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Soft connective tissues sustain large strains of visctielaselastic models of soft tissues [4], [5], [6]. For the three di
nature. The rate-independent component is frequently madensional treatment of viscoelasticity of soft tissuesffor
elled by means of anisotropic hyperelastic models. The rateite element implementation, the differential approach fo
dependent componentis usually modelled through linear rheulated by Simo [7] (see also [8] and therein references),
ological models or quasilinear viscoelastic models. Thesehich is valid for anisotropy, seems to be the most common
viscoelastic models are unable, in general, to capture trepproach because of its numerical efficiency thanks to a re-
strain-level dependency of the viscoelastic properties@nt currence numerical formula [8] so only the information of
in many viscoelastic tissues. In linear viscoelastic mgdelhe previous step is needed. This approach, with small mod-
strain-level dependency is frequently accounted for blyiohc  ifications, is followed by many authors when modelling soft
ing the dependence of multipliers of Prony series on straitissues; [8], [9], [10], [11], [12], [13], [14]. These worlese
through additional evolution laws, but the determinatidn onot compatible in general with the well-accepted multiglic
the material parameters is a difficult task and the obtainetive decompositions [7]. Furthermore, as noted by several
accuracy is usually not sufficient. In this work we introducauthors (see for example Holzapfel [12], Section 6.10, Rees
a model for fully nonlinear viscoelasticity in which the in-and Govindjee [15], Haslach [16], Haupt [17], among others)
stantaneous and quasistatic behaviors are exactly cagturboth quasilinear viscoelasticity and the large strain fdan
and the relaxation curves are predicted to a high accuractions based on the Simb6 approach, narmgedstequilibrium
The model is based on a fully nonlinear standard rheologiiscoelasticity or finitdinear viscoelasticity [15], are useful
cal model and does not necessitate optimization algorithrfar large strains, but only for small deviations from thekrmo
to obtain material parameters. Furthermore, in contrast talynamic equilibrium.
most models used in modelling the viscoelastic behavior of Soft biological tissues show stress relaxation ratios that
soft tissues, it is valid for the large deviations from therm depend on the strain level, a dependence which is different
dynamic equilibrium typically observed in soft tissues.  for different tissues, as it can be clearly seen for example

in [10], [3], [18] among others. Therefore, from a practical
] standpoint regarding the analysis of soft tissues with mod-

1 Introduction . o els amenable of being implemented in implicit finite element

The actual behavior of soft biological tissues has a re'E'rograms (to model general geometries and loading condi-
vant viscous, rate-dependent component [1], [2]. The moflyns) finitelinear viscoelasticity results in the known dif-
elling of viscoelastic effects in soft tissues commonlydals  ficyties in capturing naturally both the strain dependenice
two approaches. The first approach consists of using inige viscous behavior in soft tissues (e.g. the resultinaxrel
gral equations in some of the available forms: nonlinear sygion curves) and the shape of those curves, see for exam-
perposition, Schapery, or Quasilinear Viscoelasticity\(R  ple [10], [19], [18]. Itis obvious that if the simplest retation

see [1], [3]. Quasilinear Viscoelasticity is a common apests are not properly predicted, any finite element sirirat
proach mainly in the unidimensional modeling of soft tissugf the viscoelastic behavior of soft tissues under geneeal
[1] and with nonlinear hypoelastic or linearized anisotcop ing conditions (for example when simulating surgery) will

have at least similar inaccuracies. A minimum requirement
should be to capture at least these simplest tests defining th
*Address all correspondence to this author.



