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Growth and remodeling of soft tissues is a dynamic procedseaveral theoretical frameworks have been developed to ana
lyze the time-dependent, mechanobiological and/or bitraeical responses of these tissues to changes in exteadal lo
Importantly, general processes can often be convenieafigrated into truly non-steady contributions and steaalg-s
ones. Depending on characteristic times over which themaitéoads are applied, time-dependent models can sonetime
be specialized to respective time-independent formuiattbat simplify the mathematical treatment without compusa

ing the goodness of the particularized solutions. Very fawdies have analyzed the long-term, steady-state respafise
soft tissue growth and remodeling following a direct apptoaHere, we derive a mechanobiologically equilibratednor
lation that arises from a general constrained mixture mdffelsee that integral-type evolution equations that cheriae
these general models can be written in terms of an equivakrdf time-independent, nonlinear algebraic equatioas th
can be solved efficiently to yield long-term outcomes of glomnd remodeling processes in response to sustained &xtern
stimuli. We discuss the mathematical conditions, in terfnsrders of magnitude, that yield the particularized edreti
and illustrate results numerically for general arteriathrano-adaptations.
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1 Introduction

Biological soft tissues consist of myriad structurallyrgfgcant constituents that are collectively referred tdesextracellu-

lar matrix. Resident cells establish, maintain, and rerhitite matrix, which endows the tissue with both stiffnesgfsgth

and instructions that guide cell behavior. Mathematicatieie that describe and predict changes in overall tissuetane

and function can provide increasing insight into connettibetween the biology and mechanics. Two theoretical frame

works have emerged to describe soft tissue growth (i.engdén mass) and remodeling (i.e., change in structure): the
theory of kinematic growth [1] and the constrained mixtredry [2]. The former tends to be mathematically simpler but

to focus on consequences of growth. The latter tends to fmecusechanisms that drive growth and remodeling (G&R), at-

tempting to capture the different rates of turnover and neteroperties exhibited by individual constituents tbanstitute

the tissue; this approach can be computationally expehsiwever.

Regardless of approach, G&R tends to be driven by changéséhdmomechanical stimuli from “homeostatic target”
values that are established via the process of developinguarticular, differences in mechanical stress from tevgiies
are primary drivers of soft tissue adaptations via mechahadiical processes (i.e., key biological responses bls tel
mechanical stimuli). From a thermodynamic perspectivé]3perturbations in stresses from normal values provoke an
internal imbalance such that a dissipative (energy consgh®&R process seeks to restore equilibrium.

Such adaptative/maladaptative mechanobiological pseseare dynamic, hence evolving cell driven tissue stractur
and function typically requires one to model the generaétiiependent process. There are special situations, hgweve
in which unsteady effects vanish. Hence, as in many areasatffematical physics, steady-state analyses may provide
tremendous simplification and yet considerable insightwalds this end, note that the constrained mixture theory of
G&R has parallels with the Boltzman theory of viscoelagficivith both employing hereditary integrals to capture the
“relaxation” of the material back towards its preferrede{®].
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2 M. Latorre and J.D. Humphrey: A Mechanobiologically Edprited Constrained Mixture Model for G&R of Soft Tissues

In this paper we present a steady-state, mechanobiolbgézalilibrated solution of classical constrained mixtored-
els for growth and remodeling of soft tissues [2]. In the gaheate-dependent case, the integral equations for the in
dividual load-bearing structural constituents track tkiehdng mechanical states in which the constituents arelpced
and removed. We will see that these G&R processes take phtetd/e to a material-dependent characteristic time, say
sa&r- Similar to the case of viscoelasticity mentioned aboveéwer, one can directly compute the long-term (“relaxed”)
outcome of general constrained mixture models when theredtisults are eventually sustained over time or, moreiépe
ically, for intervalsAs = s — 0 such thats/sqe.r > 1. In this case, the evolution equations for the full consdimixture
approach can be pre-integrated analytically without hiiing additional constitutive approximations, givingeagesult
a fully equivalent set of nonlinear evolved (algebraic) &ipns that can be solved easily and efficiently. For purpoge
illustration, we show numerical results for a prototypisaft tissue — an elastic artery. In particular, we show that t
present long-term, steady-state formulation recoverfinlabadapted state predicted by the full constrained méxinodel
in cases of perturbed blood pressures, flows, and axiatb&st Further parametric studies then illustrate theyuth the
formulation.

2 A constrained mixture model for G& R of soft tissues

First, we summarize salient features of a constrained maxtuodel for G&R of soft tissues [2], which has satisfactoril
predicted complex vascular behaviors as, for example, §5;771]. The main aim of this section is to highlight undentyi
hypotheses on which the present model will be built, esfigaiagarding the constitutive relations for mass producti
and removal while distinguishing properties defined at tit@vidual constituent level versus the whole mixture levidie
specific expressions that these relations acquire are fo@ii@l for the mechanobiological equilibrium solutionaked in
the next section, where a balance between production anovedmecessarily emerges.

2.1 Differential massformulation

Consider an (infinitesimal) element of volud&, in the original homeostatic configuration at G&R time- 0. Consistent
with the constrained mixture theory [21YV, is occupied, in a homogenized continuum sense, by multiptestituents
a=1,2,..., N, for which we assume that the bulk modulus far exceeds ther shedulus at any instant. The mass of each
constituent M within (initial) volumedV, can evolve fors > 0 through

oM« (s) = /_S O (1) ¢* (s, 7) dT =M™ (0) Q“ (s) + /OS OII% (1) ¢% (s, 7) dT (1)

wheredII* (7) > 0 is a true (local) mass production rate at time. s andg® (s, 7) € [0, 1] represents the fraction of the
mass deposited at timethat survives at time. Hence, for a given, with —oco < 7 < s,

0=q"(s,—00) <¢"(s,7) <¢"(s,5) =1, @)
or, for a givenr, with 7 < s < oo,

0=4q"(c0,7) <q%(s,7) <¢“(1,7)=1. 3)

Similarly, Q* (s) represents the fraction of mass that existed at time- 0 that survives at time. Assuming that
oII* (7 < 0) remains constant for a sufficiently long period preceding= 0, i.e. 6II% (7 < 0) = OII* (0) = OIIY
andoM® (0) = 6MS, with subscripb denoting aroriginal homeostatistate, therQ“ (s) is given in terms ofy* (s, ),
from Eq. (1), through

0
. / ¢ (s.7) dr
511 / ¢ (57 dr = SMEQY (s) = Q¥ (s)=lo ()
- / q* (0,7)dr

whereQ® (0) = 1. The local production rate of mass at arbitrary timean be expressed in terms of a nominal &,
and a stimulus-dependent functiti® that will ultimately drive the G&R process, hamely

1% (7) = oMLy (1) T (7) (5)

where, importantly, the nominal ra#él}, may evolve during homeostatic processes (i.e., targeesahay reset).
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The strain energy stored locally bW/« (s) at times is

W (s) = [ O (1) (5,7 Wi (Ciy (s))dr ©)
WhereW“(Cg(T) (s)) is a mass-specific strain energy function for constitueahdCy’ , (s) is the right Cauchy—Green
tensor obtained from the deformation gradlé‘r?t( s) experienced by the material deposited at timén a generic
intermediate configuration) that survives at tim@gn the current loaded configuration); see Figure 1 whereby

Fi)(s)=F(s)F ()G (1) =F () F ' (1) G, )

where we assume that constituents are deposited withinittian@via constant, symmetric, and volume-preserving'tde
sition stretch” tensors, that G“ (1) = G* V7, G*T = G“, anddet G* = 1. Consistent with an implicit homogenization
procedure, the deformation gradléfflt(r) (s) is computed by assuming that the motion of each constitoeng deposited,
is constrainedio equal that of the soft tissue as a whole, which is given bgrdeation gradienF'. The corresponding
right Cauchy—Green deformation tensor reads

Cory () = FST (5) Sy (5) = GOF 7 () C () F~' (7) G, (®)

whereC (s) = FT (s) F (s) is a measurable, mixture level deformation. See [8] for @ange of a mass-based approach.

2.2 Referential volume formulation

We now obtain from the previous formulation, derived for Hiedential mass element, its equivalent formulation pé&t un
reference volume (see Appendix for nomenclature). From(Eq.

9= [ wp)e s ©)

wherep%, o dM™/6V, is the referential mass density of cohar{in a homogenized sense) and;, = aef Ol /6V, is the

mass production rate per unit reference volume (i.e., massity production rate). From Eq. (5), we also have

m% (1) = my (1) T (1) , (10)

wherebym$, is written in terms of two functions, namely a nominal protioe rate per unit reference volume; (7) that
is modulated by a stimulus-dependent functioh(7).

