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Abstract

Tissue-level biomechanical properties and function derive from underlying cell

signaling, which regulates mass deposition, organization, and removal. Here, we

couple two existing modeling frameworks to capture associated multiscale interac-

tions and illustrate results for the aorta: one for vessel-level growth and remodeling

and one for cell-level signaling. At the vessel level, we employ a constrained mixture

model describing turnover of individual wall constituents (elastin, intramural cells,

and collagen), which has proven useful in predicting diverse adaptations as well as

disease progression using phenomenological constitutive relations. Nevertheless, we

now seek an improved mechanistic understanding of these processes, and replace

the phenomenological relations in the mixture model with a logic-based signaling

model, which yields a system of ordinary differential equations predicting changes

in collagen synthesis, matrix metalloproteinases, and cell proliferation in response

to altered intramural stress, wall shear stress, and exogenous angiotensin II. This

coupled approach promises improved understanding of the role of cell signaling in

achieving tissue homeostasis and, importantly, allows us to model feedback between

vessel-level mechanics and cell signaling. We verify our model predictions against

data from the hypertensive murine infrarenal abdominal aorta and results from val-

idated phenomenological models, and consider effects of noisy signaling parameters

and heterogeneous cell populations.
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1 Introduction

Soft biological tissues exhibit a remarkable ability to adapt, remodel, and repair in1

response to diverse stimuli, both normal and injurious. In most cases, these stimuli2

are sensed by cell surface receptors and associated signals are transduced chemically3

or mechanically, leading to altered gene expression and gene products. Importantly,4

many such transcriptional changes alter extracellular matrix composition and or-5

ganization, orchestrating changes in geometry and biomechanical properties that6

define much of the tissue functionality. Over the past decade, we have learned7

much as a community about cell signaling pathways and computational frameworks8

for analysis are now available.24 We have similarly learned much about mechano-9

regulation of extracellular matrix at the tissue level and computational frameworks10

enable associated growth and remodeling (G&R) to be described and predicted.111

A continuing challenge, however, has been coupling of cell signaling and tissue-level12

G&R models to enable modeling from transcript to tissue. Coupled models of this13

type, which capture feedback between cell signaling and tissue mechanics, promise14

to provide improved mechanistic insight into tissue remodeling by allowing detailed15

studies of the role of specific signaling proteins and pathways. In addition, they16

uniquely allow for the study of disrupted signaling or targeted interventions and17

resulting effects on potential tissue maladaptations.18

19

Here, we present a new multiscale coupling of a logic-based cell signaling model1520

and a constrained mixture-based model of soft tissue G&R13,18,27, motivated by the21

fundamental need to capture changes in cell phenotype and associated changes in22

deposition and degradation of individual components of the extracellular matrix.23

We view a mixture-level balance of mass equation as central to coupling outputs of24

the cell signaling model to inputs in the constrained mixture model, which enables25

negative feedback as befits tissue homeostasis or, alternatively, positive feedback as26
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a driver of many disease processes.14 For illustrative purposes, we focus on homeo-27

static control of arterial G&R in response to sustained changes in blood pressure and28

flow. Consistent with the majority of both the available data (e.g., PCR, Western29

blots, and bulk RNAseq) and prior stress analyses (in terms of mean values of the30

primary components of stress), we consider a radially homogenized wall with cell31

signaling focusing on two primary intramural cells of the arterial wall, smooth mus-32

cle cells and fibroblasts, with effects of endothelial cells restricted to flow-induced33

changes in nitric oxide (NO) and endothelin-1 (ET1), which affect matrix synthesis34

as well as vaso-regulation of the lumen.35

2 Materials and Methods36

The proposed coupled model is outlined in Fig 1. Under imposed changes in blood37

pressure and flow, we calculate tissue-level changes in intramural and wall shear38

stress, which depend on material properties, wall geometry, and fold-changes in39

applied loads. These stresses form inputs to the cell signaling model, outputs of40

which govern phenotypic modulation of cells and associated turnover of extracellular41

matrix. The resulting tissue turnover affects the stresses, which feedback to the cell42

signaling model, and so forth. In this way, we can model homeostatic processes and,43

importantly, determine when they are compromised or lost. Of note are the widely44

separated timescales between G&R (days, weeks, months) and signaling processes45

(seconds, minutes, hours). Relatively, the stress inputs to the signaling network46

change slowly, thus it is reasonable, and computationally efficient, to assume both47

quasi-static mechanics and steady state cell signaling within G&R timesteps (1 day).48

Thus, ordinary differential equations (ODEs) for cell signaling reduce to nonlinear49

algebraic equations.50

51

The arterial wall consists of three primary layers (intima, media, and adventitia)52

and three primary cell types (endothelial cells—EC, smooth muscle cells—SMC,53

and fibroblasts—FB). The inner layer (intima) and associated ECs are critical for54

hemostasis and mechanobiological control of the wall, but are negligible mechani-55

cally. The media and adventitia can be modeled separately,4 though radially ho-56
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Figure 1: Multiscale coupling between vessel-level growth and remodeling (G&R) processes

and cell signaling. Under imposed changes in pressure, flow, and axial load (γPo, εQo, fz,

where γ and ε denote fold-changes from original homeostatic values, subscript o), a con-

strained mixture G&R model calculates changes in intramural and wall shear stress, which

depend on the wall geometry, properties, and applied loads. These changes in mechanical

state feed into a logic-based network model, containing 52 species and 89 reactions (see

Supplementary Material), to determine corresponding changes in cell signaling. Black solid

lines denote activation, red dotted lines inhibition, and the ‘&’ symbol denotes the logical

‘AND’ operation. For clarity, inhibition is shown to affect a node directly; however, an ‘AND

NOT’ logic operation is used with all incoming reactions to the node. Outputs from the net-

work model directly affect matrix turnover and contractility, which can be incorporated into

the G&R framework, providing (generally negative) feedback via the resulting changes in

stresses at the vessel level. Network visualization was carried out using Cytoscape (Shannon,

2003) and Netflux (https://github.com/saucermanlab/Netflux).

