments). Note that even in the case of (nonlinear) analytical models, the
material parameters should not be the average of the different fits because non-
physical behavior can be obtained as a result [38], [39]. The numerical procedures for
WYPiWYG hyperelasticity presented in the previous works are based on piecewise
cubic interpolation, with known oscillation problems even for small perturbations of
the data. These oscillations may also yield unstable stored energies for materials
which behave in a stable manner during the performed experimental tests. Then, a
slight smoothing of experimental data was frequently necessary so that both the input
(experimental) and the output (strain energy) curves had the desired smoothness.
That slight smoothing was performed successfully in some works [40], [41] employing
penalized splines.

Penalized splines have been used for over a decade in many fields, specially in
economics, data mining and medicine, in order to obtain tendencies of observed data
without unwanted oscillations [42], [43], [44], [45], [46], [47], [48], [49]. Although
most publications perform smoothing with the curvature and then impose convexity
or other desired conditions via lagrange multipliers [42], projections [50] or adaptive
techniques [51], other alternatives have been devised in order to impose the shape
or the convexity from the outset, as it is the case of exponential splines, see for
example [52], [53], among others. Within the problem at hand of determining the
hyperelastic stored energy of a material, smoothed splines facilitate an approach to
reduce data for ulterior characterization. This data reduction is valid in general for
any hyperelastic model, and it is in fact independent of it. Arguably, the problem
may be less important in classical hyperelasticity using analytical functions, because
the assumed “model” function with already imposed desired properties is best-fitted
to whatever experimental data is available; but we note that stability constrains
may also be necessary on the material constants to enforce stability. In WYPiWYG
hyperelasticity the problem is more relevant, because no analytical “smooth” function
is assumed: the solution is computed directly from experimental data. A background
in spline interpolation may be found in Ref. [54], and in spline smoothing in Refs.
[55] and [56]. An early review may be found in Ref. [57].

Therefore, the purpose of the present manuscript is to extend some of the contents
advanced in [37], presenting, for the first time, a new numerical procedure specially
suited for WYPiWYG hyperelasticity (although valid in general for hyperelasticity)
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which is reliable for fuzzy experimental data, i.e. for data with significant experimen-
tal errors or data from different test specimens. Remarkably, it will be seen that the
ordinary curvature smoothing employed in most fields in the literature is useful only
for small perturbations of experimental data, and does not guarantee the stability of
the resulting stored energy function. We will then introduce a penalty function based
on stability conditions, suited for generic hyperelasticity, which produces excellent
and robust results even for largely perturbed data. In this paper we present the ideas
using the simple isotropic incompressible formulation (i.e. the Sussman-Bathe case).
The anisotropic case, which is much more involved, is ongoing research.

2. A smoothing-based regression function for hyperelasticity

Consider, as an introductory (illustrative) example, the Valanis-Landel decom-
position of the stored energy function for incompressible, isotropic materials, which
has been verified to hold approximately for the typical strains found in polymers and
biological tissues, and it is used by many analytical models [3], [30]

W (E1, E2, E3) = ω (E1) + ω (E2) + ω (E3) (1)

where Ei = ln (λi) are the principal logarithmic strains, and λi are the principal
stretches. The incompressibility condition E1 + E2 + E3 = 0 applies. For these
materials, the equilibrium equation of a uniaxial test is [28]

σu (Eu) =
dω (E)

dE

∣

∣

∣

∣

E=Eu

−
dω (E)

dE

∣

∣

∣

∣

E=−
1
2
Eu

≡ ω′ (Eu)− ω′
(

−1
2
Eu

)

(2)

where σu (Eu) is the uniaxial stress-strain curve in terms of Cauchy stresses σu ≡
σ1 and Logarithmic strains Eu ≡ E1, and the second line introduces a convenient
notation. The pressure-like Lagrange multiplier is determined, and substituted in
Eq. (2), from equilibrium in the transverse direction employing the incompressibility
condition. If both tension and compression data points (or an equivalent set of
points) are known, then the Valanis-Landel function is uniquely determined within
the region of interest [58]. Typically, in this simple case, a set of experimental data
points {Êi, σ̂i}, i = 1, ..., N , is intended to fit by a “model” curve σu (Eu), which is
controlled by a certain number of “model” unknowns numerically determined from
an optimization procedure [59].

We consider herein a more general case, in which the function to be minimized is
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based on the following expression

f (σ, σ̂) = (1− q) f̂ (σ, σ̂) + qf̃ (σ) (3)

where σ̂(Ê) is the array of the N–experimental stress data for the corresponding
strains Ê obtained from uniaxial tests. The array σ(Ê) contains the analytically
calculated σ (E) stress-curve values at the given experimental strain data values Ê.
In this paper, the hat decoration refers to experimental values, whereas the absence
of it refers to analytical or computational ones. Thus σ (E) is the assumed ana-
lytical continuous function, {Êi, σ̂i}, i = 1, ..., N are the experimental data pairs
and {Êi, σi} are their corresponding predictions. The function f̂ (σ, σ̂) is the (er-
ror, regression) fitting function, i.e. it contains how the discrepancy between the
experimental data σ̂ and the analytical predictions σ is measured. The function
f̃ (σ) is the smoothing function, which is usually considered only as a function of the
analytical function σ (E). The parameter q is the smoothing parameter. As given
by Equation (3), the value of q = 0 implies that no smoothing takes place, whereas
values q → 1 will provide strong smoothing neglecting experimental data. However,
the actual effect of a particular value of q depends also on the nature of the fitting
and smoothing functions.

Both the fitting and smoothing functions may be further decomposed in other
functions to take into account, and weight, different possibilities. Obviously, fitting
a curve in the σ-axis yields in general different results than doing so in the P -axis (or
in any other stress measure). Only in some particular cases the result is the same,
which are the interpolant cases, or when errors are measured in relative terms. We
see next that both cases end up resulting in just different weights.

3. The regression function f̂

We briefly describe in this section the weighted (least squares) residual f̂ . The
novel finding in this work, however, concerns the smoothing function f̃ , which is
described in the next sections in detail.

