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Growth and remodeling of soft tissues is a dynamic process and several theoretical frameworks have been developed to ana-
lyze the time-dependent, mechanobiological and/or biomechanical responses of these tissues to changes in external loads.
Importantly, general processes can often be conveniently separated into truly non-steady contributions and steady-state
ones. Depending on characteristic times over which the external loads are applied, time-dependent models can sometimes
be specialized to respective time-independent formulations that simplify the mathematical treatment without compromis-
ing the goodness of the particularized solutions. Very few studies have analyzed the long-term, steady-state responses of
soft tissue growth and remodeling following a direct approach. Here, we derive a mechanobiologically equilibrated formu-
lation that arises from a general constrained mixture model. We see that integral-type evolution equations that characterize
these general models can be written in terms of an equivalentset of time-independent, nonlinear algebraic equations that
can be solved efficiently to yield long-term outcomes of growth and remodeling processes in response to sustained external
stimuli. We discuss the mathematical conditions, in terms of orders of magnitude, that yield the particularized equations
and illustrate results numerically for general arterial mechano-adaptations.
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1 Introduction

Biological soft tissues consist of myriad structurally significant constituents that are collectively referred to as the extracellu-
lar matrix. Resident cells establish, maintain, and remodel this matrix, which endows the tissue with both stiffness/strength
and instructions that guide cell behavior. Mathematical models that describe and predict changes in overall tissue structure
and function can provide increasing insight into connections between the biology and mechanics. Two theoretical frame-
works have emerged to describe soft tissue growth (i.e., change in mass) and remodeling (i.e., change in structure): the
theory of kinematic growth [1] and the constrained mixture theory [2]. The former tends to be mathematically simpler but
to focus on consequences of growth. The latter tends to focuson mechanisms that drive growth and remodeling (G&R), at-
tempting to capture the different rates of turnover and material properties exhibited by individual constituents thatconstitute
the tissue; this approach can be computationally expensivehowever.

Regardless of approach, G&R tends to be driven by changes in biochemomechanical stimuli from “homeostatic target”
values that are established via the process of development.In particular, differences in mechanical stress from target values
are primary drivers of soft tissue adaptations via mechanobiological processes (i.e., key biological responses by cells to
mechanical stimuli). From a thermodynamic perspective [3,4], perturbations in stresses from normal values provoke an
internal imbalance such that a dissipative (energy consuming) G&R process seeks to restore equilibrium.

Such adaptative/maladaptative mechanobiological processes are dynamic, hence evolving cell driven tissue structure
and function typically requires one to model the general time-dependent process. There are special situations, however,
in which unsteady effects vanish. Hence, as in many areas of mathematical physics, steady-state analyses may provide
tremendous simplification and yet considerable insight. Towards this end, note that the constrained mixture theory of
G&R has parallels with the Boltzman theory of viscoelasticity, with both employing hereditary integrals to capture the
“relaxation” of the material back towards its preferred state [5].

∗ Corresponding author E-mail:m.latorre.ferrus@upm.es
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2 M. Latorre and J.D. Humphrey: A Mechanobiologically Equilibrated Constrained Mixture Model for G&R of Soft Tissues

In this paper we present a steady-state, mechanobiologically equilibrated solution of classical constrained mixturemod-
els for growth and remodeling of soft tissues [2]. In the general, rate-dependent case, the integral equations for the in-
dividual load-bearing structural constituents track the evolving mechanical states in which the constituents are produced
and removed. We will see that these G&R processes take place relative to a material-dependent characteristic time, say
sG&R. Similar to the case of viscoelasticity mentioned above, however, one can directly compute the long-term (“relaxed”)
outcome of general constrained mixture models when the external insults are eventually sustained over time or, more specif-
ically, for intervals∆s ≡ s−0 such thats/sG&R ≫ 1. In this case, the evolution equations for the full constrained mixture
approach can be pre-integrated analytically without introducing additional constitutive approximations, giving asa result
a fully equivalent set of nonlinear evolved (algebraic) equations that can be solved easily and efficiently. For purposes of
illustration, we show numerical results for a prototypicalsoft tissue – an elastic artery. In particular, we show that the
present long-term, steady-state formulation recovers thefinal adapted state predicted by the full constrained mixture model
in cases of perturbed blood pressures, flows, and axial stretches. Further parametric studies then illustrate the utility of the
formulation.

2 A constrained mixture model for G&R of soft tissues

First, we summarize salient features of a constrained mixture model for G&R of soft tissues [2], which has satisfactorily
predicted complex vascular behaviors as, for example, [6,7,9–11]. The main aim of this section is to highlight underlying
hypotheses on which the present model will be built, especially regarding the constitutive relations for mass production
and removal while distinguishing properties defined at the individual constituent level versus the whole mixture level. The
specific expressions that these relations acquire are fundamental for the mechanobiological equilibrium solution invoked in
the next section, where a balance between production and removal necessarily emerges.

2.1 Differential mass formulation

Consider an (infinitesimal) element of volumeδVo in the original homeostatic configuration at G&R times = 0. Consistent
with the constrained mixture theory [2],δVo is occupied, in a homogenized continuum sense, by multiple constituents
α = 1, 2, ..., N , for which we assume that the bulk modulus far exceeds the shear modulus at any instant. The mass of each
constituentδMα within (initial) volumeδVo can evolve fors > 0 through

δMα (s) =

∫ s

−∞

δΠα (τ) qα (s, τ) dτ = δMα (0)Qα (s) +

∫ s

0

δΠα (τ) qα (s, τ) dτ (1)

whereδΠα (τ) > 0 is a true (local) mass production rate at timeτ ≤ s andqα (s, τ) ∈ [0, 1] represents the fraction of the
mass deposited at timeτ that survives at times. Hence, for a givens, with −∞ < τ ≤ s,

0 = qα (s,−∞) ≤ qα (s, τ) ≤ qα (s, s) = 1 , (2)

or, for a givenτ , with τ ≤ s < ∞,

0 = qα (∞, τ) ≤ qα (s, τ) ≤ qα (τ, τ) = 1 . (3)

Similarly, Qα (s) represents the fraction of mass that existed at timeτ = 0 that survives at times. Assuming that
δΠα (τ ≤ 0) remains constant for a sufficiently long period precedingτ = 0, i.e. δΠα (τ < 0) = δΠα (0) = δΠα

o

andδMα (0) = δMα
o , with subscripto denoting anoriginal homeostaticstate, thenQα (s) is given in terms ofqα (s, τ),

from Eq. (1), through

δΠα
o

∫ 0

−∞

qα (s, τ) dτ = δMα
o Q

α (s) =⇒ Qα (s) =

∫ 0

−∞

qα (s, τ) dτ

∫ 0

−∞

qα (0, τ) dτ

(4)

whereQα (0) = 1. The local production rate of mass at arbitrary timeτ can be expressed in terms of a nominal rateδΠα
N

and a stimulus-dependent functionΥα that will ultimately drive the G&R process, namely

δΠα (τ) = δΠα
N (τ) Υα (τ) (5)

where, importantly, the nominal rateδΠα
N may evolve during homeostatic processes (i.e., target values may reset).
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The strain energy stored locally byδMα (s) at times is

δWα (s) =

∫ s

−∞

δΠα (τ) qα (s, τ) Ŵα
m(Cα

n(τ) (s))dτ (6)

whereŴα
m(Cα

n(τ) (s)) is a mass-specific strain energy function for constituentα andCα
n(τ) (s) is the right Cauchy–Green

tensor obtained from the deformation gradientF
α
n(τ) (s) experienced by the material deposited at timeτ (in a generic

intermediate configuration) that survives at times (in the current loaded configuration); see Figure 1 whereby

F
α
n(τ) (s) = F (s)F−1 (τ)Gα (τ) = F (s)F−1 (τ)Gα , (7)

where we assume that constituents are deposited within the mixture via constant, symmetric, and volume-preserving “depo-
sition stretch” tensors, that isGα (τ) = G

α ∀τ , GαT = G
α, anddetGα = 1. Consistent with an implicit homogenization

procedure, the deformation gradientF
α
n(τ) (s) is computed by assuming that the motion of each constituent,once deposited,

is constrainedto equal that of the soft tissue as a whole, which is given by deformation gradientF. The corresponding
right Cauchy–Green deformation tensor reads

C
α
n(τ) (s) = F

αT
n(τ) (s)F

α
n(τ) (s) = G

α
F

−T (τ)C (s)F−1 (τ)Gα , (8)

whereC (s) = F
T (s)F (s) is a measurable, mixture level deformation. See [8] for an example of a mass-based approach.

2.2 Referential volume formulation

We now obtain from the previous formulation, derived for a differential mass element, its equivalent formulation per unit
reference volume (see Appendix for nomenclature). From Eq.(1)

ραR (s) =

∫ s

−∞

mα
R (τ) qα (s, τ) dτ (9)

whereραR
def
= δMα/δVo is the referential mass density of cohortα (in a homogenized sense) andmα

R
def
= δΠα/δVo is the

mass production rate per unit reference volume (i.e., mass density production rate). From Eq. (5), we also have

mα
R (τ) = mα

N (τ) Υα (τ) , (10)

wherebymα
R is written in terms of two functions, namely a nominal production rate per unit reference volumemα

N (τ) that
is modulated by a stimulus-dependent functionΥα (τ).

From Eq. (6), the corresponding strain energy function for constituentα (in a homogenized sense), per unit reference

volume of the mixture,Wα
R

def
= δWα/δVo, is

Wα
R(s) =

∫ s

−∞

mα
R (τ) qα (s, τ) Ŵα

m(Cα
n(τ) (s))dτ . (11)

Recall thatŴα
m is a mass-specific strain energy function for constituentα (i.e., an intrinsic material constitutive relation).