material behavior to good accuracy because, otherwise, cail deformation levels, so physical insight is easily olvéai
fidence in finite element simulations cannot be obtained. during finite strain analyses [30, 31]. Consider the polar de
On the other side, the so-calletbn-equilibrium vis- composition of the deformation gradiextas
coelasticity or finitenonlinear viscoelasticity [15], (1) al-
lows for the unrelated instantaneous and equilibrated hype
elastic behaviors observed in soft biological tissuesn(2)-
equilibrated elastic strains come from a multiplicative de
composition and may effectively be of the order of the totathereR is the rotation tensor and is the stretch tensor
strains, representing large deviations from thermodynahmiin the material basis. The material logarithmic strain ten-
equilibrium, as observed in tests, (3) the evolution equati sor isE = InU, which principal components; = InA; are
for those internal strains is fully nonlinear, governed bg t the logarithms of the principal stretch&s Since soft tis-
hyperelastic behavior of the non-equilibrated part, which sues behavior may be considered isochoric, we will assume
also the dissipation potential, and (4) at every instargsses thatJ = det(X) = 1, so the deviatoric part dE is coinci-
are formally derived from a total stored energy. In contrasient withE, i.e. E = PS: E = E, wherePS is the (small-
in quasiequilibrium viscoelasticity (either based on the Simétrain-equivalent) fourth-order deviatoric projectiensor in
approach or on the QLV one) the evolution of the interndhe logarithmic strain space, with Cartesian components in
variables is governed bylmear differential equation estab- terms of the Kronecker del;
lished at thequastequilibrium point, so instantaneous and
equilibrated responses are in principle proportionalnagbé 1 1
infinitesimal case [8], [12], non-equilibrated strains shitbe (Ps)ijk| = 5(Bidji + i Sjk) — 38ij (2)
moderate [15], [12], and stresses are not derived from adtor
energy, except at the instantaneous or equilibrium stétes. _ - . . :
deed, these properties clearly explain why strain-demmdéNYP'WYG hyperelast|0|ty_for incompressible or.thotroplc
relaxation tests in soft biological tissues are not propesip- matg_rlals (as an example) is based on the following decom-
tured using these traditional, popular models. position [34]
The purpose of this paper is to present a new model
for t_h_e viscoelasti_c behavior Qf soft ti§sues under large w (Ed,al,az) = Wy, (Ed) + Whnn (Ed,al,az) 3)
equilibrated elastic deformations which naturally acdsun
for fully nonlinear, strain-dependemon-equilibrium vis-
coelasticity, and is amenable of finite element implemewyith i, (E?) being the isotropic contribution following the
tation to model general geometries and loading conditioN@lanis-Landel decomposition
found when simulating, for example, surgery in organs. The
model is based on the kinematics and finite element algo-
rithmic implementation of non-equilibrium anisotropicsvi Wiso (Ed) = oo(Ef) +w(E§’) +oo(E§’) (4)
coelasticity [20], [21], originally developed for isotrizgpbe-
havior by Reese and Govindjee [15]. The main ingredient : ) , o
introduced herein is the consideration of viscous pararaet@nd Portn (Ejalaa2) is an orthotropic contribution for pre-
that depend on the non-equilibrium deformation level. Thi§'red material directiona;, which follows a decomposition
approach, based on a different thermodynamic treatmesit, giilar to that found in the infinitesimal setting (althouthie
proved very useful when modeling viscoelastic elastomef&St general coupled formis also possible [32])
at high strain rates [22-24]. For the hyperelastic behavior
part, we use What-You-Prescribe-Is-What-You-Get (WYPi- ( d ) _ ( d ) ( d ) ( d )
WYG) hyperelasticity [25], [26], [27], which has accuratel Ponn (E7, 80,32 ) = o1 ( By ) + 022 Bz ) + s (Bss
predicted the passive behavior of a large variety of soft tis + 20012 (Efz) T 2003 (Egg) T 2001 (Egl) (5)
sues, like skeletal muscle [28], fascia [29], skin [30]eart
ies [31], myocardium [32] and herein abdominal muscle. The
model presented herein is based on a physically-sound th&herea; are the principal material directions perpendicular to
modynamic framework, has unparalleled accuracy and ddb€ planes of symmetr? are the principaisochoricloga-
not require optimization or any complex procedure to deteiithmic strainsE = a; - EY - a; are the components of tie-
mine any material parameter. All the information needed igatoric logarithmic material strain tens&? in the preferred
immediately obtained from the available experimental datamaterial directions and(E®) andy;j (Eﬁ) are functions de-
termined by the WYPIWYG computational procedure. The
global shape of these functions is not given beforehand, but
2 WYPIWYG hyperelasticity computed numerically solving the differential equatioss a
WYPIWYG hyperelasticity is a data-driven, model-freesociated with the experiments and performing a spline in-
constitutive modelling technique for obtaining numetigal terpolation between exactly computed strain energy values
the stored energy of soft materials directly from experitaen The resulting function is a piecewise smooth analyticatfun
tests, without user intervention. In contrast to most medeion. As in the infinitesimal setting, only the coupled shear
used in modelling anisotropic soft tissues, WYPIWYG hyinvariantEszgsEg1 is neglected [26]. The actual computa-
perelasticity is compatible with the equivalent infinitasl tional procedure for these functions for the different sygam
theory, not only at the reference configuration [33], but adty cases is given in [25], [28], [26], [34], [27]. A general

X =RU 1)



procedure without inversion formula with application t@th and quasistatic stress-strain responses are proportimel
Dokos et al. shear experiments on myocardium [35] can belaxation curves are independent of the strain level. iBhis
found in [32]. Obviously, because the WYPIWYG formulain contradiction to the experimental observation in marfy so
tion preserves analytical and numerical material symmetritissues, see for example [10], [19], [3], [18].
congruency [34], the isotropic behavior is just a particula To accommodate experimental observations in a sim-
case recovered numerically if the curves correspond taethqde, yet sound framework amenable of efficient finite ele-
of an isotropic material. ment implementation, Lubliner [37], motivated by the stan-
For the matter of simplicity in the exposition, and with-dard rheological model, see Figure 1, proposed the exis-
out loss of generality of the presented formulation, we agence of an equilibratedtzq and a nonequilibrated energy
sume hereafter thal) = Wpn. For further reference, we Mheq (the energies stored in the springs of the rheological
note that the work-conjugate stress tensor of the mategal | model in Fig. 1). Departing from an unloaded configura-
arithmic strain tensor is the generalized Kirchhoff sttess  tion, during deformations at a relevant speed relative to a
sor obtained through [36]—for simplicity of notation we dmi characteristic relaxation time, we hakg ~ E and the ini-
the material directions in the dependencies tial stored energy is the addition of both for the given sisai
i.e. W = Weg(EY) + Wheo(EZ). On other side, during qua-
sistatic deformationEe ~ 0, so the stored energy is given by