4



mogenized models using mean wall stress prove useful given the residual stress field57

that reduces the gradients in stress.8,7 Similarly, cells can be studied separately58

(e.g., immunofluoresence and single cell RNAseq), yet most data come from ho-59

mogenates of the wall (PCR, Western blots, bulk RNAseq). Therefore, we propose60

a first generation model based on homogenized wall mechanics and intramural cell61

(SMC, FB) behaviors.62

Cell signaling model63

We use our previously described logic-based network for homogenized arterial wall64

cell signaling,15 but introduce minor updates to the network structure. The addi-65

tional species and reactions, with supporting literature, are listed in the Supplemen-66

tary Material. We consider activation and inhibition across 52 species of interest,67

with 89 reactions described by logic operators ‘AND’, ‘OR’, and ‘NOT’, modeling68

conditional dependencies between species. We focus on six main pathways (Smad,69

p38, ERK, JNK, PI3K/mTOR, RhoA/ROCK) that regulate matrix turnover (col-70

lagen synthesis, production of matrix-degrading enzymes MMP-1, -2, and -9), cell71

proliferation, and contractility, with relations inferred from the literature.1572

73

Briefly, each species has a normalized value between 0 and 1, given at time t by74

y(t) = [y1(t), . . . , y52(t)]. (1)

General evolution of y(t) is governed by a system of ODEs, built from logic state-75

ments describing species interactions (listed in Supplementary Material). In contrast76

to Boolean logic, this formulation herein (see Kraeutler et al.16) allows continuous77

species values in the range [0, 1]. Activation by a single variable, X ∈ [0, 1], is78

modeled by a normalized Hill function of the form79

F (X) =
BXn

Kn +Xn
, (2)

where n is the Hill coefficient, controlling the steepness of the sigmoid. Additionally,80

F (0) = 0 and constants B and K enforce81

F (1) = 1 and F (EC50) = 0.5, (3)
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where EC50 is the value of X at which a half-maximal activation occurs, namely,82

B =
EC50

n − 1

2EC50
n − 1

and K = (B − 1)1/n, (4)

where, for B to remain positive, EC50
n < 1/2. Conditional ‘AND’ (∧), ‘OR’ (∨)

and ‘NOT’(¬) operators allow multivariable activation or inhibition (modeled by

negation, 1− F (X)), through

(a) X ∧ Y = F (X)F (Y ), (5)

(b) X ∨ Y = F (X) + F (Y )− F (X)F (Y ), (6)

(c) X ∧ ¬Y = F (X) (1− F (Y )) . (7)

These operators are used recursively for more than two species, with ODEs built83

in a modular fashion using Eq 2 for activation, its negation for inhibition, and the84

operations in Eqs 5–7. Each reaction is also scaled by a weight parameter, w, and85

each node has a decay timescale τ 16,15, although this parameter does not feature in86

the steady state equations. Additionally, each node has a maximal activity level,87

Ymax ∈ [0, 1]; by default Ymax = 1, although node knockdowns can be simulated by88

reducing this. An illustrative example showing model construction and governing89

equations is provided in our previous work.1590

91

For specified primary inputs (y1–y5: intramural stress, wall shear stress, exogenous92

AngII, stretch-activated channels (SACs), and integrins), which could be constant93

or time-dependent, evolving the ODEs provides timecourses for each species. Al-94

ternatively, for constant inputs, we can numerically calculate the network steady95

state from a coupled system of nonlinear equations (see Appendix S4 in previous96

work15).97

98

Previously, we optimized basal input levels and network parameters to best match99

qualitative input–output data from the arterial literature.15 By evolving the system100

to steady state using optimal inputs and parameters, we obtain the basal (presumed101

homeostatic, in health) state of each species in the network,102

yo = [y1o, . . . , y52o], (8)

where the subscript o denotes the original homeostatic state. A homeostatic network103
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state will be used as the initial state, y(0) = yo, at time s = 0 in the G&R model,104

although new optimal parameters will be found, accounting for quantitative data.105

G&R model106

We use a constrained mixture model13 to model the evolving wall mechanics and107

consider three primary load-bearing constituents: elastin-dominated, collagen-dominated108

(with four families of fibers), and smooth muscle cell-dominated. These constituents109

have mass densities ρeR, ρcR, and ρmR , respectively, where the subscript R denotes ref-110

erential quantities defined with respect to the unit reference volume, with current111

mass fractions φe, φc, and φm satisfying
∑

α φ
α = 1, where α = {e, c,m}. We112

summarize constitutive relations and equilibrium equations below, noting that this113

general framework has been described previously.27,18114

Equilibrium and constitutive relations115

We model the vessel as a thin-walled, axisymmetric, single-layered cylinder with116

quasi-static equilibrium, yielding mean circumferential and axial components of the117

Cauchy stress118

σθθ =
Pa

h
, (9)

and119

σzz =
fz

πh(2a+ h)
, (10)

where P is the luminal pressure, a inner radius, h wall thickness, and fz axial force.120

Constitutively, the Cauchy stress tensor is121

σ =
∑
α

σα − pI, (11)

where p is a Lagrange multiplier enforcing incompressibility during transient loading122

at a fixed G&R time, with σα mixture-level Cauchy stresses at G&R time s123

σα(s) =
1

ρ

∫ s

−∞
mα(τ)qα(s, τ)σ̂α(s, τ)dτ, (12)

for the α = {e, c,m} constituents, where ρ is the total mass density of the ves-124

sel (assumed constant), mα(τ) > 0 the constituent-specific mass production rate,125

qα(s, τ) ∈ [0, 1] the ‘survival function’ for material deposited at time τ ≤ s that126
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remains at time s, and σ̂α(s, τ) the constituent-level Cauchy stress,127

σ̂α(s, τ) =
2

detF α
n(τ)(s)

F α
n(τ)(s)

∂Ŵα(Cα
n(τ)(s))

∂Cα
n(τ)(s)

F αT

n(τ)(s). (13)