3.1. Regression to experimental data in the σ-axis

The error function we use in this case accounts for the weighted difference between
the available experimental data σ̂i and the predictions σi resulting from the “model”
curve σ (E)

f̂σ (σ, σ̂;W σ) =
1

2N

N
∑

i=1

Wσi (σi − σ̂i)
2 =

1

2N
(σ − σ̂)T W σ (σ − σ̂) (4)
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where Wσi are convenient weight values (typically the identity) for the N experimen-
tal data and W σ is the diagonal matrix containing those values. The weight matrix
may be used to assign more importance to some parts of the experimental data. We
could also use it to enforce that the analytical stress-strain curve passes through the
origin (if originally it does not), even in the case that experimental data does not.
We would do so adding a virtual experimental pair at the origin and assigning it a
large weight.

3.2. Regression to experimental data in the P -axis

Given some experimental data σ̂(Ê) in principal stress-strain directions, the ex-

perimental nominal stresses are obtained immediately by P̂i = exp
(

−Êi

)

σ̂i, for

each i = 1, ..., N , and the analytical ones as Pi = exp
(

−Êi

)

σi. Hence the weighted

error function is, in this case

f̂P

(

P , P̂ ;W P

)

=
1

2N

(

P − P̂
)T

W P

(

P − P̂
)

=
1

2N
(σ − σ̂)T W̄ P (σ − σ̂)

(5)
where the values of the modified diagonal matrix W̄ P are

W̄Pi = WPi exp(−2Êi) (6)

We note that defining
W := rW σ + (1− r) W̄ P (7)

where r is a combination user-prescribed parameter, we have

f̂ = rf̂σ (σ, σ̂,W σ) + (1− r) f̂P

(

P , P̂ ,W P

)

(8)

Then, there is no relevant extra effort in accounting for both cases simultaneously.
Furthermore, if the regression is performed in relative terms, we can write

N
∑

i=1

(

Pi − P̂i

P̂i

)2

WPi =

N
∑

i=1

(

σi/λ̂i − σ̂i/λ̂i

σ̂i/λ̂i

)2

WPi =

N
∑

i=1

(

σi − σ̂i

σ̂i

)2

WPi (9)

so performing the regression in the σ axis in relative terms is equivalent to doing so
in the P axis. In practice this regression may also be accommodated as a particular
case in which the weight matrix is modified by the experimental data as

Wi = Wσi/σ̂
2
i (10)
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For the cases σ̂i = 0, a large Wi value is taken. Note that the value of the parameter
r is in this case irrelevant. However, we note that in the interpolant case, since the
error becomes zero for all experimental data, the actual value of W (and hence the
type of stress under consideration) is not relevant.

4. Stability inequalities

Even though unstable stored energy functions should not be ruled out from the
outset, because they could be physically correct and even desired for analyzing lo-
calization phenomena [60], in usual cases, stability is a desired property, specially if
that stable behavior was observed during the tests. In the examples below, we will
pursue some stability conditions. In fact, these conditions will prove to be excellent
penalty functions in the smoothing procedure. In this section we address some sta-
bility conditions that we can easily use in our procedure, deriving finally a unified
criterion for both (tension-compression) uniaxial and equibiaxial tests. For further
background on stability conditions, see for example Refs. [60], [61], [62].

4.1. Uniaxial test inequality

Using Eu = lnλu for a uniaxial tension-compression test, since the nominal
stresses are Pu := σu/λu, we obtain the following relation from Eq. (2)

Pu (Eu) =
1

exp (Eu)

[

ω′ (Eu)− ω′
(

−1
2
Eu

)]

(11)

where, recall, ω′ (Eu) is the derivative of ω respect to E evaluated at Eu. The stabil-
ity condition we will use below states that nominal stresses should increase (equiv-
alently, decrease) with stretch during the tensile (compression) test, i.e. Su (Eu) :=
dPu (λu) /dλu > 0

Su (Eu) = exp (−2Eu)Cu (Eu) > 0 (12)

where exp (−2Eu) > 0 and we define Cu (Eu) as

Cu (Eu) := σ′

u (Eu)− σu (Eu) > 0 (13)

In terms of the stored energy function

Cu (Eu) =
[

ω′′ (Eu) +
1
2
ω′′
(

−1
2
Eu

)]

−
[

ω′ (Eu)− ω′
(

−1
2
Eu

)]

> 0 (14)

which includes explicit evaluations of ω′ and ω′′ within both tension and compression
branches [58].
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4.2. Equibiaxial test inequality

Following the same procedure as before, a similar stability condition may be
obtained for an equibiaxial test. If Ee = E2 = E1 = lnλ1 = lnλe are the logarithmic
strains of the equibiaxial tension-compression test performed in directions 1 and 2,
the nominal stresses are

Pe ≡ P1 = P2 =
1

λe
ω′ (Ee) +

p

λe
(15)

where p is the pressure-like Lagrange multiplier associated with the incompressibility
constraint. Assuming a plane stress condition and using −2Ee = E3 = lnλ3 = lnλ−2

e

for the third axis
P3 = λ2

eω
′ (−2Ee) + λ2

ep = 0 (16)

from which the pressure-like unknown is factored-out as p = −ω′ (−2Ee). Then, the
equibiaxial nominal stress is

Pe (Ee) =
1

exp (Ee)
[ω′ (Ee)− ω′ (−2Ee)] (17)

The Cauchy stresses are

σe (Ee) = exp (Ee)Pe (Ee) = ω′ (Ee)− ω′ (−2Ee) (18)

The stability requirement for the equibiaxial test Se (Ee) := dPe/dλe > 0 reads

Se (Ee) = exp (−2Ee)Ce (Ee) > 0 (19)

whereupon
Ce (Ee) := σ′

e (Ee)− σe (Ee) > 0 (20)

and in terms of stored energy function derivatives

Ce (Ee) = [ω′′ (Ee) + 2ω′′ (−2Ee)]− [ω′ (Ee)− ω′ (−2Ee)] > 0 (21)