We can convert it to a volume-specific counterpartŴα by means of the (herein assumed constant) true mass densityρ̂α of
constituentα (i.e., not its homogenized, apparent mass density with respect to the mixture, either materialραR or spatialρα)
as

Ŵα(Cα
n(τ) (s)) = ρ̂αŴα

m(Cα
n(τ) (s)) . (12)

The strain energy function of constituentα, defined per unit reference volume of the mixture, then reads

Wα
R (s) =

1

ρ̂α

∫ s

−∞

mα
R (τ) qα (s, τ) Ŵα(Cα

n(τ) (s))dτ (13)

and for the mixture we have

WR(s) =
∑

α

Wα
R(s) . (14)

This referential form of the strain energy for the mixture isthus similar to that used in hyperelasticity. See [6, 7, 9, 13] for
similar formulations.
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2.3 Stresses

We consider the response of a typical soft tissue to be isochoric at each fixed G&R times (i.e., for transient deformations
with G&R time frozen). The Cauchy stress tensor for the tissue (i.e., mixture) thus reads

σ (s) =
∑

α

σ
α (s)− p (s) I (15)

whereσα is the Cauchy stress contribution for constituentα andp is a pressure-type Lagrange multiplier associated with
the incompressibility constraintJ = det (F) = const to be calculated at each fixed, G&R times.

To obtain stresses for each constituent at the mixture levelσ
α, note, from Eq. (8), that

C
α
n(τ) (s) = G

α
F

−T (τ) ⊙G
α
F

−T (τ) : C (s) (16)

where operator symbol⊙ represents the mixed dyadic product(A⊙B)ijkl = AikBjl and operator symbol: performs the
usual double contraction of indices. Note, too, that [12]

∂Cα
n(τ)(s)

∂C(s)
= G

α
F

−T (τ) ⊙G
α
F

−T (τ) . (17)

The associated second Piola–Kirchhoff stress tensor is obtained fromWα
R(s), which is given by Eq. (13), via

S
α (s) = 2

∂Wα
R(s)

∂C(s)
=

2

ρ̂α

∫ s

−∞

mα
R (τ) qα (s, τ)

∂Ŵα(Cα
n(τ) (s))

∂Cα
n(τ) (s)

:
∂Cα

n(τ) (s)

∂C(s)
dτ . (18)

If we define the second Piola–Kirchhoff stress tensor at the constituent level as

Ŝ
α(Cα

n(τ) (s)) = 2
∂Ŵα(Cα

n(τ) (s))

∂Cα
n(τ)

, (19)

then Eq. (18) reads

S
α (s) =

1

ρ̂α

∫ s

−∞

mα
R (τ) qα (s, τ)F−1 (τ)Gα

Ŝ
α(Cα

n(τ) (s))G
α
F

−T (τ) dτ , (20)

where we substituted (and operated overŜ
α) the fourth-order tensor∂Cα

n(τ)/∂C.
The Cauchy stressesσα (s) for each cohort are obtained via the corresponding Eulerian–Lagrangian stress power equiv-

alence, which gives the following push-forward operation overSα (s)

σ
α (s) =

1

J (s)
F (s)Sα (s)FT (s) (21)

with JacobianJ given by

J (s) = det (F (s)) =
δV (s)

δV(0)
≡

δV (s)

δVo
. (22)

Interestingly, substitution of Eq. (20) into Eq. (21) reveals the following relation betweenσα (s), defined at the mixture
level (i.e. deriving fromWα

R ), andσ̂α (s, τ), defined at the constituent level (i.e. deriving from̂Wα)

σ
α (s) =

1

ρ̂α

∫ s

−∞

mα (τ) qα (s, τ) σ̂α (s, τ) dτ (23)

wheremα (τ) = mα
R (τ) /J (τ) is the mass production rate per unit current volume of the mixture at timeτ andσ̂α (s, τ)

reads

σ̂
α (s, τ) =

1

det(Fα
n(τ) (s))

F
α
n(τ) (s) Ŝ

α(Cα
n(τ) (s))F

αT
n(τ) (s) (24)

with det(Fα
n(τ) (s)) = J (s) /J (τ).
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ZAMM header will be provided by the publisher 5

3 A mechanobiologically equilibrated formulation for G&R of soft tissues

In this section we derive a mechanobiologically equilibrated formulation that arises from the general model outlined above
for G&R stimuli that are eventually sustained in time. Thus,we let the model evolve up to a steady state defined by
mechanobiological equilibrium, that is, with tissue adaptation to external insults completed. In this case, all priorexpres-
sions can be pre-integrated in time to yield an equivalent, simpler algebraic formulation that provides more intuitionabout
target states to which the tissue tends to adapt.

3.1 Mechanobiologically equilibrated state

Of course G&R takes time to return the state to homeostatic following a sustained alteration in the biochemomechanical
environment. We assume, therefore, that mechanobiological equilibrium occurs at some G&R times ≫ sG&R, where
sG&R represents a characteristic time associated with internalG&R processes. We postulate a characteristic timesG&R

below.
Several statements can be used to define a state of mechanobiological equilibrium for soft tissues [2,14,15]. In general

such a state should include balanced constant productions and removals in an unchanging mechanical state. Toward this
end, we let each mass density production ratemα

R (τ) equal its respective nominal ratemα
N (τ) and reach a constant,

evolved, homeostatic valuemα
Rh, namely

mα
R (τ ≫ sG&R)

def
= mα

Rh , ∀α . (25)

Hereafter, we will use the subscripth to refer to equilibrated variables in the new homeostatic state (ats ≫ sG&R) to
distinguish them from their respective, generally different, equilibrated values in the original homeostatic state (at s = 0),

for which we use the subscripto. Hence, we definemα
R (0) = mα

N (0)
def
= mα

Ro. Given Eq. (10), Eq. (25) along with
mα

R (τ ≫ sG&R) = mα
N (τ ≫ sG&R) means that the respective homeostatic stimulus-driven control functionsΥα

h reach
unity

Υα
h = 1 , ∀α , ∀s ≫ sG&R , (26)

which, then, represent a general (mathematical) conditionfor attaining mechanobiological equilibrium. In this respect, note
that, in general,mα

Ro 6= mα
Rh, butΥα

o = Υα
h = 1 while nonequilibratedΥα 6= 1 by definition.

Similarly, constituent specific removal functionsqα (s, τ) reach steady-state expressionsqαh (s, τ) as well. Thus, the
integral of Eq. (9) specializes to

ραRh = mα
Rh

∫ s

−∞

qαh (s, τ) dτ = mα
RhT

α
qh , ∀α , ∀s ≫ sG&R (27)

where only the constituents deposited at timesτ ≫ sG&R contribute, in practice, to the integral, and where we recognize
Tα
qh as an equilibriummeanlifetime

Tα
qh

def
=

∫ s

−∞

qαh (s, τ) dτ , ∀α , ∀s ≫ sG&R . (28)

Normalizing Eq. (27) as

1 =
mα

Rh

ραRh

Tα
qh =

1/Tα
mh

1/Tα
qh

(29)

reveals a balance between the equilibrium mass-specific production rate1/Tα
mh

def
= mα

Rh/ρ
α
Rh and the equilibrium mass-

specific removal rate1/Tα
qh consistent with what Humphrey and Rajagopal [2] referred toas “tissue maintenance during

which time material that is removed is replaced with equivalent material at the same rate and in an ‘unchanging’ configura-
tion”.

Equivalently, Eq. (13) under an evolved state of mechanobiological equilibrium reads

Wα
Rh =

1

ρ̂α
mα

RhT
α
qhŴ

α(Gα2) =
ραRh

ρ̂α
Ŵα(Gα2) , ∀α , ∀s ≫ sG&R , (30)

where we used Eqs. (25) and (27) and the fact thatF
α
n(τ) (s) in Eq. (7), specialized to an ‘unchanging’ configuration

F (τ) = F (s) = Fh ∀s, τ ≫ sG&R, reads

F
α
n(τ) (s ≫ sG&R) = FhF

−1
h G

α = G
α , (31)

Copyright line will be provided by the publisher



6 M. Latorre and J.D. Humphrey: A Mechanobiologically Equilibrated Constrained Mixture Model for G&R of Soft Tissues

soC
α
n(τ) (s ≫ sG&R) = (Gα)2 ≡ G

α2. Recognize, too, the termραRh/ρ̂
α in Eq. (30) as the equilibrium referential

volume fraction of constituentα, i.e.

ραRh

ρ̂α
=

δMα
h /δVo

δMα
h /δV

α
h

=
δV α

h

δVo
= Φα

Rh , (32)

so that the strain energy of the mixture (soft tissue), per unit reference volume of the mixture, Eq. (14), specializes tothe
following (referential) volume-based rule of mixtures

WRh =
∑

α

Wα
Rh =

∑

α

Φα
RhŴ

α(Gα2) (33)

which is often a desired, key feature of constrained mixturetheories [2]. Note that a general rule of mixtures based on
referential volume, rather than mass, fractions is also derived in the field of micromechanics of composite materials [16,17].

In summary, mechanobiological equilibrium of a soft tissuewhose constituents can all turn over, and that has been
subjected to a sustained alteration of the biochemomechanical environment, requires: constant rates of mass production
(Eq. (25)) and removal (Eq. (28)) that must balance (Eq. (29)) and occur in an unchanging stateFh (along with Eq. (31))
that is reached at times ≫ sG&R.