From Eg. (6), the corresponding strain energy function forstituenty (in a homogenized sense), per unit reference

volume of the mixturelV 5 def W[5V, is

/ m% (1) ¢ (s,7) W“(CZ‘(T) (s))dr . (11)

Recall thatW;; is a mass-specific strain energy function for constitue(ite., an intrinsic material constitutive relation).
We can convert it to a volume-specific counterp&iit by means of the (herein assumed constant) true mass dgfigity
constituenty (i.e., not its homogenized, apparent mass density witrectsp the mixture, either materiaf, or spatialp®)
as

Wa( z('r) (s)) = AaWu( n(‘r)( s)) - (12)

The strain energy function of constituentdefined per unit reference volume of the mixture, then reads

/ m$ (T (s,7) W”‘(CS(T) (s))dr (13)

and for the mixture we have
s) =Y Wi(s). (14)

This referential form of the strain energy for the mixturehas similar to that used in hyperelasticity. See [6, 7, fa3
similar formulations.

Copyright line will be provided by the publisher



4 M. Latorre and J.D. Humphrey: A Mechanobiologically Edprited Constrained Mixture Model for G&R of Soft Tissues

2.3 Stresses

We consider the response of a typical soft tissue to be isachbeach fixed G&R time (i.e., for transient deformations
with G&R time frozen). The Cauchy stress tensor for the 8., mixture) thus reads

o(s)=> o(s)—p(s)I (15)

whereo® is the Cauchy stress contribution for constituergndp is a pressure-type Lagrange multiplier associated with
the incompressibility constraint = det (F) = const to be calculated at each fixed, G&R tirae
To obtain stresses for each constituent at the mixture ke¥ehote, from Eq. (8), that

Chn (s) = GF (oG F T (r):C(s) (16)

where operator symbab represents the mixed dyadic prodat © B);;; = A, Bj; and operator symbolperforms the
usual double contraction of indices. Note, too, that [12]

aC%(T) (S)

sory GG (). a7

The associated second Piola—Kirchhoff stress tensor &radat fromil’ 3 (s), which is given by Eq. (13), via

OWg(s) 2 [® 8‘;[/0‘(0%(7) (s)) oCo ) (s)
SY(s) =22 — — @ @ : dr . 18
If we define the second Piola—Kirchhoff stress tensor at tmstituent level as
. W (C2, (5))
[e% @ _ "(T)
then Eq. (18) reads
1 s ~
8 (s) = 5 [ mi(r)a® (5. F (1) Gl ()GF T (1) dr (20)
P~ J—co

where we substituted (and operated o} the fourth-order tenso?Cf;(T) /OC.
The Cauchy stresses” (s) for each cohort are obtained via the corresponding Euletiagrangian stress power equiv-
alence, which gives the following push-forward operatioar$ (s)

1

G'(X(S): m

F () S° (s) F” (s) (21)

with Jacobian/ given by

J (s) = det (F (s)) (22)

~ov0) oV,

Interestingly, substitution of Eq. (20) into Eq. (21) releethe following relation betweea® (s), defined at the mixture
level (i.e. deriving fromiV ), andé“ (s, 7), defined at the constituent level (i.e. deriving fréwt)

1
ﬁa

o%(s) = /j m* (1) q“ (s,7) 6% (s,7)dr (23)

wherem® (1) = m$, (1) /J (7) is the mass production rate per unit current volume of theuméxat timer andé“ (s, 7)
reads

paye’ . 1 « S e o
o (55 T) - W@—)(S))FR(T) (S) S (Cn(T) (S>)Fn(7;) (S) (24)

with det(Fe . (s)) = J (s) /] ().

n
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3 A mechanobiologically equilibrated formulation for G& R of soft tissues

In this section we derive a mechanobiologically equilibtaformulation that arises from the general model outlirzale

for G&R stimuli that are eventually sustained in time. Thus let the model evolve up to a steady state defined by
mechanobiological equilibrium, that is, with tissue addiph to external insults completed. In this case, all pexpres-
sions can be pre-integrated in time to yield an equivalémipker algebraic formulation that provides more intuitiaimout
target states to which the tissue tends to adapt.

3.1 Mechanobiologically equilibrated state

Of course G&R takes time to return the state to homeostallimiing a sustained alteration in the biochemomechanical
environment. We assume, therefore, that mechanobiologggalibrium occurs at some G&R time > sgg g, Where
sa& R represents a characteristic time associated with int€38d® processes. We postulate a characteristic timer
below.

Several statements can be used to define a state of mechiagatabequilibrium for soft tissues [2, 14, 15]. In general
such a state should include balanced constant producti@hseanovals in an unchanging mechanical state. Toward this
end, we let each mass density production ratg (7) equal its respective nominal rateq; () and reach a constant,
evolved, homeostatic value%,,, namely

me (T > squr) def my,, Va. (25)

Hereafter, we will use the subscriptto refer to equilibrated variables in the new homeostatites(ats > sggr) 10
distinguish them from their respective, generally difféarequilibrated values in the original homeostatic state (= 0),
for which we use the subscript Hence, we definenf, (0) = mg; (0) gef m%,. Given Eq. (10), Eq. (25) along with
m% (1> saer) = m (T > sqer) Means that the respective homeostatic stimulus-drivetraldnnctionsYy' reach

unity
T¢ =1, VYa, Vs> sger, (26)

which, then, represent a general (mathematical) conditioattaining mechanobiological equilibrium. In this resp note
that, in generabng,, # mg,;,, but TS = T = 1 while nonequilibrated™* # 1 by definition.

Similarly, constituent specific removal function? (s, 7) reach steady-state expressiaf}s, 7) as well. Thus, the
integral of Eq. (9) specializes to

S

Prn = m%h/ qy (s,7)dT = mS%y, ah s Yo, Vs> sger (27)

— 00

where only the constituents deposited at times- sq¢ r contribute, in practice, to the integral, and where we recs
Ty, as an equilibriunmeanlifetime

q

Ta, d:ef/ qp (s,7)dr, Va, Vs> sgur- )

Normalizing Eq. (27) as
MGh e _ L/ Ton

1= h =
Phn /Ty,

(29)

reveals a balance between the equilibrium mass-specifauption ratel /T, et m$%,,/p%, and the equilibrium mass-

specific removal raté /T;}L consistent with what Humphrey and Rajagopal [2] referredgdtissue maintenance during
which time material that is removed is replaced with eq@mamaterial at the same rate and in an ‘unchanging’ configura
tion”.

Equivalently, Eq. (13) under an evolved state of mecharogical equilibrium reads

1 N P
Wi = Somin TV (G*2) = ’%W&(Ga?) , Va, Vs> saer, (30)
where we used Egs. (25) and (27) and the fact H‘fgattﬂ (s) in Eq. (7), specialized to an ‘unchanging’ configuration
F(1)=F(s) =F, Vs, 7> sgunr, reads
Fy ) (s > sqer) = FuF, G = G* (31)

Copyright line will be provided by the publisher



6 M. Latorre and J.D. Humphrey: A Mechanobiologically Edprited Constrained Mixture Model for G&R of Soft Tissues

soCy () (5> scur) = (G¥)? = G°2. Recognize, too, the termf;, /p* in Eq. (30) as the equilibrium referential

volume fraction of constituent, i.e.
P - 6M,§‘/5VO - 5Vh‘l
pr MY /SVE 6§V,

= PRn (32)

so that the strain energy of the mixture (soft tissue), pérreference volume of the mixture, Eq. (14), specializethto
following (referential) volume-based rule of mixtures

Wen =Y Wiy =) oW (G*?) (33)

which is often a desired, key feature of constrained mixthemries [2]. Note that a general rule of mixtures based on
referential volume, rather than mass, fractions is alsiveein the field of micromechanics of composite materia& 17].

In summary, mechanobiological equilibrium of a soft tissugose constituents can all turn over, and that has been
subjected to a sustained alteration of the biochemomecalagnvironment, requires: constant rates of mass pramtucti
(Eqg. (25)) and removal (Eqg. (28)) that must balance (Eq.)(@8) occur in an unchanging stdg (along with Eq. (31))
that is reached at time>> sger.

