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Abstract

Experiments on passive skeletal muscle on different species show a strong asym-
metry in the observed tension-compression mechanical behavior. This asymmetry
shows that the tension modulus is two orders of magnitude higher than the com-
pression modulus. Until now, traditional analytical constitutive models have been
unable to capture that strong asymmetry in anisotropic solids using the same mate-
rial parameters. In this work we present a model which is able to accurately capture
five experimental tests in chicken pectoralis muscle, including the observed tension-
compression asymmetry. However, aspects of the anisotropy of the tissue are not
captured by the model.

Keywords: Chicken pectoralis muscle, tension/compression asymmetry, Poisson’s
ratio, hyperelasticity.

1. Introduction

Computational modelling of the human body has many important and practical
applications, but the constitutive representation of soft tissues presents challenges.
Skeletal muscle presents anisotropic and nonlinear elastic behavior as well as signif-
icant viscoelasticity and it is largely incompressible, similar to other biological soft
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tissues. However, in addition a strong tension-compression asymmetry has now been
observed both in porcine and in chicken tissue, where the stress in tension is typically
two orders of magnitude higher than in compression in all directions of loading [1–3].
This asymmetry is not captured by current constitutive modelling approaches using
a single set of material parameters [3]. A recent generalisation of Ogden hyperelas-
ticity in terms of Seth-Hill strains permits some tension/compression asymmetry [4],
but it is unclear if it can capture the extent that has been experimentally observed
[1–3]. Cartilage, shape memory alloys and other materials also exhibit a degree of
tension/compression asymmetry, and robust numerical approaches for modelling this
response are currently in focus [5–7]. In this Technical Note, application of (1) the
general mechanics theory of transverse isotropy in the infinitesimal strain range and
(2) the recently developed What-You-Prescribe-Is-What-You-Get (WYPiWYG) for-
mulation [8–11] for the finite strain domain to the challenge of tension/compression
asymmetry in passive skeletal muscle stress stretch responses are presented. The
recent experimental data on chicken pectoralis muscle are used to assess the model
fitting capabilities [3]. In particular, the paper assesses the extent to which the
models can simultaneously capture the tension and compression aspects of the ex-
perimental tests. Some results obtained from the WYPiWYG formulation employed
in this work are initially surprising. For this reason the behavior of chicken pectoralis
muscle is first assessed in the context of the classical small strain theory, but allowing
for different moduli in tension and compression. Since the WYPiWYG formulation
is compatible with infinitesimal theory, equivalent results are obtained when using
either the small strain theory or the large strain WYPiWYG formulation. In Section
3 we present a stored energy function which simultaneously captures the behavior of
the anisotropic five experiments in the finite strain regime.

2. Transversely isotropic infinitesimal strain response

2.1. Strain energy function

Consider an incompressible transversely isotropic material with different axial
behavior in tension and compression along its preferred material directions. The
tension/compression asymmetry holds even for small strains, so different Young’s
moduli for tension and compression are obtained from uniaxial testing. The isotropic
plane is defined by axes 1 and 2 (direction 1 is the muscle cross-fibre direction) and
the muscle fibre direction is axis 3. Then, ε11, ε22 and ε33 are the axial components in
preferred directions of the infinitesimal isochoric strain tensor ε and ε#13 =

√

ε213 + ε223
is a composite shear deformation invariant including the shear components ε13 and
ε23. We can exactly characterize this material with a single isochoric strain energy
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function of the form

W
(

ε11, ε22, ε33, ε
#
13

)

= ω11 (ε11) + ω11 (ε22) + ω33 (ε33) + 2ω13(ε
#
13) (1)

with ωii (ε), i = {1, 3}, including the tension/compression asymmetry effects, i.e.
being piecewise bi-quadratic—subscripts c and t refer to compression and tension,
respectively

ωii (ε) =

{

µc
iiε

2 if ε < 0

µt
iiε

2 if ε ≥ 0
(2)

and ω13(ε
#
13) being quadratic—shear behavior within preferred planes is always sym-

metric
ω13(ε

#
13) = µ13(ε

#
13)

2 = µ13(ε
2
13 + ε223) (3)

The five deviatoric moduli (material constants) µc
11, µ

t
11, µ

c
33, µ

t
33 and µ13 charac-

terize the generally bi-linear strain-stress response. This additive, fully uncoupled
decomposition in terms of the small strain tensor components in preferred material
directions is not a hypothesis within the incompressible infinitesimal strain setting,
but rather it is a consequence of taking such a limit in which possible higher order
couplings vanish.