3.2 Mechanobiologically equilibrated stresses

Now consider stresses at the new mechanobiological equilibrium state, which can be obtained either by differentiatingthe
equilibrium strain energy functions while taking into account the specialized result of Eq. (31) or by particularizingthe
stress expressions derived in Section 2.3 for constituentsthat turnover. For example, from Eq. (24)

σ̂
α
h = G

α
Ŝ
α(Gα2)Gα (34)

whereby the stress tensorσ̂α
h depends only on the (herein assumed constant) deposition stretch tensorGα = G

α
o = G

α
h

and coincides with its original homeostatic value

σ̂
α
o = σ̂

α
h = σ̂

α . (35)

Note, however, that̂σα
o 6= σ̂

α
h if we relaxed the hypothesisGα

o → G
α
h in Eq. (7). Hence, stresses for constituentα at the

mixture level are, from Eq. (23),

σ
α
h =

1

ρ̂α
mα

hT
α
qhσ̂

α =
ραh
ρ̂α

σ̂
α (36)

where, again, we used Eqs. (25) and (27) along with the relation

ραh =
1

Jh
ραRh =

1

Jh
mα

RhT
α
qh = mα

hT
α
qh (37)

with mα
h = mα

Rh/Jh the equilibrium mass density production rate (per unit current volume of the mixture) andJh the
corresponding volume ratio. Then

σ
α
h = Φα

h σ̂
α
h = Φα

hσ̂
α (38)

whereΦα
h = ραh/ρ̂

α = δV α
h /δVh is the spatial volume fraction of cohortα in the new equilibrium configuration, thus we

recover a (spatial) volume-based rule of mixtures for the equilibrium Cauchy stresses as well (cf. Eq. (15))

σh =
∑

α

σ
α
h − phI =

∑

α

Φα
hσ̂

α − phI . (39)

Sinceσα
o = Φα

o σ̂
α in the original homeostatic state andσα

h = Φα
h σ̂

α in the new equilibrium state, then

σ
α
h =

Φα
h

Φα
o

σ
α
o =

ραh
ραo

σ
α
o , (40)

so the Cauchy stresses of the cohortα at the mixture level in the new homeostatic state become the respective Cauchy
stresses in the original homeostatic state scaled by the ratio of the spatial mass densities (or volume fractions) in the
respective configurations. We will see in examples below that ραh = ραo , and thusσα

h = σ
α
o , in some special cases only,

cf. [15].
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4 Specialization for arteries

Here we specialize the constrained mixture framework, boththe general non-equilibrated, time-dependent model of Section
2 and the equilibrated, time-independent particularized model of Section 3, to G&R experienced by arteries during maturity.
The main load-bearing constituentsα within an artery are elastic fibers (α = e), smooth muscle (α = m), and fibrillar
collagen (α = c). Smooth muscle and collagen turnover continuously, whileelastin is only produced in the perinatal
period. Elastin also has an extremely long half-life (T e

q ∼ 50 years) under normal conditions, for which one can assume no
removal. Elastin is removed (degrades) in aging, aneurysms, atherosclerosis, and other conditions, but we do not consider
such pathologies here. Of course, the steps we follow next for this specific case can be adapted for other soft tissues or
vascular problems of interest, including marked loss of elastin [7,18].

4.1 A constrained mixture model for G&R of arteries

Consistent with many empirical studies, we assume an exponential decay for structurally significant constituents modeled
by the survival functionqα (s, τ), at fixedτ , of the form (cf. Eqs. (2) and (3))

qα (s, τ) = exp

(

−

∫ s

τ

kα (t) dt

)

, α = m, c (41)

wherekα (t), with τ ≤ t ≤ s, varies with respect to its original homeostatic valuekαo through

kα (t) = kαo (1 + (∆σ (t))2) , α = m, c (42)

with ∆σ (t) accounting for any normalized difference (positive or negative to account for damage or disuse related removal)
between a given intramural Cauchy stress measureσ̃ at timet at the mixture level, namelỹσ (t), and its corresponding
original homeostatic valuẽσo

∆σ (t) =
σ̃ (t)− σ̃o

σ̃o
=

σ̃ (t)

σ̃o
− 1 . (43)

The stress valuẽσ represents the overall tensional state within the arterialwall (e.g., a principal value, invariant, or overall
magnitude – all scalars) such thatkα (t) increases and the decay given byqα (s, τ) is expedited, accordingly (see [7]
and references therein). Alternatively,∆σ could be defined in terms of cohort-specific stresses defined at the constituent
level [6,7] which, based on the equilibrated relation givenin Eq. (38) or its general counterpart of Eq. (23), yields similar
effects.

Similarly, we can let the stimulus-mediated production termΥα (τ) in Eq. (10), for the specific case of mechanoadaptive
arteries, account for normalized differences between intramural (e.g.,̃σ) and/or wall shear stressesτw, at timeτ , and their
respective original homeostatic values. An illustrative linearized form (consistent with responses to modest perturbations
in load) in terms of mixture-level stresses can be written

Υα (τ) = 1 +Kα
σ∆σ (τ) −Kα

τ ∆τw (τ) , α = m, c (44)

whereKα
σ andKα

τ are constituent-specific gain parameters and∆τw = (τw − τwo)/τwo. At the initial homeostatic state,
sayτ = s = 0, we have∆σ = 0 and∆τw = 0 and Eq. (44) recovers the equilibrium conditionΥα

o (s ≤ 0) = 1 discussed
in Eq. (26). At the same time, we obtain from Eq. (42) thatkα (s ≤ 0) = kαo , so full integration ofqα (0, τ) = qαo (0, τ) in
Eq. (41) yields (cf. Eq. (28))

Tα
qo =

∫ 0

−∞

qαo (0, τ) dτ =

∫ 0

−∞

exp (kαo τ) dτ =
1

kαo
, α = m, c (45)

and we recognize the (original) mean homeostatic mass removal rate1/Tα
qo askαo . The same (equilibrium) analysis per-

formed at an evolved homeostatic state, withkα (s ≫ sG&R) = kαh in Eqs. (41) and (42), yields (cf. Eq. (28))

Tα
qh =

∫ s

−∞

qαh (s, τ) dτ =

∫ s

−∞

exp (−kαh (s− τ)) dτ =
1

kαh
, α = m, c , (46)

Consideration of Eqs. (45) and (46) in Eq. (27) at the different G&R timess = 0 or s ≫ sG&R, automatically leads to the
following generalization for the nominal mass density production rate functionmα

N (τ) in Eq. (10)

mα
N (τ) = kα (τ) ραR (τ) , α = m, c (47)
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such that, withΥα
o = 1 = Υα

h ,

mα
Ro = mα

No = kαo ρ
α
Ro , and mα

Rh = mα
Nh = kαhρ

α
Rh . (48)

Eq. (47), derived herein from considerations of mechanobiological equilibrium, suggests that the nominal (local) mass
production of a given constituent is proportional to its current (local) mass within the mixture, which is tantamount to
saying that the production of each constituent is proportional to the concentration of cells that synthesize that constituent,
as posited previously [9].

Moreover, in the present case, the factor of proportionality kα (τ) depends on the level of intramural stresses, recall Eq.
(42). With this approach, which is consistent with our definition of mechanobiological equilibrium given in Section 3, the
referential mass density production rate of the cohortα, Eq. (10), reads

mα
R (τ) = kα (τ) ραR (τ) Υα (τ) , α = m, c . (49)

Similar expressions for mass density production have been used [6,9,19]. On other hand, the present approach is different
from the one adopted in, for example, [7], where constituent-specific basal mass productions are postulated to be constant
per unit reference volume of the mixture. The definitions adopted here regarding degradation and production, giving rise to
Eqs. (41)–(43) and Eq. (49) respectively, will prove usefulbelow.

An additional, common constitutive assumption in constrained mixture models for G&R of soft tissues is that the spatial
total mass densityρ remains constant, that is

ρ ≡ ρ (τ) =

e,c,m
∑

α

ρα (τ) , ∀τ (50)

whereρα (τ) is the “apparent” spatial mass density of cohortα (in a homogenized sense). Note thatρα need not to remain
constant, in general. The fact thatρ remains constant, however, implies that the “true” spatialmass densitieŝρα of the
different constituents (in a heterogeneous sense) coincide with the actual spatial total mass density of the mixture1 ρ, so the
strain energy function of constituentα per unit reference volume of the mixture, given in Eq. (13), specializes to

Wα
R(s) =

1

ρ

∫ s

−∞

mα
R (τ) qα (s, τ) Ŵα(Cα

n(τ) (s))dτ . (51)

Considering the assumptionρ = const in Eq. (22) lets us relate current to reference local masses through the volume ratio
J as well, namely

J (s) =
δV (s)

δV(0)
=

δM(s) /ρ

δM(0) /ρ
=

δM(s)

δM(0)
=

δM(s) /δVo

δM(0) /δVo
=

ρR (s)

ρ
(52)

whereρR (s) is the referential total mass density.

4.1.1 Active smooth muscle tone

Besides passive contributionsσα in Eq. (15), consider too the stress due to contraction of smooth muscle cells in the
arterial wall. This contribution to wall stress, assumed tobe exerted primarily along the circumferential directioneθ, is
defined by (cf. Eq. (38))

σ
act (s) = φm (s) σ̂act (s) (53)

with [20]

σ̂
act (s) = Tmax

(

1− e−C2(s)
)

λ
m(act)
θ (s)



1−

(

λM − λ
m(act)
θ (s)

λM − λ0

)2


 eθ ⊗ eθ (54)

1 For simplicity, consider a heterogeneous mixture of two incompressible constituentsa, occupying a volumeV a, andb, occupying a volumeV b,
within total volumeV = V a + V b. The spatial mass density of the mixture is then obtained in terms of the true mass densities of the constituentsρ̂a

andρ̂b through the volume-based rule of mixturesρ =
M
V

=
Ma

V
+

Mb

V
=

V a

V
ρ̂a +

V b

V
ρ̂b. If ρ remains constant for arbitrary volumes0 ≤ V a ≤ V

andV b = V − V a, thenρ̂a = ρ̂b = ρ, so thatρ = ρV a+V b

V
.
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whereφm (s) = ρm (s) /ρ is the spatial mass fraction of smooth muscle (the use of mass, rather than volume, fraction,
as we derived in Eq. (38), will be clear below),Tmax accounts for the maximum stress-generating capacity of themuscle,
C (s) is the ratio of vasoconstrictors (such as the biomolecule ET-1) to vasodilators (such as NO),λM andλ0 are the

stretches at which the active force generating capability is maximum and minimum (i.e. zero), respectively, andλ
m(act)
θ (s)

is the current active muscle fiber stretch. We postulate thatthe ratioC (s) is modified by normalized differences in flow
induced wall shear stress from its original homeostatic value, with