3.2 Mechanobiologically equilibrated stresses

Now consider stresses at the new mechanobiological eqjuititstate, which can be obtained either by differentiathrey
equilibrium strain energy functions while taking into aoob the specialized result of Eq. (31) or by particularizihg
stress expressions derived in Section 2.3 for constitukatsurnover. For example, from Eq. (24)

&% = GSY(G*?) G~ (34)

whereby the stress tenséf, depends only on the (herein assumed constant) depositeinlstensolG* = G§ = G
and coincides with its original homeostatic value

~o
o, =

o _ g (35)

Q

Note, however, thaf; # &, if we relaxed the hypothesi&S — G in Eq. (7). Hence, stresses for constituerdt the
mixture level are, from Eq. (23),

L agaga_ Phso (36)

«
Oh = = Mrtlgn = =
pe P

where, again, we used Egs. (25) and (27) along with the oglati

1 1
Ph = J—hp??,h = J—hm%th% =my Ty, (37)
with m§ = m$,, /J,, the equilibrium mass density production rate (per unit@orvolume of the mixture) and, the
corresponding volume ratio. Then

o = FE = D6 (38)

whered®y = p/p™ = 6V, /6V}, is the spatial volume fraction of cohattin the new equilibrium configuration, thus we
recover a (spatial) volume-based rule of mixtures for théldmium Cauchy stresses as well (cf. Eq. (15))

on=> op—pl=Y ®6"—psl. (39)
« «@
Sinces = 56 in the original homeostatic state aatf = 96 in the new equilibrium state, then

@(X (63
hgo = Phgo ) (40)

«
oy = o o
L s

so the Cauchy stresses of the cohorat the mixture level in the new homeostatic state becomeasgective Cauchy
stresses in the original homeostatic state scaled by tie ghthe spatial mass densities (or volume fractions) in the
respective configurations. We will see in examples below gffa= p&, and thuss) = 0%, in some special cases only,
cf. [15].
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4 Specialization for arteries

Here we specialize the constrained mixture framework, tiwlyeneral non-equilibrated, time-dependent model di@ec

2 and the equilibrated, time-independent particularizedehof Section 3, to G&R experienced by arteries during migtu

The main load-bearing constituentswithin an artery are elastic fibers. (= €), smooth muscleq = m), and fibrillar
collagen & = ¢). Smooth muscle and collagen turnover continuously, whligestin is only produced in the perinatal
period. Elastin also has an extremely long half-lif& (~ 50 years) under normal conditions, for which one can assume no
removal. Elastin is removed (degrades) in aging, aneuryathsrosclerosis, and other conditions, but we do not densi
such pathologies here. Of course, the steps we follow nexhfe specific case can be adapted for other soft tissues or
vascular problems of interest, including marked loss odteld 7, 18].

4.1 A constrained mixture model for G&R of arteries

Consistent with many empirical studies, we assume an expiahdecay for structurally significant constituents miede
by the survival functio® (s, 7), at fixedr, of the form (cf. Egs. (2) and (3))

g (5,7) = exp (/ka (t) dt> . a=mec (41)

wherek® (t), with 7 < ¢t < s, varies with respect to its original homeostatic valjethrough
K (1) = kg (1+ (Ao (1)), a=m,c (42)

with Ao (t) accounting for any normalized difference (positive or riegeo account for damage or disuse related removal)
between a given intramural Cauchy stress measuaetimet at the mixture level, namelg (¢), and its corresponding
original homeostatic valug,

Ao (t) = ———2 = = : (43)

The stress valué represents the overall tensional state within the arterddl (e.g., a principal value, invariant, or overall
magnitude — all scalars) such thit (¢) increases and the decay given &y(s, 7) is expedited, accordingly (see [7]
and references therein). Alternativelyg could be defined in terms of cohort-specific stresses defingekaonstituent
level [6, 7] which, based on the equilibrated relation giire&q. (38) or its general counterpart of Eq. (23), yieldsiEm
effects.

Similarly, we can let the stimulus-mediated productionmté&t* (7) in Eq. (10), for the specific case of mechanoadaptive
arteries, account for normalized differences betweeatntiral (e.g.5) and/or wall shear stresseg, at timer, and their
respective original homeostatic values. An illustrativedrized form (consistent with responses to modest feEtions
in load) in terms of mixture-level stresses can be written

T(r) =1+ KSAo (1) — KEAT, (1), a=m,c (44)

where K and K are constituent-specific gain parameters ang, = (7, — Two)/Two- At the initial homeostatic state,
sayT = s = 0, we haveAo = 0 andAr,, = 0 and Eq. (44) recovers the equilibrium conditi®f} (s < 0) = 1 discussed
in Eq. (26). At the same time, we obtain from Eq. (42) tha(s < 0) = k2, so full integration of* (0, 7) = ¢% (0,7) in
Eq. (41) yields (cf. Eq. (28))

0 -0
1
Ty, = /_ g5 (0,7)dr = /_ exp (k§T)dr = Zad a=mc (45)

and we recognize the (original) mean homeostatic mass r@mate1/7,, asky. The same (equilibrium) analysis per-
formed at an evolved homeostatic state, With(s > sqe.r) = ki in Egs. (41) and (42), yields (cf. Eq. (28))

S S 1
T;;L:/ qg(S,T)dTZ/ exp(—k,‘f(s—T))dT:k—a, a=m,c, (46)

—c0 h

Consideration of Egs. (45) and (46) in Eq. (27) at the difi€@&R timess = 0 or s > sge g, automatically leads to the
following generalization for the nominal mass density protibn rate functionn$; () in Eq. (10)

m (1) = k% (1) pr (1) , a=m,c (47)

Copyright line will be provided by the publisher



8 M. Latorre and J.D. Humphrey: A Mechanobiologically Edprited Constrained Mixture Model for G&R of Soft Tissues

such that, withHf'§ =1 = T1¥¢,
My = My, = ko Pro > aNd mpy, =myy, =k pgy, - (48)

Eq. (47), derived herein from considerations of mecharlofioal equilibrium, suggests that the nominal (local) nas
production of a given constituent is proportional to itsremt (local) mass within the mixture, which is tantamount to
saying that the production of each constituent is propoaii¢to the concentration of cells that synthesize that dtoresit,
as posited previously [9].

Moreover, in the present case, the factor of proportiopalit(7) depends on the level of intramural stresses, recall Eq.
(42). With this approach, which is consistent with our déifam of mechanobiological equilibrium given in Section Bet
referential mass density production rate of the cohoiq. (10), reads

mi (1) = k(1) pR (1) T (1), a=m,c. (49)

Similar expressions for mass density production have besed [5, 9,19]. On other hand, the present approach is differe
from the one adopted in, for example, [7], where constitisg@cific basal mass productions are postulated to be ecinsta
per unit reference volume of the mixture. The definitionsged here regarding degradation and production, giviregtas
Egs. (41)—(43) and Eq. (49) respectively, will prove uséiibw.

An additional, common constitutive assumption in conagdimixture models for G&R of soft tissues is that the spatial
total mass density remains constant, that is

e,c,m

p=p(r)=>_ p*(r), Vvr (50)

wherep® (1) is the “apparent” spatial mass density of cohe(tn a homogenized sense). Note th&tneed not to remain
constant, in general. The fact tharemains constant, however, implies that the “true” spatiaks densitiep® of the
different constituents (in a heterogeneous sense) cainiith the actual spatial total mass density of the mixtyreso the
strain energy function of constituentper unit reference volume of the mixture, given in Eq. (1pga@alizes to

W}%(s):% / m (7) g (5,7) W(C2 s (5))dr - (51)

Considering the assumptign= const in Eq. (22) lets us relate current to reference local massesgh the volume ratio
J as well, namely

0V(s) _ OM(s)/p _ 6M(s) _ 6M(s)/Vs _ pr(s)
- oV(0)  oM(0)/p  SM(0)  6M(0)/5V,  p

(52)
wherepp, (s) is the referential total mass density.

4.1.1 Active smooth muscletone

Besides passive contributioss* in Eq. (15), consider too the stress due to contraction ofammuscle cells in the
arterial wall. This contribution to wall stress, assumedb¢oexerted primarily along the circumferential directign is
defined by (cf. Eqg. (38))

o (s) = ¢™ (5) 8 (s) (53)
with [20]

2
e Ay — )\m(act)
&act (S) _ Tmax (1 o 6—02(5)) )‘6 (act) (S) 1 < M )\Mgi )\0 (5)) e @ ey (54)

1 For simplicity, consider a heterogeneous mixture of twminpressible constituents occupying a volumé’ ¢, andb, occupying a volumé/’®,

within total volumeV = V@ 4 Vb, The spatial mass density of the mixture is then obtainedrims of the true mass densities of the constitugfits
a a b
andp” through the volume-based rule of mixtujes= 22 = b% + %b = Y= po + X2 5P If p remains constant for arbitrary volumes< Vo <V
b _ sa _ sb _ _ VetV
andV? =V — Ve thenp® = p° = p, sothalp = p——.
Copyright line will be provided by the publisher
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where¢™ (s) = p™ (s) /p is the spatial mass fraction of smooth muscle (the use of magser than volume, fraction,
as we derived in Eg. (38), will be clear below),.x accounts for the maximum stress-generating capacity afnexle,
C (s) is the ratio of vasoconstrictors (such as the biomoleculed Efb vasodilators (such as NO),, and )\, are the
stretches at which the active force generating capabdlitgaximum and minimum (i.e. zero), respectively, agiﬂ““” (s)

is the current active muscle fiber stretch. We postulatettfeatatioC (s) is modified by normalized differences in flow
induced wall shear stress from its original homeostatioealvith

