
 

Document downloaded from: 

 

This paper must be cited as:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The final publication is available at 

 

 

Copyright 

 

Additional Information 

 

http://hdl.handle.net/10251/191466

Latorre, M.; Montáns, FJ. (2017). Strain-Level Dependent Nonequilibrium Anisotropic
Viscoelasticity: Application to the Abdominal Muscle. Journal of Biomechanical Engineering.
139(10):1-9. https://doi.org/10.1115/1.4037405

https://doi.org/10.1115/1.4037405

ASME International



Strain-level dependent non-equilibrium
anisotropic viscoelasticity: Application to the

abdominal muscle

Marcos Latorre ∗
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Universidad Politécnica de Madrid
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Soft connective tissues sustain large strains of viscoelastic
nature. The rate-independent component is frequently mod-
elled by means of anisotropic hyperelastic models. The rate-
dependent component is usually modelled through linear rhe-
ological models or quasilinear viscoelastic models. These
viscoelastic models are unable, in general, to capture the
strain-level dependency of the viscoelastic properties present
in many viscoelastic tissues. In linear viscoelastic models,
strain-level dependency is frequently accounted for by includ-
ing the dependence of multipliers of Prony series on strains
through additional evolution laws, but the determination of
the material parameters is a difficult task and the obtained
accuracy is usually not sufficient. In this work we introduce
a model for fully nonlinear viscoelasticity in which the in-
stantaneous and quasistatic behaviors are exactly captured
and the relaxation curves are predicted to a high accuracy.
The model is based on a fully nonlinear standard rheologi-
cal model and does not necessitate optimization algorithms
to obtain material parameters. Furthermore, in contrast to
most models used in modelling the viscoelastic behavior of
soft tissues, it is valid for the large deviations from thermo-
dynamic equilibrium typically observed in soft tissues.

1 Introduction
The actual behavior of soft biological tissues has a rele-

vant viscous, rate-dependent component [1], [2]. The mod-
elling of viscoelastic effects in soft tissues commonly follows
two approaches. The first approach consists of using inte-
gral equations in some of the available forms: nonlinear su-
perposition, Schapery, or Quasilinear Viscoelasticity (QLV),
see [1], [3]. Quasilinear Viscoelasticity is a common ap-
proach mainly in the unidimensional modeling of soft tissues
[1] and with nonlinear hypoelastic or linearized anisotropic
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elastic models of soft tissues [4], [5], [6]. For the three di-
mensional treatment of viscoelasticity of soft tissues forfi-
nite element implementation, the differential approach for-
mulated by Simó [7] (see also [8] and therein references),
which is valid for anisotropy, seems to be the most common
approach because of its numerical efficiency thanks to a re-
currence numerical formula [8] so only the information of
the previous step is needed. This approach, with small mod-
ifications, is followed by many authors when modelling soft
tissues; [8], [9], [10], [11], [12], [13], [14]. These worksare
not compatible in general with the well-accepted multiplica-
tive decompositions [7]. Furthermore, as noted by several
authors (see for example Holzapfel [12], Section 6.10, Reese
and Govindjee [15], Haslach [16], Haupt [17], among others)
both quasilinear viscoelasticity and the large strain formula-
tions based on the Simó approach, namedquasi-equilibrium
viscoelasticity or finitelinear viscoelasticity [15], are useful
for large strains, but only for small deviations from thermo-
dynamic equilibrium.

Soft biological tissues show stress relaxation ratios that
depend on the strain level, a dependence which is different
for different tissues, as it can be clearly seen for example
in [10], [3], [18] among others. Therefore, from a practical
standpoint regarding the analysis of soft tissues with mod-
els amenable of being implemented in implicit finite element
programs (to model general geometries and loading condi-
tions), finite linear viscoelasticity results in the known dif-
ficulties in capturing naturally both the strain dependenceof
the viscous behavior in soft tissues (e.g. the resulting relax-
ation curves) and the shape of those curves, see for exam-
ple [10], [19], [18]. It is obvious that if the simplest relaxation
tests are not properly predicted, any finite element simulation
of the viscoelastic behavior of soft tissues under general load-
ing conditions (for example when simulating surgery) will
have at least similar inaccuracies. A minimum requirement
should be to capture at least these simplest tests defining the



material behavior to good accuracy because, otherwise, con-
fidence in finite element simulations cannot be obtained.

On the other side, the so-callednon-equilibrium vis-
coelasticity or finitenonlinear viscoelasticity [15], (1) al-
lows for the unrelated instantaneous and equilibrated hyper-
elastic behaviors observed in soft biological tissues, (2)non-
equilibrated elastic strains come from a multiplicative de-
composition and may effectively be of the order of the total
strains, representing large deviations from thermodynamical
equilibrium, as observed in tests, (3) the evolution equation
for those internal strains is fully nonlinear, governed by the
hyperelastic behavior of the non-equilibrated part, whichis
also the dissipation potential, and (4) at every instant, stresses
are formally derived from a total stored energy. In contrast,
in quasi-equilibrium viscoelasticity (either based on the Simó
approach or on the QLV one) the evolution of the internal
variables is governed by alinear differential equation estab-
lished at thequasi-equilibrium point, so instantaneous and
equilibrated responses are in principle proportional, as in the
infinitesimal case [8], [12], non-equilibrated strains should be
moderate [15], [12], and stresses are not derived from a stored
energy, except at the instantaneous or equilibrium states.In-
deed, these properties clearly explain why strain-dependent
relaxation tests in soft biological tissues are not properly cap-
tured using these traditional, popular models.