d
- Om;# +pl =T+ pl (6) Weg(EY). The stress powep is
wherepis the Lagrange multiplier enforcing the incompress- P = Weq+ Wheq+ D @)

ibility condition and we define the purely deviatoric stress
During a relaxation test at a fixed strain lev&l 2 = 0,
dw (Ed) dw(Ed dEd 3 3 4 S0 Weq=0, soD :_—‘Wneg, and the storeq.energWqur Wheq
GE - ged ZLZ i (BEjj)Li i P> relaxes tofWe_q, d_lSSlpatlng the nonequmbra_tgd enertpheq
=1 Hence the dissipated energy and the equilibrated energy are
fully uncoupled and both energies can be determined djrectl
whereLS l(aEd /OEd +aEd/aEd = 1(a ®aj+a;0a) from experimentgl t_ests_. In fac_t, the nonequilibratedgylér
are orthotropy structural tensors and the projection endge potential of dissipation, so if the external deformagiare

PS = dEY/dE has been defined above. A subsequent d|ffefrlxed both the final state (througheg) and the dissipation
entiation gives—see details in [26], [36] fromt =0 tot — o (throughWheg) are known beforehand.

Remarkably, the response is hyperelastic at all times, mean
ing that stresses are always derived from a stored energy (sa

Td =

dard  d*w(EY) dEY d*w(EY)  dEY isochronic) function, see Figure 1. Using WYPIWYG hyper-
dE dEdE - dE ' dEddEY * dE elasticity, energies and hence dissipation are deternimad
numerically exact way, so both the nonequilibrated (fast) a
=PS: ZZ (EfLE oLy PS (7)  quasiequilibrium (either slow or relaxed) behaviors, a8l we
as the total energy dissipated, are captured to a high accu-
racy.

Note that in the usual quasi-incompressible case emplayedi The best-known computational framework based on
finite element analyses, the volumetric stregsleare conve- equilibrated and nonequilibrated energies is the model of
niently computed by means of an explicit penalty volumetriReese and Govindjee [15], which was formulated for
strain energy term and mixed finite element formulations aisotropic materials. We have recently extended the model fo
required [26]. anisotropic materials [20], [21]. Remarkably, the new for-
mulation, which reduces to the Reese and Govindjee model
for the special case of isotropy, is even simpler, usicgm:
3 Finite fully nonlinear, non-equilibrium anisotropic  ventionalviscous flow rule in the logarithmic strain space
viscoelasticity that adopts the same form as the viscous flow rule in the
Non-equilibrium viscoelasticity allows for arbitrarily small strain case. The present formulation is based on the
large deviations from thermodynamic equilibrium, i.e.glar works presented in [20], [21]. However, the formulations
unbalanced internal elastic strains. These large unbatana [20], [21] do not incorporate strain-dependent viscoes b
deformations are present when a biological tissue is sufavior. Then, as initially proposed, this results in theklac
jected to a fast change of strains, and the corresponding ov& ability to control the isochronic curves, or equivalgntl
stresses change significantly in time during the corresipgnd the rate at which dissipation takes place for a given initial
relaxation. During that relaxation, an important part af thdeformation. As mentioned, in soft biological tissues, rése
initially stored energy is dissipated. Quasi-equilibriamd laxation curves, and hence the normalized dissipatiors rate
quasilinear viscoelasticity assume implicitly that theeimal depend on initial strains [10], [19], [3], [18]. In this work
deformations are not too away from the equilibrium state, see adapt the framework to account for the strain dependency
for example, during relaxation tests, that equilibriumtesta of viscosity properties observed in soft tissues. Impdlyan
characterizes the dissipation during the test. As a piactithe same issue was solved in a similar way when modeling
consequence, the resulting dissipated energy is (lingandy  the viscoelastic behavior of elastomers at high strainsrate
portional to the equilibrium stored energy, i.e. instaetaus see [22-24].
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Fig. 1. a) Stress-strain behavior under instantaneous loads; equilibrated, relaxed response and isochronic response. b) Relaxation tests.