C(s)=Cp — CsAry () (55)

whereCp > 0 is the corresponding basal ratio afig > 0 is a scaling factor. Note that an increased, instantandwas s
stressAT,, reduces both the rati@ and the tensile wall stresg“t = %! : ey ® ey, and vice versa, as desired [21, 22].
Finally, the circumferential stretch for the active toned&fined asxgl(“t) (s) = a(s)/a*(s), with a (s) the current
luminal radius and*“* (s) an active value whose evolution is to be prescribed. For el@na shift in vasomotor tone via
rearrangement of smooth muscle cells observed in matwrgestmay be modelled using the following linear evolution

equation fora®“* (s) [6]

daa(;s(s) — kact (a (S) _ aact (S)) (56)

wherek®“! is an additional active, relaxation (in the sense of adaptatia structural remodeling rather than chemical
signaling) rate parameter anéi (0) = a (0). An integral-type solution of Eq. (56) fer*“! (s) that adopts the same (con-
ceptual) form as the mass densities of Eq. (9) and the stre$&a. (23) is obtained through a convolution represemtati
(Duhamel’s principle), namely

a® (s) = /S k*ta (7) q" (s, 7) dT (57)

— 00

where we let

qact (8777') _ e—k‘wt(s—?) ) (58)

4.1.2 Elastin
Equation (51) particularized to elastinsat= 0, with C¢ (0) = G2, reads

0 e .
Wamzif»mﬁvmwuﬂwwcwmm7=“ij%c%mw (59)

Note thatGe¢ is not atrue deposition stretch tensor of elastin, but rathetirtual deposition stretch tensor that yields a
mechanical contribution of elastin at= 0 that is mechanically equivalent to the actual one (for wigletstin is gradually
deposited and stretched over the perinatal period, longréef= 0). If we also consider that elastin is neither produced
(i.e.m$, (s) = 0) nor degraded (i.e;° (s, 7) = 1) during health in maturity (fos > 0), thenp$, (s) = p% (0) = p% and

Wils) = Z14(C* (5) (60)

We have in this case (cf. Eq. (8) wilh(7) = I)

C(s)=G°C(s)G* =G0 G°: C(s) (61)
whereby

9C°(5) _ e o ue

c’)C(s)*G ©G°. (62)

The second Piola—Kirchhoff streS§ = 201}, /0C derived from Eq. (60), is

_ 2@ aWe(Ce (s) . aC* (s) _ @Gege(ce ()G, (63)

S =250 90~ »
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10 M. Latorre and J.D. Humphrey: A Mechanobiologically Bipnated Constrained Mixture Model for G&R of Soft Tissues

where we define the associated stresses at the constituelnase

qe _ o OW(C” (5))

S =2 ) (64)
The Cauchy stresses are obtained from Eq. (21)
o° (s) = ¢° (s) F (s) G°S(C* (5))GFT () (65)

where¢® (s) = p°(s)/p = dM¢/5M(s) is the spatial mass fraction of elastin at timeand we used the relation
PR/ J () = p° (s).

4.1.3 Collagen and smooth muscle

From Eq. (51), defined for constapt= p* V«, the Cauchy passive stresses for collagen and smooth narsclef. Eq.

(23))

« *lsmo‘TO‘ST““STT

o ()= 5 [ m(7)a" (5,7 8" (s7)d (66)
whereé” (s, 7) is given in Eq. (24).

4.2 Mechanobiologically equilibrated G& R of arteries
First, after substituting Eq. (49) into general Eq. (9), viséadn a (recursive) expression for the evolutiorp@f(s)

bl = [k (DAY (D¢ () dr, a=mic (67)
whereq® (s, 7), k“ () andY“ () are given in Egs. (41), (42) and (44), respectively. Assumwe that, after a sustained
change of the distending pressutevolumetric flow rate), and axial stretch ., each with respect to individual (original)
homeostatic values, the artery has grown and remodeledraaily fieached a new state of mechanobiological equilibrium
at timess > sggr. Thenpy, T andk® reach equilibrium valuep,, T andkj (to be determined) and Eq. (67)
specializes to

S

o= kot T3 [ aR (sm)dr = X7 a=m.c, (68)
where we used Eq. (46). Hence, dismissing the trivial sohysf;, = 0, balance between mass production and removal of
each cohort¢ = m anda = ¢) at the new (evolved) homeostatic state requires in this,@sexpected (cf. Eq. (26))

Ty=1, a=m,c (69)

which, by virtue of Eq. (44), includes the following balartmetween pressure-induced, intramural over-stresses {inat
Ao > 0 heightens mass production) and flow-induced, shear oxesss(note that\7,, > 0 > C' — Cp attenuates mass
production)

K3 Aop = KX Atyn, a=m,c. (70)

Recalling the assumptign= const, which impliesp® = p Va, the equilibrium stresses of smooth muscle and collagen
at the mixture level, Eq. (36), become
(o ﬁ A~ (e p-Ne 1 . 71
Uh*pa- *d)ho- ) a=1m,c ( )
where in the new equilibrium configuration in this case (df. E38)),2 = ¢ = p/p = 6M*/56M, with &% constant.
For elastin, however, the stresses at the mixture level of&s3) in the original homeostatic state —noting thgt= I and
C¢ = G*C,G¢ = G2—are
o8 = ¢2G°S¢(G)Ge = ¢55° (72)
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and in the new equilibrated state
0§ = ¢5F,GS¢(C5)GFL = ¢5.6¢ (Fp,) . (73)

That is, because it does not turnover in maturity, elastfiordes elastically (due to the presence &) from its initial
homeostatic configuration to a new one. In contrigt,is not present in Eq. (71) because smooth muscle and collagen
continuously turnover.

Note, too, that under static equilibrium both Eq. (56) and (5@) yield

aZCt =ap, (74)

which means that the reference lengtli’ for active stretch calculation has reduced to the currentral radiusa;,, thus

m(act ap,
)\Gh( ) = aact =1 ’ (75)
h

and the stress due to active tone, Egs. (53) and (54), beafoestion of¢;” andAr,y,
o (D] ATn) = ¢ & (ATun) (76)
with

A =17
OA_act (ATwh) = Thox (1 o e—CZ(ATwh)) [1 _ (L) €y X ep (77)

s — Mo

with C' (Ar,,) given by Eq. (55).
Finally, Eq. (39) specializes to the following (spatial) seebased rule of mixtures (recalling thisff = ¢ and we are
considering an active contribution)

e,m,c

m,c
on= Y oftoit —pl =Y 6 + 6555 + o e — pul (78)
«@ o

where the equilibrated-state-independent stre§Ses- &5 = &7, are given in Eq. (34) and the (generally) equilibrated-

state-dependent stresses # 6¢ andé # ¢ are given in Egs. (73) and (77), respectively.

Remark 1
Consider Eq. (9). The rate of change g, (s) is (by Leibniz integral rule)
dp% (s o o ds S oq” (s, T o o o
%() =m% (s)q* (s,s) Ts +/ me (T) %dT =m%(s) — k% (s) p% (s) (79)

— 00

where we have used the fact that, for Eq. (41), (by chain aifghierules)

WD) ey (_ / e () dt) a (_ / ke (1) dt) = ¢ (s.,7) (—ka (5) j—) = —¢" (s,7) kK (s)
(80)

so, using Eqg. (49)
W) _ o () i (5) (07 (5) - 1) 61

Clearly,dp%, (s) /ds = 0 in a mechanobiological equilibrium state, thus (dismigsiine trivial solutionp$, = 0) we arrive

at the same condition given in Egs. (26) and (69). Obviol&ty, (67) represents the general solution in integral form
(which is obtained directly through the convolution regetation or Duhamel’s principle) of the differential eqicat given

in Eq. (79), wheren$, = k“p% Y is the generic forcing term. Introducing Eq. (44) into Eql)§ields

dp% (s
W) _ o (5) i (5) (K2 A0 (5) = K27, (5)) 52)
which is employed in [5] as well, though without the flow shsi@ess contribution or a single constant parametgr=

KoK,
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Remark 2
Eq. (81) can be rephrased in the differential form
dpf; (5)
PR (5)
and then directly integrated to yield the following exglgblution in terms of the out-of-equilibrium functidi — 1

=k“(s) (T (s) —1)ds (83)

%ff) — exp < /0 ke (7) (X0 (1) — 1) d%> (84)

o

where we used the initial value}, (0) = pS. Letkl* = n.kS, with n, > 0, and let the out-of-equilibrium functions

T (7)—1 for smooth muscle and collagen be related proportionaligtighY™ (7) — 1 = ny (Y€ (7) — 1), withny > 0.
Then, we obtain from Eq. (84) for smooth muscle and collagen

PR (5) _ (p%e (S))"""T (85)
Py o5 ’

which we will use below. In this respect, we see that the fagtgy controls how smooth muscle mass changes with respect
to collagen mass for a given G&R stimulusi¥t. Considering now the special case in Eq. (44), the propagiiy relation

Y™ (7)—1=ny (Y (7) — 1) is satisfied forK* = ny K$ and K™ = ny K¢, with the rationy = K7*/K™ = K¢ /K¢
controlling the different effects of wall and shear stresseer the G&R response. We note that this assumption has been
made in previous works (e.g., implicitly in [7, 23], wheye = 1). Neverthelessf'™ (7) — 1 and T (7) — 1 need not be
proportional in a more general case, for which all gain-typerameters are independent.