2.2. Tension/compression uniaxial tests along fibre and cross-fibre directions

We consider both tension and compression uniaxial tests along both cross-fibre
and fibre directions, i.e. four uniaxial tests from which we should be able to determine
the four material constants µc

11, µ
t
11, µ

c
33 and µt

33. In these cases ε11 ≡ ε1, ε22 ≡ ε2
and ε33 ≡ ε3 are isochoric principal strains. From the tensile test along the cross-fibre
direction 1 we have—i.e. ε1 > 0

σ1 = ω′

11 (ε1) + p = 2µt
11ε1 + p (4)

where σ1 is the (Cauchy) stress in axis 1 and p is the pressure Lagrange multiplier
associated to the incompressibility constraint ε1+ ε2+ ε3 = 0 to be determined from
the boundary conditions. In the other axes we have

0 = ω′

11 (ε2) + p = 2µc
11ε2 + p = −2µc

11ν
t
12ε1 + p (5)

0 = ω′

33 (ε3) + p = 2µc
33ε3 + p = −2µc

33ν
t
13ε1 + p (6)

where, according to experimental evidence [3], we have assumed positive Poisson
ratios in both axes 2 and 3 during the tensile test in axis 1, i.e. transverse contraction
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given by ε2 = −νt
12ε1 < 0 and ε3 = −νt

13ε1 < 0, so we have used the moduli µc
11 and

µc
33 in Eqs. (5) and (6), respectively. The Lagrange multiplier p may be eliminated

and the incompressibility condition (which also results in νt
12+ νt

13 = 1) be employed
to arrive at















νt
12 =

µc
33

µc
11 + µc

33

, νt
13 =

µc
11

µc
11 + µc

33

Y t
1 = 2

(

µt
11 +

µc
11µ

c
33

µc
11 + µc

33

) (7)

where Y t
1 is the Young modulus during the tensile test in direction 1. Equivalently,

for a compression test















νc
12 =

µt
33

µt
11 + µt

33

, νc
13 =

µt
11

µt
11 + µt

33

Y c
1 = 2

(

µc
11 +

µt
11µ

t
33

µt
11 + µt

33

) (8)

where νc
12, ν

c
13 and Y c

1 are the Poisson ratios and the Young modulus during the
uniaxial compression test in direction 1, respectively. Performing similar algebra for
a test in direction 3















νt
31 = νt

32 = νc
31 = νc

32 =
1

2

Y t
3 = 2

(

µt
33 +

1
2
µc
11

)

Y c
3 = 2

(

µc
33 +

1

2
µt
11

)

(9)

where the subscripts indicate the respective axes and the supercripts t and c mean
tension and compression, respectively. Considering tension and compression in the
muscle fibre and cross fibre directions shows that only four of these constants are
independent. From these equations we can determine µc

11, µt
11, µc

33 and µt
33, to

which µ13 is added. If we use the four Young’s moduli to determine the material
constants, the Poisson’s ratios are automatically obtained as result. We now solve
Eqs. (7)2, (8)2, (9)2 and (9)3 taking the reference Young’s moduli in the undeformed
configuration from the experimental data from chicken pectoralis muscle, provided
in Ref. [3], which we have measured approximately as

Y t
1 = 163 kPa , Y c

1 = 2.95 kPa , Y t
3 = 100 kPa , Y c

3 = 2.70 kPa (10)

The tensile response is seen to be two orders of magnitude larger than in compression
for both directions, as noted in [3]. Moreover, chicken muscle tissue is most compliant
in the fibre direction 3 (denoted longitudinal therein and labelled L) than in the cross-
fibre direction 1 (denoted transverse therein and labelled T ) for both tensile and
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compressive applied deformation. Using the experimental yield moduli, the previous
equations give the solution1

µt
11 = 104 kPa , µc

11 = −40.4 kPa , µt
33 = 70.2 kPa , µc

33 = −50.6 kPa (11)

which in turn result in the following (not independent) Poisson’s ratios

νt
13 = 0.44 and νc

13 = 0.60 (12)

These transverse-to-axial strain ratios are different to those actually observed in the
tissue (see Table 3 in Ref. [3], namely νt

13 ≡ νt
TL ≈ 0.83 and νc

13 ≡ νc
TL ≈ 0.34).