C (s) = CB − CS∆τw (s) (55)

whereCB > 0 is the corresponding basal ratio andCS > 0 is a scaling factor. Note that an increased, instantaneous shear
stress∆τw reduces both the ratioC and the tensile wall stressσact = σ

act : eθ ⊗ eθ, and vice versa, as desired [21, 22].
Finally, the circumferential stretch for the active tone isdefined asλm(act)

θ (s) = a (s) /aact (s), with a (s) the current
luminal radius andaact (s) an active value whose evolution is to be prescribed. For example, a shift in vasomotor tone via
rearrangement of smooth muscle cells observed in mature arteries may be modelled using the following linear evolution
equation foraact (s) [6]

daact (s)

ds
= kact

(

a (s)− aact (s)
)

(56)

wherekact is an additional active, relaxation (in the sense of adaptation via structural remodeling rather than chemical
signaling) rate parameter andaact (0) = a (0). An integral-type solution of Eq. (56) foraact (s) that adopts the same (con-
ceptual) form as the mass densities of Eq. (9) and the stresses of Eq. (23) is obtained through a convolution representation
(Duhamel’s principle), namely

aact (s) =

∫ s

−∞

kacta (τ̄ ) qact (s, τ̄ ) dτ̄ (57)

where we let

qact (s, τ̄ ) = e−kact(s−τ̄) . (58)

4.1.2 Elastin

Equation (51) particularized to elastin ats = 0, with C
e (0) = G

e2, reads

W e
R(0) =

1

ρ

∫ 0

−∞

me
R (τ) qe (0, τ) Ŵ e(Ce (0))dτ =

ρeR (0)

ρ
Ŵ e(Ce (0)) . (59)

Note thatGe is not atrue deposition stretch tensor of elastin, but rather avirtual deposition stretch tensor that yields a
mechanical contribution of elastin ats = 0 that is mechanically equivalent to the actual one (for whichelastin is gradually
deposited and stretched over the perinatal period, long befores = 0). If we also consider that elastin is neither produced
(i.e.me

R (s) ≡ 0) nor degraded (i.e.qe (s, τ) ≡ 1) during health in maturity (fors > 0), thenρeR (s) = ρeR (0) = ρeR and

W e
R(s) =

ρeR
ρ
Ŵ e(Ce (s)) . (60)

We have in this case (cf. Eq. (8) withF (τ) = I)

C
e (s) = G

e
C (s)Ge = G

e ⊙G
e : C (s) (61)

whereby

∂Ce (s)

∂C (s)
= G

e ⊙G
e . (62)

The second Piola–Kirchhoff stressSe = 2∂W e
R/∂C derived from Eq. (60), is

S
e (s) = 2

ρeR
ρ

∂Ŵ e(Ce (s))

∂Ce (s)
:
∂Ce (s)

∂C(s)
=

ρeR
ρ
G

e
Ŝ
e(Ce (s))Ge , (63)
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where we define the associated stresses at the constituent level as

Ŝ
e = 2

∂Ŵ e(Ce (s))

∂Ce (s)
. (64)

The Cauchy stresses are obtained from Eq. (21)

σ
e (s) = φe (s)F (s)Ge

Ŝ
e(Ce (s))Ge

F
T (s) (65)

whereφe (s) = ρe (s) /ρ = δM e/δM(s) is the spatial mass fraction of elastin at times and we used the relation
ρeR/J (s) = ρe (s).

4.1.3 Collagen and smooth muscle

From Eq. (51), defined for constantρ = ρ̂α ∀α, the Cauchy passive stresses for collagen and smooth muscleare (cf. Eq.
(23))

σ
α (s) =

1

ρ

∫ s

−∞

mα (τ) qα (s, τ) σ̂α (s, τ) dτ (66)

whereσ̂α (s, τ) is given in Eq. (24).

4.2 Mechanobiologically equilibrated G&R of arteries

First, after substituting Eq. (49) into general Eq. (9), we obtain a (recursive) expression for the evolution ofραR (s)

ραR (s) =

∫ s

−∞

kαq (τ) ραR (τ)Υα (τ) qα (s, τ) dτ , α = m, c (67)

whereqα (s, τ), kα (τ) andΥα (τ) are given in Eqs. (41), (42) and (44), respectively. Assume now that, after a sustained
change of the distending pressureP , volumetric flow rateQ, and axial stretchλz, each with respect to individual (original)
homeostatic values, the artery has grown and remodeled and finally reached a new state of mechanobiological equilibrium
at timess ≫ sG&R. ThenραR, Υα andkα reach equilibrium valuesραRh, Υα

h andkαh (to be determined) and Eq. (67)
specializes to

ραRh = kαhρ
α
RhΥ

α
h

∫ s

−∞

qαh (s, τ) dτ = ραRhΥ
α
h , α = m, c , (68)

where we used Eq. (46). Hence, dismissing the trivial solutionραRh = 0, balance between mass production and removal of
each cohort (α = m andα = c) at the new (evolved) homeostatic state requires in this case, as expected (cf. Eq. (26))

Υα
h = 1 , α = m, c (69)

which, by virtue of Eq. (44), includes the following balancebetween pressure-induced, intramural over-stresses (note that
∆σ > 0 heightens mass production) and flow-induced, shear over-stress (note that∆τw > 0 > C − CB attenuates mass
production)

Kα
σ∆σh = Kα

τ ∆τwh , α = m, c . (70)

Recalling the assumptionρ = const, which impliesρ̂α = ρ ∀α, the equilibrium stresses of smooth muscle and collagen
at the mixture level, Eq. (36), become

σ
α
h =

ραh
ρ
σ̂

α = φα
h σ̂

α , α = m, c (71)

where in the new equilibrium configuration in this case (cf. Eq. (38)),Φα
h ≡ φα

h = ραh/ρ = δMα/δM , with σ̂
α constant.

For elastin, however, the stresses at the mixture level of Eq. (65) in the original homeostatic state —noting thatFo ≡ I and
C

e
o = G

e
CoG

e = G
e2— are

σ
e
o = φe

oG
e
Ŝ
e(Ge2)Ge = φe

oσ̂
e
o (72)
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and in the new equilibrated state

σ
e
h = φe

hFhG
e
Ŝ
e(Ce

h)G
e
F

T
h = φe

hσ̂
e
h (Fh) . (73)

That is, because it does not turnover in maturity, elastin deforms elastically (due to the presence ofFh) from its initial
homeostatic configuration to a new one. In contrast,Fh is not present in Eq. (71) because smooth muscle and collagen
continuously turnover.

Note, too, that under static equilibrium both Eq. (56) and Eq. (57) yield

aacth = ah , (74)

which means that the reference lengthaact for active stretch calculation has reduced to the current luminal radiusah, thus

λ
m(act)
θh =

ah
aacth

= 1 , (75)

and the stress due to active tone, Eqs. (53) and (54), becomesa function ofφm
h and∆τwh

σ
act
h (φm

h ,∆τwh) = φm
h σ̂

act (∆τwh) (76)

with

σ̂
act (∆τwh) = Tmax

(

1− e−C2(∆τwh)
)

[

1−

(

λM − 1

λM − λ0

)2
]

eθ ⊗ eθ (77)

with C (∆τw) given by Eq. (55).
Finally, Eq. (39) specializes to the following (spatial) mass-based rule of mixtures (recalling thatΦα

h ≡ φα
h and we are

considering an active contribution)

σh =

e,m,c
∑

α

σ
α
h + σ

act
h − phI =

m,c
∑

α

φα
h σ̂

α + φe
hσ̂

e
h + φm

h σ̂
act
h − phI (78)

where the equilibrated-state-independent stressesσ̂
α = σ̂

α
o = σ̂

α
h are given in Eq. (34) and the (generally) equilibrated-

state-dependent stressesσ̂
e
h 6= σ̂

e
o andσ̂act

h 6= σ̂
act
o are given in Eqs. (73) and (77), respectively.

Remark 1

Consider Eq. (9). The rate of change ofραR (s) is (by Leibniz integral rule)

dραR (s)

ds
= mα

R (s) qα (s, s)
ds

ds
+

∫ s

−∞

mα
R (τ)

∂qα (s, τ)

∂s
dτ = mα

R (s)− kα (s) ραR (s) (79)

where we have used the fact that, for Eq. (41), (by chain and Leibniz rules)

∂qα (s, τ)

∂s
= exp

(

−

∫ s

τ

kα (t) dt

)

∂

∂s

(

−

∫ s

τ

kα (t) dt

)

= qα (s, τ)

(

−kα (s)
ds

ds

)

= −qα (s, τ) kα (s)

(80)

so, using Eq. (49)

dραR (s)

ds
= kα (s) ραR (s) (Υα (s)− 1) (81)

Clearly,dραR (s) /ds = 0 in a mechanobiological equilibrium state, thus (dismissing the trivial solutionραR = 0) we arrive
at the same condition given in Eqs. (26) and (69). Obviously,Eq. (67) represents the general solution in integral form
(which is obtained directly through the convolution representation or Duhamel’s principle) of the differential equation given
in Eq. (79), wheremα

R = kαραRΥ
α is the generic forcing term. Introducing Eq. (44) into Eq. (81) yields

dραR (s)

ds
= kα (s) ραR (s) (Kα

σ∆σ (s)−Kα
τ ∆τw (s)) (82)

which is employed in [5] as well, though without the flow shearstress contribution or a single constant parameterkσ =
kαoK

α
σ .
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Remark 2

Eq. (81) can be rephrased in the differential form

dραR (s)

ραR (s)
= kα (s) (Υα (s)− 1) ds (83)

and then directly integrated to yield the following explicit solution in terms of the out-of-equilibrium functionΥα − 1

ραR (s)

ραo
= exp

(
∫ s

0

kα (τ̄ ) (Υα (τ̄ )− 1)dτ̄

)

(84)

where we used the initial valueραR (0) = ραo . Let kmo = ηqk
c
o, with ηq > 0, and let the out-of-equilibrium functions

Υα (τ̄ )−1 for smooth muscle and collagen be related proportionally throughΥm (τ̄)−1 = ηΥ (Υc (τ̄)− 1), with ηΥ > 0.
Then, we obtain from Eq. (84) for smooth muscle and collagen

ρmR (s)

ρmo
=

(

ρcR (s)

ρco

)ηqηΥ

, (85)

which we will use below. In this respect, we see that the factor ηqηΥ controls how smooth muscle mass changes with respect
to collagen mass for a given G&R stimulus inΥα. Considering now the special case in Eq. (44), the proportionality relation
Υm (τ̄)− 1 = ηΥ (Υc (τ̄ )− 1) is satisfied forKm

σ = ηΥK
c
σ andKm

τ = ηΥK
c
τ , with the ratioηK = Km

σ /Km
τ = Kc

σ/K
c
τ

controlling the different effects of wall and shear stresses over the G&R response. We note that this assumption has been
made in previous works (e.g., implicitly in [7, 23], whereηΥ = 1). Nevertheless,Υm (τ̄ ) − 1 andΥc (τ̄ ) − 1 need not be
proportional in a more general case, for which all gain-typeparameters are independent.