The viscoelastic formulations in [20], [21] are based otions X, (considered the independent kinematic variables)
the well-accepted multiplicative decompositions of thilto
def.ormatlon gradienX into an elastic (honequilibrated) and Eg _ Eg(Ed,XV) (12)
a viscous part
The deviatoric part of the total generalized Kirchhoff stre
tensor is obtained from the usual Coleman procedure, which
using the Sidoroff decomposition is —see details in [20]

The former is known as the Sidoroff decomposition. These

multiplicative decompositions conceptually establish éx-

istence of a local, thermodynamically unbalanced deforma- L7 (Ed’xv)
tion given byXe, which is of isochoric nature, déte) =1, T = 5E
and relaxes nonlinearly in time according to the correspond d d

ing nonlinear, unbalanced stored energy. We refer the reade  _— % - pS % - PS- OEe
to Refs. [20] and [21] for details on both formulations and  dEd , dEg 0E |x,—0
their algorithmic, finite element implementations. In ceon qu
tive tissues like perimysium (with organized cross-ply-col

lagen fibre arrangement) or skin (with a more disperse colla-

gen _arrangement) the viscoelastic_ mechanism seems te regifhere 0Ee/0E|y,_o stands for the corresponding fourth-
W|th|_nthe collagen fibres or at the mterfape bgtween fibee any 4 partial derivative tensor &(E9,Xy), which we ob-
matrix [38]. Therefore, no relevant reorientation of cgha e

fibers is apparent [38] and the symmetry group may be cotri?-in in the next section, and we note that biﬁﬂa andTheq

sidered fixed during stress relaxation. ar‘ee purely deviatoric by cgnstructlon. W(Ia.see just below .tha
The energy dependencies are established in terms of fimeq are the relevant deviatoric nonequilibrated generalized

material logarithmic strains of the respective deformatioKirchhoff stresses. For the case of isochoric axial deferma
gradients tions along the principal symmetry material axes, the ganer

ized Kirchhoff stresse$? are coincident with the deviatoric
Cauchy stressesd, which is a very convenient modelling
Ee=In(Ue) and E=In(U) (10)  feature [36]. The flow rule in the formulations given in [20]
and [21] ensures positive dissipatidh > 0 and adopts the
with E9 = PS: E = E and whereU, is the right stretch ten- following conventional form in terms of logarithmic strain

sor of the elastic (nonequilibrated) deformation gradieee 2nd nonequilibrated stresses
motivation in Figure 1. Since the internal response is gurel

either X = XeXy or X =Xy Xe 9)

d d
- Tqur Tneq

e
TR,

. . s e .
|sc_)chor_|c as well, We_als_o ha® = PS: E¢ = Ee. The total _ Ee|E:0 —y-1: T‘neeq (14)
(distortional) energy is given by

W(Ed’Eg) _ Weq(Ed) I Wneq(Eg) (11) whereEg|:_ is the partial contribution to the total rak&

when the total deformation is fixed, i.e. during the purely

dissipative correction evolution. We refer to Equation)(14
where, taking for instance the Sidoroff decomposition in E@s amixed-field evolution equatiopecause it relates strain
(9), we consideEY as an internal (dependent) variable deterates to stress values. Indeed, for rotationless casegiiohw
mined from the external straiti&! and the internal deforma- E¢ = E — E, is exact, withE, = InUy, Eq. (14) specializes to



the following small-strain-equivalent expression with—see Eqgs. (7) and (16)

Evzvfl:T‘neeq (15) =1 (ed) _ PPhea(ES) s 1 (rd
T (Ee) = —gegags PV (Ee) (21)

which is nothing but the constitutive equation of an equiv-
alent three-dimensional dashpot in principal directioes rFor illustrative purposes, consider the case with orthptro
lating its internal viscous strain rates and stresses. Howyperelasticity combined with isotropic viscosity (cf. €q
ever, Eq. (14) is six-dimensional and valid for the mog7) and (17)). The tensd*(EY) reads in this case
general anisotropic case under arbitrary deformationhef t
type Ee = E¢(E, Xy). The tensoiV is an orthotropic devia-

3 3
toric tensor of viscosities, which is, in general, deforimat T-1 (Eg) —PS- ZZ 1 - Lﬁ ® Lﬁ -pS (22)
dependent 4 &0 (B
3 3 oo . . :
1 where we readily identify the nonequilibrium-strain-
v-1(Ed) =pS: ——— L7 QL] |:PS - :
( e) (;;12”% (Ed) 1Tl dependent relaxation time functions
_mpS.y-1(gd) . pS
—=PS:V (Ee) ‘P (16) 209 (9)
v (B = < (23)
neqij(Ee)

Wherenﬂ- (E9) are the orthotropic viscosities and the tensor

V~Y(EY) is “diagonal” in matrix representation in preferretherew(/

: . L (EY) are the second derivatives of the compo-
axes. For the viscous isotropy ca¥e,}(EY) simplifies to (Ee) P

ne
nents of tr?eJ nonequilibrated strain energy. What we want to
illustrate in Eq. (23) is that the relaxation times of theutes
y-1 (Ed) _ 1 PS (17) ing model depend on both deformation-dependentviscesitie
€ 2nd (EY) and deformation-dependent elasticity moduli. On the one
hand, the consideration of deformation-dependent elgstic
Equation (14) is a fully nonlinear viscous evolution equah both the equilibrated and non-equilibrated parts (in-par
tion in which the viscous flow (i.e. eitherEe|z_q in ticular, WYPIWYG hyperelasticity) will allow us to exactly
the most general case &, in some particular cases) de-capture the instantaneous and quasi-static responses) iwhi
pends on both the deformation-dependent viscosity tengstuivalent to capture the different peak/relaxed stretsssra