These are given for larger deformation levels and in terms of logarithmic strain ratios,
hence they are not directly comparable with the present solution. These differences
in computed continuum Poisson’s ratios and experimental ones could be explained
in part from the fact that they have been predicted using a purely continuum theory,
assuming a sufficiently large scale such that the continuum principles hold, whereas
in muscle the size of the specimen may be relevant in the observed behavior at larger
than usual scales [12–14]. Furthermore, passive muscle behavior under compression
is somewhat dictated by specimen size at the tissue level [15] where, additionally, the
difficulty in imposing common boundary conditions for every specimen size, along
with differences in fluid exudation, could have some adverse effects. Since our model
captures exactly the tests presented to the model, all the mentioned discrepances are
reflected in the Poisson ratios.

The deviatoric moduli given in Eq. (11) include two positive moduli associated
with both tension branches in Eq. (2) and two negative moduli associated with both
compression branches in Eq. (2). Traditional isochoric hyperelastic models, based
on continuously differentiable analytical hyperelastic functions, are unable to include
this type of positive-tension/negative-compression asymmetry. Importantly, the so-
lution encountered herein in an infinitesimal scenario may explain why experimental
data from this specific type of skeletal muscle has not been captured by current
constitutive modelling approaches using a single set of material parameters [3]. We
emphasize that the current infinitessimal theory is not a model, but the general con-
tinuum theory for transversely isotropic incompressible materials at small strains,
just incorporating the possibility of different moduli in tension and compression.
We also remark that the combination of all of the internal deviatoric moduli µ

t/c
ij

1Two more solutions are obtained, but they are rejected because yield negative Poisson ratios
as a consequence, which is in contradiction with the initial hypotheses considered herein (see, for
example, Eqs. (5) and (6)) based on experimental evidence [3].
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Figure 1: (a) The concept of effective stress in the soil skeleton. (b) Stress in the solid phase upon
an increase of fluid pressure

(which cannot be directly observed experimentally) yield the four positive Young’s
moduli given in Eq. (10), which are the actual experimental observations. Indeed,
any other observable moduli can equally be derived from the internal moduli. For
example, transverse shear is likely to occur at the tissue level when the muscle is
deformed within the transversely isotropic plane. For a linear material, the shear
modulus in the isotropic plane is, evidently, the deviatoric modulus G12 = µ11. For
a bilinear material, this expression is readily generalized as G12 = 1/2(µt

11 + µc
11).

If we specialize this expression to the present chicken pectoralis data, we obtain
G12 = 1/2(104− 40.4) = 31.8 kPa, which is positive again.

Nonetheless, it may still be somewhat surprising that there are two negative in-
ternal moduli in Eq. (11). The equations presented are a continuum theory but they
cannot directly provide explanations, which require the consideration of microstruc-
tural effects.

Muscle is composed of a fluid phase (mainly water) and a solid one, similar to soils.
The fluid phase is incompressible. A tentative decrease of the occupied fluid volume
increases the fluid pressure. The effect of the fluid pressure in soils is to decrease
the load transmitted by the soil reducing the shear capacity of the soil. This effect,
in a continuum setting, is accounted for by the effective stress concept (known as
Terzaghi decomposition), which is the stress carried by the skeleton referred to the
total volume, see Figure 1a.