Here, F α
n(τ)(s) = F (s)F−1(τ)Gα(τ) are deformation gradients with respect to128

evolving natural configurations, n(τ),13 in which F (τ) is the mixture deforma-129

tion gradient and Gα(τ) = diag [Gαr , G
α
θ , G

α
z ] are deposition stretch tensors for130

each constituent, with detGα(τ) = 1. Constituent-specific right Cauchy-Green131

tensors are Cα
n(τ)(s) = F αT

n(τ)(s)F
α
n(τ)(s), and Ŵα(Cα

n(τ)(s)) denote constituent-level132

stored energy density functions. The mixture-level deformation gradient F (s) =133

diag [λr, λθ, λz], where mixture-level principal stretches134

λr =
h(s)

h(0)
and λθ =

a(s) + h(s)/2

a(0) + h(0)/2
, (14)

are derived geometrically and λz is prescribed (here, λz = 1 since the in vivo con-135

figuration is taken as the reference configuration, where deposition stretches are136

non-unity). The Jacobian determinant J = detF , corresponding to volumetric137

changes, is J(s) = λrλθλz.138

139

Elastin-dominated matrix is described by a neo-Hookean stored energy density func-140

tion141

Ŵ e(Ce
n(0)(s)) =

ce

2

(
tr
(
Ce
n(0)(s)

)
− 3
)
, (15)

where Ce
n(0)(s) = diag

[
λ2rG

e2
r , λ

2
θG

e2

θ , λ
2
zG

e2
z

]
.142

143

Passive mechanics of the smooth muscle cells are given by a Fung-type stored energy144

density function,145

Ŵm(λmn(τ)(s)) =
cm1
4cm2

(
exp

(
cm2

(
λmn(τ)(s)

2 − 1
)2)
− 1

)
, (16)

where stretches λmn(τ)(s) depend on both mixture-level principal stretches (at times146

s and τ) and constituent-level deposition stretches (at deposition time τ).147

148

For collagen, we consider four predominant families of fibers18,4, with fractions βθ,149

βz, βd+ , and βd− for circumferential, axial, and symmetric diagonal fibers, respec-150

tively, with diagonal fibers oriented at an angle of ±α0 from the axial direction.151
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The contribution of each fiber family is152

Ŵ ci
(
λcin(τ)(s)

)
=

cc1
4cc2

(
exp

(
cc2

(
λcin(τ)(s)

2 − 1
)2)
− 1

)
, (17)

which depend on orientation-specific stretches, λcin(τ)(s), for each family, with i =153

{θ, z, d+, d−}.154

155

Similarly to Eq 12, production and removal of a constituent α determines its ho-156

mogenized mass density per unit reference volume through157

ραR(s) =

∫ s

−∞
mα
R(τ)qα(s, τ)dτ, (18)

wheremα
R = Jmα is the referential mass density production rate, with J =

∑
α ρ

α
R/ρ =158

detF relating changes in mass and volume. For more details of the above formula-159

tion, see previous works.13,27,18160

Coupling between G&R and signaling models161

We now formulate the multiscale coupling; stresses from the G&R model (Eq 11)162

are scaled to form appropriate inputs for the network model, and network outputs163

influence vessel-level G&R through their effect on matrix turnover (via Eq 12).164

From G&R to signaling inputs165

To initialize computational simulations of constrained mixture models of arterial166

G&R, one prescribes an initial vessel geometry, material properties, mass fractions167

and deposition stretches, then uses equilibrium equations to determine the asso-168

ciated initial pressure, axial load, and homeostatic Cauchy stress, σo. For conve-169

nience, we use the first invariant of the Cauchy stress as a scalar-valued measure of170

intramural stress171

σ̃ = trσ, (19)

and consider normalized changes in stress from the initial homeostatic state as172

∆σ =
σ̃ − σ̃o
σ̃o

. (20)

Similarly, for wall shear stress, normalized changes are173

∆τw =
τw − τwo

τwo

=
εa3o
a3
− 1, (21)
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assuming fully-developed laminar flow (τw = 4µQ/πa3, where Q is the flow rate, µ174

viscosity, a the inner radius) and a fold-change in flow rate, ε = Q/Qo.175

176

Let the homeostatic wall stress, σ̃o, map onto the basal stress input of the network177

model yStress(0), via linear scaling178

yStress(s) =
σ̃

σ̃o
yStress(0), (22)

where the current network stress input yStress(s) recovers the original value when σ̃179

equals its homeostatic value. Similarly, let the scaled wall shear stress input to the180

network model be181

yWss(s) =
τw
τwo

yWss(0) = ε
a3o
a3
yWss(0). (23)

We will find optimal values of yStress(0) and yWss(0) during model parameterization.182

From signaling outputs to G&R183

At each G&R timestep we calculate the resulting output of all 52 species in response184

to the scaled inputs (Eqs 22, 23). Although the state of every species is available185

and important, we focus on outputs especially relevant to matrix turnover and thus186

tissue-level biomechanical properties. Collagen is degraded by numerous matrix187

metalloproteinases, including MMP1, MMP2, and MMP9, which respectively cut188

the collagen molecule and degrade its fragments.28 We take their mean value to189

obtain a normalized “proteolytic burden” between 0 and 1, namely190

ψm(s) =
yMMP1(s) + yMMP2(s) + yMMP9(s)

3
. (24)

This is equivalent to using their sum (via a scale factor that would arise later),191

and we renormalize to [0, 1] at this stage for convenience. For collagen production,192

we similarly consider together collagen I and III, the two primary fibrillar types,193

noting that other matrix constituents contribute to collagen fibrillogenesis that are194

not modeled explicitly. Since we do not distinguish subtypes in the G&R model,195

we combine their effects and take the mean value196

ψc(s) =
yCol1(s) + yCol3(s)

2
, (25)

again renormalizing to [0, 1]. Weighted sums could also be considered to account197

for differing effects of MMP or collagen subtype.198
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199

We include intramural cell proliferation as a species, and directly define200

ψp(s) = yCellProliferation(s). (26)

At G&R time s = 0, the network is at an initial homeostatic state. Denote201

ψmo = ψm(0), ψco = ψc(0), and ψpo = ψp(0). (27)