Remark 3

Observe in Eq. (56) that a characteristic time for the ad#iptaof the reference lengthr<! for active smooth muscle is
st p = 1/k°*. In addition, observe in Eq. (79) that characteristic tinsssociated with changes in mass of constituents
a = m,c are given bys¢, , = 1/k* ~ 1/k%, which are the characteristic decay times of the mass reirfanations

q“ (s, 7). Hence, a characteristic time for the global G&R processriderms of order of magnitude,

1

min(k, kact)

sGeR = Max(s¢y g, SEGR) = (86)
Note that, for the specific case given in Eq. (82)zr can be modulated by specific values of the gain paramétérs
and/or K. The solution discussed in this section, valid for susticteanges in external mechanical stimuli, is reached
at G&R times satisfying/sger > 1, as we show in Example 5.1 below.

All previous equations are defined pointwise within the gatevall; that is, they are equally valid for either thickthin
walled arterial models. For simplicity, we consider belouwrdlayered thin-walled model for illustrative purposesthick-
walled description would provide a more accurate throughthickness solution without changing our main qualitati
results or conclusions. We take the representative measuine intramural stress state, namélyas the first principal
invariant of the mean wall Cauchy stregssnamelys =tro ~ g9 + .., where we assume a quasi-plane-stress state for
which o, < 049 ando,.,. < o... The mean in-plane (biaxial) stresses ando .. are given in terms of the distending
pressure” and the global axial force on the vesge| respectively, through

Pa e

- and o=t (87)

700 = - wh(2a+h)’

whereq is inner radius and is thickness. The intramural over-stress term expresstatims of original ¢) and evolved
(h) homeostatic values (i.e., we allow new homeostatic settpto evolve) reads

Aoy — J00h t 022 1. (88)
0090 + Tzz0

Assuming that the blood flow is Newtonian and fully develogfe@ugh a long cylindrical sector of the artery, with =
44Qp/ (wa3) andy the viscosity, the equilibriundr,, is

Twh Qn al
Twoilzagil (89)

A’T‘wh =

Copyright line will be provided by the publisher



ZAMM header will be provided by the publisher 13

hence, from Eq. (70)

K?<M1)K$<Twhl>0, a=m,ec (90)
0090 T Tzz0 Two

wherea;, (present inoggp,, 0..n andry,y), by (N oger, @ndo..y), and f., (in o..,) are unknowns to be determined for
each prescribed alteration in blood presswie= P,/ P,, blood flow,e, = Q1/Q,, and axial stretch\.;, (note that, in
experiments, one usually prescribes axial stretch rattaer &xial load). If, as in Rematk the gain parameters for smooth
muscle and collagen satisfy the relatiiy’/ K™ = K¢/K¢ = nk, even if they have different valuds?* = ny K¢ and
K™ =ny K¢, then Egs. (90) fotx = m, ¢ can be written

X (Ueeh T 022n 1> B (Twh B 1> —0 (91)
0000 + 0zz0 Two

which is a single equation for the unknowmns h;, andf.;. Itis easy to see that mechanobiological equilibrium adicay
to Eq. (91) is consistent with that stated in [14]. In whatdwls we derive additional equilibrium equations that define
completely the evolved homeostatic state at sqgr-

By symmetry considerations, we model the arterial wall asriimotropic material with the radiat-), circumferential
(#) and axial ¢) directions being preferred axes at the mixture level. Sipessure-induced loads are axisymmetric and
axial stretch is along the long axis, the resulting deforomegradientf;,, expressed in cylindrical coordinates, is diagonal,
i.e. [Fp],.. =diag[An, Aon, Ao With A, Ao and A, equilibrium stretches relative to the initial homeostatiate.
Note that we are neglecting the mechanical effect of the flmuced shear stress over the arterial wall while includtisig
mechanobiological effect, sineg, ~ 1 Pa andogy ~ 100 kPa[20]. The (yet unknown) Jacobian in terms of the stretches
reads

Jn = AMrnAonAzn (92)

where we consider the axial stretshy,, relating both equilibrated configurations, to be knowre§eribed). The radia\,.
and circumferentialy stretches are given in terms @f, a,, hy, andh,

_hh ah—i—hh/Q

A —, and \gp=————. 93
rh ho ) Oh ao+h0/2 ( )
Recall, of course, that,, = \g, = A\., = 1 yield non-zero homeostatic stresses due to depositiottlses:G*.
Since the mass of elastin does not change, its spatial maskydat the new equilibrium state reads
e _ o
=2, 94
Ph I (94)
The spatial mass densities of elastin, smooth muscle atafjeol must satisfy, with constant,
Pr+ Py +Ph=0p. (95)

In addition, from Eq. (85) witlp%;, = Jpf, we obtain the following relation between the spatial masssities of smooth
muscle and collagen

Tnpi ( Jnpj, ) o (96)
P! Po
The total Cauchy stresses at the new equilibrated statevame lgy—recall Eq. (78)

m,c

o= TEGUSUG" 1 LG8 (GG R + ELoi — i ©7)

where the Lagrange multiplier is computed while assuming'c ~ 0 for a thin wall, along withe: ~ 0 ~ ¢¢, and

oct ~ ( for (in-plane) smooth muscle and collagen in Eq. (78). S{&&g, . = diag|G¢, G§, G<], we obtain

r0z

Ph &
Orrh = Oppp, —Ph =0 =  Ph=0pp = f557-thiQA3h . (98)

Copyright line will be provided by the publisher
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The projection of Eq. (76) oveyy ® ey gives the circumferential active stress

2 m —C?(a A -1 2
o.gél}fl (ph ,G/h) = %Tmax (1 —e C=( h)) ll - (WL)W)) ] (99)

where we explicitly indicate the dependence of the r&tion the unknown,. The global equilibrium equatiorgghy, =
Ppap ando.nwhi(2an, + hy) = f.n close the system of equations to be solved, yielding

— aAa h Ge e mAa(’ h Ge e Phah
E p—haee + &SeehGe%\zh + 2n Ghoh (an) — p_hS7:7'hG7:2)‘2h = (100)
—~ P P p p h
and
— pg A pi Ge e2y2 plez Gre e2\2 th
5 + LS GO, — S LGN, = —————— 101
za: p p " heop Tt " whi (2an + ha) (101)

with 69y = 6 : eg ® €9 = G5y, = G4y, ANAGY, = 6 e, ® e, = 62,, = 62,,. Note from the axial global equilibrium
equation that the axial stretehy;, would replace the axial forcg€, ;, as unknown if one prescribefd;, rather tham\,; (as
we do based on biaxial testing procedures).

In order to solve Eqgs. (100) and (101) in a general case, we toeknow the spatial mass density of every cohort of
smooth muscle and collagen contributing to circumferéatia axial passive stresses (first terms in the left-hanessid
Eqgs. (100) and (101)). Four families of collagen fibers dgdnn four directions are frequently considered in arteria
mechanics, namely one oriented circumferentially, onerdeid in the axial direction, and two additional ones ogdrih
symmetric diagonal directions (sayi5 °). Thus, the first (sum) terms in the left-hand sides of Eg80){and (101) include
corresponding passive stress contributions of circumteresmooth muscle and “four” different collagen fiber féigs.
Interestingly, we obtain from Eq. (96), but with exponentityibetween different cohorts of collagen, a common reéati
change in the mass of the different cohorts of collagen vegipect to their initial homeostatic values

(3 Cj Ci c
P _Pn j4j=0°445°90° — Lo _lh (102)
Po Po Po Po
wherep® = 3" p©, which is to be used in the first terms in the left-hand sideSqgs. (100) and (101).

In summary, we will solve the system of nonlinear algebrajgagions formed by Eqgs. (91), (95), (100), and (101) for
Yn = Pn/P,, en = Qrn/Q,, and\.;, (defined herein with respect to the homeostatic configuraiie. ., = 1, see Figure
1) prescribed, which we summarize as

K (Lh RELEC 1> - (T“’h - 1) —0 (103)
0000 + 0zz0 Two
Pt oL TP =0p (104)
«— p% Ao Pz Ge e2 2 leAact Pz Ge e2 2 Prap

Lhgo 4 ChGe  GS2A2, + Hhogact _ Dhge  Ge2)2, — 105
; P 06 P 060h™~6 \Oh P 66h P h h hh ( )

o~ p(i: e pfez de e2 2 Pz Ge e2 2 th
— 0. + _Szz Gz )‘z - T Mpr G’l“ )‘r = 7 5. 1 106
; p p TFETE Ay T T ey (2ah + ha) (106)

where the unknowns arg,, ks, pj,, andf., with other variables expressed easily in terms of thesaomks. This system
of nonlinear equations admit solutions by the (iterativeylifbon—Raphson method, for which a proper initial guessas th
given by an ideal adaptation, namely/a, = 5,1/3, hi/ho = %6}11/3’ p5/ps =1,andf.n/ f.o = hn(2an+hn)/(ho(2a,+
ho)), cf. [14]. Of course, the solutioa, = a,, h, = ho, pf, = p5, andf., = f., is recovered from Egs. (103)-(106) at
the initial homeostatic statg, =, = 1,e, = e, = 1, and\,, = \,, = 1.