The purpose of this paper is to present a new model
for the viscoelastic behavior of soft tissues under largenon-
equilibrated elastic deformations which naturally accounts
for fully nonlinear, strain-dependentnon-equilibrium vis-
coelasticity, and is amenable of finite element implemen-
tation to model general geometries and loading conditions
found when simulating, for example, surgery in organs. The
model is based on the kinematics and finite element algo-
rithmic implementation of non-equilibrium anisotropic vis-
coelasticity [20], [21], originally developed for isotropic be-
havior by Reese and Govindjee [15]. The main ingredient
introduced herein is the consideration of viscous parameters
that depend on the non-equilibrium deformation level. This
approach, based on a different thermodynamic treatment, has
proved very useful when modeling viscoelastic elastomers
at high strain rates [22–24]. For the hyperelastic behavior
part, we use What-You-Prescribe-Is-What-You-Get (WYPi-
WYG) hyperelasticity [25], [26], [27], which has accurately
predicted the passive behavior of a large variety of soft tis-
sues, like skeletal muscle [28], fascia [29], skin [30], arter-
ies [31], myocardium [32] and herein abdominal muscle. The
model presented herein is based on a physically-sound ther-
modynamic framework, has unparalleled accuracy and does
not require optimization or any complex procedure to deter-
mine any material parameter. All the information needed is
immediately obtained from the available experimental data.

2 WYPiWYG hyperelasticity
WYPiWYG hyperelasticity is a data-driven, model-free

constitutive modelling technique for obtaining numerically
the stored energy of soft materials directly from experimental
tests, without user intervention. In contrast to most models
used in modelling anisotropic soft tissues, WYPiWYG hy-
perelasticity is compatible with the equivalent infinitesimal
theory, not only at the reference configuration [33], but at

all deformation levels, so physical insight is easily obtained
during finite strain analyses [30, 31]. Consider the polar de-
composition of the deformation gradientX as

X = RU (1)

whereR is the rotation tensor andU is the stretch tensor
in the material basis. The material logarithmic strain ten-
sor is E = lnU, which principal componentsEi = lnλi are
the logarithms of the principal stretchesλi . Since soft tis-
sues behavior may be considered isochoric, we will assume
that J = det(X) = 1, so the deviatoric part ofE is coinci-
dent withE, i.e. Ed = P

S : E ≡ E, wherePS is the (small-
strain-equivalent) fourth-order deviatoric projection tensor in
the logarithmic strain space, with Cartesian components in
terms of the Kronecker deltaδi j

(
P

S)

i jkl =
1
2
(δikδ jl + δil δ jk)−

1
3

δi j δkl (2)

WYPiWYG hyperelasticity for incompressible orthotropic
materials (as an example) is based on the following decom-
position [34]

W

(

Ed,a1,a2

)

= Wiso

(

Ed
)

+Worth

(

Ed,a1,a2

)

(3)

with Wiso
(
Ed
)

being the isotropic contribution following the
Valanis-Landel decomposition

Wiso

(

Ed
)

= ω
(

Ed
1

)

+ω
(

Ed
2

)

+ω
(

Ed
3

)

(4)

andWorth
(
Ed,a1,a2

)
is an orthotropic contribution for pre-

ferred material directionsai, which follows a decomposition
similar to that found in the infinitesimal setting (althoughthe
most general coupled form is also possible [32])

Worth

(

Ed,a1,a2

)

= ω11

(

Ed
11

)

+ω22

(

Ed
22

)

+ω33

(

Ed
33

)

+2ω12

(

Ed
12

)

+2ω23

(

Ed
23

)

+2ω31

(

Ed
31

)

(5)

whereai are the principal material directions perpendicular to
the planes of symmetry,Ed

i are the principalisochoricloga-
rithmic strains,Ed

i j = ai ·Ed ·a j are the components of thede-

viatoric logarithmic material strain tensorEd in the preferred
material directions andω(Ed) andωi j (Ed

i j ) are functions de-
termined by the WYPiWYG computational procedure. The
global shape of these functions is not given beforehand, but
computed numerically solving the differential equations as-
sociated with the experiments and performing a spline in-
terpolation between exactly computed strain energy values.
The resulting function is a piecewise smooth analytical func-
tion. As in the infinitesimal setting, only the coupled shear
invariantEd

12E
d
23E

d
31 is neglected [26]. The actual computa-

tional procedure for these functions for the different symme-
try cases is given in [25], [28], [26], [34], [27]. A general



procedure without inversion formula with application to the
Dokos et al. shear experiments on myocardium [35] can be
found in [32]. Obviously, because the WYPiWYG formula-
tion preserves analytical and numerical material symmetries
congruency [34], the isotropic behavior is just a particular
case recovered numerically if the curves correspond to those
of an isotropic material.