202

Although we also consider contractile proteins in the network model, we first focus203

on coupling mass production and degradation.204

Mass production and removal functions205

Over the timescale of interest, we assume elastin does not turnover whereas rates of206

collagen and intramural cell turnover depend on the chemo-mechanical state, and207

thus cell signaling. In this coupled formulation, these rates are informed directly208

by the network model rather than phenomenologically as in previous tissue-level209

models; these prior models will serve as important baseline comparators, however,210

enabling verification and validation of the current coupled framework.211

212

Collagen213

Consider a collagen mass density production function of the form214

mc
R(s) = ρmR (s)Kcmaxψc(s), (28)

which is proportional to the mass density of SMCs, ρmR (s), since collagen is produced215

by intramural cells, dominated by SMCs of the media and FBs of the adventitia.216

The constant Kcmax is the maximum rate constant for this production (with units217

1/time), to be scaled by the dimensionless network output ψc(s) ∈ [0, 1] (Eq 25).218

Equivalently,219

mc
R(s) = ρmR (s)Kco (1 + ∆ψc(s)) , (29)

where a basal rate parameter, Kco, is220

Kco = Kcmaxψco , (30)
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and221

∆ψc =
ψc(s)− ψco

ψco
. (31)

222

To find the basal rate parameter, Kco, consider G&R time s = 0. Assuming home-223

ostasis at all earlier times, with ραR(s < 0) = ραo , the integral in Eq 18 constrains224

mass production and removal to balance. Following previous formulations27,18, let225

a first-order kinetics type survival function for material deposited at time τ ≤ s226

that survives at time s be227

qc(s, τ) = exp

(
−
∫ s

τ
kc(t)dt

)
, (32)

where the removal rate, kc(t), is the constant kco at homeostatic times s < 0. Eq 18

then yields

ρmo Kco = ρcok
c
o, (33)

where kco denotes the homeostatic removal rate (determined from the half-life of

collagen), with initial mass densities (calculated from histological mass fractions)

assumed known. Thus,

Kco =
ρco
ρmo

kco, (34)

and, substituting this into Eq. 29, collagen mass production is228

mc
R(s) =

ρmR (s)ρcok
c
o

ρmo
(1 + ∆ψc(s)) , (35)

where ρcok
c
o is the total basal removal rate and ρmR (s)/ρmo accounts for changes in229

intramural cell mass density by scaling the basal network response to a tissue-230

level mass production; if intramural cells increase (whilst each maintaining a fixed231

production), so too would their total collagen synthesis.232

233

Note that collagen mass production is stimulated by ∆ψc(s) which depends, via234

the network model, on changes in the intramural and wall shear stresses, whereas235

previous phenomenological stimuli depend linearly on changes in stress via ‘gain’236

parameters. Following previous approaches, we define a phenomenological mass237

production function27,18, to later compare to the network approach. Let238

m̂c
R(s) =

ρmR (s)ρcok
c
o

ρmo
(1 +Kc

σ∆σ −Kc
τ∆τw) , (36)
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where Kc
σ and Kc

τ are dimensionless gain parameters associated with normalized239

changes in intramural stress (∆σ, Eq 20) and wall shear stress (∆τw, Eq. 21),240

respectively, from homeostatic.241

242

We define the removal rate, kc(s), used in Eq 32, by243

kc(s) = ζ(s)kcmaxψm(s), (37)

with kcmax a maximal removal rate that scales the proteolytic burden ψm(s) ∈ [0, 1].244

Similarly to the scale factor ρmR (s)/ρmo in Eq. 35, ζ(s) scales cell-level proteolytic245

network outputs to a tissue-level removal rate, via246

ζ(s) =
ρmR (s)

ρmo

ρco
ρcR(s)

, (38)

where ζ(0) = 1. For relative increases in the mass density of intramural cells (each247

producing MMPs at a fixed rate) to collagen, there will overall be more collagen248

removal. For increases in collagen relative to intramural cells, with cells degrading249

collagen at a fixed rate, the collagen removal rate at the population level will be250

reduced. Equivalently,251

kc(s) = ζ(s)kco (1 + ∆ψm(s)) , (39)

where252

kco = kcmaxψmo , (40)

is the homeostatic removal rate, and253

∆ψm(s) =
ψm(s)− ψmo

ψmo

. (41)

Again we introduce a phenomenological removal rate18 for comparison, driven di-254

rectly by changes in intramural stress via255

k̂c(s) = ζ(s)kco
(
1 + (∆σ)2

)
. (42)

256

Intramural cells257

In general, intramural cell and collagen stimuli differ (although they have been258

assumed equal or proportional in previous work). We include cell proliferation259

explicitly in our network model (Fig 1), and thus let mass production be260

mm
R (s) = ρmR (s)Kmmaxψp(s), (43)
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proportional to ρmR (s), the mass density of cells that can proliferate, with Kmmax a261

maximal proliferation rate to scale the network output ψp ∈ [0, 1].262

263

Stress-driven cell apoptosis or anoikis can be crucial, but we do not currently account264

for it in the network. Rather, consider a general first order decay of intramural cells265

(to capture baseline apoptosis), via the survival function for cells deposited at time266

τ ≤ s and surviving at time s, namely267

qm(s, τ) = exp

(
−
∫ s

τ
km(t)dt

)
, (44)

with constant basal decay rate268

km(s) = kmo . (45)

The balance of production and removal at s = 0 requires269

ρmo Kmmaxψpo = ρmo k
m
o , (46)

or270

Kmmax = kmo /ψpo . (47)

Intramural cell mass production is therefore271

mm
R (s) = ρmR (s)kmo (1 + ∆ψp(s)), (48)

where272

∆ψp(s) =
ψp(s)− ψpo

ψpo
. (49)

We will again compare the network-driven results to those generated using phe-273

nomenological mass production and removal functions27,18, given by274

m̂m
R (s) = ρmR (s)kmo (1 +Km

σ ∆σ −Km
τ ∆τw) , (50)

where Km
σ and Km

τ are dimensionless gain parameters associated with normalized275

changes in intramural and wall shear stresses from homeostatic, and18
276

k̂m(s) = kmo
(
1 + (∆σ)2

)
. (51)