5 Illustrative examples

In the following examples we solve numerically the systenmaiflinear equations given in Eqgs. (103)-(106) for a thin-
walled artery containing isotropic elastin, circumferahémooth muscle cells, and circumferential collagen &bérhe
hyperelastic response of elastin is modelled using a nekétomodel

We(Ce (s) = % (Ce(s): 1—3) (107)
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which gives the following constant second Piola—Kirchistféss tensor at the constituent level

qe _ OWE(C(s) _ .
S¢=2 aC () =1, (108)
hence the associated second Piola—Kirchhoff stress coamp®im Eqgs. (105) and (106) are equilibrated-state-inaleget

Gre e _ &e Gre e _ &e Gre e _ &e
Srrh =Cc = S’I"!'O ’ SOOh =Cc = SOOO ) and Srrh =Cc = S’I"!'O ’

(109)

while the Cauchy stresses for elastin yet depend on bothsitepostretches and total mixture stretches, cf. Eqgs. X268
(106). Both circumferential smooth muscle and collagerehglastic responses are modelled using Fung-type models

W“(Ai’im (s)) = % [ecg(/\;j({)(s)—nz -1, a=m,c (110)
2

with a™ = a® = ey, i.e.
)\2(27) (s)=Chy(s):a”®@a”=Cp . (s):eg®eg, a=m,c (111)
The respective second Piola—Kirchhoff stresses at thetitoest level are

awe(ce

(S)) B QdWa()\z(T) (S)) a)\?:(27') (8)

S ) =25 T T i, () 9GO (112
= (A2 (5) — D)et MOV e ey, a=m,c (113)
Taking into account Eq. (31), we arrive at
Ay (8> sger) =Gy, a=m,c. (114)
The corresponding Cauchy stresses at the constituent fewel Eq. (34), are
6oy =6 1 eg@ep = GGG — 1)6'33@3271)2 , a=mc (115)

The elastic parameters for elastin, smooth muscle, andgmil, along with the remaining parameters needed to solve
the system of equations at hand, are given in Table 1. Theia$sd inner pressure at the initial homeostatic state is
P, =14.18kPa = 106.4 mmHg.

5.1 Correspondence between full and equilibrated models

The main goal of this example is to verify that the time-inelegpent formulation of Section 4.2, reduced in practice te.Eq
(103)-(106), yields the same long-term, steady-statetisolias that obtained with the full, time-dependent comséa
mixture model of Section 4.1 for a given set of initially a#d and then sustained external loads. To establish thénsal
feature of the equilibrated formulation in a general casecansider simultaneous5-fold increments of inner pressure
P, flow rate, and axial stretch ., which are sustained in time (Figuref2solid line). We show in Figure 2.— e (solid
lines), the G&R response predicted by the full model of Secd.1 for this combined loading case. The evolving response
reveals that the inner radiugFigure 2q) initially increases sharply in parallel with the increds®mbined loading while
the thickness (Figure &.decreases (even though the response is not initially @agtas we see next).

After this initial response, botlhandh increase at a lower rate until reaching new steady-stat@éostatic” values. We
can also see that the referential densitigsandp$, for smooth muscle and collagen (Figureg @nd 2¢) increase quickly,
meaning that the G&R process starts promptly, again regaiénv steady-state values. The increment of mass addition
for both constituents during this complex loading is cotesiswith the evolution of the over-stress functions forlagén
and smooth muscl& (see Figure 2.for collagen and recall th&™ — 1 = kv (Y° — 1)), which ultimately drive the
G&R process (via Eq. (81)). Since all three external insaifessustained, the artery tends to “relax” the altered stees
and restore mechanobiological equilibrium (mathemdsicscribed byl = 1, recall Eq. (69)). In this particular case,
the mechanical-stimulus functioA%* reach a maximum at ~ 7 days, then decrease, approaching to equilibrium values
T* — 1for s = 560 days> 14 days= sqge r (recall Remarl3). If the external insults were sustained beyang 560
days, the eventually reached constant (equilibrium) val@ie= 1 would give a vanishing net mass production situation
during which time production would equal removal within archanging state (tissue maintenance).
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Additionally, we show in Figure 2.— e (solid squares) théme-independergolution that the mechanobiologically
equilibrated G&R formulation of Section 4.2 (system of E(€93)-(106)) predicts for the present combination of exaér
loadsP,/P, = Qn/Qo = A:n/M.o = 1.5 (Figure 2f). To compute this solution, we employed a standard Newton—
Raphson procedure, with starting poinfy/a, = 5,1/3, hho/ho = %6}1/3' Pho/Ps = 1, and fono/ foo = hno(2an0 +
hno)/(ho(2a, + hy)). Clearly, the mechanobiologically equilibrated modelgssthe same long-term, steady-state, tissue
maintenance solution given by the full integral model. Aliigh not shown, both formulations yield the same (long-jerm
outcomes for other combinations of external stimuli thaterevaluated.

We submit that —given any alteration 8/ P,, Q/Q, and)./).,, applied at any rate, but eventually sustained in time,
that leads to a mechano-adaptation— the present formaledio be used with confidence to obtain the resulting evolved,
mechanobiologically equilibrated state in a computatilgrefficient manner. That is, we can bypass the need to track
the history of the many variables in the full model calcdati For example, the full model simulation in this example,
integrated up te = 560 days (when the solution is relaxed) with a time step= 1 day, took a computational time of the
order of seconds, whereas the equilibrated, single solationputed from the resulting nonlinear system of equilitori
equations was obtained in a few hundredths of a second, btittman interpreted (Matlab) environment. TRi®rder of
magnitude reduction in computational time (and associatechory) could prove important when performing (long-term)
large scale 3D simulations as well as problems of parametesitdvity, uncertainty quantification, or optimization.

5.2 Instantaneous and mechanobiologically equilibrated solutions

We solve in this example Egs. (103)-(106) for different eswofy, = P, /P, ande, = Qn/Q,, With X, /A, = 1. That

is, we obtain exact mechanobiologically equilibrated 8ohs for long-term, steady states after sustained chaoigie
external stimuli (i.e. such tha¥/sqg. r > 1). For each paifv;, 2, }, we also compute the transient, mechanobiologically
unbalanced, elastic solution of the model correspondingbtaipt changes in pressure and flow rafg,, Q,} that are
applied completely at = 0™ and depart from the homeostatic stg#e,, Q,} ats = 0~ (i.e. such thas/sger < 1).

In this last case, we consider the instantaneous resportbe afiaterial to be isochoric, sb.A\gA. = 1, whereby the
constituent mass fractions remain (initial) homeostlie, stressesy, for smooth muscle and collagen are obtained from
hyperelasticity considerations with respect to the ihtiameostatic configuration, and the reference length feraittive
stretchA;"(“Ct) is a®t = q,.

Figure 3 shows both instantaneous (meshed) and relaxéd)(sedponses for each pdif,, £, } over the range8.5 <
v, < 1.5 and0.5 < g, < 1.5. Specifically, shown are solutions for inner radiysvall thicknessh, referential density
for collagenp§, = Jp¢ (with that for p’ = Jp™ similar), circumferential passive,;” and activess’ stresses, and the
relative shear overstressas,, = (7., — Two)/Two. CONsider two particular cases of interety, 5} = {1.5,1}, that is,
an increment in distending pressure while maintaining flate constant, anfty,, 5} = {1, 1.5}, thatis, an increment in
flow rate while maintaining pressure constant.