Remark 3

Observe in Eq. (56) that a characteristic time for the adaptation of the reference lengthaact for active smooth muscle is
sactG&R = 1/kact. In addition, observe in Eq. (79) that characteristic timesassociated with changes in mass of constituents
α = m, c are given bysαG&R = 1/kα ∼ 1/kαo , which are the characteristic decay times of the mass removal functions
qα (s, τ). Hence, a characteristic time for the global G&R process is,in terms of order of magnitude,

sG&R = max(sαG&R, s
act
G&R) =

1

min(kαo , k
act)

. (86)

Note that, for the specific case given in Eq. (82),sG&R can be modulated by specific values of the gain parametersKα
σ

and/orKα
τ . The solution discussed in this section, valid for sustained changes in external mechanical stimuli, is reached

at G&R times satisfyings/sG&R ≫ 1, as we show in Example 5.1 below.

All previous equations are defined pointwise within the arterial wall; that is, they are equally valid for either thick orthin
walled arterial models. For simplicity, we consider below aunilayered thin-walled model for illustrative purposes. Athick-
walled description would provide a more accurate through-the-thickness solution without changing our main qualitative
results or conclusions. We take the representative measureof the intramural stress state, namelyσ̃, as the first principal
invariant of the mean wall Cauchy stressσ, namelyσ̃ = trσ ≃ σθθ + σzz , where we assume a quasi-plane-stress state for
whichσrr ≪ σθθ andσrr ≪ σzz . The mean in-plane (biaxial) stressesσθθ andσzz are given in terms of the distending
pressureP and the global axial force on the vesselfz, respectively, through

σθθ =
Pa

h
, and σzz =

fz
πh(2a+ h)

, (87)

wherea is inner radius andh is thickness. The intramural over-stress term expressed interms of original (o) and evolved
(h) homeostatic values (i.e., we allow new homeostatic set-points to evolve) reads

∆σh =
σθθh + σzzh

σθθo + σzzo
− 1 . (88)

Assuming that the blood flow is Newtonian and fully developedthrough a long cylindrical sector of the artery, withτw =
4µQh/(πa

3
h) andµ the viscosity, the equilibrium∆τwh is

∆τwh =
τwh

τwo
− 1 =

Qh

Qo

a3o
a3h

− 1 (89)
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hence, from Eq. (70)

Kα
σ

(

σθθh + σzzh

σθθo + σzzo
− 1

)

−Kα
τ

(

τwh

τwo
− 1

)

= 0 , α = m, c (90)

whereah (present inσθθh, σzzh andτwh), hh (in σθθh andσzzh), andfzh (in σzzh) are unknowns to be determined for
each prescribed alteration in blood pressure,γh = Ph/Po, blood flow,εh = Qh/Qo, and axial stretchλzh (note that, in
experiments, one usually prescribes axial stretch rather than axial load). If, as in Remark2, the gain parameters for smooth
muscle and collagen satisfy the relationKm

σ /Km
τ = Kc

σ/K
c
τ = ηK , even if they have different valuesKm

σ = ηΥK
c
σ and

Km
τ = ηΥK

c
τ , then Eqs. (90) forα = m, c can be written

ηK

(

σθθh + σzzh

σθθo + σzzo
− 1

)

−

(

τwh

τwo
− 1

)

= 0 (91)

which is a single equation for the unknownsah, hh andfzh. It is easy to see that mechanobiological equilibrium according
to Eq. (91) is consistent with that stated in [14]. In what follows we derive additional equilibrium equations that define
completely the evolved homeostatic state ats ≫ sG&R.

By symmetry considerations, we model the arterial wall as anorthotropic material with the radial (r), circumferential
(θ) and axial (z) directions being preferred axes at the mixture level. Since pressure-induced loads are axisymmetric and
axial stretch is along the long axis, the resulting deformation gradientFh, expressed in cylindrical coordinates, is diagonal,
i.e. [Fh]rθz = diag[λrh, λθh, λzh] with λrh, λθh andλzh equilibrium stretches relative to the initial homeostaticstate.
Note that we are neglecting the mechanical effect of the flow-induced shear stress over the arterial wall while includingits
mechanobiological effect, sinceτw ∼ 1Pa andσθθ ∼ 100 kPa [20]. The (yet unknown) Jacobian in terms of the stretches
reads

Jh = λrhλθhλzh (92)

where we consider the axial stretchλzh, relating both equilibrated configurations, to be known (prescribed). The radialλr

and circumferentialλθ stretches are given in terms ofah, ao, hh andho

λrh =
hh

ho
, and λθh =

ah + hh/2

ao + ho/2
. (93)

Recall, of course, thatλro = λθo = λzo = 1 yield non-zero homeostatic stresses due to deposition stretchesGα.
Since the mass of elastin does not change, its spatial mass density at the new equilibrium state reads

ρeh =
ρeo
Jh

. (94)

The spatial mass densities of elastin, smooth muscle and collagen must satisfy, withρ constant,

ρeh + ρmh + ρch = ρ . (95)

In addition, from Eq. (85) withραRh = Jhρ
α
h , we obtain the following relation between the spatial mass densities of smooth

muscle and collagen

Jhρ
m
h

ρmo
=

(

Jhρ
c
h

ρco

)ηqηΥ

. (96)

The total Cauchy stresses at the new equilibrated state are given by—recall Eq. (78)

σh =

m,c
∑

α

ραh
ρ
G

α
Ŝ
α
G

α +
ρeh
ρ
FhG

e
Ŝ
e(Ce

h)G
e
F

T
h +

ρmh
ρ

σ̂
act
h − phI (97)

where the Lagrange multiplier is computed while assumingσrr/σ̃ ≃ 0 for a thin wall, along withσm
rr ≃ 0 ≃ σc

rr and
σact
rr ≃ 0 for (in-plane) smooth muscle and collagen in Eq. (78). Since[Ge]rθz = diag[Ge

r, G
e
θ, G

e
z], we obtain

σrrh = σe
rrh − ph = 0 =⇒ ph = σe

rrh =
ρeh
ρ
Ŝe
rrhG

e2
r λ2

rh . (98)

Copyright line will be provided by the publisher



14 M. Latorre and J.D. Humphrey: A Mechanobiologically Equilibrated Constrained Mixture Model for G&R of Soft Tissues

The projection of Eq. (76) overeθ ⊗ eθ gives the circumferential active stress

σact
θθh (ρ

m
h , ah) =

ρmh
ρ

Tmax

(

1− e−C2(ah)
)

[

1−

(

λM − 1

λM − λ0

)2
]

(99)

where we explicitly indicate the dependence of the ratioC on the unknownah. The global equilibrium equationsσθθhhh =
Phah andσzzhπhh(2ah + hh) = fzh close the system of equations to be solved, yielding

m,c
∑

α

ραh
ρ
σ̂α
θθ +

ρeh
ρ
Ŝe
θθhG

e2
θ λ2

θh +
ρmh
ρ

σ̂act
θθh (ah)−

ρeh
ρ
Ŝe
rrhG

e2
r λ2

rh =
Phah
hh

(100)

and
m,c
∑

α

ραh
ρ
σ̂α
zz +

ρeh
ρ
Ŝe
zzhG

e2
z λ2

zh −
ρeh
ρ
Ŝe
rrhG

e2
r λ2

rh =
fzh

πhh(2ah + hh)
(101)

with σ̂α
θθ = σ̂

α : eθ ⊗ eθ = σ̂α
θθo = σ̂α

θθh andσ̂α
zz = σ̂

α : ez ⊗ ez = σ̂α
zzo = σ̂α

zzh. Note from the axial global equilibrium
equation that the axial stretchλzh would replace the axial forcefzh as unknown if one prescribedfzh rather thanλzh (as
we do based on biaxial testing procedures).