Consider σu (Eu) as the uniaxial stress-strain curve and σe (Ee) as the equibiaxial
stress-strain curve. Since the material is the same, and hence the stored energy
function is also the same in both cases, the curves of both tests may be related for
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a given strain value E∗ by

σu (E∗) = ω′ (E∗)− ω′
(

−1
2
E∗

)

σe (E∗) = ω′ (E∗)− ω′ (−2E∗)

}

⇒

{

σu (E∗) = −σe

(

−1
2
E∗

)

σe (E∗) = −σu (−2E∗)

(22)

and
σ′

u (E∗) = ω′′ (E∗) +
1
2
ω′′
(

−1
2
E∗

)

σ′

e (E∗) = ω′′ (E∗) + 2ω′′ (−2E∗)

}

=⇒

{

σ′

u (E∗) =
1
2
σ′

e

(

−1
2
E∗

)

σ′

e (E∗) = 2σ′

u (−2E∗)

(23)

Therefore, Equation (20) may be written in terms of the associated uniaxial stress-
strain curve data as

1
2
Ce (Ee) = σ′

u (−2Ee) +
1
2
σu (−2Ee) > 0 (24)

where the factor 1/2 is introduced for further convenience. Importantly, note that,
for example, Eq. (24) for Ee > 0 is evaluated at the strain −2Ee < 0 of the equivalent
uniaxial test, but it corresponds to the stability condition of the equibiaxial test at
strain Ee > 0.

4.3. Unified tension/compression uniaxial/equibiaxial inequality

We say that Eq. (13) is a direct stability condition for the uniaxial test curve
because it has been derived directly from the uniaxial test. As we have just seen,
Eq. (24) imposes an additional restriction for the uniaxial test curve in terms of
the associated equibiaxial response. We say that Eq. (24) is an indirect stability
condition for the uniaxial test curve because it has been derived indirectly from the
equibiaxial test. Therefore, we have two different mathematical stability conditions
for each branch of the uniaxial test, which obviously refer to two different physical
requirements. We will consider the more restrictive condition for each part of the
domain in the stability analysis of the material at hand, meaning that we require
the material to be stable during both tension-compression uniaxial and equibiaxial
tests.

Consider an arbitrary (compression) uniaxial state such that E∗ = lnλ∗ < 0. If
we require dPu/dλu > 0 for all λ∗ < 1 and, as usual, Pu(λu = 1) = 0, then Pu (λ∗) < 0
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and σu (E∗) = λ∗Pu (λ∗) < 0 as well. Then

Cu (E∗) = σ′

u (E∗)− σu (E∗)

> σ′

u (E∗) +
1
2
σu (E∗) =

1
2
Ce

(

−1
2
E∗

)

> 0 (25)

i.e. the requirement 1
2
Ce

(

−1
2
E∗

)

> 0 is more restrictive than Cu (E∗) > 0 when
E∗ < 0. We can express this result as—note that the factor 1/2 is irrelevant here

Ce

(

−1
2
E∗

)

> 0 ⇒ Cu (E∗) > 0 , for E∗ < 0 (26)

or, in terms of the nominal stresses in the respective tests, as

dPe

dλe

∣

∣

∣

∣

λe

> 0 ⇒
dPu

dλu

∣

∣

∣

∣

λu

> 0

for λe =
1

λ
1/2
u

> 1 and λu < 1 (27)

Note that the reciprocal statements are not satisfied, in general.
Proceeding in the same way, we can also compare the conditions dPu/dλu > 0

for λu > 1 and dPe/dλe > 0 for λe = 1/λ
1/2
u < 1, both expressed in terms of uniaxial

relations, in order to see what condition is more restrictive in the equivalent tension-
uniaxial / compression-equibiaxial states. The direct and indirect uniaxial stability
conditions are given in Eqs. (13) and (24), which in this case are to be analyzed for
an arbitrary strain value E∗ > 0, yielding

1
2
Ce

(

−1
2
E∗

)

= σ′

u (E∗) +
1
2
σu (E∗) > σ′

u (E∗)− σu (E∗) = Cu (E∗) > 0 (28)

where we have used the fact that σu (E∗) = λ∗Pu (λ∗) > 0 during the tensile test.
Thus, in this case the uniaxial condition Cu (E∗) > 0 assess the stable response
during the compression equibiaxial test, i.e.

Cu (E∗) > 0 ⇒ Ce

(

−1
2
E∗

)

> 0 , for E∗ > 0 (29)

or

dPu

dλu

∣

∣

∣

∣

λu

> 0 ⇒
dPe

dλe

∣

∣

∣

∣

λe

> 0

for λu > 1 and λe =
1

λ
1/2
u

< 1 (30)
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Hence, the stability criteria

C (E) =

{

σ′

u (E)− σu (E) > 0 , for E > 0

2σ′

u (E) + σu (E) > 0 , for E < 0
(31)

guarantee that all the responses, both under tension and compression, are stable in
the sense that dP/dλ > 0 for both the uniaxial and the equibiaxial tests, and will
be the ones we consider.

5. A stability-based smoothing function f̃

When data dispersion is large, the stored energy function obtained from usual
regression procedures may result in unstable behavior, even when the material was
behaving in a stable manner during the tests. Therefore, we want to guarantee some
stability constraints. These stability constraints may be imposed either strictly, for
example through Lagrange multipliers, or through penalty functions. The strict
imposition of the equations, point by point, result in a nonlinear system of equations
and, usually, uniqueness of solution (and a global minimum) cannot be guaranteed.
We have performed numerical experiments using these possibilities and despite of the
increased numerical effort, the results have been in general rather disappointing and
not robust. Hence we follow here a different approach which has proven successful
not only in guaranteeing stability, but also in properly smoothing the stress-strain
data and, hence, the corresponding stored energy function.