For the matter of simplicity in the exposition, and with-
out loss of generality of the presented formulation, we as-
sume hereafter thatW ≡ Worth. For further reference, we
note that the work-conjugate stress tensor of the material log-
arithmic strain tensor is the generalized Kirchhoff stressten-
sor obtained through [36]—for simplicity of notation we omit
the material directions in the dependencies

T =
dW

(
Ed
)

dE
+ pI = Td + pI (6)

wherep is the Lagrange multiplier enforcing the incompress-
ibility condition and we define the purely deviatoric stresses

Td :=
dW

(
Ed
)

dE
=

dW
(
Ed
)

dEd :
dEd

dE
=

3

∑
i=1

3

∑
j=1

ω′
i j (E

d
i j )L

S
i j :PS

whereLS
i j =

1
2(∂Ed

i j /∂Ed +∂Ed
ji/∂Ed) = 1

2 (ai ⊗a j +a j ⊗ai)
are orthotropy structural tensors and the projection tensor
P

S= dEd/dE has been defined above. A subsequent differ-
entiation gives—see details in [26], [36]

dTd

dE
=

d2W
(
Ed
)

dEdE
=

dEd

dE
:

d2W
(
Ed
)

dEddEd
:

dEd

dE

= P
S :

3

∑
i=1

3

∑
j=1

ω′′
i j (E

d
i j )L

S
i j ⊗LS

i j : PS (7)

Note that in the usual quasi-incompressible case employed in
finite element analyses, the volumetric stressespI are conve-
niently computed by means of an explicit penalty volumetric
strain energy term and mixed finite element formulations are
required [26].

3 Finite fully nonlinear, non-equilibrium anisotropic
viscoelasticity
Non-equilibrium viscoelasticity allows for arbitrarily

large deviations from thermodynamic equilibrium, i.e. large
unbalanced internal elastic strains. These large unbalanced
deformations are present when a biological tissue is sub-
jected to a fast change of strains, and the corresponding over-
stresses change significantly in time during the corresponding
relaxation. During that relaxation, an important part of the
initially stored energy is dissipated. Quasi-equilibriumand
quasilinear viscoelasticity assume implicitly that the internal
deformations are not too away from the equilibrium state, so
for example, during relaxation tests, that equilibrium state
characterizes the dissipation during the test. As a practical
consequence, the resulting dissipated energy is (linearly) pro-
portional to the equilibrium stored energy, i.e. instantaneous

and quasistatic stress-strain responses are proportional, and
relaxation curves are independent of the strain level. Thisis
in contradiction to the experimental observation in many soft
tissues, see for example [10], [19], [3], [18].

To accommodate experimental observations in a sim-
ple, yet sound framework amenable of efficient finite ele-
ment implementation, Lubliner [37], motivated by the stan-
dard rheological model, see Figure 1, proposed the exis-
tence of an equilibratedWeq and a nonequilibrated energy
Wneq (the energies stored in the springs of the rheological
model in Fig. 1). Departing from an unloaded configura-
tion, during deformations at a relevant speed relative to a
characteristic relaxation time, we haveEe ≈ E and the ini-
tial stored energy is the addition of both for the given strains,
i.e. W = Weq(Ed)+Wneq(Ed

e). On other side, during qua-
sistatic deformationsEe ≈ 0, so the stored energy is given by
Weq(Ed). The stress powerP is

P = Ẇeq+ Ẇneq+D (8)

During a relaxation test at a fixed strain levelE, P = 0,
Ẇeq= 0, soD =−Ẇneq, and the stored energyWeq+Wneq

relaxes toWeq, dissipating the nonequilibrated energyWneq.
Hence the dissipated energy and the equilibrated energy are
fully uncoupled and both energies can be determined directly
from experimental tests. In fact, the nonequilibrated energy is
the potential of dissipation, so if the external deformations are
fixed, both the final state (throughWeq) and the dissipation
from t = 0 to t → ∞ (throughWneq) are known beforehand.
Remarkably, the response is hyperelastic at all times, mean-
ing that stresses are always derived from a stored energy (say
isochronic) function, see Figure 1. Using WYPiWYG hyper-
elasticity, energies and hence dissipation are determinedin a
numerically exact way, so both the nonequilibrated (fast) and
quasiequilibrium (either slow or relaxed) behaviors, as well
as the total energy dissipated, are captured to a high accu-
racy.

The best-known computational framework based on
equilibrated and nonequilibrated energies is the model of
Reese and Govindjee [15], which was formulated for
isotropic materials. We have recently extended the model for
anisotropic materials [20], [21]. Remarkably, the new for-
mulation, which reduces to the Reese and Govindjee model
for the special case of isotropy, is even simpler, using acon-
ventionalviscous flow rule in the logarithmic strain space
that adopts the same form as the viscous flow rule in the
small strain case. The present formulation is based on the
works presented in [20], [21]. However, the formulations
in [20], [21] do not incorporate strain-dependent viscous be-
havior. Then, as initially proposed, this results in the lack
of ability to control the isochronic curves, or equivalently,
the rate at which dissipation takes place for a given initial
deformation. As mentioned, in soft biological tissues, there-
laxation curves, and hence the normalized dissipation rates,
depend on initial strains [10], [19], [3], [18]. In this work
we adapt the framework to account for the strain dependency
of viscosity properties observed in soft tissues. Importantly,
the same issue was solved in a similar way when modeling
the viscoelastic behavior of elastomers at high strain rates,
see [22–24].
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Fig. 1. a) Stress-strain behavior under instantaneous loads; equilibrated, relaxed response and isochronic response. b) Relaxation tests.