277

In summary, G&R-determined intramural and wall shear stresses enter the network278

model via Eqs 22 and 23. Cell-signaling driven mass production and removal provide279

feedback to the G&R model via Eqs 35, 39, 45, and 48.280
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3 Results281

3.1 Experimental validation282

First, consider a published experimental dataset6 that quantifies hypertensive re-283

modeling of the infrarenal abdominal aorta in apolipoprotein-E null (ApoE−/−)284

mice in response to 28 days of AngII infusion. These data have also been modeled285

using a bilayered constrained mixture model with phenomenological mass produc-286

tion and removal rates21, thus we use material parameters obtained therein (via non-287

linear regression of experimental pressure-diameter and axial force-length curves),288

homogenized here for our single-layered model (Table 1).289

290

We further parameterized our coupled model to capture the observed G&R via291

evolved values of ρcR/ρ
c
o and ρmR/ρ

m
o calculated from histological data at day 28.6292

Free parameters in the coupled model are initial network inputs: yStress(0), yWss(0),293

yAngIIin(0), and yIntegrins(0), and three Hill parameters, w, n, and EC50. To sim-294

plify parameterization given the absence of detailed cell signaling data, we assume295

uniform Hill parameters across the network (i.e. the same w, n, and EC50 for296

each reaction), consistent with previous studies that yielded successful model pre-297

dictions.15,16,24,26 Whilst eventually desirable, varying these parameters for each298

reaction will require considerable cell-level data to ensure unique parameteriza-299

tion. Finally, we must specify the fifth input, ySACs(0), although this value does300

not influence outputs of interest and requires contractility measurements to be301

uniquely determined. We obtained best-fit values for the seven free parameters302

(with ySACs(0) = 0.25 prescribed) via least squares nonlinear regression, only mini-303

mizing the error in evolved referential mass densities at day s = 28. The parameters304

are bounded; model inputs and weights must lie between 0 and 1, and Hill param-305

eters were constrained within conservative ranges 0.4 < EC50 < 0.8 and 1 < n < 3306

(whilst also obeying EC50
n < 1/2), which are reasonable based on prior analyses.307

308

The experimental data and coupled model predictions are shown in Fig 2. Whereas309

evolved referential mass densities were used in the fit, good predictions emerged for310

the evolving geometry (inner radius, a/ao, and wall thickness, h/ho) and circumfer-311
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Artery mass density ρ 1050 kg/m3

Initial mass fractions φeo, φ
m
o , φco, 0.079, 0.326, 0.595

Collagen fiber fractions βθ, βz, βd+ , βd− 0.058, 0.057, 0.4425, 0.4425

Diagonal fiber orientation α0 30.7◦

Initial inner radius, thickness ao, ho 0.417 mm, 0.032 mm

Elastin parameter ce 114 kPa

Intramural cell properties cm1 , cm2 343 kPa, 1.23

Collagen properties cc1, c
c
2 450 kPa, 3.51

Elastin deposition stretches Ge
r, G

e
θ, G

e
z 1/(Ge

θG
e
z), 1.96, 1.73

Cell deposition stretches Gm
θ 1.17

Collagen deposition stretches Gc
θ = Gc

z = Gc
d+ = Gc

d− 1.20

Mass removal rates kmo , kco 1/10 day−1, 1/10 day−1

Table 1: Parameters for the murine infrarenal abdominal aorta, homogenized for a single-

layered G&R model based in part on a previous bilayered parameter fitting to experimental

data.21

16



ential and axial stresses (σθθ, σzz). Notably, predictions at early times (days 0, 4,312

7, 14) were better than previous phenomenological model fits.21 Nevertheless, inner313

radius was underestimated at days 21 and 28, as before21, where additional terms314

for inflammation (not considered here) were required to improve the fit.315
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Figure 2: Experimental data (circle ± error bars)6 and coupled model predictions (solid

lines) of the evolving infrarenal abdominal aorta geometry (inner radius, a/ao, and wall

thickness, h/ho) and circumferential and axial stresses (σθθ, σzz) in response to a 68%

increase in pressure over 28 days. Material parameters are given in Table 1 and network

model parameters were fit to the referential mass densities of collagen and intramural cells

(ρcR/ρ
c
o, ρ

m
R /ρ

m
o ) at day 28 (open circles), resulting in best-fit values: yStress(0) = 0.163,

yWss(0) = 0.582, yAngIIin(0) = 0.113, yIntegrins(0) = 0.20, w = 0.70, n = 1.378, and

EC50 = 0.604 (with ySACs(0) = 0.25).

3.2 Correspondence between phenomenological and cou-316

pled models317

Next, we compare results from our coupled model to a broader range of results gen-318

erated using previously validated phenomenological mass production and removal319

functions (Eqs 36, 42, 50, and 51). Such phenomenological functions, which we320

replace with Eqs 35, 39, 45, and 48 in the coupled model, have long captured di-321

verse experimental datasets; we therefore aim to ensure that our model can produce322

similar behavior over a broad range of pressure and flow perturbations. We use323

parameters for a mouse descending thoracic aorta20 (Table 2), again homogenized324

for a single-layered G&R model based on prior bilayered parameters.19325

326
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Artery mass density ρ 1050 kg/m3

Initial mass fractions φeo, φ
m
o , φco, 0.34, 0.33, 0.33

Collagen fiber fractions βθ, βz, βd+ , βd− 0.0560, 0.0670, 0.4385, 0.4385

Diagonal fiber orientation α0 29.91◦

Initial inner radius, thickness ao, ho 0.647 mm, 0.04 mm

Elastin parameter ce 89.71 kPa

Intramural cell properties cm1 , cm2 261.4 kPa, 0.24

Collagen properties cc1, c
c
2 234.9 kPa, 4.08

Elastin deposition stretches Ge
r, G

e
θ, G

e
z 1/(Ge

θG
e
z), 1.9, 1.62

Cell deposition stretches Gm
θ 1.2

Collagen deposition stretches Gc
θ = Gc

z = Gc
d+ = Gc

d− 1.25

Mass removal rates kmo , kco 1/7 day−1, 1/7 day−1

Intramural cell gain parameters Km
σ , Km

τ 1.6, 2

Collagen gain parameters Kc
σ, Kc

τ ηKm
σ , ηKm

τ , with η ∈ [1, 1.25, 1.5]