The procedure we present in this section is to impose the constraints via penalty
procedures under the assumption that the material is overall stable in the strain
domain, that is, a physically-oriented smoothing based on stability considerations.
We will take as constraints the stability during the uniaxial tension test and the
stability during the equibiaxial tension test, which guarantee the stability in terms
of nominal stresses for both tension and compression behaviors during both types of
tests, as we showed above. We assess these criteria using the experimental curve from
a uniaxial test, including the compression branch obtained either from compression
or from equibiaxial tests. Similar procedures may be developed for other conditions
following the same guidelines.

The constraint condition for the uniaxial test under tension, Eq. (31)1, may be
written as

C+
(

Ē+
)

:= Cu

(

Ē+
)

= σ′

u

(

Ē+
)

− σu

(

Ē+
)

(32)

where Ē+
i > 0 are the strain values at which the constraint is evaluated. For the

uniaxial compression branch, we enforce the stability indirectly through the tension
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equibiaxial test, i.e. in terms of uniaxial stress-strain curves, see Eq. (31)2

C−
(

Ē−
)

:= Ce

(

−1
2
Ē−
)

= 2σ′

u

(

Ē−
)

+ σu

(

Ē−
)

(33)

where Ē−

i < 0. The basic idea for generating the penalty function is to assume that
the material is overall stable so in the domain of interest we mostly have C (E) > 0.
The penalty function penalizes large variations in the stability function S (E), so
local unstabilities will be prevented. For the tension branch E ≥ 0, Eq. (12), we
define S+ (E ≥ 0) as

S+ (E) := Su (E) =
dPu (λu)

dλu

∣

∣

∣

∣

λu=exp(E)

= exp (−2E)C+ (E) , with E ≥ 0 (34)

so
dS+ (E)

dE
= exp (−2E)

[

−2C+ (E) +
dC+ (E)

dE

]

(35)

In a similar way, for the compression branch E < 0, Eq. (19), we define
S− (E < 0) as—note that we have already defined C− (E < 0) in Eq. (33) based
on (31)2

S− (E) := Se

(

−1
2
E
)

=
dPe (λe)

dλe

∣

∣

∣

∣

λe=exp(− 1

2
E)

= exp (E)C− (E) , with E < 0 (36)

so
dS− (E)

dE
= exp (E)

[

C− (E) +
dC− (E)

dE

]

(37)

Then we can define a stability smoothing “function” f̃ , to be used in Eq. (3), as

f̃ =

∫ 0

Emin

(

dS− (E)

dE

)2

dE +

∫ Emax

0

(

dS+ (E)

dE

)2

dE

∫ Emax

Emin

dE

(38)

6. A curvature-based smoothing function f̃

Another smoothing condition that we could use as f̃ in Eq. (3) is based on the
curvature of the stress-strain curve considered. We will see in the examples below,
however, that this smoothing technique, employed in many fields in the literature,
is useful only when data dispersion is small. The translation of the usual smoothing

13



employed in the literature to hyperelasticity consists of performing a smoothing based
on the second derivative of either the σ (E) curve or the P (λ) curve. Then, we can
take either the following smoothing “function”

f̃σ =

∫ Emax

Emin

(σ′′)2 dE

∫ Emax

Emin

dE

(39)

or, considering the P − λ axes,

f̃P =

∫ λmax

λmin

(

P ′′

j (λ)
)2

dλ

∫ λmax

λmin

dλ

(40)

We note that, similarly to Eq. (8), both smoothings can be combined as

f̃ ≡ sf̃σ + (1− s) f̃P (41)

where s is a combination parameter.
Hence, in this work, we are substituting this geometrically-oriented smoothing

(based on curvature) by a physically-oriented smoothing (based on stability).

7. Smoothing regression splines for hyperelasticity

The procedure we presented above can be applied to any strain energy function
expressed in Valanis–Landel form. In addition, we note that stability conditions on
W can be imposed directly to the stored energy function terms ω (E) or to the tensile
test curve. We use in this section WYPiWYG hyperelasticity and consider the curve
fitting procedure entirely on the uniaxial stress-strain curve, addressing directly the
stability constraints on the stress-strain curve during the fitting procedure.

7.1. Regression to experimental data

The stress function σ(Ê), for the case in which the B-spline parameter is chosen
to be t ≡ x ≡ E, is given as a function of the n−vertices B of the control polygon
as —see Appendix

σ(Ê) = N̂B (42)

14



where we defined for clarity of notation N̂ = N(Ê). The error term of the objective
function, Eq. (4), reads

f̂σ (σ, σ̂;W σ) =
1

2N
BTN̂TW σN̂B −

1

N
σ̂TW σN̂B + const (43)

where the constant term is irrelevant for our purposes.
The weighted error function, Eq. (5), is in this case

f̂P

(

P , P̂ ;W P

)

=
1

2N
BTN̂TW̄ P N̂B −

1

N
σ̂TW̄ P N̂B + const (44)

7.2. Curvature-based smoothing

We use a normalized parameter ξ to systematically describe each spline polyno-
mial defined between two given strain values using the same general expression. This
normalized parameter, within the interval E ∈ [Ej , Ej+1], is

ξ =
E − Ej

Ej+1 −Ej

(45)

so
dξ

dE
=

1

∆Ej

and d2ξ/dE2 = 0 (46)

with ∆Ej := Ej+1−Ej . Recall that we take for periodic splines the parametrization
E ≡ t, see Appendix. Derivatives of periodic normalized B-splines (and also of the
corresponding piecewise cubic splines) are given by immediate derivation of Eq. (82)
as in Eq. (84) of the appendix. Then, for the case in which we use σ′′ (E), taking
the stresses in the j−piece as σj (E) = Pj (ξ (E)), where Pj is the corresponding
polynomial (see Appendix) we have

∫ Emax

Emin

(

σ′′

j (E)
)2

dE =

m
∑

j=1

∫ Ej+1

Ej

(

σ′′

j

)2
dE

=
m
∑

j=1

BT
j N̄

TAEN̄Bj = BTΛEB (47)
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where the prima accent indicates derivative respect to the argument in parenthesis
and we defined