The viscoelastic formulations in [20], [21] are based on
the well-accepted multiplicative decompositions of the total
deformation gradientX into an elastic (nonequilibrated) and
a viscous part

either X = XeXv or X = XvXe (9)

The former is known as the Sidoroff decomposition. These
multiplicative decompositions conceptually establish the ex-
istence of a local, thermodynamically unbalanced deforma-
tion given byXe, which is of isochoric nature, det(Xe) = 1,
and relaxes nonlinearly in time according to the correspond-
ing nonlinear, unbalanced stored energy. We refer the readers
to Refs. [20] and [21] for details on both formulations and
their algorithmic, finite element implementations. In connec-
tive tissues like perimysium (with organized cross-ply col-
lagen fibre arrangement) or skin (with a more disperse colla-
gen arrangement) the viscoelastic mechanism seems to reside
within the collagen fibres or at the interface between fibre and
matrix [38]. Therefore, no relevant reorientation of collagen
fibers is apparent [38] and the symmetry group may be con-
sidered fixed during stress relaxation.

The energy dependencies are established in terms of the
material logarithmic strains of the respective deformation
gradients

Ee = ln(Ue) and E = ln(U) (10)

with Ed = P
S : E ≡ E and whereUe is the right stretch ten-

sor of the elastic (nonequilibrated) deformation gradient, see
motivation in Figure 1. Since the internal response is purely
isochoric as well, we also haveEd

e = P
S : Ee ≡ Ee. The total

(distortional) energy is given by

W (Ed,Ed
e) = Weq(Ed)+Wneq(Ed

e) (11)

where, taking for instance the Sidoroff decomposition in Eq.
(9), we considerEd

e as an internal (dependent) variable deter-
mined from the external strainsEd and the internal deforma-

tionsXv (considered the independent kinematic variables)

Ed
e = Ed

e(E
d,Xv) (12)

The deviatoric part of the total generalized Kirchhoff stress
tensor is obtained from the usual Coleman procedure, which
using the Sidoroff decomposition is —see details in [20]

Td =
∂W

(
Ed,Xv

)

∂E
= Td

eq+Td
neq

=
dWeq

(
Ed
)

dEd
: PS

︸ ︷︷ ︸

Td
eq

+
dWneq

(
Ed

e

)

dEd
e

: PS

︸ ︷︷ ︸

T|e
neq

:
∂Ee

∂E

∣
∣
∣
∣
Ẋv=0

(13)

where ∂Ee/∂E|Ẋv=0 stands for the corresponding fourth-

order partial derivative tensor ofEd
e(E

d,Xv), which we ob-

tain in the next section, and we note that bothTd
eq andT|e

neq

are purely deviatoric by construction. We see just below that

T|e
neq are the relevant deviatoric nonequilibrated generalized

Kirchhoff stresses. For the case of isochoric axial deforma-
tions along the principal symmetry material axes, the general-
ized Kirchhoff stressesTd are coincident with the deviatoric
Cauchy stressesσd, which is a very convenient modelling
feature [36]. The flow rule in the formulations given in [20]
and [21] ensures positive dissipationD > 0 and adopts the
following conventional form in terms of logarithmic strains
and nonequilibrated stresses

− Ėe
∣
∣
Ė=0 = V

−1 : T|e
neq (14)

whereĖe|Ė=0 is the partial contribution to the total ratėEe

when the total deformation is fixed, i.e. during the purely
dissipative correction evolution. We refer to Equation (14)
as amixed-field evolution equationbecause it relates strain
rates to stress values. Indeed, for rotationless cases for which
Ee = E−Ev is exact, withEv = lnUv, Eq. (14) specializes to



the following small-strain-equivalent expression

Ėv = V
−1 : T|e

neq (15)

which is nothing but the constitutive equation of an equiv-
alent three-dimensional dashpot in principal directions re-
lating its internal viscous strain rates and stresses. How-
ever, Eq. (14) is six-dimensional and valid for the most
general anisotropic case under arbitrary deformations of the
typeEe = Ee(E,Xv). The tensorV is an orthotropic devia-
toric tensor of viscosities, which is, in general, deformation-
dependent

V
−1
(

Ed
e

)

= P
S :

(
3

∑
i=1

3

∑
j=1

1

2ηd
i j (E

d
e)

LS
i j ⊗LS

i j

)

: PS

= P
S : V̄−1

(

Ed
e

)

: PS (16)

whereηd
i j (E

d
e) are the orthotropic viscosities and the tensor

V̄
−1(Ed

e) is “diagonal” in matrix representation in preferred
axes. For the viscous isotropy case,V