Table 2: Baseline parameter set from a previous fit20 for a mouse descending thoracic aorta,

which were homogenized for a single-layered G&R model based on the original bilayered

parameter fitting19. For the collagen gain parameters, we scale intramural cell gains by

η, with values specified in relevant figure captions. The four gain parameters are used in

simulating the phenomenological model only.
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We generate timecourse G&R data for fifteen pressure and flow combinations, with327

pressure increasing by 10–50% (in increments of 10%) and flow increasing by 0%,328

5%, and 10%, both relative to homeostatic. Using one intermediate combination (a329

30% pressure and 5% flow increase), we parameterized the coupled model to capture330

long-term steady state values of ρcR/ρ
c
o and ρmR/ρ

m
o generated by the phenomeno-331

logical model. In general, and as in Fig 2, these ratios could be calculated from332

histological data.5 We obtained best-fit values of the network inputs and parame-333

ters, minimizing the error in steady state mass densities for 100 < s < 200 days,334

with parameters bounded by the previously described constraints. Using best-fit335

parameters, we then simulated the other fourteen combinations of increased pres-336

sure and flow (Supplementary Fig S1). For the fitting case (30% pressure and 5%337

flow increase, highlighted in green in Fig 3), we see strong agreement between the338

two models; note that geometric variables (inner radius, a, and wall thickness, h)339

were not used in the fit, but their evolution and end values agree between models.340

We also show coupled model predictions for four other pressure elevations (rang-341

ing from 10% to 50% for a fixed increase in flow of 5%), where the coupled model342

(solid lines) and phenomenological model (dashed lines) again agreed well (Fig 3),343

albeit with slight differences in constituent mass densities at the highest pressure344

(P/Po = 1.5).345

346

Consider, too, the network-informed stimuli for mass production and removal, ∆ψc,347

∆ψp, ∆ψm in Eqs 35, 48, and 39, respectively (Fig 4). All three stimuli increase with348

pressure, and thus intramural stress, as posited in the phenomenological functions349

(Eqs 36, 50, and 42, respectively). Additionally, consider three intermediate species,350

AngII, NO, and ET1. AngII production is stimulated by changes in pressure, and351

remains elevated after s = 0 due to an imposed exogenous AngII source (similar to352

the experimental protocol from which the original parameters were determined.5,19)353

Interestingly, we see slight reductions in NO and increases in ET1 with pressure.354

From the network diagram (Fig 1), intramural stress does not directly induce these355

responses, but the resulting increased inner radius (Fig 3) yields a drop in wall shear356

stress. This affects NO and ET1, demonstrating how feedback from the tissue-357

level model influences network dynamics; such responses rely on feedback between358
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Figure 3: Timecourses for five levels of pressure increase (10–50%) from homeostatic, to-

gether with a flow increase of 5%. Solid lines indicate results from the coupled model;

dashed lines represent results from the phenomenological model, for parameters in Table 2

with η = 1.25. The coupled model was fit only to end values of ρcR/ρ
c
o and ρmR /ρ

m
o that were

generated by the phenomenological model with P/Po = 1.3 and Q/Qo = 1.05 (highlighted in

green) yielding yStress(0) = 0.216, yWss(0) = 0.436, yAngIIin(0) = 0.20, ySACs(0) = 0.248,

yIntegrins(0) = 0.251, w = 0.763, n = 1.954, and EC50 = 0.621. For the inner radius, a,

and wall thickness, h, asterisks indicate ideal adaptations, given by a/ao → (Q/Qo)
1/3 and

h/ho → (P/Po)(Q/Qo)
1/3, though homeostasis only requires that regulated variables return

toward, not precisely to, original values.
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mechanics and signaling, and would not have been predicted by the signaling model359

alone.360
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Figure 4: Network-informed stimuli, ∆ψc (collagen), ∆ψp (cell proliferation), ∆ψm (MMPs)

(Eqs 35, 48, and 39, respectively) for five levels of pressure increase (10–50%) from homeo-

static, together with a flow increase of 5%, and evolution of three network species: AngII, NO

and ET1. The coupled model uses yStress(0) = 0.216, yWss(0) = 0.436, yAngIIin(0) = 0.20,

ySACs(0) = 0.248, yIntegrins(0) = 0.251, w = 0.763, n = 1.954, and EC50 = 0.621. Exoge-

nous AngII was applied via a sustained input yAngIIin(s > 0), which is a free parameter

in the fitting process. Note the mild transient increase in ET1 (when the wall distends

elastically, thus reducing flow-induced shear stress) and complementary decrease in NO, as

expected. There are transient (stress-driven) increases in AngII in addition to the sustained

increase due to exogenous AngII.

361

Similarly good results emerge for the predicted effect of varying flow (Supplementary362

Fig S2) with a fixed pressure increase (30%), again with inner radius adapting ideally363

(a → ε1/3ao) but the wall thickening to a value slightly greater than ideal (h >364

γε1/3ho). Network-informed stimuli for mass production and removal, ∆ψc, ∆ψp,365

∆ψm decrease with flow (Supplementary Fig S3), and thus with wall shear stress,366

as posited in the phenomenological rate functions (Eqs 36, 50, and 42, respectively).367

368

To summarise the data from all fifteen pressure-flow combinations (Supplementary369

Fig S1), we compare here the steady state values of each of six key variables as370

a function of pressure and flow (Fig 5). Grey surfaces represent predictions from371
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the coupled model, whereas red meshes show corresponding results from the phe-372

nomenological model. Although we only fit to ρcR/ρ
c
o and ρmR/ρ

m
o at one combination373

in this space (P/Po = 1.3, Q/Qo = 1.05), there is close agreement across the dif-374

ferent combinations and variables, including the stress differences that drive the375

models. The largest deviation appeared for intramural cell mass density, which is376

underestimated in the coupled model compared to the phenomenological model at377

high pressures. Here we used η = 1.25 as the scale factor for collagen gain param-378

eters (see Table 2), but we found similarly good results using η = 1 and η = 1.5379

(Supplementary Figs S4–S11).380

Figure 5: Steady state values for five levels of pressure elevation (10%, 20%, 30%, 40%, 50%)

and three levels of flow increase (0%, 5%, 10%) relative to homeostatic for the coupled (grey

surface) and phenomenological (red mesh) models, for parameters in Table 2 with η = 1.25.