V‘l(Eg) and the thermodynamically unbalanced nonline&t different strain levels in relaxation tests, see Figur©
e d‘l/Vneq(Ed)/dEe However. based on the other hand, the consideration of deformation-dependen
e . ’

energy through neq= . , . .
the original work [15], we considered constant viscositiedSCosity parameters will allow us to capture the diffenent

in Refs. [20] and [21], which implies that even though thiaxation evolutions at different strain levels, which isiee-
. o : lent to capture the different isochronic responses obtbdtie
viscous evolution is still strain-dependent throu‘dﬁ;q, the

shape of the relaxation curves, as well as the apparent relggferent rates, see Figure 1. Importantly, we will be alie t

. : ) repr Il th r n high r in in-
ation times are already determined 8$Vheq(ES)/dEe, so eproduce all these responses to a high accuracy using a s
. le nonequilibrated Maxwell element, see Figure 1. Finally
the model cannot capture adequately the experimental-obsgr . L ;
i . . ; iUIs apparent that if the relaxation timeg are considered
vations in soft tissues, in general.

Considering the case with deformation-dependent Viggnstant, then the stress evolutions given by Eq. (18)wollo

cosities, the formal application of the chain rule givesftiie an exponential decay during relaxation tests, as expected.
lowing single-field evolution equatiamlating stress rates to

stress values 4 Determination of the deformation-dependent viscosi-

ties from experimental data
Ee|-E_0 —_71 (Ecei) : T\neeq (18) The modifications in the formulations of Refs. [20] and
B [21] as given above facilitate the use of the present framlewo
to accurately model soft biological tissues. In the present
where we have used Eq. (14) and we identify framework, the shape of the relaxation curves, as well as
strain-level dependency, are naturally captured withbat t
B 2 Whe (Ed) - use of additional material parameters. In the following-sub
T (Eg) = e/ Lyl (Eg) (19) sections we explain how to determine the viscositig(EJ)
dEcdEe . . . e
from experimental data, which are the material parameters

f h includi ¢ . defining the viscous response in our computational models,
as a fourth-order tensor including deformation-dependent o Egs. (14) and (16).

laxation times. Note thal~! inherits, by construction, the
deviatoric nature from botdzfl/l/neq/dEedEe andV-1 i.e.

- dZWneq i

Tl = :
"®Ye—0  dE.dEe

4.1 Isotropic case
o S S Assume a uniaxial relaxation test over an isotropic in-
T (Ee) =P>:T (Ee) P (20)  compressible material. In this isochoric rotationlessecas



generalized Kirchhoff stressél, Kirchhoff stresseg and functions ofEg). It is straightforward to obtain from Eq. (18)

Cauchy stressesare coincident [36]. Since the longitudinal

stretch is fixed, so are the lateral ones. The pressure change

- . - Oneq(t)

because the corresponding stress does. The principal compo Oneq(t) = ——— =

nents of the stresses, with equilibrated and non-equithkra T(IEMID

contributions written in terms of uniaxial-equivalent dev

toric stresses are—cf. Eq. (13) widlEe/0E|y _o = 0(E— which is the truly single-stress-field differential equoatiof

Ey)/0E exactly specializing to the fourth-order identity tenthe relaxation test.

sor in this particular case In a strain-driven setup ideal for finite element analy-
sis, however, the modification of the models of Refs. [20]
and [21] is conceptually simple if we determin®(||Ee||). In

(30)

2 2
o(t) 31090' 310”9‘1(0 p(D) order to do so, consider the nonequilibrated over-stress ev
0 | =|—30eq|+|—30neq(t) | + | P(t)| (24) Iutiononeq(t) = o (t) — Oeqduring a given relaxation test (see
0 —20eq — 20neq(t) p(t) Figure 1.b), wheraeq is the equilibrated stress—i.@eq=
—_— o (t — ). We can obtain a piecewise spline-based analytical
Ggq oﬁeq: o‘neeq function oneq(t) from the experimental measurement pairs

{t, Oneqt- From the instantaneous and quasistatic response
curves (see Figure 1.a) we can also obtain within the spline