AE :=
1

∆E3
j

[
∫ 1

0

(Ξ′′)
T
(Ξ′′) dξ̄

]

=
1

∆E3
j









12 6 0 0
6 4 0 0
0 0 0 0
0 0 0 0









(48)

and m is the number of segments, see Figure 10 in the appendix. The last identity
in Eq. (47) is obtained through the assembly of the addends in a similar way as in
the finite elements context:

ΛE =
m
∧

j=1

N̄TAEN̄ and B =
m
∧

j=1

Bj (49)

The assembly operator, denoted by ∧, is performed using equal matrices if ∆Ej is
constant, so the procedure is computationally very efficient. On the other hand, for
the case of equal intervals, Emax −Emin = m∆E, so Eq. (39) finally reads

f̃σ =
1

m∆E
BTΛEB (50)

Regarding the smoothing in the P −λ axes, the logarithmic strains E = lnλ give
the relation

ξ =
lnλ− Ej

Ej+1 − Ej
and λ = exp (∆Ejξ + Ej) (51)

and dλ = λ∆Ejdξ. Using Eqs. (82) and (84) of the appendix, after some algebra we
can write

m
∑

j=1

∫ λj+1

λj

(

P ′′

j (λ)
)2

dλ =
m
∑

j=1

BT
j N̄

TAPjN̄Bj = BTΛλB (52)

where

APj :=
1

∆E3
j exp (5Ej)

∫ 1

0

1

exp (5∆Ejξ)
[Ξ∗ (ξ)]T Ξ∗ (ξ) dξ (53)

and
Ξ∗ (ξ) := 2∆E2

jΞ (ξ)− 3∆EjΞ
′ (ξ) +Ξ′′ (ξ) (54)
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and

Λλ =

m
∧

j=1

N̄TAPjN̄ (55)

Taking into account that λmax − λmin =: δλ, Eq. (40) yields

f̃P =
1

δλ
BTΛλB (56)

The combined expression Eq. (41) is then f̃ = 1
2
qBTΛB where

Λ :=
s

δE
ΛE +

(1− s)

δλ
Λλ (57)

This expression reveals that smoothing in either σ−E or P −λ is simply taken into
account through different Λ operators.

7.3. Stability-based smoothing

Equations (32) and (33) specialize to

C+
(

Ē+
)

=
[

N ′
(

Ē+
)

−N
(

Ē+
)]

B > 0 (58)

and
C−
(

Ē−
)

=
[

2N ′
(

Ē−
)

+N
(

Ē−
)]

B > 0 (59)

while Eq. (35) reads
dS+ (E)

dE
=

exp (−2E)

∆E2
Ξ+

S N̄Bj (60)

where we have used

dC+

dE+
=

[

Ξ′′
(

ξ
(

E+
))

(

dξ

dE

)2

− Ξ′
(

ξ
(

E+
))

(

dξ

dE

)

]

N̄Bj (61)

with dξ/dE = 1/∆E, and

Ξ+
S := Ξ′′ − 3Ξ′∆E + 2Ξ∆E2 (62)

In a similar way, Eq. (37) particularizes to

dS− (E)

dE
=

exp (E)

∆E2
Ξ−

S N̄Bj (63)

17



with
Ξ−

S := 2Ξ′′ + 3Ξ′∆E +Ξ∆E2 (64)

Then, the integrals in Eq. (38) are evaluated through

∫ Ej+1

Ej

(

dS+

dE

)2

dE = BT
j N̄

TA+
SjN̄Bj (65)

and
∫ Ej+1

Ej

(

dS−

dE

)2

dE = BT
j N̄

TA−

SjN̄Bj (66)

with

A+
Sj =

exp (−4Ej)

∆E3

∫ 1

0

exp (−4∆Eξ)Ξ+T
S Ξ+

S dξ (67)

and

A−

Sj =
exp (2Ej)

∆E3

∫ 1

0

exp (2∆Eξ)Ξ−T
S Ξ−

S dξ (68)

Finally, as before

Λ = ΛS =
1

m∆E

(

m−

∧

i=1

N̄TA−

SiN̄ +
m+

∧

i=1

N̄TA+
SiN̄

)

(69)

which can also be combined, if desired, with the previous smoothing functions. In
summary, all smoothing possibilities may be considered with a simple change in the
corresponding Λ matrix. Furthermore, additional weight functions could be easily
accommodated without relevant changes.

7.4. Linear system of equations

The procedure described in this section results in the quadratic minimization
problem

f (σ) =
1

2

(1− q)

N
BTN̂TWN̂B −

(1− q)

N
σ̂TWN̂B +

1

2
qBTΛB

=
1

2
BTAB − bTB (70)

where we defined

A :=

[

(1− q)

N
N̂TWN̂ + qΛ

]

and b :=
(1− q)

N
N̂TWσ̂ (71)
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whose solution for B is immediately obtained solving the following banded linear
system of equations

AB = b (72)

Automatic smoothing may be easily obtained if we set q to be the minimum value
such that C (E) > tol > 0 in all the domain.

8. Examples

In this section we show some examples of the performance of smoothing peri-
odic B-splines in fitting experimental data and in obtaining stable energies. In the
examples, we will use four sets of “experimental” data generated from Ogden’s model

W (λ1, λ2, λ3) =
3
∑

i=1

µ
µi

αi

(λαi

1 + λαi

2 + λαi

3 − 3) (73)

These data are shown in Figure 1. The set in Figure 1a is the prediction for Ogden’s
model with the parameters

α1 = 1.3, α2 = 5, α3 = −2 (74)

and
µ = 0.42MPa , µ1 = 1.4, µ2 = 3.0× 10−3, µ3 = −24× 10−3 (75)

so using the incompressibility condition, the P − λ relation is

P (λ) = µ

3
∑

i=1

µi

[

λ(αi−1) − λ(−
1

2
αi−1)

]

(76)

In this case, sampling data are equispaced in the logarithmic strain space and consist
of 31 stress-strain pairs. Figure 1b shows data from the same model but generated
with a small random perturbation, a perturbation which is different for each com-
puted “experimental” point. In this case, and in the following cases, sampling data
are not equispaced, but generated with an additional small random perturbation also
for logarithmic strains. Figure 1c shows three curves with a perturbation in µi and
slightly different αi exponents for each curve. Figure 1d has three curves similar to
case 1c, but an additional curve in which white noise has been added.