In order to solve Eqs. (100) and (101) in a general case, we need to know the spatial mass density of every cohort of
smooth muscle and collagen contributing to circumferential and axial passive stresses (first terms in the left-hand sides of
Eqs. (100) and (101)). Four families of collagen fibers oriented in four directions are frequently considered in arterial
mechanics, namely one oriented circumferentially, one oriented in the axial direction, and two additional ones oriented in
symmetric diagonal directions (say±45 ◦). Thus, the first (sum) terms in the left-hand sides of Eqs. (100) and (101) include
corresponding passive stress contributions of circumferential smooth muscle and “four” different collagen fiber families.
Interestingly, we obtain from Eq. (96), but with exponents unity between different cohorts of collagen, a common relative
change in the mass of the different cohorts of collagen with respect to their initial homeostatic values

ρcih
ρcio

=
ρ
cj
h

ρ
cj
o

, i 6= j = 0 ◦,±45 ◦, 90 ◦ =⇒
ρcih
ρcio

=
ρch
ρco

(102)

whereρc =
∑

ρci , which is to be used in the first terms in the left-hand sides ofEqs. (100) and (101).
In summary, we will solve the system of nonlinear algebraic equations formed by Eqs. (91), (95), (100), and (101) for

γh = Ph/Po, εh = Qh/Qo, andλzh (defined herein with respect to the homeostatic configuration, i.e.λzo = 1, see Figure
1) prescribed, which we summarize as

ηK

(

σθθh + σzzh

σθθo + σzzo
− 1

)

−

(

τwh

τwo
− 1

)

= 0

ρeh + ρmh + ρch = ρ
m,c
∑

α

ραh
ρ
σ̂α
θθ +

ρeh
ρ
Ŝe
θθhG

e2
θ λ2

θh +
ρmh
ρ

σ̂act
θθh −

ρeh
ρ
Ŝe
rrhG

e2
r λ2

rh =
Phah
hh

m,c
∑

α

ραh
ρ
σ̂α
zz +

ρeh
ρ
Ŝe
zzhG

e2
z λ2

zh −
ρeh
ρ
Ŝe
rrhG

e2
r λ2

rh =
fzh

πhh(2ah + hh)

(103)

(104)

(105)

(106)

where the unknowns areah, hh, ρch, andfzh, with other variables expressed easily in terms of these unknowns. This system
of nonlinear equations admit solutions by the (iterative) Newton–Raphson method, for which a proper initial guess is that
given by an ideal adaptation, namelyah/ao = ε

1/3
h , hh/ho = γhε

1/3
h , ρch/ρ

c
o = 1, andfzh/fzo = hh(2ah+hh)/(ho(2ao+

ho)), cf. [14]. Of course, the solutionah = ao, hh = ho, ρch = ρco, andfzh = fzo is recovered from Eqs. (103)-(106) at
the initial homeostatic stateγh = γo = 1, εh = εo = 1, andλzh = λzo = 1.

5 Illustrative examples

In the following examples we solve numerically the system ofnonlinear equations given in Eqs. (103)-(106) for a thin-
walled artery containing isotropic elastin, circumferential smooth muscle cells, and circumferential collagen fibers. The
hyperelastic response of elastin is modelled using a neoHookean model

Ŵ e(Ce (s)) =
ce

2
(Ce (s) : I− 3) (107)
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which gives the following constant second Piola–Kirchhoffstress tensor at the constituent level

Ŝ
e = 2

∂Ŵ e(Ce (s))

∂Ce (s)
= ceI , (108)

hence the associated second Piola–Kirchhoff stress components in Eqs. (105) and (106) are equilibrated-state-independent

Ŝe
rrh = ce = Ŝe

rro , Ŝe
θθh = ce = Ŝe

θθo , and Ŝe
rrh = ce = Ŝe

rro , (109)

while the Cauchy stresses for elastin yet depend on both deposition stretches and total mixture stretches, cf. Eqs. (105) and
(106). Both circumferential smooth muscle and collagen hyperelastic responses are modelled using Fung-type models

Ŵα(λα
n(τ) (s)) =

cα1
4cα2

[

ec
α
2 (λ

α2
n(τ)(s)−1)2 − 1

]

, α = m, c (110)

with a
m = a

c = eθ, i.e.

λα2
n(τ) (s) = C

α
n(τ) (s) : a

α ⊗ a
α ≡ C

α
n(τ) (s) : eθ ⊗ eθ , α = m, c (111)

The respective second Piola–Kirchhoff stresses at the constituent level are

Ŝ
α(λα

n(τ) (s)) = 2
∂Ŵα(Cα

n(τ) (s))

∂Cα
n(τ) (s)

= 2
dŴα(λα

n(τ) (s))

dλα2
n(τ) (s)

∂λα2
n(τ) (s)

∂Cα
n(τ) (s)

(112)

= cα1 (λ
α2
n(τ) (s)− 1)ec

α
2 (λ

α2
n(τ)(s)−1)2

eθ ⊗ eθ , α = m, c (113)

Taking into account Eq. (31), we arrive at

λα
n(τ)(s ≫ sG&R) = Gα

θ , α = m, c . (114)

The corresponding Cauchy stresses at the constituent level, from Eq. (34), are

σ̂α
θθ = σ̂

α : eθ ⊗ eθ = cα1G
α2
θ (Gα2

θ − 1)ec
α
2 (G

α2
θ −1)2 , α = m, c (115)

The elastic parameters for elastin, smooth muscle, and collagen, along with the remaining parameters needed to solve
the system of equations at hand, are given in Table 1. The associated inner pressure at the initial homeostatic state is
Po = 14.18 kPa = 106.4mmHg.

5.1 Correspondence between full and equilibrated models

The main goal of this example is to verify that the time-independent formulation of Section 4.2, reduced in practice to Eqs.
(103)-(106), yields the same long-term, steady-state solution as that obtained with the full, time-dependent constrained
mixture model of Section 4.1 for a given set of initially altered and then sustained external loads. To establish this salient
feature of the equilibrated formulation in a general case, we consider simultaneous1.5-fold increments of inner pressure
P , flow rateQ, and axial stretchλz, which are sustained in time (Figure 2.f , solid line). We show in Figure 2.a− e (solid
lines), the G&R response predicted by the full model of Section 4.1 for this combined loading case. The evolving response
reveals that the inner radiusa (Figure 2.a) initially increases sharply in parallel with the increased combined loading while
the thickness (Figure 2.b) decreases (even though the response is not initially isochoric, as we see next).

After this initial response, botha andh increase at a lower rate until reaching new steady-state “homeostatic” values. We
can also see that the referential densitiesρmR andρcR for smooth muscle and collagen (Figures 2.d and 2.e) increase quickly,
meaning that the G&R process starts promptly, again reaching new steady-state values. The increment of mass addition
for both constituents during this complex loading is consistent with the evolution of the over-stress functions for collagen
and smooth muscleΥα (see Figure 2.c for collagen and recall thatΥm − 1 = kΥ (Υc − 1)), which ultimately drive the
G&R process (via Eq. (81)). Since all three external insultsare sustained, the artery tends to “relax” the altered stresses
and restore mechanobiological equilibrium (mathematically described byΥα = 1, recall Eq. (69)). In this particular case,
the mechanical-stimulus functionsΥα reach a maximum ats ≈ 7 days, then decrease, approaching to equilibrium values
Υα → 1 for s = 560 days≫ 14 days≡ sG&R (recall Remark3). If the external insults were sustained beyonds = 560
days, the eventually reached constant (equilibrium) valueΥα = 1 would give a vanishing net mass production situation
during which time production would equal removal within an unchanging state (tissue maintenance).
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Additionally, we show in Figure 2.a − e (solid squares) thetime-independentsolution that the mechanobiologically
equilibrated G&R formulation of Section 4.2 (system of Eqs.(103)-(106)) predicts for the present combination of external
loadsPh/Po = Qh/Qo = λzh/λzo = 1.5 (Figure 2.f ). To compute this solution, we employed a standard Newton–

Raphson procedure, with starting pointah0/ao = ε
1/3
h , hh0/ho = γhε

1/3
h , ρch0/ρ

c
o = 1, andfzh0/fzo = hh0(2ah0 +

hh0)/(ho(2ao + ho)). Clearly, the mechanobiologically equilibrated model yields the same long-term, steady-state, tissue
maintenance solution given by the full integral model. Although not shown, both formulations yield the same (long-term)
outcomes for other combinations of external stimuli that were evaluated.

We submit that —given any alteration ofP/Po, Q/Qo andλz/λzo, applied at any rate, but eventually sustained in time,
that leads to a mechano-adaptation— the present formulation can be used with confidence to obtain the resulting evolved,
mechanobiologically equilibrated state in a computationally efficient manner. That is, we can bypass the need to track
the history of the many variables in the full model calculation. For example, the full model simulation in this example,
integrated up tos = 560 days (when the solution is relaxed) with a time step∆s = 1 day, took a computational time of the
order of seconds, whereas the equilibrated, single solution computed from the resulting nonlinear system of equilibrium
equations was obtained in a few hundredths of a second, both within an interpreted (Matlab) environment. This2 order of
magnitude reduction in computational time (and associatedmemory) could prove important when performing (long-term)
large scale 3D simulations as well as problems of parameter sensitivity, uncertainty quantification, or optimization.

5.2 Instantaneous and mechanobiologically equilibrated solutions

We solve in this example Eqs. (103)-(106) for different values ofγh = Ph/Po andεh = Qh/Qo, with λzh/λzo = 1. That
is, we obtain exact mechanobiologically equilibrated solutions for long-term, steady states after sustained changesof the
external stimuli (i.e. such thats/sG&R ≫ 1). For each pair{γh, εh}, we also compute the transient, mechanobiologically
unbalanced, elastic solution of the model corresponding toabrupt changes in pressure and flow rate{Ph, Qh} that are
applied completely ats = 0+ and depart from the homeostatic state{Po, Qo} at s = 0− (i.e. such thats/sG&R ≪ 1).
In this last case, we consider the instantaneous response ofthe material to be isochoric, soλrλθλz = 1, whereby the
constituent mass fractions remain (initial) homeostatic,the stressesσα

θθ for smooth muscle and collagen are obtained from
hyperelasticity considerations with respect to the initial homeostatic configuration, and the reference length for the active
stretchλm(act)

θ is aact = ao.
Figure 3 shows both instantaneous (meshed) and relaxed (solid) responses for each pair{γh, εh} over the ranges0.5 ≤

γh ≤ 1.5 and0.5 ≤ εh ≤ 1.5. Specifically, shown are solutions for inner radiusa, wall thicknessh, referential density
for collagenρcR = Jρc (with that forρmR = Jρm similar), circumferential passiveσpas

θθ and activeσact
θθ stresses, and the

relative shear overstresses∆τw = (τw − τwo)/τwo. Consider two particular cases of interest:{γh, εh} = {1.5, 1}, that is,
an increment in distending pressure while maintaining flow rate constant, and{γh, εh} = {1, 1.5}, that is, an increment in
flow rate while maintaining pressure constant.