In the first case{~n, e} = {1.5, 1}, the instantaneous elastic response corresponding tolateid increment in pres-
sure yields{a /a,, h+/ho} = {1.023,0.979}, that is, the inner radius increases while the thicknesgedses consistent
with transient incompressibility. With the symbo}) we refer to the instant = 0. The overstresses associated to the
increase in pressure are mainly intramural, coming fromeanditic change in the passive stresg{ /oy, = 1.87), with
relative over-stresse\o ., Aty,1} = {(090+ — 0000) /0000, (Tw+ — Two)/Twoe} = {0.57,—0.067}. Note that the wall
shear stress decreases slightly due to the increase inrawies with constant flow rate. The instantaneous actiesstr
changed little ¢, /og¢t = 1.08), even though it is yet positive consistent with the instaebus, small decrement of flow
shear stress. At this instant, direct assessments of bothlss-mediated functions for smooth muscle and collagea g
T% > 1, so the artery is mechanobiologically unequilibratesl at 0*. Since the external stimulysy,, e} = {1.5,1} is
sustained, the artery tends to restore internal equilibthrough respective mass turnover of smooth muscle andgsil
(recall Eq. (81)), untilt' = 1 (recall Eq. (69)) ak/scs.r > 1. Thus, turnover of smooth muscle and collagen are driven
so as to decrease the initial intramural stress devidlion = 0.57 and to increase the initial shear stress deviafiop . =
—0.067. The corresponding mechanobiologically equilibrated,Fe8tate is{p%, /o5, p%n/p5} = {1.623,1.403} and
{Aop, ATy} = {—0.0085,—0.017}. Finally, consistent with the mass turnover and targesseg, mechanobiological
equilibrium ats/sqe.r > 1 yielded a decrease in luminal radius and an increase in hiakriess (respect to the previous
instantaneous valugs.; /a,, h+/ho} = {1.023,0.979}) such that{ay, /a,, hn/ho} = {1.006,1.521}. Note, therefore,
that{O'QQh/O'ggo, Twh/Two} ~ {1, 1} and{ah/ao, hh/ho} ~ {61/3,’)/61/3} = {1, 15}, cf. [14]

Next, consider an isolated change of flow rdte,, e, } = {1,1.5}. The instantaneous hyperelastic response (Figure 3)
yields{ay /ao, hy/ho} = {1.008,0.993}. Again, the inner radius slightly increases and the thiskriecreases by incom-
pressibility. Unlike the previous case, however, the avesses associated with the increase in flow rate are maielya
shear stresses, namglo,, A7, } = {0.015,0.466}. The instantaneous change in passive stresgis/op,> = 1.22,
while the active stress decreases g /0! = 0.68 consistent with the instantaneous, high increment of flasashtress.
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Since the artery is mechanobiologically unequilibrated at 0+ and the external stimulugy,,e,} = {1,1.5} is sus-
tained, the artery grows and remodels trying to restore ameaihiological equilibrium. The corresponding “relaxettite

is {p7. /0, Ap/pS} = {1.351,1.234} and{Aoyp,, At} = {—0.0024, —0.005}. Finally, consistent with the mass
turnover and target stresses, mechanobiological equifibats/scer > 1 is geometrically accomplished by increases
in luminal radius and wall thickness (respect to the presimstantaneous valu€s. /a,, h4/ho} = {1.008,0.993})
such that{ay,/a,, hn/ho} = {1.147,1.150}. We obtain, agair{ooon /0000, Twh/Twe} ~ {1,1} and{an/ae, hn/ho} ~
{e1/3,4el/3} = {1.145,1.145}, cf. [14].

Finally, note as a general trend in Figure 3 that the insteeaas, mechanobiologically unbalanced response provokes
relatively small changes in the geometric parameters, mitlthange in constituent mass, by relatively large changes i
intramural and shear stresses, all measured with resptbet tespective initial homeostatic values. The situasaeversed
after G&R is complete for each external ins{R,, @1, }. Thatis, the long-term, mechanobiologically equilibcatesponse
yields relatively large changes in the geometric paramsetsr means of marked changes in smooth muscle and collagen
mass, with relatively small deviations in intramural andahstresses due to the near recovery of baseline valuesednd
sinceAo;, andAr,,, do notreach the ideal targetsr;, = A7, = 0, we could consider a resetting of homeostatic stresses
from (original) values ab to (evolved) values 4.

5.3 Effectsof elastin content

Now verified and validated (Figures 2 and 3), the presentleiniprmulation can be used to evaluate fundamental hypothe
ses ( [13]) or perform parametric studies ( [23]) efficienths an example, we now solve Egs. (103)-(106), with material
parameters given in Table 1 (except for the mass fractidos}ifferent relative contents of elastin, smooth museleg
collagen (cf. [10,11, 24]). As we can observe in Eq. (104jedent relative contents of elastin will yield differerglative
(evolved) contents of smooth muscle and collagen and, doagly, different relative contributions of stresses irsE({L05)
and (106), and different geometrical outcomes.
We firstly compute arterial adaptations in the rangés< ~; < 1.5 and0.5 < ¢, < 1.5 for the hypothetical case

in which no elastin is present in the artery. We consider massions¢; = 0.0, ¢2* = 0.77 and¢$ = 0.23. Figure 4
reveals that the arterial adaptations are almost perfeptpaching the theoretical target responsgsi, = 5,11/3, hu/ho =

yhs,l/3 andoggn/o9eo = 1 = Twh/Two fOr any values ofP, andQy,, with A, = A\,, = 1. In Figure 5 we consider a
case with increased content of elasfif, ¢, <} = {0.30,0.57,0.13}. Note that the higher the content of elastin, the
worse the agreement between the grown and remodeled géopetameters and stresses and their ideal targets. This
should not be surprising since we are assuming that elaetifbe neither produced nor removed, thus a perfect adaptatio
to the theoretical targets cannot be attained [10, 11, 241at Ts, the long half-life of elastin represents a physi@og
constraint against perfect mechanoadaptation. Conyeedbeit not shown, full turnover of elastin (wifpe, ¢7", ¢S} =
{0.30,0.57,0.13} and, for examplek: = k", K¢ = K2, andK¢ = K7), yielded a full mechanoadaptation similar
to that in Figure 4 wherein all constituents turned overyfulln this regard, we recall that elastin does “turnover” in
development.

Finally, one possibility for ideal adaptation, in the setiset a),/a, = 5,1/3, hu/ho = %6}11/3 and opon /o990 =
Twh/Twe = 1, predicted by the present constrained mixture model isngwien, first, no elastin is present within the
arterial wall and, second, smooth muscle and collagen sharsame gaik’)* = K¢, K" = K¢ (i.e., same over-stress
functionsY™ (r) = T¢ (7)) and ratek’” = kS (i.e., same removal functiogi” (s,7) = ¢ (s, 7)) parameters, that is
nr = 1ng = 1. Inthis very particular case, the relative mass incremefritse constituents are equal, see Eq. (96), thus their
spatial mass fractions preserve their respective oritioaleostatic values throughout the G&R process and themiiral
stresses, under the final mechanobiological equilibrilatestrecover exactly their original homeostatic valuesalteEg.
(40).

6 Discussion

Adaptative/maladaptative mechanobiological processasft tissues are dynamic. We have shown, however, that asso
ciated long-term, steady-state G&R analyses can simpiiéyformulation greatly and yet provide considerable insigh
Analyses of this type are frequent in applied mathematidswaechanics. For example, when modeling standard viscoelas
tic materials, one can consider the existence of both dxitin and non-equilibrium energies from which total stesss
are derived [25, 26]. In that case, if the loading processifficiently fast (relative to a characteristic relaxatiome, cf.
Example 5.2), then the response can be derived from botm{mitesimultaneously. If the loading process is suffidient
slow, or the external load is sustained over a sufficienthgltime (cf. Example 5.2), the response is derived from the
equilibrium potential alone. Importantly, a viscous metkis thermodynamically unbalanced if loads are appliqudig,
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as in the former case, and thermodynamically equilibratetthé latter ones [27]. Even though the material response is
rate-dependent for arbitrary loading, knowledge of thegseific (limiting) solutions is fundamental to understarglthe
constitutive behavior [27], characterizing the mateniahi experimental data [28], and predicting additional itsq29].

Indeed, a direct relationship between models of G&R andoékssticity has been suggested in [5]. In that work, a
temporally homogenized constrained mixture model is @eriwith the main goal of reducing the computational cost of
classical constrained mixture models while preservindgogically motivated, micromechanical characteristic®ttiag
that formulation within the context addressed herein, waldcsay that temporal homogenization seeks to simplify the
integration of the time-dependent terms, giving as a resuaibre efficient (while approximated) formulation for arsay
of yet transient, non-equilibrium responses.

Regarding steady-state G&R analyses, Rachev and cowd8®& 1] computed long-term outcomes of arterial models
in a hypertensive scenario. These authors follow a sodtgliebal growth approach, in which the evolution of geomet-
ric and mechanical properties of an artery are computeddbaseleviations from baseline stress values across the wall
thickness [32]. In the general, rate-dependent case, thtellated evolution equations are integrated in time. In 330,
however, the rate-dependent terms are neglected, andediffel equations for the evolution are replaced by noaline
algebraic equations that yield corresponding remodelédisns towards either normotensive [30] or maladaptivE] [3
targets.