−1(Ed
e) simplifies to

V
−1
(

Ed
e

)

=
1

2ηd (Ed
e)
P

S (17)

Equation (14) is a fully nonlinear viscous evolution equa-
tion in which the viscous flow (i.e. either−Ėe|Ė=0 in
the most general case orĖv in some particular cases) de-
pends on both the deformation-dependent viscosity tensor
V
−1(Ed

e) and the thermodynamically unbalanced nonlinear

energy throughT|e
neq= dWneq(Ed

e)/dEe. However, based on
the original work [15], we considered constant viscosities
in Refs. [20] and [21], which implies that even though the

viscous evolution is still strain-dependent throughT|e
neq, the

shape of the relaxation curves, as well as the apparent relax-
ation times are already determined bydWneq(Ed

e)/dEe, so
the model cannot capture adequately the experimental obser-
vations in soft tissues, in general.

Considering the case with deformation-dependent vis-
cosities, the formal application of the chain rule gives thefol-
lowing single-field evolution equationrelating stress rates to
stress values

Ṫ|e
neq

∣
∣
∣
Ė=0

=
d2Wneq

dEedEe
: Ėe

∣
∣
Ė=0 =−T

−1
(

Ed
e

)

: T|e
neq (18)

where we have used Eq. (14) and we identify

T
−1
(

Ed
e

)

:=
d2Wneq

(
Ed

e

)

dEedEe
: V−1

(

Ed
e

)

(19)

as a fourth-order tensor including deformation-dependentre-
laxation times. Note thatT−1 inherits, by construction, the
deviatoric nature from bothd2Wneq/dEedEe andV−1, i.e.

T
−1
(

Ed
e

)

= P
S : T̄−1

(

Ed
e

)

: PS (20)

with—see Eqs. (7) and (16)

T̄
−1
(

Ed
e

)

=
d2Wneq

(
Ed

e

)

dEd
edEd

e
: PS : V̄−1

(

Ed
e

)

(21)

For illustrative purposes, consider the case with orthotropic
hyperelasticity combined with isotropic viscosity (cf. Eqs.
(7) and (17)). The tensorT−1(Ed

e) reads in this case

T
−1
(

Ed
e

)

= P
S :

3

∑
i=1

3

∑
j=1

1
τi j (Ed

e)
LS

i j ⊗LS
i j : PS (22)

where we readily identify the nonequilibrium-strain-
dependent relaxation time functions

τi j

(

Ed
e

)

=
2ηd

(
Ed

e

)

ω′′
neq i j(E

d
e)

(23)

whereω′′
neq i j(E

d
e) are the second derivatives of the compo-

nents of the nonequilibrated strain energy. What we want to
illustrate in Eq. (23) is that the relaxation times of the result-
ing model depend on both deformation-dependent viscosities
and deformation-dependent elasticity moduli. On the one
hand, the consideration of deformation-dependent elasticity
in both the equilibrated and non-equilibrated parts (in par-
ticular, WYPiWYG hyperelasticity) will allow us to exactly
capture the instantaneous and quasi-static responses, which is
equivalent to capture the different peak/relaxed stress ratios
at different strain levels in relaxation tests, see Figure 1. On
the other hand, the consideration of deformation-dependent
viscosity parameters will allow us to capture the differentre-
laxation evolutions at different strain levels, which is equiva-
lent to capture the different isochronic responses obtained at
different rates, see Figure 1. Importantly, we will be able to
reproduce all these responses to a high accuracy using a sin-
gle nonequilibrated Maxwell element, see Figure 1. Finally,
it is apparent that if the relaxation timesτi j are considered
constant, then the stress evolutions given by Eq. (18) follow
an exponential decay during relaxation tests, as expected.

4 Determination of the deformation-dependent viscosi-
ties from experimental data
The modifications in the formulations of Refs. [20] and

[21] as given above facilitate the use of the present framework
to accurately model soft biological tissues. In the present
framework, the shape of the relaxation curves, as well as
strain-level dependency, are naturally captured without the
use of additional material parameters. In the following sub-
sections we explain how to determine the viscosities 2ηd

i j (E
d
e)

from experimental data, which are the material parameters
defining the viscous response in our computational models,
see Eqs. (14) and (16).

4.1 Isotropic case
Assume a uniaxial relaxation test over an isotropic in-

compressible material. In this isochoric rotationless case,



generalized Kirchhoff stressesT, Kirchhoff stressesτ and
Cauchy stressesσ are coincident [36]. Since the longitudinal
stretch is fixed, so are the lateral ones. The pressure changes
because the corresponding stress does. The principal compo-
nents of the stresses, with equilibrated and non-equilibrated
contributions written in terms of uniaxial-equivalent devia-
toric stresses are—cf. Eq. (13) with∂Ee/∂E|Ẋv=0 = ∂(E−
Ev)/∂E exactly specializing to the fourth-order identity ten-
sor in this particular case





σ(t)
0
0



=






2
3σeq

− 1
3σeq

− 1
3σeq






︸ ︷︷ ︸

σd
eq

+






2
3σneq(t)

− 1
3σneq(t)