. , . contextoneq(Ee) and therEe (Oneg). As a result we can elim-
Cauchy stress (t) remains constant during the relaxatio neq(Ee) e (Oneq)

inate the stress variab through Ee (Oneq(t)) = Eef(t).
test. From the second equation we obtain the evolution Bﬁce we have the func?](%qe(t) ing']spli;é fr:)erqr;)%t i ir;(m)e—

where the equilibrated contributiomeq to the uniaxial

the pressure diate to obtairEe (t). Finally, from Eq. (29)
P(t) = 3 (Teq+ Oneq(t)) (25) Oneq(t)
d __ Oneq
n°([[Ee(®)]) = 3Eo (D) (31)

and we substitute in the first equation to get the expected re-

an
ation where the spline-based functiop (|Es|) is built with the

pairs {v/3Ee/2, —Oneq/ (3Ee)}, Where Eq(t), Oneq(t) and
0 (t) = Oeq+ Oneq(t) (26) Ee(t) are known for each experimental time measurerhent
If we want to know the relaxation time functiar||E¢||) that

Equation (14) fort > 0 specializes to —note theE(t - governs the relaxation of stresses, see Eq. (30), then

0%) =0, i.e. the external instantaneous deformation is ap-
plied during the interval 6 t < 0" and then it is retained, 209 (||Ee|)

T(||[Ee|l|) = ———= 32
and thatPS oLeeq:crLeeq (I[Eel) Wieq(Ee) (32)
. : 1 . o .
Eelc o =Ee= 7d70\r$eq (27) Where Wheq(Ee) is the second derivative of the Valanis-
2n°([|Eell) Landel term respect to the logarithmic strafhs As afore-

mentioned, the consideration of the dependeTft¢Ee||) in
where, in order to obtain a dependence of general validity, ¥he computational models of Refs. [20] and [21] would im-
should considen® as a function of the invariants &, e.g. Ply the modification of the computational algorithm (i.eeth
we assume that? depends on the norm &.. Noticing that Consistent tangents) becau&eis continuously evolving.
the principal components & are A simplified approximation procedure used in the ex-
amples below, which requires neither the interpolation pro
cedure nor the algorithm modification, but still captures

Ee to an excellent accuracy the stress-strain behavior and the
[Ee = | —3Ee (28) strain-level dependency, may be obtained just assumirg tha
~1E nY(||Ee|) depends only on the initial peek valBg = Ee(t =

07) and then it preserves its valqg fort > 0T. Inthat case,

. . . from Eq. (31)
Eq. (27) reduces in the uniaxial axis to

0 0 0 ~0
Oneq o Oneq o Yneqoneq o

Oneq(t) —_—— = — = =100 (33)
EQ Oeq/Yieq  Ofeq/T° ned

__ Oneqt) 3n§ =
3nd(||IEe(t)]])

I;:e (t) = (29)

with ||Ee|| = v/3Ee/2. Note that Equation (29) isfally non- where

linear mixed-field constitutive equation relating nonequili-
brated stresses and viscous strain rates (note that inahis p yo dOneq(Ee) (34)
ticular caseE, = —E, and that bottwneqandn are nonlinear neq dEe |go



and the relaxation time paramet®ris obtained immediately i = 1,2,3, with Yii”Oeq being the instantaneous (finite strain)
as shown in Figure 1. In terms of the time paramételso moduli att = 0*.
shown in Figure 1

t0y0 5 Examples
3nd = 1+”§g (35) Just as demonstrative examples of the application of the

foregoing procedure in soft biological tissues, we repoadu
in this section several relaxation responses of rabbit aiddo

whered® = agy/0f, For the initial state at=0", E~ E°, 4 myscle that have been reported in Ref. [10].
so we can readily compute the test-specific valoR¢E®),

Oneq(E®) and Y% (E®). Measuringto(E®), Equation (35)
gives the strain-level-dependent values)§fE®), which re- dicular directions

main _constant during the res_pecfuve relaxa_tlon tests: . We reproduce in this example the viscoelastic behavior
Finally, assume a material with proportional equilibrateg i ,e muscles shown in Figure 6 of Ref. [10]. First, the
and nonequil!brated strain energie;, t,he case obtainethin Qinstantaneous (i.e. equilibrated plus non-equilibrated)re-
and formy[%tlonso basoed on the Simo framew(?rk. Then theeq (i.e. equilibrated) uniaxial responses in two pedien
Stress rati@” = Ogq/ Oneq N longer depends di” and takes o1 girections that are shown in Figur@@f Ref. [10] are
the constant valué® = Yeq/Yneq With Yeq andYneqbeing the - exactly captured (i.e. to any desired precision) with camsr
small strain Young moduli of the respective contributioms tyersely isotropic hyperelastic model, as we show in Figure
stress. If we additionally assume tingtis constant, we arrive 2 4 The resulting axial terms of the computed instantasieou