Consider a tension test in a solid with an internal fluid as shown in Figure 1b.
Assume that the fluid pressure increase β is a linear function of the uniaxial strain
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ε, i.e. β = Fε > 0, with the constant F relating the pressure build-up in the
internal fluid with the longitudinal stretch in the muscle during the tensile test. The
equilibrium equation in the reference total domain is

σ = σs − β (13)

where σ is the continuum stress exerted by the grips and σs is the load carried by
the solid phase. The apparent modulus is

dσ

dε
=

dσs

dε
−

dβ

dε
⇒ Y = Ys − F (14)

where Ys is the Young modulus of the solid phase, F = dβ/dε and Y is the apparent
(continuum) modulus. From this equation it is clear that if F > 0 then Y < Ys, and
it may even happen that Y < 0 with Ys > 0. Hence a negative continuum (apparent)
modulus does not imply that the solid phase has a negative value. Furthermore, we
note that from Y alone, it is not possible to uniquely determine Ys and F , but
only their combined effect. A reason for the potential volume decrease in muscle is
given in [16]. Muscle consists of fibres surrounded by connective tissues. Collagen
fibers in the connective tissue have a distribution of helices wrapped around muscle.
As shown in [16] and [17], due to the high stiffness of the collagen fibers and the
helicoidal distribution, an increase in length results in an ’attempted’ decrease of
the fluid volume (consider Figure 3 of [16]) and an increase in the fluid pressure.
That pressure β depends on the transverse properties of the solid phase and on the
longitudinal strain exerted in the specimen, i.e. β = Fε.

In the 3D case given by Eqs. (4) to (6), we can perform the biphasic decomposi-
tion inserting the fluid pressure and follow again the same steps to arrive at equations
of the type

Y t
33 =

σ3

ε3
= 2

[

µt
33s +

1

2

(

µc
11s −

β

ε3

)]

(15)

where β/ε3 = F and µ
t/c
iis correspond to moduli in the solid phase. This Equation

is to be compared to continuum Eq. (9) which was obtained without the biphasic
decomposition. We can interpret

µc
11 = µc

11s − F (16)

which may result in µ11 < 0 if F > µc
11s, even when Y t

33 > 0. As in the uniaxial

case, we cannot determine µ
t/c
iis from the continuum measures, but only the combined

effects given by the apparent constants.
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A qualitatively similar explanation for negative internal moduli is given in [18]
for the observed influence of fluid pressure in tendon. However, the influence of
the fluid pressure of the tissue in the stress recorded during a tensile test is not
well understood, and has been related to the micromechanics of the tissue, see for
example [18–21] and therein references. In tendon, osmotic pressure induces tensile
forces in tendon collagen which surpass by orders of magnitude that generated by
contractile muscles [20].

2.3. Tension/compression uniaxial test at 45o

The procedure to determine the remaining material constant µ13 from a uniaxial
test performed at 45o with respect to the fiber direction 3 is just a particularization
to the small strain linear case of the more general procedure detailed in Ref. [22].
We can determine this material constant from either the tension test (as done in Ref.
[22]) or the compression test. Similar conclusions are obtained, but both branches
cannot be simultaneously captured with the transversely isotropic model. Note that
ω13 < (E#

13) must be symmetric by invariance principles. Once the shear moduli µ13

has been obtained from one of these branches, then the other experimental branch
is predicted by the model.

The particularization of the generally nonlinear governing equations of Ref. [22]
to the present bi-linear case is achieved substituting logarithmic strains with in-
finitesimal strains and using α ≡ 45o

σt
α (ε1) =

(

µt
11 + µt

33 + 4µc
11

)

ε1 +
(

µt
11 + µt

33 + 4µc
11

)

ε3 (17)

and

σt
α (ε1) = 2ω′

13

(

ε1 − ε3
2

)

= 2µ13 (ε1 − ε3) (18)

where, very importantly in this case for the proper consideration of the corresponding
tension/compression branch to be used, we assume a transverse contraction ε2 =
−ε1− ε3 < 0. In these equations, the measured strains ε1 and stresses σt

α during the
tensile test relate through σt

α (ε1) = Y t
αε1, where Y t

α is the uniaxial tensile modulus.
Then, from Eq. (17), and a similar one in compression, we obtain the in-plane
transverse strain ε3 for each input value ε1 > 0 or ε1 < 0 as