In Figure 2 we show the predictions for experimental data in Figure 1a using 31
vertices, the same number as actual experimental data so B-splines become inter-
polant. In all cases in this paper, to guarantee that predictions pass through the
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a) Data from Ogden model
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b) Perturbed data from Ogden model
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c) Perturbed data from Ogden model (3 curves)
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d) Perturbed data from Ogden model (4 curves)

Figure 1: Computer-generated “experimental” data sets used in the examples. a) Exact data
generated from Ogden’s model. b) Data obtained using a small random perturbation in data
obtained from Ogden’s model, shown in (a). c) Three data sets obtained using perturbed Ogden
parameters for each experimental point. d) Data obtained as in case (c), but with an additional
curve with white noise.
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Smoothing with dS/dE, q = 0.2 − Number of vertices = 31
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Figure 2: B-spline fit of data in Fig. 1a and related derivative of the stored energy ω′ (E) computed
using the WYPiWYG Sussman-Bathe procedure with inversion formula. Number of vertices of the
B-spline: 31. Number of experimental data: 31. One additional experimental point is added at
the origin. a) Predictions using unsmoothed B-splines in the σ − E axes. b) Predictions using
unsmoothed B-splines in the P − λ axes. c) and d) Predictions using a smoothing with stability
conditions and q = 0.2 (for ulterior comparisons). e) Derivative of the stored energies for smoothed
and unsmoothed predictions. f) Stability conditions S− and S+. This figure shows that the
proposed smoothing has little influence in the result if experimental data is already smooth.
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origin, an additional data point is added at the origin and a large weight is assigned
to this point. The layout of the figures for all examples below is similar. In Figure
2a, the unsmoothed predictions are shown in the σ − E axes, whereas in Figure 2b
the plot is shown in the P − λ axes. The regression to experimental data is per-
formed in the P axis. In Figures 2a and 2b, it is seen that B-splines are capable of
capturing accurately the experimental data. In Figures 2c and 2d, the predictions
have been obtained including a smoothing based on the selected stability conditions
with q = 0.2. This smoothing value will be the most successful in the other cases.
Figures 2c and 2d, included only for comparison purposes, show that the smoothing
barely affects the predictions if experimental data are smooth and correspond to a
stable material. Figure 2e shows the derivative of the computed stored energy term
ω′ (E) by the WYPiWYG procedure and Figure 2f shows the stability conditions. It
is seen that both stored energy functions are very close to each other, that ω′′(E) > 0
in all the domain (see Figure 2c) and that in the tests performed dP/dλ > 0 (see
Figure 2d). In Figure 3 we show the predictions using 11 vertices. It is seen that
the results are almost unaffected by the number of vertices if a reasonable number
of them is included.

Figure 4 shows the predictions for the experimental data in Figure 1b using 11
vertices. It is seen that the predictions, even without explicit smoothing, are smooth,
accurate and stable (except at large compressions). Hence, B-splines with fewer
vertices than data naturally produce some degree of smoothness. Figure 5 shows
the predictions when 31 vertices are employed. Obviously more vertices allow for a
more accurate description of experimental curves. However, in this case, periodic B-
splines are not different than usual interpolating splines, showing important wiggles
and an undesired interpolant scheme. In the numerical experiments, the behaviour
of open B-splines has been better for this case, but give disappointing results for
more complicated cases. Thus, in general, smoothing is needed.

As mentioned, the typical smoothing employed in the literature is the integral of
the curvature, approximated either by σ′′(E) of by P ′′(λ), depending on the chosen
regression. Figures 5c and 5d show a slight smoothing using σ′′ with q = 0.0001. It
is shown that this procedure gives smooth predictions without sacrificing accuracy
in a relevant manner. The associated computed WYPiWYG stored energy function
derivative terms are shown in Figure 5e. The stored energy function derivative for
the unsmoothed case presents also nonphysical wiggles and lacks convexity in many
points. However, the smooth case does not present the wiggles and the energy term
is convex in all the domain. The tensile and equibiaxial stability conditions are
shown in Figure 5f. Again, the unsmoothed case is unstable, but the smoothed case
is stable. The value of q = 0.0001 has been computed automatically so the result
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Smoothing with dS/dE, q = 0.2 − Number of vertices = 11
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Figure 3: B-spline fit of data in Fig. 1a and related derivative of the stored energy ω′ (E) computed
using the WYPiWYG Sussman-Bathe procedure with inversion formula. Number of vertices of the
B-spline: 11. Number of experimental data: 31. One additional experimental point is added at
the origin. a) Predictions using unsmoothed B-splines in the σ − E axes. b) Predictions using
unsmoothed B-splines in the P − λ axes. c) and d) Predictions using a smoothing with stability
conditions and q = 0.2 (for ulterior comparisons). e) Derivative of the stored energies for smoothed
and unsmoothed predictions. f) Stability conditions.
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Smoothing with dS/dE, q = 0.2 − Number of vertices = 11
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Figure 4: B-spline fit of data in Fig. 1b and related derivative of the stored energy ω′ (E) computed
using the WYPiWYG Sussman-Bathe procedure with inversion formula. Number of vertices of the
B-spline: 11. Number of experimental data: 31. One additional experimental point is added at
the origin. a) Predictions using unsmoothed B-splines in the σ − E axes. b) Predictions using
unsmoothed B-splines in the P − λ axes. c) and d) Predictions using a smoothing with stability
conditions and q = 0.2 (for ulterior comparisons). e) Derivative of the stored energies for smoothed
and unsmoothed predictions. f) Stability conditions. This figure shows that using a small, but
reasonable amount of vertices, is sufficient to capture the experimental curve to a high precision.
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Smoothing with σ", q = 0.0001 − Number of vertices = 31
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Figure 5: B-spline fit of data in Fig. 1b using 31 vertices; and related derivative of the stored energy
ω′ (E) computed using the WYPiWYG Sussman-Bathe procedure with inversion formula. a) and
b) show respectively the σ−E and P −λ plots of the unsmoothed regression in the σ−E axes. c)
and d) shows the results using a smoothing function employing the curvature σ′′ (E) and a small
penalty parameter q = 0.0001. This figure shows that for small experimental errors, a smoothing
using the curvature gives good results.
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fulfills the stability conditions in all the computed domain. A similar result, not
shown, is obtained if the penalty function is based on the stability conditions.