5.1 Two single stress-relaxation curves in two perpen-

at and equilibrated strain energy functions are shown in Egur
2.b.
90 1 0 1 (36) On the other side, we can measure the time parameters
Yieqg YO t9 =t andtd, = t° from Figure 6b in Ref. [10], yielding

approximately

so the time parameté? shown in Figure 1 would necessar-
ily result inversely proportional to the initial uniaxidlffness ), =65s, t3=40s (39)
of the instantaneous responée= do (E) /dE|o. This de-

pendence is not observed, for instance, in the experiments . . .
performed in abdominal muscle simulated below. From Figure @b in Ref. [10] we can also measure the ratios

between the instantaneois{ 0" s) and relaxed (= 15005s)
uniaxial stresses in both directions, from which by direct
4.2 Orthotropic case comparison with Figure .& in Ref. [10] (or with Figure 2),
Following analogous steps for uniaxial relaxation tests ije obtain that the relaxation in direction 1 (transverse) co
preferred material axes of an orthotropic material, altens responds ta\9; = 1.2 and the relaxation in direction 3 (lon-
straightforward but lengthy algebra, we arrive at the folo gitudinal) corresponds 8, = 1.3. WithA9; andA3, we can

ing set of equations from which we can determine the thr@@mputeylnfg andYgge(‘,‘. Once we have obtained the equili-

axial initial-strain-dependent viscositiag,;, n3, andnd; —  brated and non-equilibrated strain energy functions,ithe t
cf. Eq. (97) in Ref. [21] parameter$‘fﬁ andtd; and the initial non-equilibrated stiff-
ness value¥; , andYss,, we can solve the system of equa-
2Y1”1eq His?  Higd 9 ( Yff) tions of Eq. (37) particularized to the transversely ispico
S S — _ 4+ == . B .
nd, nd, " nd, tglyffg/y{'fq Y case. We obtain the approximate solution
Hyrt Yoo Has' 9 Yz
nd, “ng, T, T tgzvg‘;g/vg‘;Q( *T;q) (37) nd, = 1.495MPas, ngy=2.946MPas  (40)
Hap" Hgp' Y3 9 1Y
nd,  nd T nds  tSaYaso/Yaso Yaz which give thepreferredrelaxation times of our viscoelastic-

ity model—cf. Ref. [21]

where the small strain Young modu¥™®% and the cou-
pling moduli H;}*%(i # j) are given as a function qf*?= T11=399s, T133=3016s (41)
3Wheq ii(0) and the Poisson ratio) = —dE;/dE|o, e.g.
We show in Figure 3.a the time-dependent responses that
YyEdi= 20050 1559, + 150, our model predicts for bo'Fh uniaxigl relaxation tests l_J$heg
H{\;q - Hﬁqu 2“23%22 B pgng%gs (38) previously computed strain energies and relaxation timés.
heq. . neq . ned.o neq o can observe the excellent agreemen_t bgtween the computed
His = ki1 — k5 Ve, + 21559, curves and the experimental ones using just one Maxwell el-
ement —compare with the predictions given by the model in
These equations take a similar form to the ones obtainBef. [10], which we show in Figure 3.b for the reader con-
in Ref. [21] for strain-independent viscosities, but cdasi venience. Importantly, we remark that we have not used any
ering in the present case the modified valt®4; /Y'Y  optimization procedure in order to determine any companent



Fig 6a of Calvo et al. (Longitudinal/Transverse - Instantaneous/Relaxed) WYPIWYG strain energy terms

X Exper. data transverse dw33(E3)/dE3 - Peak & Equilibrium
+ Exper. data longitudinal ——dw, ,(E,)/dE, - Peak & Equilibrium
Initial spline interpolations
021 o wyPIWYG model predictions 027
©
= 0.15 o 0151
o =
= ui-
— o
S -
0.1 3 o1t
°
0.05 0.05
Oq O T I I |
0 0.1 0.2 0.3 0.4 0.5
E

Fig. 2. Left (a): Predictions for the peak and relaxed behaviors in Fig6a of [10]. Right (b): WYPIWYG strain energy terms for the instantaneous
(equilibrated + nonequilibrated) and equilibrated responses.

Relaxation test predictions for Fig 6b of Calvo et al. 1o Relaxation test predictions in Calvo et al.
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Fig. 3. Left (a): Stress relaxation predictions for the experimental data of Figéb of [10] (longitudinal and transverse specimens). Right (b):
Stress relaxation predictions using the model in [10] (redrawn from Fig6b of [10]).