ε3 = −ναt
13ε1 or ε3 = −ναc

13 ε1 (19)

with

ναt
13 =

µt
11 + µt

33 + 4µc
11 − Y t

α

µt
11 + µt

33 + 4µc
11

or ναc
13 =

µc
11 + µc

33 + 4µt
11 − Y c

α

µc
11 + µc

33 + 4µt
11

(20)
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being the observed Poisson’s ratios of the uniaxial tension/compression tests per-

formed at α = 45o. Note that we need the material constants µ
t/c
11 and µ

t/c
33 , com-

puted as described in the previous subsection, and that the solution obtained is valid
provided that ν

α t/c
13 < 1. Finally, Equation (18) and a similar one for compression

give
Y t
α = 2µ13

(

1 + ναt
13

)

and Y c
α = 2µ13 (1 + ναc

13 ) (21)

both of which may be used to determine µ13. Note that these expressions mimic the
relation Y = 2µ (1 + ν) among the Young modulus Y , the Poisson’s ratio ν and the
shear modulus µ in classical isotropic elasticity.

We specialize now Eqs. (21) and (20) to the experimental data from chicken
pectoralis muscle, provided in Ref. [3]. The consideration of the uniaxial compression
test modulus (Y c

α = 2.58 kPa) yields

ναc
13 = 0.99 (22)

and

µ13 =
Y c
α

2 (1 + ναc
13 )

= 0.648 kPa (23)

which are rather realistic values at small strains.

3. Transversely isotropic finite strain response

We now extend the analysis to the finite strain framework using a purely phe-
nomenological WYPiWYG transversely isotropic hyperelasticity model [9–11] based
on logarithmic strains. This captures in an exact manner four uniaxial tension/compression
asymmetric stress-strain nonlinear branches in material preferred directions and one
uniaxial stress-strain nonlinear branch along the fibre orientation at 45o. The same
conceptual results discussed above are obtained in this case, which manifests the
importance of recovering the infinitesimal framework to be able to use engineering
procedures to understand the ongoing phenomena.

Consider an incompressible transversely isotropic material with different axial be-
havior in tension and compression along its preferred material directions, as the one
shown in Ref. [3] for chicken pectoralis muscle. We can characterize this material
from a phenomenological perspective employing a single isochoric strain energy func-
tion of the logarithmic isochoric strain tensor E = 1

2
ln(C), where C is the isochoric

right Cauchy-Green deformation tensor, of the form

W
(

E11, E22, E33, E
#
13

)

= ω11 (E11) + ω11 (E22) + ω33 (E33) + 2ω13(E
#
13) (24)
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with ωii (E), i = {1, 3}, being generally non-symmetric, non-linear functions capable
of including any kind of tension/compression asymmetry effects and ω13(E

#
13) being a

single-branch non-linear function capable of capturing the symmetric shear behavior
in preferred planes. The five non-linear strain energy branches included in Eq. (24)
characterize the generally non-linear strain-stress material response. We emphasize
that the uncoupled form of Eq. (24) is not a constraint of the WYPiWYG procedure,
but the one compatible with the infinitesimal theory at all strain levels that may be
determined with the available tests. Including additional strain component couplings
in the stored energy would require additional tests.

We consider both tension and compression uniaxial tests along both cross-fibre
and fibre directions, i.e. four uniaxial tests from which we should be able to determine
the two tension/compression non-linear functions ωii (E). We solve the non-linear
system of governing equations for these uniaxial tests, reported in Ref. [9], taking
the chicken pectoralis muscle experimental data provided in Ref. [3]. The prescribed
experimental data is given in Figure 2a in terms of principal logarithmic strains and
Cauchy stresses. We solve the governing equations in an exact way following the
enhanced algorithm provided in Ref. [22].

The first derivative functions ω′

ii (E) obtained as the unique solution satisfying the
corresponding equilibrium equations with transverse contraction are shown in Figure
2b. In this case the transverse-to-axial strain relations are obtained as a part of the
solution of the non-linear system of equations. Both tension/compression branches
of the transverse-to-axial strain relation E3 (E1) = EL (ET ), which generalizes the
Poisson’s ratio νTL effects in the foregoing small strain analysis, are shown in Figure 3.
The small strain limits νc

TL and νt
TL are consistently obtained. The relation E3 (E1),

obtained as a byproduct of the computational procedure, results to be slightly non-
linear in terms of logarithmic strains.