The coupled model was fit only to end values of ρcR/ρ
c
o and ρmR /ρ

m
o that were generated by

the phenomenological model with P/Po = 1.3 and Q/Qo = 1.05, yielding yStress(0) = 0.216,

yWss(0) = 0.436, yAngIIin(0) = 0.20, ySACs(0) = 0.248, yIntegrins(0) = 0.251, w = 0.763,

n = 1.954, and EC50 = 0.621.

381

The coupled model captured the behavior generated by the phenomenological model,382

which has successfully described experimental data in multiple prior studies. Ad-383

ditionally, this close agreement demonstrates that, for this parameter set, linear384

phenomenological functions in Eqs 36, 42, 50, and 51 reflect well the more com-385

plex underlying signaling, at least under moderate changes in pressure and flow386
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from homeostatic values. Nevertheless, inclusion of signaling pathways can provide387

additional mechanistic insight. Particularly, within this framework, we can track388

and modify intermediate signaling species and exogenous inputs,15 and introduce389

stochasticity into the signaling response, which we demonstrate next.390

3.3 Sensitivity Analysis391

Cell signaling networks are inherently noisy, yet robust in function. Here, we use the392

coupled framework to investigate the sensitivity of tissue-level outputs to perturbed393

signaling parameters. We perturb the network in two ways: firstly, with uniformly394

distributed noise to six of the parameters, yAngIIin(0), ySACs(0), yIntegrins(0), w,395

n, and EC50. The mechanical inputs, yStress(0) and yWss(0) remain fixed, but the396

network ability to sense and transmit these signals vary via the perturbed param-397

eters. For different levels of perturbation (mediated by parameter p), we run 100398

simulations with each parameter modified by up to ±p% of its best-fit value (Fig399

6(a)). For p = 10, overlayed timecourses for each simulation (Fig 6(b)) remain400

close. Transient behaviors and the final constituent mass densities vary slightly, yet401

the final inner radius and wall thickness are well preserved in each case, exhibiting402

robustness to small parameter perturbations.403

404

Next, we modify the framework to allow a second type of perturbation: heteroge-405

neous cell populations. We take the same parameters from 100 simulations in Fig406

6 and assign them as individual cell parameters as follows. First, we replicate the407

network and associated ODEs for the n = 100 distinct parameter sets. Each net-408

work is allocated individual parameters, wj , nj , EC50j , and so forth. The resulting409

system of equations is large, yet still efficient to solve; although the n networks are410

coupled through mechanical feedback, their signaling is not directly coupled, thus411

solution at each G&R timestep is parallelizable. Collective stimuli for collagen and412

intramural cell mass production and removal are413

∆ψi =
1

n

n∑
j=1

∆ψij , (52)

where i = {c, p,m} for collagen, intramural cell proliferation, and proteolytic bur-414

den, j is the number of distinct parameter sets, and ∆ψij = (ψij − ψij0)/ψij0 are415
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Figure 6: Sensitivity analysis of a single cell signaling network. (a) Parameter ranges, where

parameters vary from their best-fit values by uniformly distributed noise of up to ±10% and

(b) Overlayed timecourses for 30% pressure and 5% flow increases from homeostatic, where

100 parameter sets were sampled from the ranges shown in (a). Baseline parameters are

yStress(0) = 0.216, yWss(0) = 0.436, yAngIIin(0) = 0.20, ySACs(0) = 0.248, yIntegrins(0) =

0.251, w = 0.763, n = 1.954, and EC50 = 0.621.

calculated as in Eqs 31, 49, and 41, using appropriate network outputs for each cell,416

ψij and ψij0, which vary depending on network parameters. Although stimuli can417

differ significantly for each cell (Fig 7(a)), the collective behavior yields a similar418

tissue-level result to when there is no noise (Fig 7(b)).419

420

From a biological standpoint, the importance of collective behavior over that of any421

one cell provides additional protection against individual fluctuations and disrupted422

signaling. This is further emphasized for larger perturbations of ±20% (Fig 8),423

where perturbations applied to the network without heterogeneity begin to spread424

and diverge significantly (Fig 8(b)), whereas these same perturbations applied to425

individual cells (Fig 8(c,d)) yield tissue-level behavior only slightly differently from426

baseline.427

4 Discussion428

Phenomenological models have provided, and continue to provide, considerable in-429

sight into the G&R of biological soft tissues.17,9,3,1 Recently, for example, such a430
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Figure 7: Sensitivity analysis of a heterogeneous population of cells with collective behavior.

(a) Overlayed collagen and intramural cell mass production stimuli, given by ∆ψc and ∆ψp,

respectively (Eqs 35, 48), for 100 cells which each contribute equally to collective stimuli (Eq

52), and (b) Resulting timecourses for 30% pressure and 5% flow increases from homeostatic.