In the first case,{γh, εh} = {1.5, 1}, the instantaneous elastic response corresponding to an isolated increment in pres-
sure yields{a+/ao, h+/ho} = {1.023, 0.979}, that is, the inner radius increases while the thickness decreases consistent
with transient incompressibility. With the symbol (+) we refer to the instants = 0+. The overstresses associated to the
increase in pressure are mainly intramural, coming from a dramatic change in the passive stress (σpas

θθ+/σ
pas
θθo = 1.87), with

relative over-stresses{∆σ+,∆τw+} = {(σθθ+ − σθθo)/σθθo, (τw+ − τwo)/τwo} = {0.57,−0.067}. Note that the wall
shear stress decreases slightly due to the increase in innerradius with constant flow rate. The instantaneous active stress
changed little (σact

θθ+/σ
act
θθo = 1.08), even though it is yet positive consistent with the instantaneous, small decrement of flow

shear stress. At this instant, direct assessments of both stimulus-mediated functions for smooth muscle and collagen give
Υα

+ > 1, so the artery is mechanobiologically unequilibrated ats = 0+. Since the external stimulus{γh, εh} = {1.5, 1} is
sustained, the artery tends to restore internal equilibrium through respective mass turnover of smooth muscle and collagen
(recall Eq. (81)), untilΥα

h = 1 (recall Eq. (69)) ats/sG&R ≫ 1. Thus, turnover of smooth muscle and collagen are driven
so as to decrease the initial intramural stress deviation∆σ+ = 0.57 and to increase the initial shear stress deviation∆τw+ =
−0.067. The corresponding mechanobiologically equilibrated, G&R state is{ρmRh/ρ

m
o , ρcRh/ρ

c
o} = {1.623, 1.403} and

{∆σh,∆τwh} = {−0.0085,−0.017}. Finally, consistent with the mass turnover and target stresses, mechanobiological
equilibrium ats/sG&R ≫ 1 yielded a decrease in luminal radius and an increase in wall thickness (respect to the previous
instantaneous values{a+/ao, h+/ho} = {1.023, 0.979}) such that{ah/ao, hh/ho} = {1.006, 1.521}. Note, therefore,
that{σθθh/σθθo, τwh/τwo} ≈ {1, 1} and{ah/ao, hh/ho} ≈

{

ε1/3, γε1/3
}

= {1, 1.5}, cf. [14].
Next, consider an isolated change of flow rate,{γh, εh} = {1, 1.5}. The instantaneous hyperelastic response (Figure 3)

yields{a+/ao, h+/ho} = {1.008, 0.993}. Again, the inner radius slightly increases and the thickness decreases by incom-
pressibility. Unlike the previous case, however, the overstresses associated with the increase in flow rate are mainly due to
shear stresses, namely{∆σ+,∆τw+} = {0.015, 0.466}. The instantaneous change in passive stress isσpas

θθ+/σ
pas
θθo = 1.22,

while the active stress decreases asσact
θθ+/σ

act
θθo = 0.68 consistent with the instantaneous, high increment of flow shear stress.
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Since the artery is mechanobiologically unequilibrated ats = 0+ and the external stimulus{γh, εh} = {1, 1.5} is sus-
tained, the artery grows and remodels trying to restore mechanobiological equilibrium. The corresponding “relaxed” state
is {ρmRh/ρ

m
o ,∆ρcRh/ρ

c
o} = {1.351, 1.234} and{∆σh,∆τwh} = {−0.0024,−0.005}. Finally, consistent with the mass

turnover and target stresses, mechanobiological equilibrium ats/sG&R ≫ 1 is geometrically accomplished by increases
in luminal radius and wall thickness (respect to the previous instantaneous values{a+/ao, h+/ho} = {1.008, 0.993})
such that{ah/ao, hh/ho} = {1.147, 1.150}. We obtain, again,{σθθh/σθθo, τwh/τwo} ≈ {1, 1} and{ah/ao, hh/ho} ≈
{

ε1/3, γε1/3
}

= {1.145, 1.145}, cf. [14].
Finally, note as a general trend in Figure 3 that the instantaneous, mechanobiologically unbalanced response provokes

relatively small changes in the geometric parameters, withno change in constituent mass, by relatively large changes in
intramural and shear stresses, all measured with respect tothe respective initial homeostatic values. The situation is reversed
after G&R is complete for each external insult{Ph, Qh}. That is, the long-term, mechanobiologically equilibrated response
yields relatively large changes in the geometric parameters, by means of marked changes in smooth muscle and collagen
mass, with relatively small deviations in intramural and shear stresses due to the near recovery of baseline values. Indeed,
since∆σh and∆τwh do not reach the ideal targets∆σh = ∆τwh = 0, we could consider a resetting of homeostatic stresses
from (original) values ato to (evolved) values ath.

5.3 Effects of elastin content

Now verified and validated (Figures 2 and 3), the present simpler formulation can be used to evaluate fundamental hypothe-
ses ( [13]) or perform parametric studies ( [23]) efficiently. As an example, we now solve Eqs. (103)-(106), with material
parameters given in Table 1 (except for the mass fractions),for different relative contents of elastin, smooth muscle,and
collagen (cf. [10,11,24]). As we can observe in Eq. (104), different relative contents of elastin will yield different relative
(evolved) contents of smooth muscle and collagen and, accordingly, different relative contributions of stresses in Eqs. (105)
and (106), and different geometrical outcomes.

We firstly compute arterial adaptations in the ranges0.5 ≤ γh ≤ 1.5 and0.5 ≤ εh ≤ 1.5 for the hypothetical case
in which no elastin is present in the artery. We consider massfractionsφe

o = 0.0, φm
o = 0.77 andφc

o = 0.23. Figure 4

reveals that the arterial adaptations are almost perfect, approaching the theoretical target responsesah/ao = ε
1/3
h , hh/ho =

γhε
1/3
h andσθθh/σθθo = 1 = τwh/τwo for any values ofPh andQh, with λzh = λzo = 1. In Figure 5 we consider a

case with increased content of elastin{φe
o, φ

m
o , φc

o} = {0.30, 0.57, 0.13}. Note that the higher the content of elastin, the
worse the agreement between the grown and remodeled geometric parameters and stresses and their ideal targets. This
should not be surprising since we are assuming that elastin can be neither produced nor removed, thus a perfect adaptation
to the theoretical targets cannot be attained [10, 11, 24]. That is, the long half-life of elastin represents a physiologic
constraint against perfect mechanoadaptation. Conversely, albeit not shown, full turnover of elastin (with{φe

o, φ
m
o , φc

o} =
{0.30, 0.57, 0.13} and, for example,keo = kmo , Ke

σ = Km
σ , andKe

τ = Km
τ ), yielded a full mechanoadaptation similar

to that in Figure 4 wherein all constituents turned over fully. In this regard, we recall that elastin does “turnover” in
development.

Finally, one possibility for ideal adaptation, in the sensethat ah/ao = ε
1/3
h , hh/ho = γhε

1/3
h andσθθh/σθθo =

τwh/τwo = 1, predicted by the present constrained mixture model is given when, first, no elastin is present within the
arterial wall and, second, smooth muscle and collagen sharethe same gainKm

σ = Kc
σ, Km

τ = Kc
τ (i.e., same over-stress

functionsΥm (τ) = Υc (τ)) and ratekmo = kco (i.e., same removal functionqm (s, τ) = qc (s, τ)) parameters, that is
ηΥ = ηq = 1. In this very particular case, the relative mass incrementsof the constituents are equal, see Eq. (96), thus their
spatial mass fractions preserve their respective originalhomeostatic values throughout the G&R process and the intramural
stresses, under the final mechanobiological equilibrium state, recover exactly their original homeostatic values, recall Eq.
(40).

6 Discussion

Adaptative/maladaptative mechanobiological processes in soft tissues are dynamic. We have shown, however, that asso-
ciated long-term, steady-state G&R analyses can simplify the formulation greatly and yet provide considerable insight.
Analyses of this type are frequent in applied mathematics and mechanics. For example, when modeling standard viscoelas-
tic materials, one can consider the existence of both equilibrium and non-equilibrium energies from which total stresses
are derived [25, 26]. In that case, if the loading process is sufficiently fast (relative to a characteristic relaxation time, cf.
Example 5.2), then the response can be derived from both potentials simultaneously. If the loading process is sufficiently
slow, or the external load is sustained over a sufficiently long time (cf. Example 5.2), the response is derived from the
equilibrium potential alone. Importantly, a viscous material is thermodynamically unbalanced if loads are applied rapidly,
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as in the former case, and thermodynamically equilibrated in the latter ones [27]. Even though the material response is
rate-dependent for arbitrary loading, knowledge of these specific (limiting) solutions is fundamental to understanding the
constitutive behavior [27], characterizing the material from experimental data [28], and predicting additional results [29].

Indeed, a direct relationship between models of G&R and viscoelasticity has been suggested in [5]. In that work, a
temporally homogenized constrained mixture model is derived with the main goal of reducing the computational cost of
classical constrained mixture models while preserving biologically motivated, micromechanical characteristics. Setting
that formulation within the context addressed herein, we could say that temporal homogenization seeks to simplify the
integration of the time-dependent terms, giving as a resulta more efficient (while approximated) formulation for analysis
of yet transient, non-equilibrium responses.

Regarding steady-state G&R analyses, Rachev and coworkers[30,31] computed long-term outcomes of arterial models
in a hypertensive scenario. These authors follow a so-called global growth approach, in which the evolution of geomet-
ric and mechanical properties of an artery are computed based on deviations from baseline stress values across the wall
thickness [32]. In the general, rate-dependent case, the postulated evolution equations are integrated in time. In [30, 31],
however, the rate-dependent terms are neglected, and differential equations for the evolution are replaced by nonlinear
algebraic equations that yield corresponding remodeled solutions towards either normotensive [30] or maladaptive [31]
targets.