whether elastic or viscous, of our non-linear viscoeldgtic 5.2 Several stress-relaxation curves in the same direc-
model. We have fully determined our model by direct reso-  tion
lution of the corresponding governing equations in eack cas We reproduce in this example the different stress-
yielding a unique solution for each model component; exelaxation responses that rectus abdominis muscle experi-
actly as one would proceed in the infinitesimal case. In théshces at different initial deformation levels, as shownim F
case the viscosity parameters have no strain dependenceuae-4 of Ref. [10]. In this case, only the responses in one
cording to experimental data in [10]. The reader can compareaterial direction are known, so we use the isotropic model
the shape of our predictions in Figure 3.a to those in Figuiie the calculations.
3.b (redrawn from Figure 6 of Ref. [10]). The relevance of We show in Figure 4.a the instantaneous (i.e. equili-
considering a non-equilibrium formulation, with fully nen prated plus non-equilibrated) and relaxed (i.e. equitdm
linear evolution equations, instead a quasi-equilibrium f unjaxial responses of the biological material under study.
mulation, with linear evolutions, is now apparent. The GuasSince the curves in Figuresatand 4b of Ref. [10] are inher-
equilibrium viscoelasticity model is not capable of capigr ently related, recall Figure 1, in this case we have exttacte
the shape of the experimental curve of the relaxation teht wirom Figure 4a of Ref. [10] the instantaneous response and
one Maxwell element, whereas non-equilibrium viscoetastifrom Figure 4b of Ref. [10] the relaxed-to-instantaneous
ity captures it naturally. stress ratiog(E®) = 0,/0® associated to each deformation
level. For subsequent use, the relaxed-to-instantané®ss s



Figda of Calvo et al. (Instantaneous/Relaxed) WYPIWYG strain energy terms for Fig 4a of Calvo et al.
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Fig. 4. Left (a): WYPIWYG hyperelastic predictions for the instantaneous (equilibrated + nonequilibrated) and relaxed (equilibrated) responses
of the experiments in Figure 4a of [10]. Right (b): WYPIWYG stored energy terms for the instantaneous (equilibrated + nonequilibrated) and
relaxed (equilibrated) responses of the experiments in Figure 4a of [10].

On the other hand, from Figureblof Ref. [10] we can

Relaxation test predictions for experiments in Fig 4b of Calvo et al. - 0 |
19 T T T T T I I I also measure the time paramet&f&E®) associated to each

° Exp.datalevell initial deformation leveE°. We take them approximately as
% Exp. data level 2 pp
0.9 % Exp. data level 3| | t%(E®) = 100s for the six levels. Recall that by Eq. (35)
Exp. data level 4 this implies an initial-strain-dependent viscosity. Téedter,
: E;’; dava ove o we calculate thénitial-strain-dependendleviatoric viscosity
08} Predictions ] ng (E°) following the procedure detailed above.

We show in Figure 5 the time-dependent responses that
our modified model predicts for the different relaxatiortdes
performed at different deformation levels using the calted
strain energies and the deformation-dependent deviatisric
cosity r]g (EO). Again, we can observe the excellent agree-
ment between the computed curves and the experimental ones
—cf. Figure 7 in Ref. [10] and note that we took the experi-
mental data for our simulations from Figure 4 in Ref. [10]

0.6}

05}

0.4 . . . . . . . .
0 200 400 600 800 1000 1200 1400 1600 1800

. 6 Conclusions
time [s]

Many soft biological tissues present a relevant strain-
dependent viscous behavior which results in normalized re-
Fig. 5. Predictions for the relaxation tests performed at different |gxation curves which are different at different stres®lgv
stress levels. Experimental data redrawn from Figure 4b of [10]. The popular Quasilinear Viscoelasticity and the formuolasi
based on the Simo6 framework result in a strain-independent
behavior which is a consequence of the resulting direct rela

ratios 6(E®) relate to the initial-strain-dependent parametgfy, penween instantaneous and quasistatic behavior, hs we

A~ O .
6(E") used in Eg. (35) through as the direct relation between total stored energy and-dissi
pation. The flow evolution equations are linear differentia
< o Ggq ggq ggq/go G(EO) eqyations. The in_troduction o_f ad-hoc strain-dep_endeﬂt ma
G(E") = = = (42) terial parameters in Prony series, as for example in Ref, [10

0. a0  1-0%/0% 1 o(E° . . .
neq €q &/ (B%) allows for strain-dependent relaxation behavior. Howgver

despite of employing optimization algorithms to perform a
Again, we exactly capture both uniaxial responses using thest-fit of material parameters to experimental data, relax
isotropic spline-based hyperelastic formulation, as waash ation curves are not satisfactorily captured.
in Figure 4.a. The resulting first derivative functions oé th In this work we present a procedure to naturally intro-
instantaneous and relaxed Valanis—Landel terms are shagurce strain-dependent viscous behavior through fullyinenl
in Figure 4.b. ear evolution equations. Regarding the viscous behavior of



abdominal muscle, we show that excellent predictions are i3] Kaliske M, Rothert H (1997) Formulation and imple-
tained at all strain levels, using both isotropic and anggut
models. Instantaneous and quasistatic stored energiez-are
actly captured. The relaxation curves are also captured t¢le]
high accuracy using only the measured apparent relaxation
time. The model is valid for arbitrarily large deviationsifin
thermodynamic equilibrium and is amenable of efficient fi-
nite element implementation to predict the behavior under
general deformations. The parameters, furthermore, are di5]
rectly measured in experimental tests. As a main difference
with other formulations, we obtain excellent predictioris o
the viscoelastic response of biological tissues using @lesin [16] Haslach HW (2011) Maximum Dissipation Non-
Maxwell element and anisotropic constitutive relations.
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