− 1
3σneq(t)






︸ ︷︷ ︸

σd
neq= σ|e

neq

+






p(t)

p(t)

p(t)




 (24)

where the equilibrated contributionσeq to the uniaxial
Cauchy stressσ(t) remains constant during the relaxation
test. From the second equation we obtain the evolution of
the pressure

p(t) = 1
3 (σeq+σneq(t)) (25)

and we substitute in the first equation to get the expected re-
lation

σ(t) = σeq+σneq(t) (26)

Equation (14) fort > 0+ specializes to —note thaṫE(t >
0+) = 0, i.e. the external instantaneous deformation is ap-
plied during the interval 0≤ t ≤ 0+ and then it is retained,

and thatPS : σ|e
neq= σ|e

neq

Ėe
∣
∣
Ė=0 ≡ Ėe =− 1

2ηd (‖Ee‖)
σ|e

neq (27)

where, in order to obtain a dependence of general validity, we
should considerηd as a function of the invariants ofEe, e.g.
we assume thatηd depends on the norm ofEe. Noticing that
the principal components ofEe are

[Ee] =






Ee

− 1
2Ee

− 1
2Ee




 (28)

Eq. (27) reduces in the uniaxial axis to

Ėe(t) =− σneq(t)

3ηd(‖Ee(t)‖)
(29)

with ‖Ee‖=
√

3Ee/2. Note that Equation (29) is afully non-
linear mixed-field constitutive equation relating nonequili-
brated stresses and viscous strain rates (note that in this par-
ticular caseĖv =−Ėe and that bothσneqandηd are nonlinear

functions ofEe). It is straightforward to obtain from Eq. (18)

σ̇neq(t) =− σneq(t)

τ(‖Ee(t)‖)
(30)

which is the truly single-stress-field differential equation of
the relaxation test.

In a strain-driven setup ideal for finite element analy-
sis, however, the modification of the models of Refs. [20]
and [21] is conceptually simple if we determineηd(‖Ee‖). In
order to do so, consider the nonequilibrated over-stress evo-
lution σneq(t) = σ(t)−σeq during a given relaxation test (see
Figure 1.b), whereσeq is the equilibrated stress—i.e.σeq =
σ(t → ∞). We can obtain a piecewise spline-based analytical
function σneq(t) from the experimental measurement pairs
{t̂, σ̂neq}. From the instantaneous and quasistatic response
curves (see Figure 1.a) we can also obtain within the spline
contextσneq(Ee) and thenEe(σneq). As a result we can elim-
inate the stress variableσneq throughEe(σneq(t)) = Ee(t).
Once we have the functionEe(t) in spline form, it is imme-
diate to obtainĖe(t). Finally, from Eq. (29)

ηd(‖Ee(t)‖) =−σneq(t)

3Ėe(t)
(31)

where the spline-based functionηd(‖Ee‖) is built with the
pairs {

√
3Ee/2,−σneq/(3Ėe)}, where Ee(t), σneq(t) and

Ėe(t) are known for each experimental time measurementt.
If we want to know the relaxation time functionτ(‖Ee‖) that
governs the relaxation of stresses, see Eq. (30), then

τ(‖Ee‖) =
2ηd (‖Ee‖)
ω′′

neq(Ee)
(32)

where ω′′
neq(Ee) is the second derivative of the Valanis-

Landel term respect to the logarithmic strainsEe. As afore-
mentioned, the consideration of the dependenceηd(‖Ee‖) in
the computational models of Refs. [20] and [21] would im-
ply the modification of the computational algorithm (i.e. the
consistent tangents) becauseEe is continuously evolving.

A simplified approximation procedure used in the ex-
amples below, which requires neither the interpolation pro-
cedure nor the algorithm modification, but still captures
to an excellent accuracy the stress-strain behavior and the
strain-level dependency, may be obtained just assuming that
ηd(‖Ee‖) depends only on the initial peek valueE0

e = Ee(t =
0+) and then it preserves its valueηd

0 for t > 0+. In that case,
from Eq. (31)

3ηd
0 =−

σ0
neq

Ė0
e

=−
σ0

neq

σ̇0
neq/Y0

neq
=

Y0
neqσ0

neq

σ0
neq/τ0 = τ0Y0

neq (33)

where

Y0
neq=

dσneq(Ee)

dEe

∣
∣
∣
∣
E0

e

(34)



and the relaxation time parameterτ0 is obtained immediately
as shown in Figure 1. In terms of the time parametert0 also
shown in Figure 1

3ηd
0 =

t0Y0
neq

1+ σ̂0 (35)

whereσ̂0 = σ0
eq/σ0

neq. For the initial state att = 0+, E0
e ≈ E0,

so we can readily compute the test-specific valuesσ0
eq(E

0),
σ0

neq(E
0) and Y0

neq(E
0). Measuringt0(E0), Equation (35)

gives the strain-level-dependent values ofηd
0(E

0), which re-
main constant during the respective relaxation tests.