7 Conclusions

In this paper we derived a mechanobiologically equilibrated, steady-state formulation for a constrained mixture theory of
G&R of soft tissues. We formally derived evolution equations that govern the general time-dependent model from the onset,
obtaining a specific version of the mass production equationconsistent with the concept of mechanobiological equilibrium.
Stresses defined at either the constituent or the (homogenized) mixture level are conveniently distinguished. We further
specialized the general formulation to the case in which rate-dependent effects vanish, deriving a fully equivalent algebraic
formulation in which time is no longer present; hence one need not track the production and removal history of the load-
bearing constituents, with consequent savings in computational time (two orders of magnitude in the present study). This
time-independent formulation is valid, then, for states inwhich the soft tissue has completed its internal process of G&R,
namely purely steady states after long-term applications of sustained external stimuli. Whereas the presentation wasfor a
special case where∆s = s− 0 ≫ sG&R, in fact similar results hold for any∆s = s− sp ≫ sG&R, wheresp is the time at
which the last sustained perturbation occurred. For illustrative purposes, we analyzed such responses using a single layer,
thin-walled description of an idealized artery, obtaininga system of nonlinear, evolved equations that yielded, precisely,
the same long-term solution as the associated full constrained mixture model. Although the present mechanobiologically
theory has not been extended to obtain grown and remodeled, steady-state configurations of soft tissues with more complex
geometries and/or loads, we submit that it may “represent a fundamentally new capability to predict the single thing that
matters most to doctors and patients: long-term outcomes” [33]. Notwithstanding these benefits, the present equilibrium
formulation is not valid, in general, for the analysis of truly time-dependent responses of soft tissues, for which the full
integral formulation is needed to compute the time course ofthe G&R.
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Appendix: List of Symbols

It is common to write many mechanical quantities per unit mass or volume, but both can change in biological growth and
remodeling. Here we list mass-and-volume-related quantities, with SI units. If constituents are modeled as incompressible,
respective reference-volume-specific and current-volume-specific properties are equivalent. In contrast, if the volume of
mixture varies via production/removal of mass, variables defined per unit reference or current volume of mixture must be
distinguished. We note, too, that traction-free configurations can evolve and so too homeostatic states, hence reference
configurations need not equal original references.

Intrinsic properties of constituents

ρ̂α Mass density of constituentα: current mass of constituentα per unit current volume of constituentα kg ·m−3

Ŵα Volume-specific strain energy function of constituentα: current strain energy of constituentα per unit current
volume of constituentα J ·m−3

Ŵα
m Mass-specific strain energy function of constituentα: current strain energy of constituentα per unit current mass

of constituentα J · kg−1

Properties of constituents at the mixture level

Mα Partial mass of constituentα within the mixture (usually defined locally) kg

V α Partial volume of constituentα within the mixture (usually defined locally) m3

Πα Mass production rate of constituentα (usually defined locally) kg · s−1

ρα Apparent spatial mass density of constituentα: current mass of constituentα per unit current volume of mixture
kg ·m−3

ραR Apparent referential mass density of constituentα: current mass of constituentα per unit reference volume of
mixture kg ·m−3

Φα
R Referential volume fraction of constituentα: current volume of constituentα per unit reference volume of mixture

[−]

Φα Spatial volume fraction of constituentα: current volume of constituentα per unit current volume of mixture[−]

φα Spatial mass fraction of constituentα: current mass of constituentα per unit current mass of mixture [−]

mα Spatial mass density production rate of constituentα: current mass production rate of constituentα per unit current
volume of mixture kg · s−1 ·m−3

mα
R Referential mass density production rate of constituentα: current mass production rate of constituentα per unit

reference volume of mixture kg · s−1 ·m−3

mα
N Referential nominal mass density production rate of constituentα: current nominal mass production rate of con-

stituentα per unit reference volume of mixture kg · s−1 ·m−3

Wα
R Referential strain energy function of constituentα: current strain energy of mass of constituentαwithin the mixture

per unit reference volume of mixture J ·m−3

Properties of mixture

M Mass of mixture (usually defined locally) kg

V Volume of mixture (usually defined locally) m3

Vo Reference (original homeostatic) volume of mixture (usually defined locally) m3

ρ Spatial mass density of mixture: current mass of mixture perunit current volume of mixture kg ·m−3

ρR Referential mass density of mixture: current mass of mixture per unit reference volume of mixture kg ·m−3
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ρ = 1050 kg/m3

[φe
o, φ

m
o , φc

o] = [0.02, 0.76, 0.22]
[ao, ho] = [1.4, 0.12]mm

ce = 70.6 kPa
[cm1 , cm2 ] = [10 kPa, 3.5]
[cc1, c

c
2] = [672.5 kPa, 22]

[Ge
r , G

e
θ, G

e
z] = [1/1.42, 1.4, 1.4]

[Gm
θ , Gc

θ] = [1.3, 1.08]
Tmax = 170 kPa
kact = 1/7 day−1

[λM , λ0] = [1.1, 0.4]
[CB, CS ] = 0.8326× [1, 0.5]
[kmo , kco] = [1/14, 1/10] day−1

[Km
σ , Km

τ , Kc
σ, K

c
τ ] = [2, 1, 1, 0.5]

Table 1 Baseline material parameters for a cerebral artery. Adapted from Ref. [6] for the specific examples performed in this work.
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κ
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F
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α

Constituent
natural configurations

Mixture in vivo configurations

Fig. 1 Schematic view of different configurations involved in the G&R response of a soft tissue. The original homeostatic configuration
of the mixtureκ (0) = κo is chosen as the reference configuration for the computationof G&R deformations of the mixture via
F (τ ), τ ∈ [0, s]. The deformation experienced, at times, by the material element of constituentα deposited at timeτ is given by
F

α
n(τ) (s) = F (s)F−1 (τ )Gα, where we assume that the constituents are deposited with constant prestretchesGα (τ ) = G

α and that
all constituents are constrained to deform with the mixture.
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Fig. 2 Long-term, steady-state solution computed with the full (line) and mechanobiologically equilibrated (solid square)models.
Shown are (a) inner radiusa/ao, (b) thicknessh/ho, (c) collagen over-stress functionΥc, (d) referential mass density of smooth muscle
ρmR /ρmo , (e) referential mass density of collagenρcR/ρ

c
o, and (f) loads prescribed simultaneouslyP/Po = Q/Qo = λz/λzo from 1 to

1.5.
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Fig. 3 Instantaneous (hyperelastic) responses ats = 0+ (meshed surfaces) and associated mechanobiologically equilibrated states at
s/sG&R ≫ 1 (solid surfaces) following respective instantaneous, andthen sustained, changes of luminal pressure (γh = Ph/Po) and
flow rate (εh = Qh/Qo) with respect to the initial homeostatic stateγh = εh = 1 (black solid point). Shown are (a) relative luminal ra-
diusa/ao, (b) relative thicknessh/ho, (c) relative referential mass density of collagenρcR/ρ

c
o, (d) passive contribution to circumferential

stressσpas
θθ [kPa], (e) active contribution to circumferential stressσact

θθ [kPa], and (f) increment of flow-induced shear stress relative to
the initial homeostatic value∆τw = (τw−τwo)/τwo. The axial stretch with respect to the initial homeostatic configuration is prescribed
asλzh = 1 (with total axial stretch relative to unloaded≃ 1.6).
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Fig. 4 Caseφe
h = 0.00, φm

h = 0.77, φc
h = 0.23 (hypothetical case without elastin). Mechanobiologically equilibrated states (solid

surfaces) and associated ideal targets (meshed surfaces) for respective changes of inner pressure (γh = Ph/Po) and flow rate (εh =
Qh/Qo) with respect to the initial homeostatic stateγh = εh = 1 (black solid point). Shown are (a) relative luminal radiusah/ao

(ideal targetah/ao = ε
1/3
h ), (b) relative thicknesshh/ho (ideal targethh/ho = γhε

1/3
h ), (c) relative referential mass density of collagen

ρcRh/ρ
c
o (ideal targetρcRh/ρ

c
o = Jtarget), (d) passive contribution to circumferential stressσpas

θθh [kPa] (ideal targetσpas
θθh = σpas

θθo ), (e)
active contribution to circumferential stressσact

θθh [kPa] (ideal targetσact
θθh = σact

θθo), and (f) increment of flow shear stress relative to the
initial homeostatic value∆τwh = (τwh − τwo)/τwo (ideal target∆τwh = 0). The axial stretch with respect to the initial homeostatic
configuration is prescribed asλzh = 1.
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Fig. 5 Caseφe
h = 0.30, φm

h = 0.57, φc
h = 0.13 (elastin does not turnover). Mechanobiologically equilibrated states (solid surfaces)

and associated ideal targets (meshed surfaces) for respective changes of inner pressure (γh = Ph/Po) and flow rate (εh = Qh/Qo)
with respect to the initial homeostatic stateγh = εh = 1 (black solid point). Shown are (a) relative luminal radiusah/ao (ideal
targetah/ao = ε

1/3
h ), (b) relative thicknesshh/ho (ideal targethh/ho = γhε

1/3
h ), (c) relative referential mass density of collagen

ρcRh/ρ
c
o (ideal targetρcRh/ρ

c
o = Jtarget), (d) passive contribution to circumferential stressσpas

θθh [kPa] (ideal targetσpas
θθh = σpas

θθo ), (e)
active contribution to circumferential stressσact

θθh [kPa] (ideal targetσact
θθh = σact

θθo), and (f) increment of flow shear stress relative to the
initial homeostatic value∆τwh = (τwh − τwo)/τwo (ideal target∆τwh = 0). The axial stretch with respect to the initial homeostatic
configuration is prescribed asλzh = 1.
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