7 Conclusions

In this paper we derived a mechanobiologically equilibdatteady-state formulation for a constrained mixture theb
G&R of soft tissues. We formally derived evolution equatitimat govern the general time-dependent model from the,onse
obtaining a specific version of the mass production equatmsistent with the concept of mechanobiological equitliir:
Stresses defined at either the constituent or the (homaepBnizixture level are conveniently distinguished. We farth
specialized the general formulation to the case in whiakdspendent effects vanish, deriving a fully equivalegebfaic
formulation in which time is no longer present; hence onedrest track the production and removal history of the load-
bearing constituents, with consequent savings in comipatttime (two orders of magnitude in the present study)sTh
time-independent formulation is valid, then, for statesvhich the soft tissue has completed its internal process8iR G
namely purely steady states after long-term applicatidrssistained external stimuli. Whereas the presentatiorfoves
special case wherds = s — 0 > sqg g, in fact similar results hold for angks = s — s, > sge.r, Wheres, is the time at
which the last sustained perturbation occurred. For iiiiste purposes, we analyzed such responses using a sygle |
thin-walled description of an idealized artery, obtainangystem of nonlinear, evolved equations that yielded,ipeb¢
the same long-term solution as the associated full congtamixture model. Although the present mechanobiololyical
theory has not been extended to obtain grown and remod&tediysstate configurations of soft tissues with more corple
geometries and/or loads, we submit that it may “represenhddmentally new capability to predict the single thing tha
matters most to doctors and patients: long-term outcon®%’ [Notwithstanding these benefits, the present equilibri
formulation is not valid, in general, for the analysis oflyrtime-dependent responses of soft tissues, for whichhie f
integral formulation is needed to compute the time course@®G&R.
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Appendix: List of Symbols

It is common to write many mechanical quantities per unitsr@svolume, but both can change in biological growth and
remodeling. Here we list mass-and-volume-related quastitvith S| units. If constituents are modeled as incongibés,
respective reference-volume-specific and current-votspezific properties are equivalent. In contrast, if theunod of
mixture varies via production/removal of mass, variablefiretd per unit reference or current volume of mixture must be
distinguished. We note, too, that traction-free configoreg can evolve and so too homeostatic states, hence regeren
configurations need not equal original references.

Intrinsic propertiesof constituents

e Mass density of constituent current mass of constitueatper unit current volume of constituent kg -m=—3

We  Volume-specific strain energy function of constituentcurrent strain energy of constituemtper unit current
volume of constituent J-m™3

Wg Mass-specific strain energy function of constituenturrent strain energy of constituemtper unit current mass

of constituenty J kgt

Propertiesof constituentsat the mixturelevel

M<  Partial mass of constituentwithin the mixture (usually defined locally) kg
1% Partial volume of constituemnt within the mixture (usually defined locally) m3
I~ Mass production rate of constituemfusually defined locally) kg s
e Apparent spatial mass density of constituenicurrent mass of constitueatper unit current volume of mixture
kg -m~3
PR Apparent referential mass density of constituentcurrent mass of constituent per unit reference volume of
mixture kg -m~3

% Referential volume fraction of constituemt current volume of constituent per unit reference volume of mixture
[
o Spatial volume fraction of constitueat current volume of constituent per unit current volume of mixture[—]

P Spatial mass fraction of constituemt current mass of constitueatper unit current mass of mixture -]

m< Spatial mass density production rate of constituerdurrent mass production rate of constituenger unit current
volume of mixture kg-s~!.m™3

me Referential mass density production rate of constituenturrent mass production rate of constituaenper unit
reference volume of mixture kg-s~!.-m™3

m%  Referential nominal mass density production rate of camstito:: current nominal mass production rate of con-
stituenta per unit reference volume of mixture kg-s~!.m™3

W5  Referential strain energy function of constituenturrent strain energy of mass of constituentithin the mixture
per unit reference volume of mixture J-m™3

Properties of mixture

M Mass of mixture (usually defined locally) kg
1% Volume of mixture (usually defined locally) m?
v, Reference (original homeostatic) volume of mixture (ulsudéfined locally) m?
P Spatial mass density of mixture: current mass of mixtureypércurrent volume of mixture kg -m™3
PR Referential mass density of mixture: current mass of mexper unit reference volume of mixture kg -m—3
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p = 1050kg/m?3
[0, o0, 0] = [0.02, 0.76, 0.22]
[ao, ho] = [1.4, 0.12] mm
c® = T70.6kPa
7, f] = [10kPa, 35|
(5, 5] = [672.5kPa, 22]
(G, G, Go] = [1/147, 14, 1.4]
[Gr, G5 = [1.3, 1.08]
Thmax = 170kPa
ket = 1/7day |
Dor, d] = [LL 0.4
[Cp, Cs] = 0.8326 x [1, 0.5]
k7, kS = [1/14, 1/10] day |
K7, K™, Ko, K¢ = [2, 1, 1, 0.5]

Tablel Baseline material parameters for a cerebral artery. Addipten Ref. [6] for the specific examples performed in this kvor

Constituent k% (1)
. n
natural configurations

K(0) =k, K(S)

Mixture in vivo configurations
Fig. 1 Schematic view of different configurations involved in th&Rsresponse of a soft tissue. The original homeostatic cardigpn
of the mixturex (0) = &k, is chosen as the reference configuration for the computaticdB&R deformations of the mixture via
F(7), 7 € [0,s]. The deformation experienced, at tiragby the material element of constituemtdeposited at time- is given by

Fo (s) =F(s) F~' (7) G, where we assume that the constituents are deposited wititasu prestretche&® (r) = G* and that
all constituents are constrained to deform with the mixture
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Fig. 2 Long-term, steady-state solution computed with the fuliel and mechanobiologically equilibrated (solid squaredels.
Shown are (a) inner radiug/a., (b) thickness:/h,, (c) collagen over-stress functioff’, (d) referential mass density of smooth muscle
PR /oo, (e) referential mass density of collagef/pg, and (f) loads prescribed simultaneously P, = Q/Q, = X./\.. from 1 to

1.5.

[kPa]

pas
00

Eh

05 05

Fig. 3 Instantaneous (hyperelastic) responses &t 0" (meshed surfaces) and associated mechanobiologicalljbegied states at
s/saer > 1 (solid surfaces) following respective instantaneous, thed sustained, changes of luminal presstre£ P, /P,) and

flow rate €, = Qr/Q,) with respect to the initial homeostatic state= ¢, = 1 (black solid point). Shown are (a) relative luminal ra-
diusa/a,, (b) relative thickness/h.,, (c) relative referential mass density of collaggyy ps, (d) passive contribution to circumferential
stressoh,® [kPa], (e) active contribution to circumferential stresg;* [kPa], and (f) increment of flow-induced shear stress relative to
the initial homeostatic valuAt,, = (7. — Two) /Two. The axial stretch with respect to the initial homeostatiefiguration is prescribed

as\., = 1 (with total axial stretch relative to unloaded 1.6).
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05 05

Fig. 4 Casep; = 0.00, ¢1" = 0.77, ¢5, = 0.23 (hypothetical case without elastin). Mechanobiologica@tuilibrated states (solid
surfaces) and associated ideal targets (meshed surfacesspective changes of inner pressuye & P,/P,) and flow rate £, =
Qn/Q.) with respect to the initial homeostatic statg = ¢, = 1 (black solid point). Shown are (a) relative luminal radiys/ a.
(ideal target, /a, = =/?), (b) relative thicknesa, /h,, (ideal targetu, /h, = vue)'?), () relative referential mass density of collagen
PRi/ps (ideal targeby, /ps = Jiarget), (d) passive contribution to circumferential stresy, [kPa] (ideal targetoyy, = opg.), (€)
active contribution to circumferential stres§s: [kPa] (ideal targeiogss, = oge.), and (f) increment of flow shear stress relative to the
initial homeostatic valu\ ., = (Twh — Two)/Two (ideal targetAr,,, = 0). The axial stretch with respect to the initial homeostatic
configuration is prescribed as;, = 1.

0.5 05 05 05
Y h

Fig. 5 Case¢; = 0.30, ¢5" = 0.57, ¢, = 0.13 (elastin does not turnover). Mechanobiologically equdiled states (solid surfaces)
and associated ideal targets (meshed surfaces) for regpebanges of inner pressurg,(= P,/P,) and flow rate £, = Qn/Qo)
with respect to the initial homeostatic stafe = =, = 1 (black solid point). Shown are (a) relative luminal radius/a, (ideal
targetan, /a, = ¢,'°), (b) relative thicknessy, /h, (ideal targeths, /ho = vne)'?), () relative referential mass density of collagen
P&n/ps (ideal targebk;, /ps = Jiarget), (d) passive contribution to circumferential stresy, [kPa] (ideal targetol,, = obys), (€)
active contribution to circumferential stres$s:, [kPa] (ideal targetrjsi, = o§5%), and (f) increment of flow shear stress relative to the
initial homeostatic valué\7,,, = (Twh — Two)/Two (ideal targetAr,,, = 0). The axial stretch with respect to the initial homeostatic
configuration is prescribed as, = 1.
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