Figure 6 shows the predictions for the experimental data shown in Figure 1c,
which consists in 93 pairs. In Figures 6a and 6b it is shown that even using less
vertices than experimental data (hence not being interpolant), the result shows large
wiggles, resulting in an unstable behavior. Figures 6c and 6d shows the predictions
when performing a smoothing using the curvature of the σ − E curve, and Figures
6e and 6f shows the predictions using a smoothing with the curvature of the P − λ
representation. The penalty employed is q = 0.01, which is a large number for the
considered penalizing functions. These figures show that both cases (as well as their
combinations not shown for brevity) produce unsatisfactory results because of the
specific shapes of the stress-strain curves in hyperelastic materials, which naturally
present large localized curvatures. Each smoothing procedure works only in the
respective branch where the curvature is relatively small, but over-smoothes the
other branch. Furthermore, although not shown, the corresponding stored energy
functions are not stable.

Figure 7a and 7b shows the predictions for the experimental data shown in Figure
1c using 11 vertices and the penalty function which contains the stability conditions
with q = 0.2. It is seen that in this case the predicted behavior is smooth and still
following the tendency given by the experimental data. Figures 7c and 7d show the
predictions if 51 vertices are used. No relevant differences are observed between both
prediction sets, so 11 vertices are sufficient to capture the present material.

Finally, Figure 8 shows the predictions of the data in Figure 1d with smoothed
B-splines, using the stability conditions in the penalty function with q = 0.2 and 51
vertices. It is seen that the resulting predictions are smooth and follow closely the
tendencies given by the experimental data both in the tension and the compression
branches. Furthermore, as it can be seen in Figure 8c the computed WYPiWYG
stored energy term of the material is convex, and it can be observed in Figure 8d
that the resulting material also fulfills the stability conditions for the tensile and
equibiaxial tests.

In order to show the robustness of the procedure to variations in the number of
vertices n and in the penalty parameter q, in Figure 9 we show different predictions
obtained with 11, 31, 51 and 91 vertices, and with q values of 0.05, 0.2 and 0.7.
It can be observed that the differences are small in general. Only the case with
n = 11, q = 0.05 results in a locally unstable behavior. In fact the value q =
0.2 has been computed automatically so that the case n = 11 fulfills the stability
conditions. In Figure 9, it can also be observed that even though a smaller number of
vertices (n = 11) yields smoother curves for unpenalized regression, when introducing
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Figure 6: B-spline fits of the experimental data given in Figure 1c. a) and b) are respectively
the σ − E and P − λ plots of the unsmoothed periodic B-spline with 51 vertices, with regression
performed in the σ − E domain (similar results are obtained for regression in the P − λ domain).
c) and d) are the smoothed predictions if smoothing is performed with curvature σ′′ (E). e) and f)
are the smoothed predictions if smoothing is performed with curvature P ′′ (λ); the same smoothing
parameter q = 0.01 was used in both cases. This figure shows that needed curvature smoothing may
eliminate the natural curvature of hyperelastic stress-strain functions; hence curvature smoothing
is usefull only for light smoothings.
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Figure 7: B-spline fits of the experimental data given in Figure 1c using stability conditions in the
penalty function. a) and b) are the fits using 11 vertices. c) and d) are the fits using 51 vertices. e)
Derivative of the stored energy term ω′ (E) for the case of 51 vertices. f) Stability conditions. This
figure shows that smoothing using stability conditions gives stable responses and smooth curves
that keep the natural stress-strain curvature of the material data.
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Figure 8: B-spline fits of the experimental data given in Figure 1d using 51 vertices and stability
conditions in the penalty function. a) and b) are respectively the predictions in the σ − E and
P − λ axes. Details of the compression branches are shown on the left. c) Stored energy derivative
term ω′ (E) for both the unsmooth and smooth cases. d) Stability conditions. This figure shows
that the proposed method works well with very noisy data from different specimens.
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Figure 9: Different fits of the experimental data of Figure 1d employing a different number of
vertices n and different penalty parameters q. The penalty function is written in terms of the
stability conditions. This figure shows the robustness of the method by demonstrating the little
sensitivity of the method to changes in the values of n and q.
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penalizations, a reasonable amount of vertices produce better results and allow for
lighter smoothing. An automatic selection of vertices may be easily implemented
selecting a number, within some bounds, for which further refining produces changes
smaller than a given tolerance.

9. Conclusions

In this paper we have presented a data reduction procedure for hyperelasticity
based on smoothing regression B-splines. This data reduction procedure is convenient
to obtain smooth and stable WYPiWYG stored energies in the presence of fuzzy
experimental data or data from multiple specimens. The procedure can be used
for other analytical models. We have shown that the typical smoothing based on
curvatures is only useful for small experimental errors. Penalty smoothing functions
based on stability conditions have proved to be robust in all cases, producing smooth
and stable stored energy functions. The extension of these ideas to anisotropic cases
is more involved and is ongoing research.