The uniaxial stresses that the strain energy terms of Figure 2b, along with the
transverse strains of Figure 3, predict for the chicken pectoralis skeletal muscle under
study are also shown in Figure 2a. To the best of the authors’ knowledge, this is
the first hyperelastic formulation that is able to exactly capture such a significant
tension/compression asymmetry effect within the whole deformation domain along
preferred material directions.

Recall now the solution for deviatoric moduli given in Eq. (11). Equivalently,
we observe in Figure 2b that the branches of both functions ω′

ii (E) present positive
slope (i.e. positive deviatoric local moduli) for the whole tension domain E > 0
and negative slope (i.e. negative deviatoric local moduli) for the whole compression
domain E < 0. However, the corresponding combination of these strain energy
branches during the uniaxial tests yield the four positive stiffness branches dσii/dEii

10
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Figure 2: (a) Experimental data (from Ref. [3]) and model exact predictions for the ten-
sion/compression uniaxial tests along fibre and cross-fibre directions of chicken pectoralis muscle.
(b) First derivative spline-based functions of the solution strain energy axial terms of Eq. (24). The
slope of the curves in Fig (b) are, for each strain value, the corresponding instantaneous internal
modulus; for example ω′′

11(E11 = 0+) = 2µt

11. Note that the energy terms are piece-wise splines,
so a compact closed form is not possible. The plots in (b) give the piece-wise splines (cubic poly-
nomials), in graphical form. These splines can be employed to compute the response in any other
loading situation.
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the cross-fibre direction. The slope, at each strain value, is (minus) the equivalent instantaneous
Poisson’s ratio defined in terms of logarithmic strains, which is obtained by compatibility from the
computed solution
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Figure 4: (a) Experimental data (from Ref. [3]) and model exact predictions for the compression
uniaxial test performed along the fibre orientation of 45o. (b) First derivative spline-based function
of the solution strain energy shear term of Eq. (24). This solution has been obtained using
experimental data from the compression branch of the uniaxial test of Figure 4a.

shown in Figure 2a (i.e. positive local Young’s moduli).
We now determine the remaining non-linear term ω′

13 (E) from a uniaxial test
performed at an orientation of α = 45o with respect to the fiber direction 3. We
follow the procedure detailed in Ref. [22], but using the uniaxial compression stress-
strain data provided in Ref. [3].

We show in Figure 4a the prescribed stress-strain data points. In Figure 4b we
show the solution non-linear shear term ω′

13 (E) present in Eq. (24), which again
solves the governing equations of this test in an exact way, see predictions for σc

α (E)
in Figure 4a.

Therefore, the present transversely isotropic formulation exactly captures the five
independent branches that are needed to characterize a tension/compression asym-
metric incompressible transversely isotropic material, see Figures 2a and 4a. This
result is parallel to that encountered within the respective small strain characteriza-
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tion of the problem at hand.
However, we must mention that the overall Poisson ratios are not accurately

captured, compare Fig. 3 with [3]. There may be several reasons for this discrepancy.
First, the different curves have been obtained averaging different specimens because
it is not possible to perform all the tests in the same specimen, so they do not
correspond to a unique material. This may result in relevant inaccuracies [23], [24].
Second, to avoid buckling, compression specimens have relatively large transverse
dimensions, so the uniaxial boundary conditions may not be accurate. Third, and
probably most importantly, the transverse isotropy assumption is only a modelling
approximation of a possibly more anisotropic behavior due to the complexity of the
extracellular matrix.

4. Conclusions

In-vitro experiments of the passive anisotropic behavior of chicken pectoralis mus-
cle present a strong asymmetry which, to the best of authors’ knowledge, has not
previously been successfully captured by a model in the literature. In this work we
have proposed a model capable of capturing that asymmetry and reproducing exactly
up to five experimental tests using a single stored energy, despite some poor predic-
tions of the Poisson’s ratios. The somewhat surprising results, in which negative
internal moduli are obtained, are confirmed by the applicable infinitesimal theory.
However, much research is still to be done in order to fully understand the observed
phenomena, which may be due to internal fluid pressure build-up during the tests
and the complexity of the interaction between the muscle fibres and the extracellular
matrix.
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