Finally, assume a material with proportional equilibrated
and nonequilibrated strain energies, the case obtained in QLV
and formulations based on the Simó framework. Then the
stress ratiôσ0 = σ0

eq/σ0
neqno longer depends onE0 and takes

the constant valuêσ0 =Yeq/Yneq, with Yeq andYneq being the
small strain Young moduli of the respective contributions to
stress. If we additionally assume thatηd is constant, we arrive
at

t0 ∝
1

Y0
neq

∝
1

Y0 (36)

so the time parametert0 shown in Figure 1 would necessar-
ily result inversely proportional to the initial uniaxial stiffness
of the instantaneous responseY0 = dσ(E)/dE|E0. This de-
pendence is not observed, for instance, in the experiments
performed in abdominal muscle simulated below.

4.2 Orthotropic case
Following analogous steps for uniaxial relaxation tests in

preferred material axes of an orthotropic material, after some
straightforward but lengthy algebra, we arrive at the follow-
ing set of equations from which we can determine the three
axial initial-strain-dependent viscositiesηd

11, ηd
22 andηd

33 —
cf. Eq. (97) in Ref. [21]







2
Yneq

11

ηd
11

+
Hneq

12

ηd
22

+
Hneq

13

ηd
33

=
9

t0
11Y

neq
110/Y

neq
11

(

1+
Yeq

11

Yneq
11

)

Hneq
21

ηd
11

+2
Yneq

22

ηd
22

+
Hneq

23

ηd
33

=
9

t0
22Y

neq
220/Y

neq
22

(

1+
Yeq

22

Yneq
22

)

Hneq
31

ηd
11

+
Hneq

32

ηd
22

+2
Yneq

33

ηd
33

=
9

t0
33Y

neq
330/Y

neq
33

(

1+
Yeq

33

Yneq
33

)

(37)

where the small strain Young moduliYneq
ii and the cou-

pling moduli Hneq
i j (i 6= j) are given as a function ofµneq

ii =
1
2ω′′

neq ii(0) and the Poisson ratiosν0
i j =−dEj/dEi|0, e.g.







Yneq
11 := 2µneq

11 +µneq
22 ν0

12+µneq
33 ν0

13

Hneq
12 := µneq

11 +2µneq
22 ν0

12−µneq
33 ν0

13

Hneq
13 := µneq

11 −µneq
22 ν0

12+2µneq
33 ν0

13

(38)

These equations take a similar form to the ones obtained
in Ref. [21] for strain-independent viscosities, but consid-
ering in the present case the modified valuest0

iiY
neq
ii0 /Yneq

ii ,

i = 1,2,3, with Yneq
ii0 being the instantaneous (finite strain)

moduli att = 0+.

5 Examples
Just as demonstrative examples of the application of the

foregoing procedure in soft biological tissues, we reproduce
in this section several relaxation responses of rabbit abdomi-
nal muscle that have been reported in Ref. [10].

5.1 Two single stress-relaxation curves in two perpen-
dicular directions

We reproduce in this example the viscoelastic behavior
of oblique muscles shown in Figure 6 of Ref. [10]. First, the
instantaneous (i.e. equilibrated plus non-equilibrated)and re-
laxed (i.e. equilibrated) uniaxial responses in two perpendic-
ular directions that are shown in Figure 6.a of Ref. [10] are
exactly captured (i.e. to any desired precision) with our trans-
versely isotropic hyperelastic model, as we show in Figure
2.a. The resulting axial terms of the computed instantaneous
and equilibrated strain energy functions are shown in Figure
2.b.

On the other side, we can measure the time parameters
t0
11 = t0

T andt0
33 = t0

L from Figure 6.b in Ref. [10], yielding
approximately

t0
11 = 65s , t0

33 = 40s (39)

From Figure 6.b in Ref. [10] we can also measure the ratios
between the instantaneous (t = 0+s) and relaxed (t = 1500s)
uniaxial stresses in both directions, from which by direct
comparison with Figure 6.a in Ref. [10] (or with Figure 2),
we obtain that the relaxation in direction 1 (transverse) cor-
responds toλ0

11 = 1.2 and the relaxation in direction 3 (lon-
gitudinal) corresponds toλ0

33= 1.3. With λ0
11 andλ0

33 we can
computeYneq

110 andYneq
330. Once we have obtained the equili-

brated and non-equilibrated strain energy functions, the time
parameterst0

11 and t0
33 and the initial non-equilibrated stiff-

ness valuesYneq
110 andYneq

330, we can solve the system of equa-
tions of Eq. (37) particularized to the transversely isotropic
case. We obtain the approximate solution

ηd
11 = 1.495MPas, ηd

33 = 2.946MPas (40)

which give thepreferredrelaxation times of our viscoelastic-
ity model—cf. Ref. [21]

τ11 = 399s, τ33 = 301.6s (41)

We show in Figure 3.a the time-dependent responses that
our model predicts for both uniaxial relaxation tests usingthe
previously computed strain energies and relaxation times.We
can observe the excellent agreement between the computed
curves and the experimental ones using just one Maxwell el-
ement —compare with the predictions given by the model in
Ref. [10], which we show in Figure 3.b for the reader con-
venience. Importantly, we remark that we have not used any
optimization procedure in order to determine any component,
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Fig. 3. Left (a): Stress relaxation predictions for the experimental data of Fig6b of [10] (longitudinal and transverse specimens). Right (b):