Of course, given a set of experimental data for a test, e.g. a tension-compression
uniaxial test, the modeler may always guess a good smooth approximation of the
observed behavior and just present data from that approximation to the model de-
termination procedure. The associated strain energy can be numerically computed
thanks to the inversion formula and spline interpolations. In that sense splines are
fine [49]: the predicted behavior will be exactly the behavior prescribed by the mod-
eler and smoothing of data is not too relevant. However, in order to avoid spurious
local instabilities and make the procedure more automatic and less user-dependent,
we have shown that smoothing is soothing [49].
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A. Appendix: Open and periodic B-splines

Piecewise cubic splines are interpolant and controlled by the interpolated nodal
values. On the contrary, B-splines are, in general, not interpolant and controlled by
the vertices of a polygon. B-splines have been developed mainly in the CAD industry
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from Bézier curves in order to numerically characterize and define smooth lines and
surfaces [63]. The general form of the parametric B-splines is

P (t) =

n
∑

i=1

N
(k)
i (t)Bi with tmin ≤ t ≤ tmax and 2 ≤ k ≤ n (77)

where Bi are the position vector coordinates (either the coordinates x or y) of the n
vertices of the control polygon, P (t) is the result value (either the coordinates x or

y at the parameter value t) and N
(k)
i (t) are the corresponding normalized B-spline

basis functions, having the partition of unity property. The matrix form of Eq. (77)
is

P (t) = N (k) (t)B =
[

N
(k)
1 (t) , ..., N (k)

n (t)
]







B1
...
Bn






(78)

The B-spline basis functions are nowadays obtained through the Cox-de-Boor recur-
sive formulae [63], [54], which basically implies a linear interpolation of the lower
order functions:

N
(k)
i (t) =

(t− ti)

(ti+k−1 − ti)
N

(k−1)
i (t) +

(ti+k − t)

(ti+k − ti+1)
N

(k−1)
i+1 (t) (79)

with k ≥ 2, and

N
(1)
i (t) =

{

1 if ti ≤ t < ti+1

0 otherwise

where t is a vector of ordered knots such that ti ≤ ti+1. The convention 0/0 = 0 is
taken (because we may encounter the case ti = ti+1). The B-spline derivatives are
easily obtained through the chain rule, also in a recursive form.

Periodic B-splines may be defined by sequential knot vectors ti = i − 1 with
i = 1, ..., k + n, and normalized ξ parameters within each spline piece 0 ≤ ξ ≤ 1.
These B-splines may then be written in terms of the influencing vertices of each
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spline as —note the abuse of notation when writing P(t) = P(ξ)

Pj (ξ) =

k−1
∑

i=0

N̄
(k)
i+1 (ξ)Bj+i =

[

N̄
(k)
1 (ξ) , ..., N̄

(k)
k (ξ)

]







Bj
...

Bj+k−1






(80)

=
elem j elem j + k

[0, ..., 0, N̄
(k)
1 (ξ) , ..., N̄

(k)
k

(

ξ̄
)

, 0, ..., 0]

























B1
...
Bj
...

Bj+k−1
...
Bn

























(81)

with the segment index taking the restricted useful values 1 ≤ j ≤ m with m :=
n − k + 1, see Figure 10. In this case the basis N̄

(k)
i+1 (ξ) spread k intervals but are

always the same and periodically repeated, hence the name, see Figure 10. Since
periodic B-splines span m ≡ n−k+1 segments and do not reach the initial and end
vertices, additional k − 2 vertices may be attached to the spline or pseudovertices
may be placed at given locations, see [63] for further details. For the case k = 4, the
one used below, two additional vertices may be given at both ends of the spline; in
Figure 10 we labeled them as “unused”.

A.1. Relation between B-splines and piecewise cubic splines

Until now, we have used piecewise cubic splines as interpolation functions in
WYPiWYG hyperelasticity. However, many other functions may be employed. The
representation used by B-splines may have some advantages over that of classical
splines; for example, imposing convexity on the multilinear hull, guarantees the con-
vexity of the resulting curve (called Strong Convex Hull Property), and changing the
position of a vertex, only modifies the curve locally.

Periodic B-splines, Eq. (80), may be written in a convenient matrix format which
also yields computationally efficient procedures. Using normalized ξ parameters
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within each spline piece 0 ≤ ξ ≤ 1, for cubic B-splines we have

Pj (ξ) =
[

ξ3 ξ2 ξ 1
] 1

6









−1 3 −3 1
3 −6 3 0
−3 0 3 0
1 4 1 0

















Bj

Bj+1

Bj+2

Bj+3









= Ξ (ξ) N̄Bj = N j (t (ξ))B (82)

with j = 1, ..., m, where m = n− 3 and where Bj is the box of relevant vertices for
each piece. On the other hand, piecewise cubic splines are defined by

Pj (ξ) =
[

ξ3 ξ2 ξ 1
]









dj
cj
bj
aj









=: Ξ (ξ)Aj (83)

so obviously the identification Aj = N̄Bj together with equivalent ξ mappings (i.e.
we will use t = x as in piecewise cubic splines) bring an exact conversion from
uniform periodic B-splines to equivalent uniform piecewise cubic splines. In Eq. (82)
we take j = 1 for the first used vertex (the two vertices j = 0 and j = −1 are not
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used and not included in n, see Figure 10). Recall also that B contains the vertices
of the polygon defining the splines, but the splines do not pass through those points.
Similar matrix expressions may be used for cubic splines, see [64], but in this case in
terms of the interpolated points.

The periodic spline derivatives may also be obtained directly from the matrix
form as

P′

j (ξ) =
[

3ξ2 2ξ 1 0
] 1

6









−1 3 −3 1
3 −6 3 0
−3 0 3 0
1 4 1 0

















Bj

Bj+1

Bj+2

Bj+3









= Ξ′ (ξ) N̄Bj (84)

and in a similar form P′′

j (ξ) = Ξ′′ (ξ) N̄Bj and P′′′

j (ξ) = Ξ′′′ (ξ) N̄Bj . Note that
in these equations the prima decoration implies derivative respect to the variable in
parenthesis.
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[9] V. Vahapoğlu, S. Karadeniz, Constitutive equations for isotropic rubber-like ma-
terials using phenomenological approach: A bibliography (1930–2003), Rubber
Chemistry and Technology 79 (3) (2006) 489–499.
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