The 100 parameter sets for individual cells are the same as those used in Fig 6, which vary

by up to ±10% from baseline values: yAngIIin(0) = 0.20, ySACs(0) = 0.248, yIntegrins(0) =

0.251, w = 0.763, n = 1.954, and EC50 = 0.621. Additionally, yStress(0) = 0.216 and

yWss(0) = 0.436. Asterisks indicate the values obtained under baseline conditions (no

perturbations).
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Figure 8: Sensitivity analysis of a single cell signaling network and a heterogeneous pop-

ulation of cells with collective behavior. (a) Parameter ranges, where parameters vary

from their best-fit values by uniformly distributed noise of up to ±20% and (b) Overlayed

timecourses for 30% pressure and 5% flow increases from homeostatic, where 100 param-

eter sets were sampled and applied to the network. We then apply these parameter sets

to individual cells within a heterogeneous population, so that they respond collectively,

and show (c) Overlayed collagen and intramural cell mass production stimuli, given by

∆ψc and ∆ψp, respectively (Eqs 35, 48), for 100 cells that contribute to collective stim-

uli (Eq 52), and (d) Resulting timecourses for 30% pressure and 5% flow increases from

homeostatic. Parameters vary by up to ±20% from baseline values: yAngIIin(0) = 0.20,

ySACs(0) = 0.248, yIntegrins(0) = 0.251, w = 0.763, n = 1.954, and EC50 = 0.621. Ad-

ditionally, yStress(0) = 0.216 and yWss(0) = 0.436. Asterisks in (d) indicate the values

obtained under baseline conditions (no perturbations).
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model predicted an unexpected natural history for tissue engineered vascular grafts431

used in congenital heart procedures, enabling a promising FDA-approved clinical432

trial to resume.10 Notwithstanding the potential for both clinical impact and ad-433

vancing basic understanding, given the continually increasing information available434

on transcriptional changes (e.g. bulk and single cell RNAseq) and associated cell435

signaling, there is a pressing need to incorporate such information into models that436

predict tissue-level clinical phenotypes.437

438

This need for coupling tissue-level G&R and cell-level signaling models has been439

increasingly recognized, with recent developments reviewed.25 Two general ap-440

proaches at the signaling level are to use continuum descriptions by considering441

species concentrations and reaction kinetics in a system of differential equations, or442

to use discrete rule-based approaches such as agent-based models. For vascular re-443

modeling, a reaction–diffusion partial differential equation system for three species444

(TGFβ, MMPs, and interleukins) has informed a tissue-level G&R model for a bilay-445

ered cylindrical vessel,22 with several important microstructural features (collagen446

fiber diameter and crosslinking) influenced by these species; however, this influence447

is unidirectional, and molecular species do not depend on the mechanical state of448

the vessel. In a similarly motivated study, a system of ODEs was used (considering449

latent and active TGFβ, proteases, TIMPs, fibroblasts and inflammatory cells) to450

capture signaling related to aneurysm formation.2 The signaling model was coupled451

to a tissue-level model for a bilayered cylindrical nonlinear elastic membrane, with452

TGFβ activity dependent on fibroblast stretch. Signaling outputs affected medial453

degradation, collagen growth, and fiber deposition stretches.454

455

The more recently proposed logic-based approach16 that we use has advantages of456

both discrete and continuum methods; starting from rule-based descriptions pro-457

vides flexibility and intuition, whilst ODEs are efficient to simulate. We were458

confident that the current coupling could be achieved since the constrained mix-459

ture model has been coupled with an agent-based model12 and, independently, an460

agent-based model has been coupled with a logic-based cell signaling model.23 More461

recently, a logic-based model of cardiomyocyte signaling has been coupled to a fi-462

27



nite element model of cardiac hypertrophy within a kinematic growth framework.11463

Nevertheless, this is to our knowledge the first coupling of models for logic-based464

cell signaling and constrained mixture-based tissue G&R. We verified the implemen-465

tation, then validated the associated tissue-level predictions against experimental466

data for the murine infrarenal abdominal aorta and a broader class of arterial re-467

sponses generated by a tissue-level G&R model that was validated against data from468

mouse models of hypertensive aortic remodeling,19,21 though in the absence of in-469

flammation. Given the central role of cell-driven matrix turnover, the mixture-level470

balance of mass relation is central to this coupling, and we thus focused on mass471

density production and removal. This relation also motivates evolving nonlinear,472

anisotropic mechanical properties of the wall via constituent-specific stored energy473

functions, thus facilitating the coupling further.474

475

To challenge this new framework, we considered effects of perturbed signaling pa-476

rameters. Tissue-level metrics of inner radius and wall thickness remained robust477

to uniformly distributed perturbations of up to ±10% (Fig 6), though this robust-478

ness was sometimes lost for ±20% (Fig 8(b)). To simulate cell heterogeneity, we479

modified the signaling model to consider 100 identical network structures, but with480

individually perturbed parameter sets. Individual stimuli were averaged to produce481

collective signaling behavior; in this case behaviors remained robust despite pertur-482

bations of up to ±20% (Fig 8(d)). This highlights one role of collective behavior483

and the protection it offers from the noise inherent to cell signaling networks. Note484

further that perturbations were uniformly distributed through a given range, but485

one might expect larger deviations to be admissable if relatively rare.486

487

Although logic-based cell signaling models provide great flexibility in parameteriza-488

tion, we followed prior work on cardiac remodeling29,26 wherein primary parameters489

(Hill parameter, n, EC50, and reaction weight, w) were assumed uniform across the490

network. This simplification was evaluated by ensuring an overall coupled-fit to491

data; one particular sustained alteration in pressure and hemodynamics allowed the492

model to predict well multiple (fourteen) other alterations of interest. The advan-493

tage of this approach is the significant reduction in the number of parameters to494
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be identified, though with flexibility to refine parameters further to capture specific495

signaling if desired. Yet, any relaxation of this assumption requires additional data496

for intermediate signaling species; the model is not identifiable when using indi-497

vidual reaction parameters if only considering the six outputs used herein. Future498

refinements should thus be guided by additional cell-level data via western blots499

or single or bulk RNAseq, for which availability is rapidly increasing. Collection500

of both tissue- and cell-level data will additionally enable improved validation and501

refinement of the cell signaling component, which has so far only been compared502

qualitatively to results in the literature.15 Other important future considerations in-503

clude stress-driven cell apoptosis, which could be incorporated in the removal rate504

for cells, and active contraction of smooth muscle cells, where the contractility out-505

put (Fig 1) could be incorporated into an active stress contribution to the Cauchy506

stress. Finally, although we looked at parameter heterogeneity in identical net-507

works (which demonstrates scalability of the approach), the same principles could508

support multiple different network structures (e.g. cell-specific signaling networks),509

or be used to investigate effects of perturbations in the network structure itself.510

This could accompany the use of more detailed tissue-level models, for example511

layer-specific signaling in a bilayered wall model.512
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