Stress relaxation predictions using the model in [10] (redrawn from Fig6b of [10]).

whether elastic or viscous, of our non-linear viscoelasticity
model. We have fully determined our model by direct reso-
lution of the corresponding governing equations in each case
yielding a unique solution for each model component; ex-
actly as one would proceed in the infinitesimal case. In this
case the viscosity parameters have no strain dependence ac-
cording to experimental data in [10]. The reader can compare
the shape of our predictions in Figure 3.a to those in Figure
3.b (redrawn from Figure 6 of Ref. [10]). The relevance of
considering a non-equilibrium formulation, with fully non-
linear evolution equations, instead a quasi-equilibrium for-
mulation, with linear evolutions, is now apparent. The quasi-
equilibrium viscoelasticity model is not capable of capturing
the shape of the experimental curve of the relaxation test with
one Maxwell element, whereas non-equilibrium viscoelastic-
ity captures it naturally.

5.2 Several stress-relaxation curves in the same direc-
tion

We reproduce in this example the different stress-
relaxation responses that rectus abdominis muscle experi-
ences at different initial deformation levels, as shown in Fig-
ure 4 of Ref. [10]. In this case, only the responses in one
material direction are known, so we use the isotropic model
in the calculations.

We show in Figure 4.a the instantaneous (i.e. equili-
brated plus non-equilibrated) and relaxed (i.e. equilibrated)
uniaxial responses of the biological material under study.
Since the curves in Figures 4.a and 4.b of Ref. [10] are inher-
ently related, recall Figure 1, in this case we have extracted
from Figure 4.a of Ref. [10] the instantaneous response and
from Figure 4.b of Ref. [10] the relaxed-to-instantaneous
stress ratios̄σ(E0) = σ0

eq/σ0 associated to each deformation
level. For subsequent use, the relaxed-to-instantaneous stress
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ratios σ̄(E0) relate to the initial-strain-dependent parameter
σ̂(E0) used in Eq. (35) through

σ̂(E0) =
σ0

eq

σ0
neq

=
σ0

eq

σ0−σ0
eq

=
σ0

eq/σ0

1−σ0
eq/σ0 =

σ̄(E0)

1− σ̄(E0)
(42)

Again, we exactly capture both uniaxial responses using the
isotropic spline-based hyperelastic formulation, as we show
in Figure 4.a. The resulting first derivative functions of the
instantaneous and relaxed Valanis–Landel terms are shown
in Figure 4.b.

On the other hand, from Figure 4.b of Ref. [10] we can
also measure the time parameterst0(E0) associated to each
initial deformation levelE0. We take them approximately as
t0(E0) = 100s for the six levels. Recall that by Eq. (35)
this implies an initial-strain-dependent viscosity. Thereafter,
we calculate theinitial-strain-dependentdeviatoric viscosity
ηd

0

(
E0
)

following the procedure detailed above.
We show in Figure 5 the time-dependent responses that

our modified model predicts for the different relaxation tests
performed at different deformation levels using the calculated
strain energies and the deformation-dependent deviatoricvis-
cosity ηd

0

(
E0
)
. Again, we can observe the excellent agree-

ment between the computed curves and the experimental ones
—cf. Figure 7 in Ref. [10] and note that we took the experi-
mental data for our simulations from Figure 4 in Ref. [10]

6 Conclusions
Many soft biological tissues present a relevant strain-

dependent viscous behavior which results in normalized re-
laxation curves which are different at different stress levels.
The popular Quasilinear Viscoelasticity and the formulations
based on the Simó framework result in a strain-independent
behavior which is a consequence of the resulting direct rela-
tion between instantaneous and quasistatic behavior, as well
as the direct relation between total stored energy and dissi-
pation. The flow evolution equations are linear differential
equations. The introduction of ad-hoc strain-dependent ma-
terial parameters in Prony series, as for example in Ref. [10],
allows for strain-dependent relaxation behavior. However,
despite of employing optimization algorithms to perform a
best-fit of material parameters to experimental data, relax-
ation curves are not satisfactorily captured.

In this work we present a procedure to naturally intro-
duce strain-dependent viscous behavior through fully nonlin-
ear evolution equations. Regarding the viscous behavior of



abdominal muscle, we show that excellent predictions are ob-
tained at all strain levels, using both isotropic and anisotropic
models. Instantaneous and quasistatic stored energies areex-
actly captured. The relaxation curves are also captured to a
high accuracy using only the measured apparent relaxation
time. The model is valid for arbitrarily large deviations from
thermodynamic equilibrium and is amenable of efficient fi-
nite element implementation to predict the behavior under
general deformations. The parameters, furthermore, are di-
rectly measured in experimental tests. As a main difference
with other formulations, we obtain excellent predictions of
the viscoelastic response of biological tissues using a single
Maxwell element and anisotropic constitutive relations.
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linear viscoelastic effects in ligaments. J Biomech 41:
2659–2666.

[10] Calvo B, Sierra M, Grasa J, Muñoz MJ, Peña E
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